Science.gov

Sample records for earth atmosphere

  1. Earth's changeable atmosphere

    NASA Astrophysics Data System (ADS)

    2016-06-01

    Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.

  2. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  3. History of the Earth's atmosphere.

    NASA Astrophysics Data System (ADS)

    Budyko, M. I.; Ronov, A. B.; Yanshin, A. L.

    This book is an English translation of the Russian original "Istoriya atmosferi", published in 1985 by Gidrometeoizdat, Moscow. Contents: 1. Introduction: The modern atmosphere. Cycles of atmospheric gases. Studies of the evolution of the atmosphere. 2. Methods for determining changes in thecomposition of the atmosphere: Sedimentary layer of the Earth's crust. Carbon in the sedimentary layer. The dependence of amounts of CO2 and O2 in the atmosphere on carbon mass in sediments. 3. The evolution of the chemical composition of the atmosphere: Carbon dioxide. Oxygen. Past and future of the atmosphere. Conclusion.

  4. Early Earth: Atmosphere's solar shock

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses

    2016-06-01

    Frequent storms on the young Sun would have ejected energetic particles and compressed Earth's magnetosphere. Simulations suggest that the particles penetrated the atmosphere and initiated reactions that warmed the planet and fertilized life.

  5. GEOPHYSICS: Atmosphere Drives Earth's Tipsiness.

    PubMed

    Kerr, R A

    2000-08-04

    For more than a century, geophysicists who track Earth's rotation have sensed a rhythmic unsteadiness about the planet, an ever-so-slight wobbling whose source remained frustratingly mysterious. But researchers have been homing in on the roots of the so-called Chandler wobble, and now a report in the 1 August issue of Geophysical Research Letters fingers the shifting pressures of the deep sea and ultimately the fickle winds of the atmosphere.

  6. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  7. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    NASA Astrophysics Data System (ADS)

    Leslie, Fred

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthlyand geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, Earth-GRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-00) with the associated Harmonic Wind Model (HWM-93). In place of the GUACA and MAP datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which produce wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99. In addition, the dispersions are more normally distributed, especially at the extremes.

  8. Homeostatic tendencies of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Lovelock, J. E.; Margulis, L.

    1974-01-01

    The concept is developed that the atmosphere of the earth flows in a closed system controlled by and for the biosphere. The environmental factors delimiting the biosphere are examined. It is found that neither oxygen nor pressure per se limit the distribution of life as a whole. Rather the major physical variables determining the distribution of organisms are solar radiation, temperature, water abundance, and the concentrations of hydrogen and other ions and elements. An attempt is made to model temperature and atmospheric composition of a lifeless earth.

  9. A hydrogen-rich early Earth atmosphere.

    PubMed

    Tian, Feng; Toon, Owen B; Pavlov, Alexander A; De Sterck, H

    2005-05-13

    We show that the escape of hydrogen from early Earth's atmosphere likely occurred at rates slower by two orders of magnitude than previously thought. The balance between slow hydrogen escape and volcanic outgassing could have maintained a hydrogen mixing ratio of more than 30%. The production of prebiotic organic compounds in such an atmosphere would have been more efficient than either exogenous delivery or synthesis in hydrothermal systems. The organic soup in the oceans and ponds on early Earth would have been a more favorable place for the origin of life than previously thought.

  10. Atmospheric nitrogen evolution on Earth and Venus

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  11. Where does Earth's atmosphere get its energy?

    NASA Astrophysics Data System (ADS)

    Kren, Andrew C.; Pilewskie, Peter; Coddington, Odele

    2017-03-01

    The Sun is Earth's primary source of energy. In this paper, we compare the magnitude of the Sun to all other external (to the atmosphere) energy sources. These external sources were previously identified in Sellers (1965); here, we quantify and update them. These external sources provide a total energy to the Earth that is more than 3700 times smaller than that provided by the Sun, a vast majority of which is provided by heat from the Earth's interior. After accounting for the fact that 71% of incident solar radiation is deposited into the earth system, the Sun provides a total energy to Earth that is still more than 2600 times larger than the sum of all other external sources.

  12. Earth's Atmospheric CO2 Saturated IR Absorption

    NASA Astrophysics Data System (ADS)

    Wall, Ernst

    2008-10-01

    Using the on-line SpectraCalc IR absorption simulator, the amount of IR absorption by the 15 μ line of the current atmospheric CO2 was obtained and compared with that of twice the amount of CO2. The simulation required a fixed density equivalent for the atmospheric path length. This was obtained by numerically integrating the NOAA Standard Atmospheric model. While the current line is saturated, doubling the CO2 will cause a slight width increase. Using this and the blackbody radiation curve plus considering the effects of water vapor, the temperature rise of the Earth will be less than 2.5 deg. C. Integrating a NASA Martian atmospheric model, we find that the Martian atmosphere has 45 times more CO2 to penetrate than Earth, and yet, the Martian diurnal temperature swings exceed those of the Sahara desert. I.e., large amounts of CO2 alone do not necessarily cause planetary warming. As the oceans warm from any cause, more CO2 is boiled out, but if they cool, they will absorb more CO2 just as a carbonated drink does, so that temperature and CO2 density will correlate. It is to be noted that the Earth's known petroleum reserves contain only enough CO2 to increase the atmospheric CO2 by some 15%.

  13. Energetic Particle Influence on the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank; Bazilevskaya, Galina A.; Harrison, R. Giles; Krivolutsky, Alexei A.; Nicoll, Keri A.; Rozanov, Eugene V.; Turunen, Esa; Usoskin, Ilya G.

    2015-11-01

    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth's atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

  14. Life and the evolution of Earth's atmosphere.

    PubMed

    Kasting, James F; Siefert, Janet L

    2002-05-10

    Harvesting light to produce energy and oxygen (photosynthesis) is the signature of all land plants. This ability was co-opted from a precocious and ancient form of life known as cyanobacteria. Today these bacteria, as well as microscopic algae, supply oxygen to the atmosphere and churn out fixed nitrogen in Earth's vast oceans. Microorganisms may also have played a major role in atmosphere evolution before the rise of oxygen. Under the more dim light of a young sun cooler than today's, certain groups of anaerobic bacteria may have been pumping out large amounts of methane, thereby keeping the early climate warm and inviting. The evolution of Earth's atmosphere is linked tightly to the evolution of its biota.

  15. Oxidants and oxidation in the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1994 BOC Priestley Conference was held at Bucknell University in Lewisburg, Pennsylvania, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley's arrival in the U.S. and his discovery of oxygen. The basic theme of the conference was 'Oxidants and Oxidation in the Earth's Atmosphere,' with a keynote lecture on the history of ozone. A distinguished group of U.S. and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: (1) Oxidative Fate of Atmospheric Pollutants; (2) Photochemical Smog and Ozone; (3) Stratospheric Ozone; and (4) Global Tropospheric Ozone.

  16. Atmospheric excitation of the Earth's rotation rate

    NASA Astrophysics Data System (ADS)

    Merriam, J. B.

    Modern techniques for the determination of the Earth's rotation rate: long-baseline interferometry, satellite laser ranging, and lunar laser ranging, now permit the orientation of the Earth to be determined with an accuracy of 5 cm, which corresponds to about 10-4 sec in Universal Time. This nearly order-of-magnitude improvement over what was available ten years ago makes it feasible to look at variations in the length-of-day on much shorter time-scales. At the same time, the requirements of operational weather forecasting have resulted in more detailed knowledge of the variations of the angular momentum of the atmosphere. The result has been a convincing demonstration over the last several years that virtually all of the random variations in the length-of-day, at periods between a few years and a day, are due to atmospheric variations. Geophysicists and meteorologists have both exploited this discovery. Removal of the atmospheric signal from the length-of-day, results in a data set in which other interesting phenomena of geophysical interest can be studied. Meteorologists have had some success in using the rotation data to deduce the angular momentum of the atmosphere at times in the past when sufficient global coverage was not available to do this directly. Outstanding problems are: the low frequency variations in atmospheric angular momentum, which the passage of time will correct, and the details of the mechanism by which angular momentum is exchanged with the mantle.

  17. [How did the earth's oxygen atmosphere originate?].

    PubMed

    Schäfer, G

    2004-09-01

    The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.

  18. Biological modulation of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1974-01-01

    Review of the evidence that the earth's atmosphere is regulated by life on the surface so that the probability of growth of the entire biosphere is maximized. Acidity, gas composition including oxygen level, and ambient temperature are enormously important determinants for the distribution of life. The earth's atmosphere deviates greatly from that of the other terrestrial planets in particular with respect to acidity, composition, redox potential and temperature history as predicted from solar luminosity. These deviations from predicted steady state conditions have apparently persisted over millions of years. These anomalies may be evidence for a complex planet-wide homeostasis that is the product of natural selection. Possible homeostatic mechanisms that may be further investigated by both theoretical and experimental methods are suggested.

  19. Background Lamb waves in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Kobayashi, N.; Fukao, Y.

    2013-12-01

    Lamb waves of the Earth's atmosphere in the millihertz band have been considered as transient phenomena excited only by large events [e.g. the major volcanic eruption of Krakatoa in 1833, the impact of Siberian meteorite in 1908, the testing of large nuclear tests and the huge earthquakes, Garrett1969]. In a case of the solid Earth, observation of background free oscillations in the millihertz band-now known as Earth's background free oscillations or seismic hum, has been firmly established. Above 5 mHz, their dominant excitation sources are oceanic infragravity waves. At 3.7 and 4.4 mHz an elasto-acoustic resonance between the solid Earth and the atmosphere was observed [Nishida et al., 2000]. These seismic observations show that the contribution of atmospheric disturbances to the seismic hum is dominant below 5 mHz. Such contribution implies background excitations of acoustic-gravity waves in this frequency range. For direct detection of the background acoustic-gravity waves, our group conducted observations using an array of barometers [Nishida et al. 2005]. However, the spatial scale of the array of about 10 km was too small to detect acoustic modes below 10 mHz. Since then, no direct observations of these waves have been reported. In 2011, 337 high-resolution microbarometers were installed on a continental scale at USArray Transportable Array. The large and dense array enables us to detect the background atmospheric waves. Here, we show the first evidence of background Lamb waves in the Earth's atmosphere from 0.2 to 10 mHz, based on the array analysis of microbarometer data from the USArray in 2012. The observations suggest that the excitation sources are atmospheric disturbances in the troposphere. Theoretically, their energy in the troposphere tunnels into the thermosphere at a resonant frequency via thermospheric gravity wave, where the observed amplitudes indeed take a local minimum. The energy leak through the frequency window could partly contribute to

  20. First Super-Earth Atmosphere Analysed

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are

  1. Dynamic model of the Earth's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1984-01-01

    An initial modification to the MSF/J70 Thermospheric Model, in which the variations due to sudden geomagnetic disturbances upon the Earth's upper atmospheric density structure were modeled is presented. This dynamic model of the geomagnetic variation included is an improved version of one which SAO developed from the analysis of the ESRO 4 mass spectrometer data that was incorporated in the Jacchia 1977 model. The variation with geomagnetic local time as well as with geomagnetic latitude are included, and also the effects due to disturbance of the temperature profiles in the region of energy deposition.

  2. Observations of the Earth's atmosphere: Introductory remarks

    NASA Astrophysics Data System (ADS)

    Barlier, François

    2010-04-01

    The Earth is surrounded by a layer of relatively thin gas, the mass of which is mainly concentrated in the first kilometres. With an exponential decrease of the density of the atmosphere as a function of altitude, 99.9% of this mass is located in the first 50 km. In addition, the composition of major species is homogeneous up to about 85 km, contrarily to what happens beyond. This is the homosphere. This layer of atmosphere, considered in this special issue, is also that which we breathe and which we unfortunately often pollute. All this justifies considering it as of vital importance, in the most basic sense of the word. However, in studying it, it is not possible to ignore what is happening beyond, from where comes, in particular, solar radiation, just as we cannot ignore what happens below the continents and the oceans, where solar radiation is absorbed, diffused and re-emitted to the top by the Earth's surface as infrared radiation. We must therefore keep in mind what are the layers that surround the homosphere, the importance of observing them and also give some examples of possible interactions which may exist with the surrounding layers; these are the objectives of these introductory remarks. Another general consideration must be made here, concerning the problems, which have existed until the middle of the 20th century, of how to observe the atmosphere in situ at all the altitudes. However, since then, the development of engineering involving balloons, rockets, aircrafts and artificial satellites has revolutionized our knowledge of this observational atmosphere; this is the second message of these remarks.

  3. NASA Now Minute: Earth’s Atmosphere: Earth Science Week

    NASA Video Gallery

    Dr. Kenneth Pickering talks about the composition of Earth’s atmosphere,how it protects life on Earth, and how it is interconnected with theEarth system. Pickering discusses findings from the D...

  4. NASA Now: Earth’s Atmosphere: Earth Science Week

    NASA Video Gallery

    Dr. Kenneth Pickering talks about the composition of Earth’s atmosphere, how it protects life on Earth, and how it is interconnected with the Earth system. Pickering discusses findings from the D...

  5. New Data for Early Earth Atmospheric Modelling

    NASA Astrophysics Data System (ADS)

    Blackie, D.; Stark, G.; Lyons, J. R.; Pickering, J.; Smith, P. L.; Thorne, A.

    2010-12-01

    The timing of the oxygenation of the Earth’s atmosphere is a central issue in understanding the Earth’s paleoclimate. The discovery of mass-independent fractionation (MIF) of sulphur isotopes deposited within Archean and Paleoproterozoic rock samples (> 2.4 Gyrs) and the transition to mass-dependent fractionation found in younger samples, could provide a marker for the rise in oxygen concentrations in the Earth’s atmosphere [1]. Laboratory experiments [2; 3] suggest isotopic self shielding during gas phase photolysis of SO2 present at wavelengths shorter than 220 nm as the dominant mechanism for MIF. The UV absorption of SO2 is dominated by the C1B2-X1A1 electronic system which comprises strong vibrational bands extending from 170 - 230 nm. Within an atmosphere consisting of low O2 and O3 concentrations, such as that predicted for the early Earth, UV radiation would penetrate deep into the ancient Earth’s atmosphere in the 180 - 220 nm range driving the photolysis of SO2. We have conducted the first ever high resolution measurements of the photo absorption cross sections of several isotopologues of SO2, namely 32SO2, 33SO2, 34SO2 and 36SO2, using the Imperial College UV Fourier transform spectrometer [4] which is ideal for high resolution, broad-band, VIS/UV measurements. The cross sections are being measured at Imperial College at initial resolutions of 1.0 cm-1 which will be increased to resolutions < 0.5 cm-1 for inclusion in photochemical models of the early Earth’s atmosphere in order to more reliably interpret the sulphur isotope ratios found in ancient rock samples [5]. For discussion and interpretation of the photochemical models see the abstract by Lyons et al.(this meeting). References [1] J. Farquhar and B.A. Wing. Earth and Planetary Science Letters, 213:1-13, 2003. [2] J. Farquhar, J. Savarino, S. Airieau, and M.H Thiemens. Journal of Geophysical Research,106:32829-32839, 2001. [3] A. Pen and R. N. Clayton.Geochimica et Cosmochimica Acta

  6. Atmospheric breakup of a small comet in the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Teterev, A. V.; Misychenko, N. I.; Rudak, L. V.; Romanov, G. S.; Smetannikov, A. S.; Nemchinov, I. V.

    1993-01-01

    The aerodynamic stresses can lead to the deformation and even to destruction of the meteoroids during their flight through the atmosphere. The pressure at the blunt nose of the cosmic body moving at very high speed through the dense layers of the atmosphere may be much larger than the tensile or the compressive strength of the body. So the usage of the hydrodynamics theory is validated. The estimates show that the transverse velocity of the substance of the body U is of the order of (rho(sub a)/rho(sub o))(sup 1/2)V where V is the velocity of the body and rho(sub o) is its density, rho(sub a) is the density of the atmosphere. The separation of the fragments is larger than the diameter of the body D if D is less than D(sub c) = 2H(square root of rho(sub a)/rho(sub o)), where H is the characteristic scale of the atmosphere. For an icy body one obtains U = 1/30(V) and critical diameter D(sub C) = 500 m. The process of the disintegration of the body is still not fully understood and so one can use the numerical simulation to investigate it. Such simulations where conducted for the Venusian atmosphere and the gaseous equation of state of the body was used. For the Earth atmosphere for the velocity V = 50 km/s the pressure at the blunt nose of the body is 25 kbar, and is of the order of bulk modulus of compressibility of the water or ice. The realistic EOS of water in tabular form was used. It was assumed that the initial shape of the body was spherical and the initial diameter D(sub o) of the body is 200 m and so it is smaller than the critical diameter D(sub C). The initial kinetic energy of the icy body is equivalent to the energy of the explosion 1200 Mt of TNT. The results of the simulation of the deformation of the body during its vertical flight through the atmosphere and during its impact into the ocean are presented.

  7. Steam Atmosphere — Magma Ocean Chemistry on the Early Earth

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Lodders, K.

    2016-08-01

    We use experimental data from the literature to calculate chemistry of the steam atmosphere — magma ocean system on the early Earth. Our results show partitioning of rocky elements into the steam atmosphere.

  8. Cosmic Ray Abundance at Aircraft Altitudes in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhou, D.

    1999-08-01

    Recent investigations of cosmic ray primaries and secondaries at aviation altitudes in the Earth's atmosphere include the study of Z≥2 particles along the London-New York flight routes on supersonic aircraft. Preliminary charge spectra will be presented for these nuclei and comparisons will be made with the predictions of cosmic ray transport models in the Earth's atmosphere.

  9. Extraterrestrial matter in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Popova, Olga

    The Sub-Millimetre Radiometer (SMR) on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric oxide (NO) at the Earth limb in a band centred at 551.7GHz. As member of the NOx family, this species plays an important role in stratospheric ozone chemistry. At high altitudes in the thermosphere, NO is formed when N2 is dissociated by solar radiation and through energetic particle precipitation (e.g. auroral activity). Its spatio-temporal distribution is influenced by the global meridional circulation, in particular during polar night when the lifetime of NOx species is long enough that downward transported NOx can contribute to the NOy budget in the mesosphere and stratosphere. Global measurements of NO were performed by Odin/SMR on approximately one observation day per month from October 2003 to April 2007 and on a nearly weekly basis thereafter. This presentation focuses on a detailed description of the characteristics of the Odin observations. The derived Odin NO climatology is then analysed in relation to observed variability of middle atmospheric transport and solar radiation. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Fin-land (TEKES), and France (CNES), with support by the 3rd party mission programme of the European Space Agency (ESA).

  10. Atmospheric attenuation relative to earth-viewing orbital sensors. [atmospheric moisture effects on microwaves

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jayroe, R. R., Jr.

    1973-01-01

    Earth viewing space missions offer exciting new possibilities in several earth resources disciplines - geography, hydrology, agriculture, geology, and oceanography, to name a few. A most useful tool in planning experiments and applying space technology to earth observation is a statistical description of atmospheric parameters. Four dimensional atmospheric models and a world wide cloud model are used to produce atmospheric attenuation models to predict degradation effects for all classes of sensors for application to earth sensing experiments from spaceborne platforms. To insure maximum utility and application of these products, the development of an interaction model of microwave energy and atmospheric variables provides a complete description of the effects of atmospheric moisture upon microwaves.

  11. Global Change in Earth's Atmosphere: Natural and Anthropogenic Factors

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    To what extent is human activity, such as the emission of carbon dioxide and other 'greenhouse' gases, influencing Earth's atmosphere, compared with natural variations driven by, for example, the Sun or volcanoes? Why has Earth's surface warmed barely, if at all, in the last decade? Why is the atmosphere at just 20 km above the surface cooling instead of warming? When - and will - the ozone layer recover from its two-decade decline due to chlorofluorocarbon depletion? Natural and anthropogenic factors are changing Earth's atmosphere, each with distinct temporal, geographical and altitudinal signatures. Increasing greenhouse gases, for example, warm the surface but cool the stratosphere and upper atmosphere. Aerosols injected into the stratosphere during a volcanic eruption warm the stratosphere but cool the surface. Increases in the Sun's brightness warm Earth's atmosphere, throughout. This talk will quantify and compare a variety of natural and human influences on the Earth's atmosphere, extracted statistically from multiple datasets with the goal of understanding how and why Earth's atmosphere is changing. The extent to which responses to natural influences are presently masking or exacerbating ongoing responses to human activity is examined. Scenarios for future levels of anthropogenic gases and solar activity are then used to speculate how Earth's atmosphere might evolve in future decades, according to both statistical models of the databases and physical general circulation models.

  12. Telescope Formation at L2 for Observing Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Behcet; Breckenridge, William; Macenka, Steven; Hein, Randall; Tubbs, Eldred

    2007-01-01

    Two documents describe a proposed Earth-atmosphere observatory to orbit the Sun at the Sun-Earth L2 Lagrange point -- a point of unstable equilibrium in the shadow of the Earth, about 1.5 million km from the Earth along an outward projection of the Earth-Sun axis. The observatory would comprise two spacecraft flying in precision formation: (1) a primary-aperture spacecraft, from which would be deployed a 25-m diameter membrane primary mirror aimed at the Earth, and (2) a secondary-telescope spacecraft at the focal plane of the primary mirror, 125-m distant along the axis towards the Earth. The secondary telescope would be aimed at the primary mirror and slowly rotated to scan the focused annular image of the visible illuminated portion of the Earth's atmosphere during continuous occultation of the Sun.

  13. Atmospheres and evolution. [of microbial life on earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1981-01-01

    Studies concerning the regulation of the earth atmosphere and the relation of atmospheric changes to the evolution of microbial life are reviewed. The improbable nature of the composition of the earth atmosphere in light of the atmospheric compositions of Mars and Venus and equilibrium considerations is pointed out, and evidence for the existence of microbial (procaryotic) life on earth as far back as 3.5 billion years ago is presented. The emergence of eucaryotic life in the Phanerozoic due to evolving symbioses between different procaryotic species is discussed with examples given of present-day symbiotic relationships between bacteria and eucaryotes. The idea that atmospheric gases are kept in balance mainly by the actions of bacterial cells is then considered, and it is argued that species diversity is necessary for the maintenance and origin of life on earth in its present form.

  14. ATMOS: Long term atmospheric measurements for mission to planet Earth

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A long-term, space-based measurement program, together with continued balloon and aircraft-borne investigations, is essential to monitor the predicted effects in the atmosphere, to determine to what extent the concentration measurements agree with current models of stratospheric chemistry, and to determine the condition of the ozone layer. The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment is currently making comprehensive, global measurements of Earth's atmosphere as part of the Atmospheric Laboratory for Applications and Science (ATLAS) program on the Space Shuttle. Part of NASA's Mission to Planet Earth, ATLAS is a continuing series of missions to study Earth and the Sun and provide a more fundamental understanding of the solar influences on Earth's atmosphere. The ATMOS program, instruments, and science results are presented.

  15. ON THE STABILITY OF SUPER-EARTH ATMOSPHERES

    SciTech Connect

    Heng, Kevin; Kopparla, Pushkar

    2012-07-20

    We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars.

  16. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  17. Space Science in Action: Earth's Atmosphere [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the layers of the atmosphere and why each is important to the survival of life on the planet. Students discover why the atmosphere is responsible for weather and see how special aircraft actually fly into hurricanes. Students build their own working barometer in a hands-on activity. Contents…

  18. The thermodynamic effect of atmospheric mass on early Earth's temperature

    NASA Astrophysics Data System (ADS)

    Chemke, R.; Kaspi, Y.; Halevy, I.

    2016-11-01

    Observations suggest that Earth's early atmospheric mass differed from the present day. The effects of a different atmospheric mass on radiative forcing have been investigated in climate models of variable sophistication, but a mechanistic understanding of the thermodynamic component of the effect of atmospheric mass on early climate is missing. Using a 3-D idealized global circulation model (GCM), we systematically examine the thermodynamic effect of atmospheric mass on near-surface temperature. We find that higher atmospheric mass tends to increase the near-surface temperature mostly due to an increase in the heat capacity of the atmosphere, which decreases the net radiative cooling effect in the lower layers of the atmosphere. Additionally, the vertical advection of heat by eddies decreases with increasing atmospheric mass, resulting in further near-surface warming. As both net radiative cooling and vertical eddy heat fluxes are extratropical phenomena, higher atmospheric mass tends to flatten the meridional temperature gradient.

  19. Atmospherics: A Look at the Earth's Airy Shell.

    ERIC Educational Resources Information Center

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  20. Characterizing atmospheric waves on Venus, Earth, and Mars

    NASA Astrophysics Data System (ADS)

    Wilson, Colin F.; Piccialli, Arianna

    2012-06-01

    Atmospheric Waves Workshop; Noordwijk, Netherlands, 9-10 November 2011 Experts in observations and modeling of atmospheric waves from the Earth and planetary atmospheric science communities came together at a November 2011 workshop held at the European Space Agency's (ESA) European Space Research and Technology Centre ( ESTEC) site in the Netherlands to discuss the nature of waves observed in Venus's atmosphere and their comparison to those on Earth and Mars. ESA's Venus Express (VEx) satellite and ground-based observers find atmospheric waves at many scales. Migrating solar tides and other planetary- scale waves are observed in cloud- tracking wind vectors and temperature fields. Mesoscale gravity waves (GWs) can also be seen at a variety of levels from the cloud base up to the thermosphere, evident in imagery and in vertical profiles of temperature, density, and aerosol abundance. This workshop focused particularly on GWs, as their role in the atmospheric circulation is still poorly understood.

  1. CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS

    SciTech Connect

    Schaefer, Laura; Fegley, Bruce E-mail: bfegley@levee.wustl.ed

    2009-10-01

    We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds such as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.

  2. The rise of oxygen in Earth's early ocean and atmosphere.

    PubMed

    Lyons, Timothy W; Reinhard, Christopher T; Planavsky, Noah J

    2014-02-20

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  3. The effect of aerosols on the earth-atmosphere albedo

    NASA Technical Reports Server (NTRS)

    Herman, B. M.; Browning, S. R.

    1975-01-01

    The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).

  4. The chemical composition and climatology of the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.

    1983-01-01

    The earth's climate as it relates to the evolution of life is discussed.. Seven fundamental characteristics of the early evolutionary environment are examined, including a carbon dioxide and water vapor atmosphere, atmospheric mass between 500 and 1000 mb, a global hydrosphere, lowered solar luminosity, hospitable average global temperatures, a convectively active atmosphere, and trace gases. The influence of the early earth's extensive hydrosphere on the origin of life is considered. The warming of that hydrosphere due to radiative fluxes and the greenhouse effect is examined, and the nature of the feedback between clouds and climate is addressed.

  5. Propagation of sound through the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Meredith, R. W.; Becher, J.

    1983-01-01

    The data collected at a pressure of one atmosphere for the different temperatures and relative humidities of the air-water vapor mixtures is summarized. The dew point hygrometer used in these measurements did not give reliable results for dew points much above the ambient room temperature. For this reason measurements were not attempted at the higher temperatures and humidities. Viscous wall losses in the resonant tube at 0 C so dominate the molecular relaxation of nitrogen, in the air-water vapor mixture, that reliable data could not be obtained using the free decay method in a resonant tube at one atmosphere. In an effort to obtain viable data at these temperatures, measurements were performed at a pressure of 10 atmospheres. Since the molecular relaxation peak is proportional to the pressure and the viscous losses are proportional to the inverse square root of the pressure the peak height should be measurable at the higher pressure. The tradeoff here is that at 10 atmospheres; the highest relative humidity attainable is 10 percent. The data collected at 10 atmospheres is also summarized.

  6. Optical Instability of the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kucherov, N. I. (Editor)

    1966-01-01

    The atmosphere is not stationary: it changes continuously and its optical properties are inherently unstable. This optical instability of the air medium is of considerable significance in various fields of research and observation where light transmission through the atmosphere plays a basic role. Under the category of optical instabilities we mainly have the different atmospheric perturbations whose integrated effect constitutes the astroclimate: these are image pulsation, scintillation, and the blurring of the diffraction disk. The artificial satellites and space probes collected a great amount of new data on the upper atmosphere and on the outer space environment. New interesting and important problems arose, which attracted the attention of many geophysicists and astronomers. This shift in the center of gravity of scientific interests and efforts is observed mainly among scientists specializing in atmospheric physics. Recently, scientific organizations engaged on optical instability research switched to astroclimatic topics. Twelve scientific organizations were represented at the Soviet astronomers have recently been charged with a very difficult and responsible task: to select suitable sites for the erection of new observatories, including an astrophysical observatory with the largest telescope in the USSR. A considerable number of research groups were dispatched into various areas of the Soviet Union, and many astronomical observatories took part in the astroclimatic survey. The work of these expeditions remains un-paralleled by any other country in the world. On the other hand, these researches aroused a definite interest in astroclimate in Soviet astronomical observatories. International astronomical circles pay an ever growing attention to the problems of astroclimate.

  7. Earth Global Reference Atmospheric Model (GRAM99): Short Course

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2007-01-01

    Earth-GRAM is a FORTRAN software package that can run on a variety of platforms including PC's. For any time and location in the Earth's atmosphere, Earth-GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc.. Dispersions (perturbations) of these parameters are also provided and have realistic correlations, means, and variances - useful for Monte Carlo analysis. Earth-GRAM is driven by observations including a tropospheric database available from the National Climatic Data Center. Although Earth-GRAM can be run in a "stand-alone" mode, many users incorporate it into their trajectory codes. The source code is distributed free-of-charge to eligible recipients.

  8. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    SciTech Connect

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  9. Evolution of a steam atmosphere during earth's accretion

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Kasting, James F.; Pollack, James B.

    1988-01-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  10. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Mbarek, Rostom; Kempton, Eliza M.-R.

    2016-08-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.

  11. Ranges of AGW propagation in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Lizunov, G. V.; Leont'ev, A. Yu.

    2014-11-01

    The propagation of atmospheric gravity waves (AGWs) is studied in the context of geometrical optics in the nonisothermal, viscous, and thermal-conductive atmosphere of Earth in the presence of wind shifts. Parametric diagrams are plotted, determining the regions of allowed frequencies and horizontal phase velocities of AGWs depending on the altitude. It is shown that a part of the spectrum of AGWs propagates in stationary air in an altitude range from the Earth's surface through the ionospheric F1 layer. AGW from nearearth sources attenuate below 250 km, while waves generated at altitudes of about 300 km and higher do not reach the Earth's surface because of the inner reflection from the thermosphere base. The pattern changes under strong thermospheric winds. AGW dissipation decreases with an adverse wind shift and, hence, a part of the wave spectrum penetrated from the lower atmosphere to the altitudes of F2 layer.

  12. Explosions of small Spacewatch objects in the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.

    1993-01-01

    It is shown here that explosions due to Spacewatch objects with diameters less than 50 m typically occur too high in the atmosphere to cause substantial surface damage. Exclusive of relatively rare iron objects, no comet or asteroid with an energy below about 2 megatons threatens the Earth's surface. The high flux of small Earth-crossing objects identified by Spacewatch therefore does not imply a greater terrestrial hazard.

  13. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  14. Meteoroids Interaction With The Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Turchak, Leonid I.; Gritsevich, Maria I.

    2014-12-01

    In this study we evaluate meteoroid mass and its other properties based on the observed atmospheric trajectory. With account for aerodynamics, we formulate a problem by introducing key dimensionless parameters in the model, responsible for the drag, mass loss and rotation of meteoroid. The proposed model is suitable to categorize various impact events in terms of meteor survivability and impact damage and thus, to analyze consequences that accompany collisions of cosmic bodies with planetary atmosphere and surface. The different types of events, namely, formation of a massive single crater (Barringer, Lonar Lake), dispersion of craters and meteorites over a large area (Sikhote-Alin), absent of craters and meteorites, but huge damage (Tunguska) are considered as illustrative examples. The proposed approach helps to summarize the data on existing terrestrial impacts and to formulate recommendations for further studies valuable for planetary defence. It also significantly increases chances of successful meteorite recoveries in future. In other words, the study represents a 'cheap' possibility to probe cosmic matter reaching planetary surface and it complements results of sample-return missions bringing back pristine samples of the materials.

  15. VAPORIZATION OF THE EARTH: APPLICATION TO EXOPLANET ATMOSPHERES

    SciTech Connect

    Schaefer, Laura; Lodders, Katharina; Fegley, Bruce E-mail: lschaefer@cfa.harvard.edu E-mail: bfegley@wustl.edu

    2012-08-10

    Currently, there are about three dozen known super-Earths (M < 10 M{sub Circled-Plus }), of which eight are transiting planets suitable for atmospheric follow-up observations. Some of the planets are exposed to extreme temperatures as they orbit close to their host stars, e.g., CoRot-7b, and all of these planets have equilibrium temperatures significantly hotter than the Earth. Such planets can develop atmospheres through (partial) vaporization of their crustal and/or mantle silicates. We investigated the chemical equilibrium composition of such heated systems from 500 to 4000 K and total pressures from 10{sup -6} to 10{sup +2} bars. The major gases are H{sub 2}O and CO{sub 2} over broad temperature and pressure ranges, and Na, K, O{sub 2}, SiO, and O at high temperatures and low pressures. We discuss the differences in atmospheric composition arising from vaporization of SiO{sub 2}-rich (i.e., felsic) silicates (like Earth's continental crust) and MgO-, FeO-rich (i.e., mafic) silicates (like the bulk silicate Earth). The computational results will be useful in planning spectroscopic studies of the atmospheres of Earth-like exoplanets.

  16. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  17. Multi-Wavelength Spectroscopy of Super-Earth Atmospheres

    NASA Astrophysics Data System (ADS)

    Dragomir, Diana; Benneke, Björn; Crossfield, Ian; Lothringer, Joshua; Knutson, Heather

    2017-01-01

    The Kepler mission has revealed that super-Earths (planets with radii between 1 and 4 R_Earth) are the most common class of planets in the Galaxy, though none are known in our own Solar System. These planets can theoretically have a wide range of compositions which we are just beginning to explore observationally. While studies based on Kepler data have revolutionized many areas of exoplanet research, the relative faintness of most of the host stars in the Kepler field means that atmospheric characterization of these super-Earths with currently available instruments is extremely challenging. However, a handful of transiting super-Earths are within reach of existing facilities. We have pointed both the HST and Spitzer toward these systems in an effort to paint a thorough picture of their atmospheres. Our transmission spectroscopy observations explore the transition region between terrestrial planets and miniature gas giants, and contribute to distinguishing between low-density hydrogen-dominated atmospheres and compact high-metallicity atmospheres. Transmission spectroscopy over a wide wavelength range is also essential to understanding the properties and effects of clouds in these atmospheres. The results of this program will inform the direction to be taken by future multi-wavelength studies of these worlds, in particular those enabled when the HST joins forces with the upcoming JWST.

  18. Compositions of Hot Super-earth Atmospheres: Exploring Kepler Candidates

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Kaltenegger, L.; Fegley, B.; Schaefer, L.

    2011-12-01

    This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000 K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.

  19. COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES

    SciTech Connect

    Miguel, Y.; Kaltenegger, L.; Fegley, B.; Schaefer, L.

    2011-12-15

    This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000 K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.

  20. Water inventories on Earth and Mars: Clues to atmosphere formation

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1992-01-01

    Water is distributed differently on Earth and on Mars and the differences may have implications for the accretion of the two planets and the formation of their atmospheres. The Earth's mantle appears to contain at least several times the water content of the Martian mantle even accounting for differences in plate tectonics. One explanation is that the Earth's surface melted during accretion, as a result of development of a steam atmosphere, thereby allowing impact-devolitalized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second possibility is suggested by the siderophile elements in the Earth's mantle, which indicates the Earth acquired a volatile-rich veneer after the core formed. Mars may have acquired a late volatile-rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water rich veneer. This perception of Mars with a wet surface but dry interior is consistent with our knowledge of Mars' geologic history.

  1. Atmospheric circulation and climate of terrestrial exoplanets and super Earths

    NASA Astrophysics Data System (ADS)

    Showman, A. P.; Kaspi, Y.

    2014-03-01

    The recent discovery of super Earths and terrestrial exoplanets extending over a broad region of orbital and physical parameter space suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. In this presentation we will review how the planetary rotation rate, planetary mass, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We will elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we will discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  2. Computer modeling of the Earth's atmosphere via reflectionless layers

    NASA Astrophysics Data System (ADS)

    Batcyna, E.; Petruhin, N.; Pelinovsky, E.

    2012-04-01

    The Earth's atmosphere is highly inhomogeneous and nonisothermal, and waves in inhomogeneous media are known to be reflected and not able to propagate over a long distance generally. However, it is known that in an incompressible inhomogeneous fluid there exist surface and internal traveling waves, which are not reflected on inhomogeneities when the environment parameters satisfy specific conditions. In this paper we study the existence of such waves in a strongly inhomogeneous compressible atmosphere. The mathematical approach for obtaining of such solutions is connected with a transformational change of arguments and functions using the symmetry and the Lie algebra. For example, in this approach the wave equation with variable coefficients is reduced to an equation of hyperbolic type with constant coefficients, so that the existence of traveling waves becomes obvious. We have derived the ordinary differential equations for the vertical distribution of sound speed (temperature) at which the waves are not reflected. Their solutions are obtained analytically and numerically. It is shown that the Standard Earth Atmosphere is modeled by four piecewise reflectionless profiles. Approximation of the real profiles in geophysics will simplify the calculation of wave dynamics, reducing them to solving of algebraic equations in the "junction" of reflectionless profiles. These results can be used for interpretation of the dynamic processes in the Earth's atmosphere, particularly for the interpretation of abnormally large waves in the upper atmosphere, which could be called the "atmospheric rogue waves".

  3. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  4. Meteoroids captured into Earth orbit by grazing atmospheric encounters

    NASA Astrophysics Data System (ADS)

    Hills, Jack G.; Goda, M. Patrick

    1997-05-01

    Some meteoroids, such as the one that produced the daytime fireball of August 10, 1972 that passed over the western United States and the European fireball of October 13, 1990, graze the atmosphere of Earth before returning to space (at reduced speed). Other grazing meteoroids, such as Peekskill, penetrate deeper into the atmosphere and lose enough energy to plunge to ground. It is evident that if a grazing meteoroid is within some critical range of closest approach distance and speed, it is captured into a gravitationally bound orbit around Earth. It must ultimately plunge to ground after further orbital dissipation in subsequent atmospheric passages unless the gravitational pull of the Moon and Sun or other intervention raise its perigee above the atmosphere. A spherical atmospheric model is used to integrate the passage of meteoroids in grazing atmospheric encounters. It is found that the corridor for capture narrows with increasing values of V∞, the approach velocity of the meteoroid prior to gravitational acceleration by Earth. As an example, if V∞= 5 km s -1, stony meteoroids with closest-approach distances of h = 40 km above the Earth are captured if their radii, R, are between 3 and 9 m while if V∞ = 15 km s -1 and h = 40 km, they are only captured if R is between 1.5 and 2m. Irons with V∞ = 5 km s -1 and h = 40 km, are captured if R is between 1 and 3.5 m, while if V∞ = 15 km s -1, they are captured if R is between 0.6 and 0.9 m. The cross section for orbital capture of iron meteoroids and small stony meteoroids is about 0.001 that for directly hitting Earth. Large stones are never captured except at very low impact velocities because of the large increase in drag resulting from fragmentation.

  5. Hadamard transform spectrometry of the atmospheres of Earth and Jupiter

    NASA Technical Reports Server (NTRS)

    Phillips, P. G.; Briotta, D. A., Jr.

    1973-01-01

    A Hadamard-transform spectrometer was used to obtain a spectrum of Jupiter from 880-770/cm. Three ammonia absorption features stood out at 870, 851, and 833/cm. The general shape of the spectrum implied an atmosphere with a monotonically decreasing temperature profile up to the 125 K level. Transmission profiles of the earth's atmosphere were taken between 16 microns and 25 for five consecutive nights under varying amounts of atmospheric water and air mass. There are many saturated lines, but nightly variations were fairly constant and agreed well with a theoretical profile. These results show that the Hadamard-transform technique is a useful method for obtaining astronomical spectra.

  6. Biological modulation of planetary atmospheres: The early Earth scenario

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  7. Earth's Mysterious Atmosphere: Atlas 1 Teacher's Guide with Activities.

    ERIC Educational Resources Information Center

    Essex Corp., Huntsville, AL.

    This atmospheric studies teacher's guide for use with middle school students blends lessons in chemistry, physics, and the life, earth, and space sciences in an attempt to accomplish the following: to nurture students' natural curiosity and excitement about science, mathematics, and technology; to encourage career exploration in science,…

  8. Comment on "A hydrogen-rich early Earth atmosphere".

    PubMed

    Catling, David C

    2006-01-06

    Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H2. The model also neglects Earth's magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.

  9. Earth orientation parameters: excitation by atmosphere, oceans and geomagnetic jerks

    NASA Astrophysics Data System (ADS)

    Vondrak, Jan; Ron, Cyril

    2015-08-01

    It is well known that geophysical fluids (atmosphere, oceans) excite Earth orientation. The influence is known to be dominant for polar motion, partly responsible for length-of-day changes, and very small effects are now observable also in nutation. Very recently several authors (Holme and de Viron 2005, Gibert and le Mouel 2008, Malkin 2013) noted that sudden changes of Earth's speed of rotation and phase/amplitude of the free motions of its spin axis (Chandler wobble, Free core nutation) occur near the epochs of geomagnetic jerks (GMJ - rapid changes of the secular variations of geomagnetic field). By using the numerical integration of broad-band Liouville equations (Brzezinski 1994) we demonstrate that if non-periodical bell-like excitations of limited length (app. 1 year) around the epochs of GMJ are added to atmospheric and oceanic excitations, the agreement between observed and calculated Earth orientation parameters is improved significantly.

  10. Meteoroid capture into earth orbit by atmospheric drag

    NASA Astrophysics Data System (ADS)

    Friedlander, A. L.; Soldner, J. K.

    1984-08-01

    A probabilistic analysis, based on orbital mechanics, is performed to evaluate the chances of meteoroids entering into earth orbit and the potential population of such objects. The problem is addressed in terms of meteoroids on earth collision courses, slowed by atmosphere entry/exit, entering elliptical orbits with apogees above the atmosphere. The overall capture probability is derived by integrating the capture fraction dependence on velocity and size over the probability frequency distribution of the collision courses. Account is taken of eventual orbit decay, lunar infall and ejection after encounters with the moon. The results indicate that the probability that a natural 10-100 m diam object has achieved earth orbit is negligibly small.

  11. Meteoroid capture into earth orbit by atmospheric drag

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Soldner, J. K.

    1984-01-01

    A probabilistic analysis, based on orbital mechanics, is performed to evaluate the chances of meteoroids entering into earth orbit and the potential population of such objects. The problem is addressed in terms of meteoroids on earth collision courses, slowed by atmosphere entry/exit, entering elliptical orbits with apogees above the atmosphere. The overall capture probability is derived by integrating the capture fraction dependence on velocity and size over the probability frequency distribution of the collision courses. Account is taken of eventual orbit decay, lunar infall and ejection after encounters with the moon. The results indicate that the probability that a natural 10-100 m diam object has achieved earth orbit is negligibly small.

  12. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    NASA Astrophysics Data System (ADS)

    1991-11-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All of us who live on Earth must recognize that we play an ever-growing role in causing some of these changes. We must solve this great atmospheric mystery if we are to understand all these changes and know what to do about them.

  13. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    SciTech Connect

    Not Available

    1991-11-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All who live on Earth must recognize that they play an ever-growing role in causing some of these changes. People must solve this great atmospheric mystery if they are to understand all these changes and know what to do about them.

  14. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All of us who live on Earth must recognize that we play an ever-growing role in causing some of these changes. We must solve this great atmospheric mystery if we are to understand all these changes and know what to do about them.

  15. Atmospheric CO2: Principal Control Knob Governing Earth's Temperature

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Schmidt, Gavin A.; Rind, David; Ruedy, Reto A.

    2010-01-01

    Ample physical evidence shows that carbon dioxide (CO2) is the single most important climate-relevant greenhouse gas in Earth s atmosphere. This is because CO2, like ozone, N2O, CH4, and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO2 and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.

  16. Atmospheric circulation of hot Jupiters and super Earths

    NASA Astrophysics Data System (ADS)

    Kataria, Tiffany

    This dissertation explores the atmospheric circulation of extrasolar planets ranging from hot Jupiters to super Earths. For each of these studies, I utilize a three-dimensional circulation model coupled to a state-of-the-art, plane-parallel, two-stream, non-grey radiative transfer model dubbed the SPARC/MITgcm. First, I present models of the atmospheric circulation of eccentric hot Jupiters, a population which undergoes large variations in flux throughout their orbits. I demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits. For a select number of model integrations, I generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what is seen in infrared (IR) lightcurves. Next, I present circulation models of WASP-43b, a transiting hot Jupiter that is joining the ranks of HD 189733b and HD 209458b as a 'benchmark' hot Jupiter, with a wide array of observational constraints from the ground and space. Here I utilize the robust dataset of spectrophotometric observations taken with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) to interpret my model results. I find that an atmospheric composition of 5x solar provides the best match to the data, particularly in emission. Lastly, I present atmospheric simulations of the super Earth GJ 1214b, exploring the planet's circulation as a function of atmospheric metallicity and composition. I find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity leads to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger

  17. Earth-atmosphere evolution based on new determination of Devonian atmosphere Ar isotopic composition

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.; Mark, Darren F.; Gandanger, Pierre; McConville, Paul

    2016-07-01

    The isotopic composition of the noble gases, in particular Ar, in samples of ancient atmosphere trapped in rocks and minerals provides the strongest constraints on the timing and rate of Earth atmosphere formation by degassing of the Earth's interior. We have re-measured the isotopic composition of argon in the Rhynie chert from northeast Scotland using a high precision mass spectrometer in an effort to provide constraints on the composition of Devonian atmosphere. Irradiated chert samples yield 40Ar/36Ar ratios that are often below the modern atmosphere value. The data define a 40Ar/36Ar value of 289.5 ± 0.4 at K/36Ar = 0. Similarly low 40Ar/36Ar are measured in un-irradiated chert samples. The simplest explanation for the low 40Ar/36Ar is the preservation of Devonian atmosphere-derived Ar in the chert, with the intercept value in 40Ar-39Ar-36Ar space representing an upper limit. In this case the Earth's atmosphere has accumulated only 3% (5.1 ± 0.4 ×1016 mol) of the total 40Ar inventory since the Devonian. The average accumulation rate of 1.27 ± 0.09 ×108 mol40Ar/yr overlaps the rate over the last 800 kyr. This implies that there has been no resolvable temporal change in the outgassing rate of the Earth since the mid-Palaeozoic despite the likely episodicity of Ar degassing from the continental crust. Incorporating the new Devonian atmosphere 40Ar/36Ar into the Earth degassing model of Pujol et al. (2013) provides the most precise constraints on atmosphere formation so far. The atmosphere formed in the first ∼100 Ma after initial accretion during a catastrophic degassing episode. A significant volume of 40Ar did not start to accumulate in the atmosphere until after 4 Ga which implies that stable K-rich continental crust did not develop until this time.

  18. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  19. Origin and evolution of the Earth's atmosphere and hydrosphere

    SciTech Connect

    Akbari, G.E.

    1984-01-01

    The composition of the outgassed fluid has been a point of serious debate. A model developed by Melton and Giardini has been used. In this model, the fluid inclusions in diamonds have been taken as original samples of the outgassed fluids. The model uses first order kinetics of the degassing processes of H2, CH4, N2, CO and Ar, and zero order kinetics for the degassing processes of H2O and CO2. Samples with compositions similar to the fluid included in diamonds were exposed to electric discharge, UV radiation and gamma radiation to formulate the equilibrium composition of the Earth's atmosphere. Small amounts of organic and inorganic compounds were formed in the samples by the radiation. The Melton/Giardini model was used to calculate the composition and pressure of primitive atmosphere of the Earth as a function of time, beginning 4.5 b.y. ago. Since light gases such as H2 and He escape from the Earth, and other degassed material undergoes numerous chemical and physical reactions, the Earth's atmosphere was quite different from the predicted composition using the uncorrected Melton/Giardini model.

  20. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-06

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  1. Tidal heating of young super-Earth atmospheres

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Sari, Re'em

    2017-02-01

    Short-period Earth to Neptune-sized exoplanets (super-Earths) with voluminous gas envelopes seem to be very common. These gas atmospheres are thought to have originated from the protoplanetary disc in which the planets were embedded during their first few million years. The accretion rate of gas from the surrounding nebula is determined by the ability of the gas to cool and radiate away its gravitational energy. Here, we demonstrate that heat from the tidal interaction between the star and the young (and therefore inflated) planet can inhibit the gas cooling and accretion. Quantitatively, we find that the growth of super-Earth atmospheres halts for planets with periods of about 10 d, provided that their initial eccentricities are of the order of 0.2. Thus, tidal heating provides a robust and simple mechanism that can simultaneously explain why these planets did not become gas giants and account for the deficit of low-density planets closer to the star, where the tides are even stronger. We suggest that tidal heating may be as important as other factors (such as the nebula's lifetime and atmosphere evaporation) in shaping the observed super-Earth population.

  2. Life of the Earth in the solar atmosphere (multimedia manual)

    NASA Astrophysics Data System (ADS)

    Kononovich, E. V.; Smirnova, O. B.; Matveychuk, T. V.; Jakunina, G. V.; Krasotkin, S. A.

    2006-08-01

    The purpose of this manual is to illustrate the major physical processes occurring in the Sun - Earth system and ecology of the planet life. The material includes three individual parts: "The Earth", "The Sun" and "The solar-terrestrial connections". Sections do not require cross-references since each of them is self-complete. Inside the sections the material is located in sequences based on the principle: from simple to complex. The material is designed for students of the senior classes of high school and junior university level interested by the problem. The section "The Earth" is devoted to the description of the basic characteristics of the planet: internal structure, magnetic field, lithosphere and an atmosphere together with various occurring in them tectonic, hydro- and atmospheric processes. The top layers of an atmosphere, an ionosphere, a zone of polar lights, radiating belts, magnetosphere are also considered. The section "The Sun" includes the following subsections: the Sun as a star, internal structure of the Sun, Solar atmosphere, solar activity, cyclicity of the solar activity, helioseismology. In the section "The solar-terrestrial connections" the previous material is used to present the influence of the active solar processes on the most various aspects of a terrestrial life: ecological, biological, mental, social, economic and so forth. The problem of forecasting of the solar activity as the key parameter determining a condition of the so-called space weather is considered.

  3. Radiography of Earth's core and mantle with atmospheric neutrinos.

    PubMed

    Gonzalez-Garcia, M C; Halzen, Francis; Maltoni, Michele; Tanaka, Hiroyuki K M

    2008-02-15

    A measurement of the absorption of neutrinos with energies in excess of 10 TeV when traversing the Earth is capable of revealing its density distribution. Unfortunately, the existence of beams with sufficient luminosity for the task has been ruled out by the AMANDA South Pole neutrino telescope. In this Letter we point out that, with the advent of second-generation kilometer-scale neutrino detectors, the idea of studying the internal structure of Earth may be revived using atmospheric neutrinos instead.

  4. Constraining Archean Earth's Atmosphere with the Geological Record

    NASA Astrophysics Data System (ADS)

    Horan, A. M.; Domagal-Goldman, S. D.; Claire, M.

    2014-12-01

    A warm, water-bearing Archean Earth, when the Sun was young and faint, remains a paradox to the scientific world. Abundant geological data suggests that Archean Earth had standing water at the surface, despite the fainter Sun. An explanation of this paradox is vital to the understanding of Earth's history and coevolution with life. If the surface of the planet was not being kept warm by the Sun, which was 25% less luminous than now, it must have been kept warm a different way—by an atmospheric composition high in greenhouse gases. Constraints on these gases come from the geological record, which have provided proxies for the redox state of the atmosphere (limiting H2 and O2), the total atmospheric pressure, and the partial pressure of certain gases such as carbon dioxide (CO2) and methane (CH4). Previous attempts at solutions to the paradox are consistent with some, but not all, of the geological proxies. The constraints are used as inputs for a 1-D photochemical code, which calculates atmospheric composition and predicts the abundances of atmospheric gases that affect climate, particularly methane (CH4) and gaseous hydrogen (H2). A coupled 1-D radiative-convective climate code is then used to calculate the corresponding surface temperature. Critically, the improved photochemical code maintains strict redox boundary conditions, and is being further updated to ensure that the redox fluxes from volcanoes and mid-ocean ridge vents are consistent with both each other and the redox state of the mantle. These code improvements will lead to changes in both the inputs to the atmosphere from volcanoes and the sink for oxidants at mid-ocean ridges, in turn affecting the abundance of redox-sensitive greenhouse gases such as CH4 and H2. The main purpose of this project is to extend simulations of the Archean surface environment down into the mantle, and to search for a solution to the faint young sun paradox that is consistent with the geological proxies. Beyond having

  5. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  6. Photochemical production of formaldehyde in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Pinto, J. P.; Gladstone, G. R.; Yung, Y. L.

    1980-01-01

    Formaldehyde could have been produced by photochemical reactions in the earth's primitive atmosphere, at a time when it consisted mainly of molecular nitrogen, water vapor, carbon dioxide, and trace amounts of molecular hydrogen and carbon monoxide. Removal of formaldehyde from the atmosphere by precipitation can provide a source of organic carbon to the oceans at the rate of 100 billion moles per year. Subsequent reactions of formaldehyde in primeval aquatic environments would have implications for the abiotic synthesis of complex organic molecules and the origin of life.

  7. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  8. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    PubMed

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-04

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  9. Contributions of icy planetesimals to the Earth's early atmosphere.

    PubMed

    Owen, T C; Bar-Nun, A

    2001-01-01

    Laboratory experiments on the trapping of gases by ice forming at low temperatures implicate comets as major carriers of the heavy noble gases to the inner planets. These icy planetesimals may also have brought the nitrogen compounds that ultimately produced atmospheric N2. However, if the sample of three comets analyzed so far is typical, the Earth's oceans cannot have been produced by comets alone, they require an additional source of water with low D/H. The highly fractionated neon in the Earth's atmosphere may also indicate the importance of non-icy carriers of volatiles. The most important additional carrier is probably the rocky material comprising the bulk of the mass of these planets. Venus may require a contribution from icy planetesimals formed at the low temperatures characteristic of the Kuiper Belt.

  10. Observing atmospheric tides in Earth rotation parameters with VLBI

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  11. Atmospheric evaporation in super-Earth exoplanet systems

    NASA Astrophysics Data System (ADS)

    Moller, Spencer; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    We investigate the influence of stellar activity on atmospheric heating and evaporation in four super-Earth exoplanets: HD 97658 b, GJ 1214 b, 55 Cnc e, and CoRoT-7 b. We use X-ray observations of the host stars to estimate planetary mass loss. We extracted net count rates from a soft band image, converted it to flux using PIMMS for a standard coronal model, calculated the intrinsic stellar luminosity, and estimated the current-epoch mass-loss rate and the integrated mass lost. Our aim is to determine under what circumstances current super-Earths will have experienced significant mass loss through atmospheric irradiation over the system lifetime. We hypothesize that closely-orbiting exoplanets receiving the greatest amount of high-energy stellar radiation will also tend to be sculpted into lower mass and more dense remnant cores.

  12. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  13. Do energetic heavy nuclei penetrate deeply into Earth's atmosphere?

    PubMed Central

    Price, P. B.; Askary, F.; Tarlé, G.

    1980-01-01

    We calculate the expected fluxes of cosmic ray nuclei with charge 5 ≤ Z ≤ 28 at various depths in the earth's atmosphere, taking into account the initial charge distribution, ionization loss, and various modes of fragmentation. The flux of surviving heavy nuclei is too low by a factor ≈10-10 to account for the ultra-high-energy Centauro events. We describe an experiment to search for highly ionizing particles that may or may not be nuclei. Images PMID:16592759

  14. Do energetic heavy nuclei penetrate deeply into Earth's atmosphere?

    PubMed

    Price, P B; Askary, F; Tarlé, G

    1980-01-01

    We calculate the expected fluxes of cosmic ray nuclei with charge 5 earth's atmosphere, taking into account the initial charge distribution, ionization loss, and various modes of fragmentation. The flux of surviving heavy nuclei is too low by a factor approximately 10(-10) to account for the ultra-high-energy Centauro events. We describe an experiment to search for highly ionizing particles that may or may not be nuclei.

  15. Greenhouse gases and ozone depleting compounds in the earth`s atmosphere

    SciTech Connect

    Khalil, M.A.K.

    1996-12-31

    Global warming and ozone depletion are the main environmental problems caused by changes in atmospheric composition. These changes come from human activities that add to the natural cycles of atmospheric gases or put entirely new compounds into the earth`s atmosphere. At present only a few gases play a major role in global climate change and ozone depletion. These are carbon dioxide, methane, nitrous oxide, trichlorofluoromethane (F-11), and dichlorofluoromethane (F-12). There are other gases that also add to these problems but to a lesser extent. This paper is about global warming, ozone depletion and the trends and budgets of the gases that can change the climate or deplete the ozone layer. 8 refs., 3 tabs.

  16. Solar Variability, Lunar Spectroscopy and Earth's Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.

    Solar EUV radiation and its variability is of central importance to the earths upper atmosphere. Variability of the earths upper atmosphere is a major concern to NASAs satellite missions. This LARGE PROJECT (2 year) proposal asks for continued measurments of solar EUV variability using EUVE to observe solar light scattered from the moon. Existing EUVE data prove that we can enhance ourunderstanding of the physics of the upper atmosphere at a time when solar EUV measurements are scarce. Our aims include: (i) to understand the phase and polarization dependence of solar light scattered from the moon, (ii) to quantify variations in solar EUV irradiance, (iii) to calibrate these data with a rocket--launched EUV payload, and (iv) to use these data with simultaneous UV measurements from UARS as inputs to upper atmospheric models. Very short exposures (<30 min) are required. We request TYPE 2 observations twice a lunar month, and a variety of TYPE 1 observations to permit us to take the necessary steps towards converting lunar intensity data to absolute solar irradiances.

  17. Efficient disruption of small asteroids by Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Bland, P. A.; Artemieva, N. A.

    2003-07-01

    Accurate modelling of the interaction between the atmosphere and an incoming bolide is a complex task, but crucial to determining the fraction of small asteroids that actually hit the Earth's surface. Most semi-analytical approaches have simplified the problem by considering the impactor as a strengthless liquid-like object (`pancake' models), but recently a more realistic model has been developed that calculates motion, aerodynamic loading and ablation for each separate particle or fragment in a disrupted impactor. Here we report the results of a large number of simulations in which we use both models to develop a statistical picture of atmosphere-bolide interaction for iron and stony objects with initial diameters up to ~1km. We show that the separated-fragments model predicts the total atmospheric disruption of much larger stony bodies than previously thought. In addition, our data set of >1,000 simulated impacts, combined with the known pre-atmospheric flux of asteroids with diameters less than 1km, elucidates the flux of small bolides at the Earth's surface. We estimate that bodies >220m in diameter will impact every 170,000 years.

  18. The radiative effect of aerosols in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Domoto, G. A.

    1974-01-01

    A modified two-flux approximation is employed to compute the transfer of radiation in a finite, inhomogeneous, turbid atmosphere. A perturbation technique is developed to allow the treatment of nongray gaseous absorption with multiple scattering. The perturbation method, which employs a backscatter factor as a parameter, can be used with anisotropic particle scattering as well as Rayleigh scattering. This method is used to study the effect of aerosols on radiative solar heating and infrared cooling as well as the radiative-convective temperature distribution in the earth's atmosphere. It is found that the effect of aerosols in the infrared cannot be neglected; while in the visible, the effect can be of the same order as that due to absorption by water vapor. For a high surface albedo (greater than 0.30) heating of the earth-atmosphere system results due to the presence of aerosols. The aerosols also reduce the amount of convection needed to maintain a stable atmosphere. For the case of a dense haze a temperature inversion is found to exist close to the ground.

  19. Atmospheric Production of Perchlorate on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  20. Global-scale teleconnections in the Earth's middle atmosphere

    NASA Astrophysics Data System (ADS)

    Shepherd, T. G.

    2009-05-01

    The global-scale circulation of the Earth's middle atmosphere is driven by angular momentum transfers effected by waves propagating up from the more turbulent, thermally-driven troposphere. The resulting effects on the middle atmosphere are largest in polar regions. This 'mechanical forcing' is an indirect response to the direct thermal forcing of the atmosphere by the Sun, and can act in a thermally-indirect manner, i.e. as a refrigerator. As it involves wave propagation, it can also act anti-diffusively, and non-locally. The basic physics of the process is described and examples given of how it can lead to global-scale teleconnections, both vertically and latitudinally. Parallels with the dynamics of the Sun will be mentioned.

  1. The cosmic dust input to the earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Plane, John

    2013-04-01

    This paper will address a fundamental problem - the size of the cosmic dust input to the earth's atmosphere. Zodiacal cloud observations and spaceborne dust detectors indicate a daily input of 100 - 300 tonnes, in agreement with the accumulation rates of cosmic elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle and upper atmosphere - by radars, lidars, high-flying aircraft and satellite remote sensing - indicate that the input is only 2 - 30 tonnes. There are two major reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust production and evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and in most cases completely ablate. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: formation of layers of metal atoms and ions; nucleation of noctilucent clouds; impacts on stratospheric aerosols and O3 chemistry; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  2. The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth

    NASA Technical Reports Server (NTRS)

    Mukhin, Lev M.; Gerasimov, M. V.

    1991-01-01

    The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth is discussed. The following subject areas are covered: (1) Earth's initial atmosphere; (2) continuous degassing; (3) impact processes and the Earth's protoatmosphere; and (4) the evolution of an impact-generated atmosphere.

  3. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  4. The Effect of the Earth's Atmosphere on LSST Photometry

    SciTech Connect

    Rahlin, Alexandra S.; /MIT /SLAC

    2006-08-30

    The Large Synoptic Survey Telescope (LSST), a ground-based telescope currently under development, will allow a thorough study of dark energy by measuring, more completely and accurately than previously, the rate of expansion of the universe and the large-scale structure of the matter in it. The telescope utilizes a broadband photometric system of six wavelength bands to measure the redshifts of distant objects. The earth's atmosphere makes it difficult to acquire accurate data, since some of the light passing through the atmosphere is scattered or absorbed due to Rayleigh scattering, molecular absorption, and aerosol scattering. Changes in the atmospheric extinction distribution due to each of these three processes were simulated by altering the parameters of a sample atmospheric distribution. Spectral energy distributions of standard stars were used to simulate data acquired by the telescope. The effects of changes in the atmospheric parameters on the photon flux measurements through each wavelength band were observed in order to determine which atmospheric conditions must be monitored most closely to achieve the desired 1% uncertainty on flux values. It was found that changes in the Rayleigh scattering parameter produced the most significant variations in the data; therefore, the molecular volume density (pressure) must be measured with at most 8% uncertainty. The molecular absorption parameters produced less significant variations and could be measured with at most 62% uncertainty. The aerosol scattering parameters produced almost negligible variations in the data and could be measured with > 100% uncertainty. These atmospheric effects were found to be almost independent of the redshift of the light source. The results of this study will aid the design of the atmospheric monitoring systems for the LSST.

  5. Interferometric Characterization of the Earth's Atmosphere from Lagrange Point 2

    NASA Technical Reports Server (NTRS)

    Herman, Jay R.; Komar, George (Technical Monitor)

    2001-01-01

    Part of the NASA plans for future Earth Science missions calls for observations using novel vantage points that can produce science products otherwise unobtainable. Observations of the Earth from the Lagrange-2 point, L-2, (1.5 million km behind the Earth on the Earth-Sun line) affords a unique vantage point for atmospheric science. Spectral observation of the Earth's atmosphere using solar occultation techniques in the near infrared (1 to 4 microns) provides one of the most accurate methods of passively sensing attitude profiles of the major species (CO2, O3, O2, CH4, H2O N2O). While traditional polar orbiting occultation measurements can obtain about 14 measurements per day (2 per orbit), solar occultation observations from the Lagrange-2 point will yield hourly profile measurements at all latitudes. The expected spatial resolution is 2 km in altitude, 0.5 degrees in latitude, and 2 degrees in longitude. The result from 24 hours of observations will be a three-dimensional map of atmospheric composition. To accomplish this task from L-2 requires the development of a large moderate spectral resolution instrument whose entrance aperture is about 10 meters. Use of a standard telescope design with a 10-meter circular mirror or a 10-meter strip mirror would be prohibitively expensive and excessively massive. Instead, we are proposing the development of a 10-meter linear interferometer coupled to a Fourier transform imaging spectrometer. The result will be a highly efficient design with sufficient sensitivity, while having both spatial and spectral resolution to produce the desired results. Preliminary calculations show that seven species (CO2, O3, O2, CH4, H2O N2O) have clearly separated spectral features in the I to 4 microns range with sufficient absorption to produce profile information from near the Earth's surface to the middle stratosphere. For CO2 the estimated sensitivity to change is 0.33% or 1 part in 330. This should be sufficient to detect changes that are

  6. Which Solar and Geomagnetic Drivers Control Earth's Upper Atmosphere Thermostat?

    NASA Astrophysics Data System (ADS)

    Knipp, D.; Mlynczak, M. G.; McGranaghan, R. M.; Kilcommons, L. M.

    2015-12-01

    Nitric Oxide (NO) is a trace component of Earth's upper atmosphere that allows Earth's thermosphere to cool in response to energy input from solar extreme ultraviolet (EUV) photons and geomagnetic activity. When created and excited, NO molecules provide a natural thermostat via infrared radiative emissions [Kockarts, 1980]. A record of this cooling over the last 13 years has been provided by Mlynczak et al. [2014]. Nitric Oxide emissions in concert with EUV photons, auroral particles, and neutral thermosphere circulation determine if geomagnetic storms will deliver a sudden powerful upheaval of Earth's upper atmosphere or a damped event. In this talk I will review recent findings about the forecastability of solar and magnetospheric control of this important thermospheric trace constituent. In particular, I will discuss the role of pseudo-streamers and helmet streamers in the solar wind, and the possible role of magnetic cloud orientation, in determining the extent of thermospheric NO storm response. Anticipating the thermospheric NO response to geomagnetic storms is a next step in improving satellite drag forecasting.

  7. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  8. Atmospheric composition and climate on the early Earth.

    PubMed

    Kasting, James F; Howard, M Tazewell

    2006-10-29

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85 degrees C. We argue, following others, that this interpretation is incorrect-the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot.A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere.

  9. Atmospheric composition and climate on the early Earth

    PubMed Central

    Kasting, James F; Howard, M. Tazewell

    2006-01-01

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85°C. We argue, following others, that this interpretation is incorrect—the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot. A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4 Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9 Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere. PMID:17008214

  10. Fractures as Advective Conduits at the Earth Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Dragila, M. I.; Weisbrod, N.; Nachshon, U.; Kamai, T.

    2012-12-01

    Understanding gas exchange between the Earth's upper crust and the atmosphere is vital and necessary because this phenomenon controls to a large extent many important processes including, the water cycle, agricultural activities, greenhouse gas emissions and more. From a hydrological aspect, water vapor transport is an extremely important process related to Earth-atmosphere gas exchange because it affects above ground water vapor concentration, soil water content and soil salinity. Traditionally, diffusion was considered the main mechanism of gas exchange between the atmosphere and vadose zone, driven by gas concentration gradients. While this assumption may be correct for many porous media, our laboratory and field-scale studies have shown that advective gas transport mechanisms are governing these fluxes in fractured rocks and cracked soils. Convection driven by thermal gradients (free convection) and wind induced (forced convection) were explored and both were found to play a major role in Earth-atmosphere gas exchange. Long-term laboratory experiments using fracture simulators in a customized climate controlled laboratory have shown that thermal convection occurs when nighttime thermal conditions prevail. This convective venting significantly enhances evaporation and subsequently salt precipitation on the fracture walls. Experiment results were used to develop an empirical relationship between temperature gradients, fracture aperture and convective gas flux through the fracture. Theoretical calculations show that thermal convection is indeed likely to play a major role in evaporation from fractures and can explain enhanced salt accumulation observed in surface-exposed fractures. Long-term field measurements, carried out continuously for 5+ years in a single fracture in the Israeli Negev Desert, verified the development of air convection cycles of 10-18 hours duration on a daily basis, with a peak in both convective flux and duration during the winter. During

  11. Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses

    PubMed Central

    Gebauer, S.; Godolt, M.; Palczynski, K.; Rauer, H.; Stock, J.; von Paris, P.; Lehmann, R.; Selsis, F.

    2013-01-01

    Abstract Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5–M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process

  12. Earth Rotation and Coupling to Changes in Atmospheric Angular Momentum

    NASA Technical Reports Server (NTRS)

    Rosen, Richard D.; Frey, H. (Technical Monitor)

    2000-01-01

    The research supported under the contract dealt primarily with: (a) the mechanisms responsible for the exchange of angular momentum between the solid Earth and atmosphere; (b) the quality of the data sets used to estimate atmospheric angular momentum; and (c) the ability of these data and of global climate models to detect low-frequency signals in the momentum and, hence, circulation of the atmosphere. Three scientific papers reporting on the results of this research were produced during the course of the contract. These papers identified the particular torques responsible for the peak in atmospheric angular momentum and length-of-day during the 1982-93 El Nino event, and, more generally, the relative roles of torques over land and ocean in explaining the broad spectrum of variability in the length-of-day. In addition, a tendency for interannual variability in atmospheric angular momentum to increase during the last several decades of the 20th century was found in both observations and a global climate model experiment.

  13. Water loss from Venus: Implications for the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Pollack, J. B.; Reynolds, R. T.

    1985-01-01

    The atmosphere of Venus outgassed rapidly as a result of planetary heating during accretion, resulting in massive water loss. The processes affecting atmospheric chemistry following accretion have consisted largely of hydrogen escape and internal re-equilibrium. The initial bulk composition of Venus and Earth are assumed to have been roughly similar. Chemical speciation on Venus was controlled by the temperature and oxygen buffering capacity of the surface magma. It is also assumed that the surfaces of planetary bodies of the inner solar system were partly or wholly molten during accretion with a temperature estimated at 1273 to 1573 K. To investigate the range of reasonable initial atmospheric compositions on Venus, limits have to be set for the proportion of total hydrogen and the buffered fugacity of oxygen. Using the C/H ratio of 0.033 set for Earth, virtually all of the water generated during outgassing must later have been lost in order to bring the current CO2/H2O ratio for Venus up to its observed value of 10 sup 4 to 10 sup 5. The proportion of H2O decreases in model atmospheres with successfully higher C/H values, ultimately approaching the depleted values currently observed on Venus. Increasing C/H also results in a rapid increase in CO/H2O and provides an efficient mechanism for water loss by the reaction CO+H2O = CO2 + H2. This reaction, plus water loss mechanisms involving crustal iron, could have removed a very large volume of water from the Venusian atmosphere, even at a low C/H value.

  14. ACE infrared spectral atlases of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Hughes, Ryan; Bernath, Peter; Boone, Chris

    2014-11-01

    Five infrared atmospheric atlases are presented using solar occultation spectra from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in low earth orbit. The spectral atlases were created for Arctic summer, Arctic winter, mid-latitude summer, mid-latitude winter and the tropics. Each covers the spectral range from 700 to 4400 cm-1 and consists of 31 spectra that span an altitude range of 6-126 km in 4-km altitude intervals. To improve the signal-to-noise ratio, each spectrum in the atlas is an average of at least several hundred individual ACE-FTS limb transmission spectra. Representative plots in pdf format at 10 km (troposphere), 30 km (stratosphere), 70 km (mesosphere), and 110 km (lower thermosphere) are also available.

  15. Potential biosignatures in super-Earth atmospheres II. Photochemical responses.

    PubMed

    Grenfell, J L; Gebauer, S; Godolt, M; Palczynski, K; Rauer, H; Stock, J; von Paris, P; Lehmann, R; Selsis, F

    2013-05-01

    Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with

  16. Photochemistry of methane in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K J.; Walker, J. C. G.

    1983-01-01

    The photochemical behavior of methane in the early terrestrial atmosphere is investigated with a detailed model in order to determine how much CH4 might have been present and what types of higher hydroocarbons could have been formed. It is found that any primordial methane accumulated during the course of earth accretion would have been dissipated by photochemical reactions in the atmosphere in a geologically short period of time after the segregation of the core. Abiotic sources of methane are not likely to have been large enough to sustain CH4 mixing ratios as high as 10 to the -6th, the threshold for a possible methane greenhouse, with a CO-rich atmosphere being a possible exception. After the origin of life an increasing biogenic source of methane may have driven CH4 mixing ratios well above 10 to the 6th. The rise of atmospheric oxygen in the early Proterozoic may have led to a more rapid photochemical destruction of methane, lowering the mixing ratio to its present value.

  17. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  18. An atmosphere around the super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Tsiaras, Angelos; Rocchetto, Marco; Waldmann, Ingo; Venot, Olivia; Varley, Rayan; Morello, Giuseppe; Damiano, Mario; Tinetti, Giovanna; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; ExoLights, ExoMol

    2016-10-01

    One of the most successful instruments for observing exoplanetary atmospheres is the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). In particular, the use of the spatial scanning technique has given us the opportunity for even more efficient observations of the brightest targets, achieving the necessary precision of 10 - 100 ppm. With such data and new advanced reduction and statistical techniques, we were able to detect modulations in the spectrum of the hot super-Earth 55 Cancri e, which suggest the existence of a light-weight atmosphere around this planet. Given the brightness of 55 Cancri, the observers adopted a very long scanning length and a very high scanning speed. We took these effects into account, as they can introduce systematics when coupled with the geometrical distortions of the instrument. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we used a chemical model, developed with combustion specialists, to explain its pressence. This model indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio, suggesting this super-Earth is a carbon-rich environment even more exotic than previously thought.

  19. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  20. Importance of polarization for remote sensing of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kochenova, S.; Lerot, C.; De Maziere, M.; Letocart, V.

    2012-04-01

    Solar radiation entering the top of the Earth's atmosphere becomes polarized due to its interaction with atmospheric molecules and particles. The degree of polarization depends on the type of scattering event. Numerous studies show that the use of scalar radiation transfer (RT) can lead to significant errors in simulated top-of-atmosphere radiances: more than 10% for a molecular atmosphere, about 5% for an aerosol atmosphere, and up to 6% for a mixed (aerosol + molecular) atmosphere. Radiation can also be significantly polarized by land surfaces such as snow (5-25%), ice (0-40%), sand (0-15%) and vegetation (2-23%). Accounting for radiation polarization requires the utilization of rigorous vector RT equations based on the Stokes parameters formalism. Despite that accurate vector RT codes are much slower than their scalar counterparts, more and more researchers acknowledge the necessity of using a vector RT code when dealing with the UV or visible spectral ranges. We will demonstrate the importance of accounting for polarization with the help of the sophisticated RT package comprised of several codes, namely, VLIDORT v2.5 (R. Spurr, RT solutions, USA), SPHER and T-MATRIX (M. Mishchenko, NASA GISS, USA), and an auxiliary atmospheric model. VLIDORT is an advanced linearized RT body for solving vector/scalar RT problems of various degree of complexity through the accurate computation of all Stokes components. It also contains a set of different BRDF (Bidirectional Reflectance Distribution Functions) subroutines allowing one to easily model different anisotropic surfaces. Aerosol physical properties, such as extinction cross-section, single scattering albedo and scattering matrix coefficients, for spherical and non-spherical particles are calculated by SPHER and T-MATRIX. The auxiliary atmospheric part includes the options to use one of the six standard models (subarctic summer/winter, midlatitude summer/winter, tropical and US standard 1976) or to enter a user

  1. Exploring High-Energy Phenomena in Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Chilingarian, A. A.

    2014-12-01

    The electron acceleration downward during thunderstorms becomes possible after creation of the Lower Positive Charged Region below the main negative charged layer in the middle of the thundercloud. Varieties of particle detectors located at Aragats Space Environmental Center (3200 m above sea level|) are routinely register neutral and charged particle fluxes correlated with thunderstorms, so-called Thunderstorm Ground Enhancements (TGEs). Simultaneously the electric mills and lightning detectors are monitoring the near-surface electric field and lightning flashes. Study of TGEs provides unique information about particle acceleration and multiplication in the atmosphere during thunderstorms. Generation and propagation of large fluxes of electrons, positrons, gamma rays, and neutrons in the atmosphere and in near space are related to the development of thunderstorms and may be used for monitoring of dangerous consequences of extreme weather. Direct measurements of the intense particle fluxes at the Earth's surface may be used as well for understanding of intense radiation directed to space. Measured spatial and energetic characteristic of the Extensive cloud showers (initiated by runaway electrons) and precisely measured energy a spectrum of the TGE gamma rays and electrons allows to develop comprehensive model of high-energy phenomena in the lower atmosphere. However, only multivariate approach can provide necessary information for understanding high-energy phenomena in atmosphere and ionosphere. In addition to networks of particle detectors and field meters we plan to install lidar-based devices for remote estimation of the electric field in thundercloud; high frequency optical monitoring of lightnings and Transient luminous events (TLEs) and antennas for registering multi bandwidth radio emissions during thunderstorm.

  2. Comparative analysis of the atmospheres of early earth and early Mars

    NASA Technical Reports Server (NTRS)

    Durham, R.; Schmunk, R. B.; Chamberlain, J. W.

    1989-01-01

    Assuming that the primitive atmospheres of Mars and earth were similar and that present differences in atmospheres of earth and Mars are a result of their different distances from the sun and their different masses, the atmospheres of the early earth and early Mars were analyzed. A one-dimensional radiative-convective model derived from that of Kasting et al. (1984) and Kasting and Ackerman (1986) was then used to determine if a 1.3-bar CO2 partial pressure on Mars (which is equivalent to about 9 bars on earth) is consistent with the climatic conditions thought to have existed on earth four billion years ago. Results indicate that a dense CO2 atmosphere on early Mars at perihelion is consistent with conditions expected to have existed four billion years ago on earth. Earth would then have had a stable atmosphere with temperatures warm enough to support liquid water on the surface.

  3. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  4. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  5. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  6. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  7. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  8. Photoevaporation of Earth and Super-Earth Atmospheres in the Habitable Zones of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy

    2015-08-01

    Kepler data show that multiple terrestrial-sized planets (i.e., Earths / super-Earths), packed in very close to the central star, are the norm in exoplanetary systems around low-mass stars. Around M dwarfs, a significant fraction of these planets reside within the Habitable Zone (HZ). This has kindled intense excitement about the possibility of finding habitable planets around these cool red stars. However, M dwarfs also remain extremely magnetically active for much longer than solar-type stars: e.g., an M3 dwarf evinces saturated levels of coronal and chromospheric activity over Gyr timescales, compared to ~100 Myr for solar-mass stars. Thus, basal levels of coronal/chromospheric X-ray/EUV emission from M dwarfs, integrated over their saturated activity lifetimes, may severely photoevaporate the atmospheres of terrestrial planets in M dwarf HZs; this would only be exacerbated by flares (which are correspondingly more intense in active M dwarfs). Here we present detailed hydrodynamic calculations of such photoevaporation for planets spanning a range of Earth/super-Earth sizes, residing in the HZ of M dwarfs of various spectral sub-types, over Gyr evolutionary timescales. Our calculations include the effects of: (1) simultaneous X-ray and EUV heating, using state-of-the-art stellar XUV SED models; (2) the change in the stellar XUV SED over evolutionary timescales; (3) realistic radiative losses (which can both dominate and vary in time); (4) thermal evolution of the planetary core; and (5) a range of initial planetary entropies (i.e.,`hot' or `cold' start) and core compositions. The analysis yields the location and extent of the HZ as a function of planetary mass, core composition, initial conditions and M sub-type. We will focus on H/He dominated (i.e., solar abundance) atmospheres; however, we will also discuss qualtitative trends for CO2 / H2O dominated atmospheres, which we are beginning to explore by coupling a detailed photochemical code with our hydrodynamic

  9. Three-Dimensional Orbits of Earth Satellites, Including Effects of Earth Oblateness and Atmospheric Rotation

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.; Goodwin, Frederick K.; Mersman, William A.

    1958-01-01

    The principal purpose of the present paper is to present sets of equations which may be used for calculating complete trajectories of earth satellites from outer space to the ground under the influence of air drag and gravity, including oblateness effects, and to apply these to several examples of entry trajectories starting from a circular orbit. Equations of motion, based on an "instantaneous ellipse" technique, with polar angle as independent variable, were found suitable for automatic computation of orbits in which the trajectory consists of a number of revolutions. This method is suitable as long as the trajectory does not become nearly vertical. In the terminal phase of the trajectories, which are nearly vertical, equations of motion in spherical polar coordinates with time as the independent variable were found to be more suitable. In the first illustrative example the effects of the oblateness component of the earth's gravitational field and of atmospheric rotation were studied for equatorial orbits. The satellites were launched into circular orbits at a height of 120 miles, an altitude sufficiently high that a number of revolutions could be studied. The importance of the oblateness component of the earth's gravitational field is shown by the fact that a satellite launched at circular orbital speed, neglecting oblateness, has a perigee some 67,000 feet lower when oblateness forces are included in the equations of motion than when they are not included. Also, the loss in altitude per revolution is double that of a satellite following an orbit not subject to oblateness. The effect of atmospheric rotation on the loss of altitude per revolution was small. As might be surmised, the regression of the line of nodes as predicted by celestial mechanics is unchanged when drag is included. It is clear that the inclination of the orbital plane to the equator will be relatively unaffected by drag for no atmospheric rotation since the drag lies in the orbital plane in

  10. The equilibrium of atmospheric sodium. [in atmospheres of Earth, Io, Mercury and Moon

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.

    1992-01-01

    We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres: Earth, Io, Mercury and the moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1 percent of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the moon is meteoroidal bombardment; at Mercury and perhaps the moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.

  11. National Chemistry Week 2003: Earth's Atmosphere and Beyond. JCE Resources for Chemistry and the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jacobsen, Erica K.

    2003-10-01

    This annotated bibliography collects the best that past issues of the Journal of Chemical Education have to offer for use with this year's National Chemistry Week theme: Earth's Atmosphere and Beyond. Each article has been characterized as a demonstration, experiment, activity, informational, or software/video item; several fit in more than one classification. The most recent articles are listed first. Also included is an evaluation as to which levels the article may serve. Articles that appeared adaptable to other levels, but are not designed explicitly for those levels, are labeled "poss. h.s." "poss. elem.", and so forth.

  12. ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY

    SciTech Connect

    Benneke, Bjoern; Seager, Sara

    2012-07-10

    We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to inferring constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the Markov Chain Monte Carlo technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to general atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and two spectrally inactive gases (such as N{sub 2} and primordial H{sub 2}+ He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. A second finding is that the surface pressure or cloud-top pressure can be quantified if a surface or cloud deck is present at low optical depth. A third finding is that the mean molecular mass can be constrained by measuring either the Rayleigh scattering slope or the shapes of the absorption features, thus enabling one to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of molecular Rayleigh scattering-even with robustly detected infrared absorption features (>10{sigma})-there is no reliable way to tell from the transmission spectrum whether the absorber is a main constituent of the atmosphere or just a minor species with a mixing ratio of X{sub abs} < 0.1%. The retrieval method leads us to a

  13. Simulation of Celestial-Body Disruption in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Korobeinikov, V. P.; Gusev, S. B.; Semenov, I. V.

    The disruption of celestial bodies such as meteoroids, cometary fragments, and asteroids is inves tigated. The velocity of the body and its ablation in the upper atmosphere are determined on the basis of the solution of the system of equations of the physical theory of meteors. In flight, the body is affected by aerody namic and inertia forces. The stressstrain state of the body is supposed to be quasi-static and is determined by numerically solving the equations of thermoelasticity. The method of finite elements is used for calculations. Various disruption criteria are used, and the braking-acceleration values corresponding to the disruption heights of the body are also determined. Basic calculations simulate the flight and disruption of an icy (Tun guska) body and a metallic (Sikhote-Alin) meteorite. A simple model of the impact of a body onto the Earth's surface covered by a water layer is also investigated. The celestial body is modeled with a sandstone plate. For small time intervals, the impact parameters of all media are determined. The solution is obtained by a finite-difference method.

  14. Discovery of interstellar dust entering the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Taylor, A. D.; Baggaley, W. J.; Steel, D. I.

    1996-03-01

    ALL known asteroids and comets are believed to have been gravitationally bound to the Sun since they formed (together with the Sun and planets) from the solar nebula. This is because no such object has been observed with a speed exceeding the solar escape velocity, although some comets have been close to this limit1. As comets are occasionally ejected from the Solar System, interstellar comets might be expected to arrive every few centuries, having been ejected from similar systems around other stars2. The flux of interstellar dust into the Solar System should be much higher, but its detection poses significant technological challenges. Recently, the Ulysses spacecraft detected a population of dust particles near Jupiter, identified as being of interstellar origin on the basis of their speeds and trajectories3,4. Here we report the radar detection of interstellar particles in the Earth's atmosphere. From intra-annual variations in particle flux, we infer the existence of two discrete sources, one associated with nearby A-type stars, and the other with the Sun's motion about the Galactic Centre. The data also suggest the presence of a third source, possibly associated with local B-type stars and young stellar clusters.

  15. The atmospheric excitation of earth orientation changes during MERIT

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Dickey, J. O.

    1986-01-01

    Geodetic estimates of earth orientation variations detected during the MERIT campaign (September 1983-November 1984) are compared with corresponding meteorological data. The geodetic data were obtained using VLBI, lunar laser ranging, and satellite laser ranging and the meteorological data were from the NMC in the U.S. and the European Centre for Medium Range Weather Forecasting (ECMRWF) in the U.K. The effects of changes in pressure, wind, and the inverted barometer ocean response on the excitation of the polar motion and the length of day are examined. The comparison between the meteorological and geodetic data reveals that the equatorial vector component of the atmospheric angular momentum (AAM) has significant annual and semiannual variations. Good correlation is detected between the geodetic polar motion data and the NMC pressure inverted barometer data combined with the ECMRWF wind estimates and semiannual agreement with the NMC pressure data is observed. There is also good correlation between the ECMRWF and NMC polar vector component of the AAM data and the geodetic length of day estimates, and good semiannual agreement with NMC pressure data is noted.

  16. Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    NASA Astrophysics Data System (ADS)

    Na, Sung-Ho; Cho, Jungho; Kim, Tu-Hwan; Seo, Kiweon; Youm, Kookhyoun; Yoo, Sung-Moon; Choi, Byungkyu; Yoon, Hasu

    2016-12-01

    The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  17. Ultraviolet radiation climatology of the Earth`s surface and lower atmosphere. Final report

    SciTech Connect

    Madronich, S.; Stamnes, K.

    1999-03-01

    Ultraviolet (UV) radiation is the driving force of tropospheric chemistry and is furthermore detrimental to most living tissues. A three year modeling program was carried out to characterize the UV radiation in the lower atmosphere, with the objective of development a climatology of UV biologically active radiation, and of photo-dissociation reaction rates that are key to tropospheric chemistry. A comprehensive model, the Tropospheric Ultraviolet-Visible (TUV) model, was developed and made available to the scientific community. The model incorporates updated spectroscopic data, recent advances in radiative transfer theory, and allows flexible customization for the needs of different users. The TUV model has been used in conjunction with satellite-derived measurements of total atmospheric ozone and cloud amount, to develop a global climatology of UV radiation reaching the surface of the Earth. Initial validation studies are highly encouraging, showing that model predictions agree with direct measurements to ca. 5--10% at times when environmental conditions are well known, and to 10--30% for monthly averages when local environmental conditions can only be estimated remotely from satellite-based measurements. Additional validation studies are continuing.

  18. Runaway greenhouse atmospheres: Applications to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  19. THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS

    SciTech Connect

    Tian Feng

    2009-09-20

    A fundamental question for exoplanet habitability is the long-term stability of the planet's atmosphere. We numerically solve a one-dimensional multi-component hydrodynamic thermosphere/ionosphere model to examine the thermal and chemical responses of the primary CO{sub 2} atmospheres of heavy super Earths (6-10 Earth masses) in the habitable zones of typical low-mass M stars to the enhanced soft X-ray and ultraviolet (XUV) fluxes associated with the prolonged high-activity levels of M stars. The results show that such atmospheres are stable against thermal escape, even for M stars XUV enhancements as large as 1000 compared to the present Earth. It is possible that the CO{sub 2}-dominant atmospheres of super Earths in the habitable zones of M stars could potentially contain modest amount of free oxygen as a result of more efficient atmosphere escape of carbon than oxygen instead of photosynthesis.

  20. Effects of Superthermal Electrons in The Young Earth Atmosphere and Its Habitability

    NASA Astrophysics Data System (ADS)

    Airapetian, V.; Khazanov, G. V.

    2014-12-01

    In this presentation, we use the Fokker-Plank code to model the effect of intensive short-wavelength (X-rays to UV band) emission from the young Sun on Earth's atmosphere. Our simulations include the photoionization processes of the Earth's atmosphere forming a population of superthermal electrons (E<600 eV), the kinetic effects of their propagation associated and their contribution in ionosphere-magnetosphere energy redistribution. We also evaluated associated non-thermal atmospheric mass loss due to induced ambipolar electric field and its effect on the habitability of early Earth.

  1. Oxidants and oxidation in the Earth`s atmosphere. Final technical report, 1 June 1994-30 May 1995

    SciTech Connect

    1995-02-01

    The 1994 BOC Priestley Conference was held at Bucknell University in Lewisburg, Pennsylvania, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley`s arrival in the U.S. and his discovery of oxygen. The basic theme of the conference was `Oxidants and Oxidation in the Earth`s Atmosphere,` with a keynote lecture on the history of ozone. A distinguished group of U.S. and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: (1) Oxidative Fate of Atmospheric Pollutants; (2) Photochemical Smog and Ozone; (3) Stratospheric Ozone; and (4) Global Tropospheric Ozone.

  2. The Origin and Evolution of the Atmospheres of Venus, Earth and Mars

    NASA Astrophysics Data System (ADS)

    Denlinger, Michael C.

    2005-04-01

    The chemical compositions of the primordial atmospheres of Venus, Earth and Mars have long been a topic of debate between the experts. Some believe that the original atmospheres were a product of outgassed volatiles from the newly accreted terrestrial planets and that these atmospheres consisted primarily of carbon dioxide, nitrogen, water vapor and residual hydrogen and helium (e.g., Lewis and Prinn, Planets and their Atmospheres, Academic Press, Orlando, FL, 1984, pp. 62 63, 81 84, 228 231, 383). Still others think the earliest atmospheres were composed of the gas components of the solar nebula from which the solar system formed (i.e., hydrogen, helium, methane, ammonia and water). I consider the latter to be the correct scenario. Presented herein is a proposed mechanism by which the original atmospheres of Venus, Earth and Mars were transformed to atmospheres rich in carbon dioxide and nitrogen. An explanation is proposed for why water is so common on the surface of Earth and so scarce on the surfaces of Venus and Mars. Also presented are the effects the “great impact” (single cataclysmic event that was responsible for producing the Earth Moon system) had upon the early atmosphere of Earth. The origin, structure and composition of the impacting object are determined through deductive analyses.

  3. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  4. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    PubMed

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  5. Lightning-made Waves in Earth's Atmosphere Leak Into Space

    NASA Video Gallery

    As lightning flashes, it creates low frequency waves that circle Earth, a phenomenon known as Schumann resonance. Much of the energy from the waves is trapped between the ground and the ionosphere ...

  6. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect

    Doerry, Armin Walter

    2013-01-01

    The earth isnt flat, and radar beams dont travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  7. Impact Induced Aerial Bursts in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. V.; Trubetskaya, I.

    2008-03-01

    Aerial bursts are produced by comets and asteroids with sizes ranging from tens of meters to about one kilometer (energies from 10 Mt to 100 Gt of TNT equivalents). They produce strong devastation and fires on the Earth's surface.

  8. Our life is protected by the Earth's atmosphere and magnetic field: what aurora research tells us.

    PubMed

    Kamide, Y

    2001-01-01

    Our sun is an average middle-aged star. Without the sun, there would be no atmosphere, no water, and no life on the Earth. The sun is constantly changing, providing the Earth with energy through a complicated chain of processes that occur in space surrounding the Earth. This paper demonstrates that life on Earth is protected by two barriers, i.e., the atmosphere and the magnetic field, against otherwise menacing events in space. Because of these shielding effects, we, peacefully sitting on the Earth's surface, are not aware of a number of critical and potentially dangerous episodes that are taking place only 100 km above the Earth's surface. The aurora, which dances in the polar sky also because of the two barriers, is sending us a crucial hint about what is happening in space.

  9. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  10. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Ackerman, Thomas P.

    1986-01-01

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 to 110 C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  11. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere.

    PubMed

    Kasting, J F; Ackerman, T P

    1986-12-12

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 degrees to 110 degrees C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  12. Thermochemistry and Photochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    NASA Astrophysics Data System (ADS)

    Hu, R.; Seager, S.

    2013-12-01

    Dectection and characterization of low-mass exoplanets is poised to accelerate in the coming decade. Some low-mass exoplanets, namely super Earths and some mini Neptunes, will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model, we have simulated the molecular composition of thick atmospheres on warm and hot super Earths/mini Neptunes, and classified thick atmospheres into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres, depending on the hydrogen abundance and the carbon to oxygen abundance ratio. We find that carbon has to be in the form of CO2 rather than CH4 or CO in an H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons. For future observations, we find for GJ 1214b that (1) C2H2 features at 1.0 and 1.5 μm in transmission are diagnostic for hydrocarbon-rich atmospheres; (2) a constraint on the thermal emission at 4.5 μm could differentiate water-rich atmospheres versus hydrocarbon-rich atmospheres; (3) a detection of water-vapor features and a confirmation of nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. For a hot super Earth like 55 Cnc e, the diagnostic features of water-rich atmospheres (H2O) and the diagnostic features of hydrocarbon-rich atmospheres (CO and C2H2) are well separated in transmission spectra at 0.6-5 μm, which would enable straightforward characterization. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Theoretical transmission spectra and thermal emission

  13. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    SciTech Connect

    Bétrémieux, Yan; Kaltenegger, Lisa

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  14. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    ERIC Educational Resources Information Center

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  15. L2 Earth atmosphere observatory : formation guidance, metrology, and control synthesis

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Mettler, Edward; Breckenridge, William G.; Macenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    This paper discusses the results of research sponsored by the NASA Revolutionary Aerospace Systems Concepts (RASC) program, and includes the synthesis and analysis of the guidance, metrology and control for a two-spacecraft formation in a unique continuously powered orbit near the Sun-Earth L2 Lagrange point observing the illuminated atmosphere of the Earth while it is continuously occulting the Sun.

  16. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  17. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 μm in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  18. Kinetic Monte Carlo models for the study of chemical reactions in the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Turchak, L. I.; Shematovich, V. I.

    2016-06-01

    A stochastic approach to study the non-equilibrium chemistry in the Earth's upper atmosphere is presented, which has been developed over a number of years. Kinetic Monte Carlo models based on this approach are an effective tool for investigating the role of suprathermal particles both in local variations of the atmospheric chemical composition and in the formation of the hot planetary corona.

  19. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    SciTech Connect

    Kataria, T.; Showman, A. P.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  20. Greenhouse warming by CH4 in the atmosphere of early Earth.

    PubMed

    Pavlov, A A; Kasting, J F; Brown, L L; Rages, K A; Freedman, R

    2000-05-25

    Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO2 and H2O by itself is in conflict with constraints on atmospheric CO2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.8 Ga. Such a CH4 concentration could have been readily maintained by methanogenic bacteria, which are thought to have been an important component of the biota at that time. Elimination of the methane component of the greenhouse by oxidation of the atmosphere at about 2.3-2.4 Ga could have triggered the Earth's first widespread glaciation.

  1. The effects from high-altitude storm discharges in Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Kozak, L.; Odzimek, A.; Ivchenko, V.; Kozak, P.; Gala, I.; Lapchuk, V.

    2016-06-01

    The regularities of appearance of transient luminous effects in Earth atmosphere and features of their ground-based observations are considered. Using video-observations obtained in the Institution of Geophysics of Poland Academy of Sciences the energy of atmospheric afterglow from these processes in visual wavelength range has been determined. Calibrating curve was plotted using unfocal images of Vega. The star spectrum,atmosphere absorption coefficient and characteristics of the observational camera were used.

  2. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  3. On the abundances of carbon dioxide isotopologues in the atmospheres of mars and earth

    NASA Astrophysics Data System (ADS)

    Shved, G. M.

    2016-03-01

    The isotopic composition of carbon dioxide in the Martian atmosphere from the measurements of Mars Science Laboratory have been used to estimate the relative abundances of CO2 isotopologues in the Martian atmosphere. Concurrently, this study has revealed long-standing errors in the amounts of some of low-abundance CO2 isotopologues in the Earth's atmosphere in the databases of spectroscopic parameters of gases (HITRAN, etc.).

  4. Transfer of diffuse astronomical light and airglow in scattering Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Kwon, S. M.; Park, Y.-S.; Park, C.

    1998-06-01

    To understand an observed distribution of atmospheric diffuse light (ADL) over an entire meridian, we have solved rigorously, with the quasi-diffusion method, the problem of radiative transfer in an anisotropically scattering spherical atmosphere of the earth. In addition to the integrated starlight and the zodiacal light we placed a narrow layer of airglow emission on top of the scattering earth atmosphere. The calculated distribution of the ADL brightness over zenith distance shows good agreement with the observed one. The agreement can be utilized in deriving the zodiacal light brightness at small solar elongations from the night sky brightness observed at large zenith distances.

  5. Evaluation of upwelling infrared radiance from earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1975-01-01

    Basic equations for calculating the upwelling atmospheric radiation are presented which account for various sources of radiation coming out at the top of the atmosphere. The theoretical formulation of the transmittance models (line-by-line and quasi-random band model) and the computational procedures used for the evaluation of the transmittance and radiance are discussed in detail. By employing the Lorentz line-by-line and quasi-random computer programs, model calculations were made to determine the upwelling radiance and signal change in the wave number interval of CO fundamental band. These results are useful in determining the effects of different interfering molecules, water vapor profiles, ground temperatures, and ground emittances on the upwelling radiance and signal change. This information is of vital importance in establishing the feasibility of measuring the concentrations of pollutants in the atmosphere from a gas filter correlation instrument flown on an aircraft or mounted on a satellite.

  6. Analysis of longwave radiation for the Earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Venuru, C. S.; Subramanian, S. V.

    1983-01-01

    Accurate radiative transfer models are used to determine the upwelling atmospheric radiance and net radiative flux in the entire longwave spectral range. The validity of the quasi-random band model is established by comparing the results of this model with those of line-by-line formulations and with available theoretical and experimental results. Existing radiative transfer models and computer codes are modified to include various surface and atmospheric effects (surface reflection, nonequilibrium radiation, and cloud effects). The program is used to evaluate the radiative flux in clear atmosphere, provide sensitivity analysis of upwelling radiance in the presence of clouds, and determine the effects of various climatological parameters on the upwelling radiation and anisotropic function. Homogeneous and nonhomogeneous gas emissivities can also be evaluated under different conditions.

  7. Investigating Earth's Atmospheric Electricity: a Role Model for Planetary Studies

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.; Rycroft, M. J.

    The historical development of terrestrial atmospheric electricity is described, from its beginnings with the first observations of the potential gradient to the global electric circuit model proposed by C.T.R. Wilson in the early 20th century. The properties of the terrestrial global circuit are summarised. Concepts originally needed to develop the idea of a global circuit are identified as "central tenets", for example, the importance of radio science in establishing the conducting upper layer. The central tenets are distinguished from additional findings that merely corroborate, or are explained by, the global circuit model. Using this analysis it is possible to specify which observations are preferable for detecting global circuits in extraterrestrial atmospheres. Schumann resonances, the extremely low frequency signals generated by excitation of the surface-ionosphere cavity by electrical discharges, are identified as the most useful single measurement of electrical activity in a planetary atmosphere.

  8. Investigating Earth's Atmospheric Electricity: a Role Model for Planetary Studies

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.; Rycroft, M. J.

    2008-06-01

    The historical development of terrestrial atmospheric electricity is described, from its beginnings with the first observations of the potential gradient to the global electric circuit model proposed by C.T.R. Wilson in the early 20th century. The properties of the terrestrial global circuit are summarised. Concepts originally needed to develop the idea of a global circuit are identified as “central tenets”, for example, the importance of radio science in establishing the conducting upper layer. The central tenets are distinguished from additional findings that merely corroborate, or are explained by, the global circuit model. Using this analysis it is possible to specify which observations are preferable for detecting global circuits in extraterrestrial atmospheres. Schumann resonances, the extremely low frequency signals generated by excitation of the surface-ionosphere cavity by electrical discharges, are identified as the most useful single measurement of electrical activity in a planetary atmosphere.

  9. X-38: Artist Concept of Re-Entering Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a 'lifeboat' for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used

  10. Chemical Characterization of Extrasolar Super-Earths - Interiors, Atmospheres, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Lee, K.; Uts, I.; Mousis, O.

    2013-01-01

    Recent observations are allowing unprecedented measurements of masses and radii of low-mass transiting extrasolar planets, particularly super-Earths which are defined as planets with masses between 1 and 10 Earth masses. The observed masses, radii, and temperatures of super-Earths provide constraints on their interior structures, geophysical conditions, as well as their atmospheric compositions. Some of the most recently detected super-Earths span a wide gamut of possible compositions, from super-Mercuries and lava planets to water worlds with thick volatile envelopes. In this work, we report joint constraints on the interior and atmospheric compositions of several super-Earths and discuss their possible formation scenarios using new and comprehensive hybrid models of their interiors, non-gray atmospheres, and formation conditions. Our model constraints are based on the masses and visible radii, as well as the latest infrared measurements of transmission and emission spectrophotometry where available, in addition to revised estimates of the stellar parameters. We will present a comparative analysis of several transiting super-Earths currently known and will discuss in detail two super-Earths (GJ 1214b and 55 Cancri e) which have atmospheric data available and which represent two distinct end members in the thermo-chemical phase space of super-Earth conditions. We will also discuss the implications of our results for the diversity of geochemical and geophysical conditions on super-Earths. We will conclude with comments on new observational, theoretical, and experimental efforts that are critical to detailed characterization of super-Earths.

  11. Models of earth's atmosphere (90 to 2500 km)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This monograph replaces a monograph on the upper atmosphere which was a computerized version of Jacchia's model. The current model has a range from 90 to 2500 km. In addition to the computerized model, a quick-look prediction method is given that may be used to estimate the density for any time and spatial location without using a computer.

  12. (abstract) Odd Hydrogen in the Atmospheres of Earth and Mars

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Yung, Yuk L.

    1994-01-01

    The Martian atmosphere has many features in common with the terrestrial mesosphere. Both share similar pressure and temperature ranges, and much of the same chemistry operates in each. For example, the radical species H, OH, and H(sub 2)O, which comprise the odd hydrogen family, are of central importance in the catalytic destruction of CO and O(sub 3) in both atmospheres. The inclusion of recent chemical kinetics data, specifically temperature dependent CO(sub 2) absorption cross-sections, into our one dimensional photochemical model of the Martial atmosphere shows that oxidation of CO by odd hydrogen is too efficient. The incorporation of smaller cross sections for CO(sub 2) leads to an enhanced photolysis rate of water vapor, increasing odd hydrogen to the point where the predicted mixing ratio of CO in our model is substantially less than the observed value of 6.5 x 10(sup -4). Interestingly, most photochemical models of the terrestrial mesosphere underestimate the CO and O(sub 3) densities using currently accepted photodissociation and kinetic rate coefficients. This has also been attributed to an overabundance of odd hydrogen in the models. We shall show that agreement between models and observations of CO in the Martian atmosphere as well as of CO and O(sub 3) in the terrestrial mesosphere can be achieved by revising the rate constants for the reactions OH + HO(sub 2) and CO + OH within their published uncertainties. The fact that similar revisions alleviate discrepancies in both the terrestrial and Martian atmospheres warrants a re-evaluation of these key rate constants at the appropriate temperatures and pressures.

  13. Comparing atmospheric chemical disequilibrium of Earth and Mars to detect the traces of Life

    NASA Astrophysics Data System (ADS)

    Simoncini, Eugenio; Brucato, John Robert; Grassi, Tommaso

    Thanks to rover explorations, satellite mapping and in loco measurements, there are many evidence nowadays that early Mars could have hold extended oceans of liquid water. This makes early Mars similar to early Earth, and a deeper understanding of the conditions which led to the emergence of Life on Earth is needed. It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important for its potential role in the detection of life on other suitable planets [1][2][3]. We developed a methodology to calculate the extent of atmospheric chemical disequilibrium [3][4]. This tool allows us to understand, on a thermodynamic basis, how life affected - and still affects - geochemical processes on Earth, and if other planetary atmospheres are habitable or have a disequilibrium similar to the Earth's one. A new computational framework called KROME has been applied to atmospheric models in order to give a correct computation of reactionś kinetics [5]. In this work we present a first computation of the extent of disequilibrium for the present and early Earth and Mars atmospheres, considering the specific contribution of the different atmospheric processes, such as thermochemical reactions, eddy diffusion, photochemistry, deposition, and the effect of the biosphere. We then assess the effect of life on atmospheric disequilibrium of the Earth and provide a comparison between “alive” and “dead” Earth, present and (plausible) early Mars. Our results provide a comprehensive analysis of atmospheric disequilibrium for rocky and habitable planets, which can be also used for the detection of habitable conditions on farther planetary bodies. [1] Lovelock, J. E.: A physical basis for life detection experiments, Nature, 207, 568 (1965) [2] Kleidon, A., Physics of Life Reviews, 7, 424 (2010) [3] Simoncini E., Grassi T., Disequilibrium in planetary

  14. Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere

    SciTech Connect

    Battistoni, G.; Cerutti, F.; Fasso, A.; Ferrari, A.; Garzelli, M.V.; Lantz, M.; Muraro, S. Pinsky, L.S.; Ranft, J.; Roesler, S.; Sala, P.R.; /Milan U. /INFN, Milan

    2009-06-16

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  15. Atmospheric radiative transfer generalised for use on Earth and other planets: ARTS 2.2

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Buehler, Stefan; Perrin, Agnes; Hartogh, Paul; Rezac, Ladislav; Lemke, Oliver

    2015-04-01

    Microwave and (sub)millimetre-wave frequencies have long been of interest for remote sensing of the Earth and space objects. They suffer less from interference by small particles (dust, clouds), hence penetrate deeper into atmospheres revealing their deeper structures hidden to shorter wavelengths, and possess characteristic line absorption features of many gaseous species, which are of interest for the understanding of atmospheric chemistry and dynamics. Models simulating radiative transfer and wave propagation (RT/WP) have been developed by many institutions. Most of them are designed for a particular, narrow region of the electromagnetic spectrum, certain instrument types or missions, and specific atmospheric conditions. In particular, they are usually set up for a specific planetary body. This high level of specialisation allows for accurate modelling results. However, it also limits the flexibility of those models and comparability between them. One of the major differences in radiative transfer modeling in the atmospheres of Earth and other planets arises from the different composition of the atmospheres. When interested in measuring total abundance or even vertical distribution of atmospheric constituents, knowledge of parameters describing spectrally dependent absorption in dependence of atmospheric state is required. When modeling radiative transfer for different planets, the line shapes are often accounted for by scaling the parameters valid for Earth's ``air'' or by building a spectroscopic catalogue specific to the planet in question and its main atmospheric composition. This strongly limits applicability of these models. Based on the ARTS model [1], a sophisticated, flexible RT model for Earth atmosphere (3D spherical geometry, diverse absorption models, scattering, polarization, Jacobians), we have developed a toolbox for microwave atmospheric radiative transfer in solar system planets. As part of this, we developed and implemented a more generalized

  16. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  17. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  18. Revised Atmospheric Angular Momentum Series Related to Earth's Variable Rotation under Consideration of Surface Topography

    NASA Technical Reports Server (NTRS)

    Zhou, Y. H.; Salstein, D. A.; Chen, J. L.

    2006-01-01

    The atmospheric angular momentum is closely related to variations in the Earth rotation. The atmospheric excitation function (AEF), or namely atmospheric effective angular momentum function, is introduced in studying the atmospheric excitation of the Earth's variable rotation. It may be separated into two portions, i.e, the "wind" terms due to the atmospheric motion relative to the mantle and the "pressure" terms due to the variations of atmospheric mass distribution evident through surface pressure changes. The AEF wind terms during the period of 1948-2004 are re-processed from the NCEP/NCAR (National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis 6-hourly wind and pressure fields. Some previous calculations were approximate, in that the wind terms were integrated from an isobaric lower boundary of 1000 hPa. To consider the surface topography effect, however, the AEF is computed by integration using the winds from the Earth's surface to 10 hPa, the top atmospheric model level, instead of from 1000 hPa. For these two cases, only a minor difference, equivalent to approx. 0.004 milliseconds in length-of-day variation, exists with respect to the axial wind term. However, considerable differences, equivalent to 5-6 milliarcseconds in polar motion, are found regarding equatorial wind terms. We further compare the total equatorial AEF (with and without the topographic effect) with the polar motion excitation function (PMEF) during the period of 1980-2003. The equatorial AEF gets generally closer to the PMEF, and improved coherences are found between them when the topography effect is included. Keywords: Atmospheric angular momentum, Atmospheric excitation function, Earth rotation, Topography, Wind, Pressure.

  19. The oxygen and carbon dioxide balance in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  20. The effect of atmospheric pressure on Snowball Earth deglaciation

    NASA Astrophysics Data System (ADS)

    Edkins, Nicholas; Davies, Roger

    2017-02-01

    The most common explanation for the escape from a Snowball Earth state involves, among other factors, a strong greenhouse effect caused by a large partial pressure of CO2. This leads to an increase in surface pressure, which most models do not account for. With a higher surface pressure, pressure broadening increases, and convection reaches a deeper layer, both of which result in higher surface temperatures. The latter mechanism, which has not previously been reported, is found to be a greater source of warming than pressure broadening in the normal range of CO2 partial pressures at the point of deglaciation.

  1. Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-12-01

    Vegetation, wildfire and atmospheric oxygen on Earth have changed throughout geological times, and are dependent on each other, determining the evolution of ecosystems, the carbon cycle, and the climate, as found in the fossil record. Previous work in the literature has only studied flaming wildfires, but smouldering is the most persistent type of fire phenomena, consuming large amounts of biomass. In this study, the dependence of smouldering fires in peatlands, the largest wildfires on Earth, with atmospheric oxygen is investigated. A physics-based computational model of reactive porous media for peat fires, which has been previously validated against experiments, is used. Simulations are conducted for wide ranges of atmospheric oxygen concentrations and fuel moisture contents to find thresholds for ignition and extinction. Results show that the predicted rate of spread increases in oxygen-rich atmospheres, while it decreases over wetter fuels. A novel nonlinear relationship between critical oxygen and critical moisture is found. More importantly, we show that compared to previous work on flaming fires, smouldering fires can be ignited and sustained at substantially higher moisture contents (up to 100% MC vs. 40% for 21% oxygen level), and lower oxygen concentrations (down to 13% vs. 16%). This defines a new atmospheric oxygen threshold for wildfires (13%), even lower than previously thought in Earth Sciences (16%). This finding should lead to reinterpretation of how the char remains observed in the fossil record constrain the lower concentration of oxygen in Earth's atmosphere in geological timescale.

  2. Chemistry of atmospheres - An introduction to the chemistry of the atmospheres of earth, the planets, and their satellites (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Wayne, Richard P.

    An introduction to the chemistry of the atmospheres of the earth, the planets, and their satellites is presented, with particular attention given to the application of photochemistry and kinetics to atmospheres, ozone in the earth's stratosphere, the earth's troposphere, ions in the atmosphere, the airglow, and evolution and change in atmospheres and climates. This book presents the principles of atmospheric chemistry and provides the necessary background for more detailed study. New developments are covered, including the discovery of the Antarctic ozone hole. Information gathered by the Voyager 2 and other space missions is also discussed.

  3. Cosmic rays intensity and atmosphere humidity at near earth surface

    NASA Astrophysics Data System (ADS)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  4. The early Earth atmosphere and early life catalysts.

    PubMed

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  5. Gamma rays from grazing incidence cosmic rays in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Interactions of grazing incidence, ultra high-energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond timescales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10(exp 20) eV is found to be more than two orders of magnitude higher than Earth-based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic-ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the Earth's atmosphere.

  6. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  7. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b.

    PubMed

    Kreidberg, Laura; Bean, Jacob L; Désert, Jean-Michel; Benneke, Björn; Deming, Drake; Stevenson, Kevin B; Seager, Sara; Berta-Thompson, Zachory; Seifahrt, Andreas; Homeier, Derek

    2014-01-02

    Recent surveys have revealed that planets intermediate in size between Earth and Neptune ('super-Earths') are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7 - 17), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet's atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5σ confidence. The planet's atmosphere must contain clouds to be consistent with the data.

  8. DORIS applications for solid earth and atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Willis, Pascal; Soudarin, Laurent; Jayles, Christian; Rolland, Lucie

    2007-12-01

    DORIS is a French precise orbit determination system. However, in the past four years, through the creation of the International DORIS Service, a larger international cooperation was involved. Furthermore, the precision of its scientific applications (geodesy, geophysics) gradually improved and expanded to new fields (atmospheric sciences), leading, for example, to the publication of a special issue of the Journal of Geodesy. The goal of this manuscript is to present and explain these changes and to put them in perspective with current results obtained with other space geodetic techniques, such as GPS or Satellite Laser Ranging.

  9. A statistical look at the retrieval of exoplanetary atmospheres of super Earths and giant planets

    NASA Astrophysics Data System (ADS)

    Rocchetto, Marco; Waldmann, Ingo Peter; Tinetti, Giovanna; Yurchenko, Sergey; Tennyson, Jonathan

    2015-08-01

    Over the past decades transit spectroscopy has become one of the pioneering methods to characterise exoplanetary atmospheres. With the increasing number of observations, and the advent of new ground and spaced based instruments, it is now crucial to find the most optimal and objective methodologies to interpret these data, and understand the information content they convey. This is particularly true for smaller and fainter super Earth type planets.In this conference we will present a new take on the spectral retrieval of transiting planets, with particular focus on super Earth atmospheres. TauREx (Waldmann et al. 2015a,b.) is a new line-by-line radiative transfer atmospheric retrieval framework for transmission and emission spectroscopy of exoplanetary atmospheres, optimised for hot Jupiters and super Earths. The code has been built from scratch with the ideas of scalability, flexibility and automation. This allows to run retrievals with minimum user input that can be scaled to large cluster computing. Priors on the number and types of molecules considered are automatically determined using a custom built pattern recognition algorithm able to identify the most likely absorbers/emitters in the exoplanetary spectra, minimising the human bias in selecting the major atmospheric constituents.Using these tools, we investigate the impact of signal to noise, spectral resolution and wavelength coverage on the retrievability of individual model parameters from transit spectra of super Earths, and put our models to test (Rocchetto et al. 2015). Characterisation of the atmospheres of super Earths through transit spectroscopy is paramount, as it can provide an indirect - and so far unique - way to probe the nature of these planets. For the first time we analyse in a systematic way large grids of spectra generated for different observing scenarios. We perform thousands of retrievals aimed to fully map the degeneracies and understand the statistics of current exoplanetary

  10. Oxygen and ozone in the early earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.

    1983-01-01

    The precise amount of O2 and O3 in the earth's prebiological paleoatmosphere has been a topic of considerable discussion in the past. Since the photolysis of H2O and CO2, the prebiological mechanisms to produce O2, depends on the ultraviolet flux from the Sun, a reliable quantification of the problem requires detailed knowledge of such flux. Using the most recent astronomical observation of young stars from the International Ultraviolet Explorer, as well as a detailed photochemical model of the paleoatmosphere, it is found that the amount of O2 in the prebiological paleoatmosphere may have been as much as a million times greater than previously estimated. Some of the implications of this new value are discussed.

  11. High-energy cosmic ray muons in the Earth's atmosphere

    SciTech Connect

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-15

    We present the calculations of the atmospheric muon fluxes at energies 10-10{sup 7} GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  12. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  13. An Instrument Concept for Atmospheric Infrared Sounding from Medium Earth Orbit

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Baron, Richard l.

    2004-01-01

    Medium Earth Orbit (MEO) offers a unique vantage point for atmospheric infrared sounding. The orbit allows the entire globe to be covered each day with one satellite. The orbit is slow enough to allow multiple views of a single target to be made on each pass. this paper discusses the advantages in coverage and revisit rate from MEO for a particular concept for a Medium Earth Orbit Infrared Atmospheric Sounder (MIRIS). The requirements for this instrument in terms of spectral range, spatial resolution, field of view, and calibration are presented as well as the radiometric performance expectations.

  14. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-09-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on observation of scaling behaviour of such variables characterized by distinct universal exponents. More specifically, we find that the spatial power-law behaviour in the fluctuations of the near surface temperature over the lands on Earth, shares the same universal exponent as of the global Earth topography, indicative of the global persistent role of the static geometry of Earth to control the steady state of a dynamical atmospheric field. Such a universal feature can pave the way to the theoretical understanding of the chaotic nature of the atmosphere coupled to the Earth’s global topography.

  15. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    PubMed Central

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on observation of scaling behaviour of such variables characterized by distinct universal exponents. More specifically, we find that the spatial power-law behaviour in the fluctuations of the near surface temperature over the lands on Earth, shares the same universal exponent as of the global Earth topography, indicative of the global persistent role of the static geometry of Earth to control the steady state of a dynamical atmospheric field. Such a universal feature can pave the way to the theoretical understanding of the chaotic nature of the atmosphere coupled to the Earth’s global topography. PMID:27666675

  16. CMIP5 Simulations with the Community Earth System Model - Whole Atmosphere Community Climate Model

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Marsh, D. R.; CalvoFernandez, N.; Kinnison, D. E.; Lamarque, J.

    2011-12-01

    We have used the Whole Atmosphere Community Climate Model (WACCM) to simulate the Earth's climate from pre-industrial conditions to the end of the 21st Century in several experiments following the Coupled Model Intercomparison Project Phase 5 (CMIP5) protocols. We present preliminary analysis of these coupled experiments, highlighting the effects of chemistry and physics above the troposphere on climate. WACCM was developed to understand the couplings between atmospheric layers, the role of chemical and physical processes in defining these couplings, and the interaction between the Earth's atmosphere and the Sun. The current version of WACCM spans the range of altitude from the Earth's surface to the lower thermosphere (~140 km) and is based on version 1 of the Community Earth System Model (CESM-1). WACCM has been used to predict the evolution of ozone and other radiatively active species in the middle and upper atmosphere; to study effects of the stratosphere on tropospheric climate, including the response to increased greenhouse gases; and for independent investigations. We compare climate trends in CMIP5 experiments from WACCM to those in the low-top version of CESM. We examine the coupling between the upper and lower atmosphere, including the quasi-biennial oscillation, sudden stratospheric warmings, the solar cycle, and surface climate.

  17. Atmospheric excitation of the earth's annual wobble - 1980-1988

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Au, Andrew Y.

    1991-01-01

    Global meteorological analyses from the European Center for Medium Range Weather Forecasts are employed to compute the atmospheric excitation psi of the polar motion for the 9-year period of 1980-1988. Both the matter component psi(matter) and the motion component psi (motion) are computed, the former with and without the oceanic inverted barometer (IB) effect. It is found that psi(motion) contributes significantly to the total excitation psi overall and nonnegligibly to the annual signal in psi, or the annual wobble excitation in particular. The results for the annual wobble excitation, in terms of the prograde component psi(t) and the retrogade component phsi(-) for January 1, are within the (rather large) range of previous estimates. The IB effect has a small impact on psi(+), whereas its impact on psi(-) is considerable.

  18. Climatic effects due to halogenated compounds in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Pinto, J. P.; Yung, Y. L.

    1980-01-01

    Using a one-dimensional radiative-convective model, a sensitivity study is performed of the effect of ozone depletion in the stratosphere on the surface temperature. There could be a cooling of the surface temperature by approximately 0.2 K due to chlorofluoromethane-induced ozone depletion at steady state (assuming 1973 release rates). This cooling reduces significantly the greenhouse effect due to the presence of chlorofluoromethanes. Carbon tetrafluoride has a strong nu sub 3 band at 7.8 microns, and the atmospheric greenhouse effect is shown to be 0.07 and 0.12 K/ppbv with and without taking into account overlap with CH4 and N2O bands. At concentrations higher than 1 ppbv, absorption by the nu sub 3 band starts to saturate and the greenhouse effect becomes less efficient.

  19. Comparing the Atmospheres of Mercury and the Earth's Moon

    NASA Technical Reports Server (NTRS)

    Morgan, Thomas H.; Killen, Rosemary M.; Hurley, Dana M.

    2012-01-01

    The exospheres of Mercury and the Earth's Moon are fundamentally similar, but the differences that do exist between them can help us to develop a better understanding of the processes at work on the two bodies that produce and remove volatiles. The major differences are derived from (1) the different compositions of the two surfaces, (2) the different particle and field em'ironments above the surface of each body (particularly the presence of intrinsic magnetic field of Mercury), and (3) the larger flux of interplanetary dust incident at the orbit of Mercury. The first difference, surface composition, is the most intractable problem, but the most challenging part of that problem, the composition of the Hermean regolith, may be at least partially addressed as the MESSENGER mission completes work over the next year. Much progress has been made with respect to exploring the second difference above--spacecraft such as Helios, Ulysses, WIND, and ACE have measured the solar wind and its composition both in Earth orbit and at distances encompassing the orbit of Mercury. While our knowledge of the solar wind is incomplete, again it is far more detailed than a simple 1/R(sup 2) law would predict. Another problem is that of the flux of charged particles to the surfaces. While Mercury's magnetosphere is the subject of current study with MESSENGER, the influx of charged particles on the Moon has gone beyond a cos (psi) picture, where psi is the solar zenith angle. We know that the influx of ions at the Moon is affected by magnetic anomalies, by craters, and by surface charging. The third external difference is the differing flux of interplanetary dust incident on the two surfaces. In this talk we will consider: (1) the species that one can compare now for these two exospheres (Na, K, and He); (2) the species that you might be able to compare with future measurements (Ca and Mg); arid (3) how intensive ground-based observations of the easiest lunar species to observe from the

  20. Combined 2-micron Dial and Doppler Lidar: Application to the Atmosphere of Earth or Mars

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Ismail, Syed; Kavaya, Michael; Yu, Jirong; Wood, Sidney A.; Emmitt, G. David

    2006-01-01

    A concept is explored for combining the Doppler and DIAL techniques into a single, multifunctional instrument. Wind, CO2 concentration, and aerosol density can all be measured. Technology to build this instrument is described, including the demonstration of a prototype lidar. Applications are described for use in the Earth science. The atmosphere of Mars can also be studied, and results from a recently-developed simulation model of performance in the Martian atmosphere are presented.

  1. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  2. Three-dimensional Atmospheric Circulation and Climate of Terrestrial Exoplanets and Super Earths

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, A. P.

    2012-10-01

    The recent discovery of super Earths and terrestrial exoplanets extending over a broad region of orbital and physical parameter space suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. In this presentation we will review how the planetary rotation rate, planetary mass, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We will elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we will discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  3. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  4. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  5. Super-Earth Atmospheres: Self-consistent Gas Accretion and Retention

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2016-07-01

    Some recently discovered short-period Earth- to Neptune-sized exoplanets (super-Earths) have low observed mean densities that can only be explained by voluminous gaseous atmospheres. Here, we study the conditions allowing the accretion and retention of such atmospheres. We self-consistently couple the nebular gas accretion onto rocky cores and the subsequent evolution of gas envelopes following the dispersal of the protoplanetary disk. Specifically, we address mass-loss due to both photo-evaporation and cooling of the planet. We find that planets shed their outer layers (dozens of percent in mass) following the disk's dispersal (even without photo-evaporation), and their atmospheres shrink in a few Myr to a thickness comparable to the radius of the underlying rocky core. At this stage, atmospheres containing less particles than the core (equivalently, lighter than a few percent of the planet's mass) can be blown away by heat coming from the cooling core, while heavier atmospheres cool and contract on a timescale of Gyr at most. By relating the mass-loss timescale to the accretion time, we analytically identify a Goldilocks region in the mass-temperature plane in which low-density super-Earths can be found: planets have to be massive and cold enough to accrete and retain their atmospheres, but not too massive or cold, such that they do not enter runaway accretion and become gas giants (Jupiters). We compare our results to the observed super-Earth population and find that low-density planets are indeed concentrated in the theoretically allowed region. Our analytical and intuitive model can be used to investigate possible super-Earth formation scenarios.

  6. Application of the DSMC Method in Modeling Earth's Rarefied Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Hoey, W.; Walker, A. C.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2014-12-01

    Improving the accuracy and robustness of simulations of Earth's upper atmosphere is a priority for satellite drag and space weather applications. The Direct Simulation Monte Carlo [DSMC] method is well-suited to modeling the dynamics of such rarefied and non-equilibrium regimes, where continuum techniques break down. Here, we apply DSMC in three-dimensional, transient, and self-consistent neutral density simulations of Earth's rarefied upper atmosphere.An existing planetary-science code base, established in the modeling of the lunar and Ionian environs, is extended to reflect the physics of Earth's upper atmosphere. Comprehensive atmospheric simulations are computed in parallel on a domain extending from the mid-thermosphere, below the continuum-rarefied transition, through 1000 km altitude. The simulation code includes multi-species neutral- and photo-chemistry, tracking of particle rotational and vibrational states, and non-equilibrium radiation transport. Substantial model development is demonstrated in application to the Earth's atmosphere, including the incorporation of lower-boundary conditions consistent with the NRLMSISE-00 semi-empirical model, ultraviolet radiation and photo-chemistry rates modeled with reference to space weather indices, and radiative absorption attenuated by integrated column density.Comparisons with results drawn from existing upper atmospheric models and from indirect satellite mass density measurements are employed in benchmarking model accuracy. Avenues for further development include hybridization with continuum global circulation models in the mid-thermosphere, and the extension of the planetary code's magnetic field and charged-particle models to the Earth case.Research supported by the Los Alamos Space Weather Summer School, LANL Institutional Computing, and the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) at LANL.

  7. Research at the earth's edge. [tethered satellite study of upper atmosphere

    NASA Technical Reports Server (NTRS)

    Anderson, John L.; Wood, George M., Jr.; Siemers, Paul M.

    1988-01-01

    The Space Shuttle Orbiter-deployed Tethered Satellite System (TSS) could allow an Orbiter at a 200 km orbital altitude to reach down to atmospheric altitudes of 90 km, in order to study weather phenomena, pollutant transport, 'nuclear winter' smoke transport, atmospheric physics and dynamics, sun-earth interactions, ecosystem interactions, and radio communications. The TSS satellite, a 1.5-m diameter sphere, would carry scientific instrumentation which could initially be dedicated to the investigation of energy and momentum transfer between a tethered system and the upper atmosphere.

  8. Energy deposition in the earth's atmosphere due to impact of solar activity-generated disturbances

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Kan, L. C.; Tandberg-Hanssen, E.; Dryer, M.

    1979-01-01

    Energy deposition in and dynamic responses of the terrestrial atmosphere to solar flare-generated shocks and other physical processes - such as particle precipitation and local heating - are investigated self-consistently in the context of hydrodynamics, the problem being treated as an initial boundary-value problem. It is extremely difficult to construct a general model for the line solar activity-magnetosphere-atmosphere; however, a limited model for this link is possible. The paper describes such a model, and presents some results on energy deposition into the earth's atmosphere due to solar activity-generated disturbances. Results from the present calculations are presented and discussed.

  9. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus.

    PubMed

    Kasting, J F

    1988-01-01

    A one-dimensional climate model is used to study the response of an Earth-like atmosphere to large increases in solar flux. For fully saturated, cloud-free conditions, the critical solar flux at which a runaway greenhouse occurs, that is, the oceans evaporate entirely, is found to be 1.4 times the present flux at Earth's orbit (S0). This value is close to the flux expected at Venus' orbit early in solar system history. Is is nearly independent of the amount of CO2 present in the atmosphere, but is sensitive to the H2O absorption coefficient in the 8- to 12-micrometers window region. Clouds should tend to depress the surface temperature on a warm, moist planet; thus, Venus may originally have had oceans if its initial water endowment was close to that of Earth. It lost them early in its history, however, because of rapid photodissociation of water vapor followed by escape of hydrogen to space. The critical solar flux above which water is rapidly lost could be as low as 1.1S0. The surface temperature of a runaway greenhouse atmosphere containing a full ocean's worth of water would have been in excess of 1500 degrees K--above the solidus for silicate rocks. The presence of such a steam atmosphere during accretion may have significantly influenced the early thermal evolution of both Earth and Venus.

  10. Sulfur Isotopes in Swaziland System Barites and the Evolution of the Earth's Atmosphere.

    PubMed

    Perry, E C; Monster, J; Reimer, T

    1971-03-12

    Sedimentary barites from the Swaziland System of South Africa (more than 3000 million years old) have sulfur-34 ratios that are enriched by only 2.5 per mil with respect to contemporary sulfides. To explain this small fractionation, it is proposed that oxygen pressure in the earth's atmosphere was very low and that local oxidation occurred in a photosynthetic layer of the ocean.

  11. Effects of atmospheric aerosols on scattering reflected visible light from earth resource features

    NASA Technical Reports Server (NTRS)

    Noll, K. E.; Tschantz, B. A.; Davis, W. T.

    1972-01-01

    The vertical variations in atmospheric light attenuation under ambient conditions were identified, and a method through which aerial photographs of earth features might be corrected to yield quantitative information about the actual features was provided. A theoretical equation was developed based on the Bouguer-Lambert extinction law and basic photographic theory.

  12. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    ERIC Educational Resources Information Center

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  13. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    ERIC Educational Resources Information Center

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  14. Apollo 13 Service Module and Lunar Module as entering Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    1970-01-01

    An unidentified airline passenger snapped these bright objects, believed to be the Apollo 13 Service Module and Lunar Module as they entered Earth's atmosphere over the Pacific Ocean on April 18, 1970. The aircraft, an Air New Zealand DC-8, was midway between the Fiji Islands (Nandi Island, to be specific) and Aukland, New Zealand when the photograph was taken.

  15. High-resolution numerical simulation of Venus atmosphere by AFES (Atmospheric general circulation model For the Earth Simulator)

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko; AFES project Team

    2016-10-01

    We have developed an atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) and performed a high-resolution simulation (e.g., Sugimoto et al., 2014a). The highest resolution is T639L120; 1920 times 960 horizontal grids (grid intervals are about 20 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal components. The infrared radiative process is simplified by adopting Newtonian cooling approximation. The temperature is relaxed to a prescribed horizontally uniform temperature distribution, in which a layer with almost neutral static stability observed in the Venus atmosphere presents. A fast zonal wind in a solid-body rotation is given as the initial state.Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year and this state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex surrounded by a cold latitude band (cold collar) is well reproduced (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k > 10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). We will show recent results of the high-resolution run, e.g., small-scale gravity waves attributed to large-scale thermal tides. Sugimoto, N. et al. (2014a), Baroclinic modes in the Venus atmosphere simulated by GCM, Journal of Geophysical Research: Planets, Vol. 119, p1950-1968.Sugimoto, N. et al. (2014b), Waves in a Venus general

  16. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Astrophysics Data System (ADS)

    Bada, J. L.; Miller, S. L.

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  17. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  18. Improving Estimates of Atmosphere-Ocean Greenhouse Gas Fluxes for Earth-System Modelling

    NASA Astrophysics Data System (ADS)

    Vieira, V. M. N. C. S.; Sahlee, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-08-01

    Accurate estimates of atmosphere-ocean balances and fluxes of greenhouse gases and aerosols are fundamental for Earth-System models forecasting the climate change, and for Earth Observation estimates of oceanic sinks and sources coupling satellite imagery with reverse modelling. The standard formulations are 24 and 36 years old, and recent alternatives have emerged. We developed a framework congregating the geophysical processes involved, customizable with alternative formulations, and that can be used as basis for novel couplers of atmospheric and oceanographic model components. We tested it with fine resolution data from the European coastal ocean. Although the solubility formulations agreed well, their minor divergences yielded differences of many tons of greenhouse gases dissolved at the ocean surface. The transfer velocities largely mismatched their estimates, in part consequence of the standard formulation not considering factors that were proved determinant at the coastal ocean. Climate Change research requires further calibration and validation of atmosphere-ocean interactions.

  19. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (<20%) levels, N2O is no longer produced. Therefore, lightning in the early Earth

  20. An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides

    NASA Astrophysics Data System (ADS)

    Acworth, R. Ian; Halloran, Landon J. S.; Rau, Gabriel C.; Cuthbert, Mark O.; Bernardi, Tony L.

    2016-11-01

    The groundwater hydraulic head response to the worldwide and ubiquitous atmospheric tide at 2 cycles per day (cpd) is a direct function of confined aquifer compressible storage. The ratio of the responses of hydraulic head to the atmospheric pressure change is a measure of aquifer barometric efficiency, from which formation compressibility and aquifer specific storage can be determined in situ rather than resorting to laboratory or aquifer pumping tests. The Earth tide also impacts the hydraulic head response at the same frequency, and a method is developed here to quantify and remove this interference. As a result, the barometric efficiency can be routinely calculated from 6-hourly hydraulic head, atmospheric pressure, and modeled Earth tide records where available for a minimum of 15 days duration. This new approach will be of critical importance in assessing worldwide problems of land subsidence or groundwater resource evaluation that both occur due to groundwater abstraction.

  1. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.

    PubMed

    Planavsky, Noah J; Reinhard, Christopher T; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H; Johnson, Thomas; Fischer, Woodward W; Lyons, Timothy W

    2014-10-31

    The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.

  2. Photochemical consequences of enhanced CO2 levels in earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Greatly enhanced atmospheric CO2 concentrations are the most likely mechanism for offsetting the effects of reduced solar luminosity early in the earth's history. CO2 levels of 80 to 600 times the present value could have maintained a mean surface temperature of 0 C to 15 C, given a 25 percent decrease in solar output. Such high CO2 levels are at least qualitatively consistent with the present understanding of the carbonate-silicate geochemical cycle. The presence of large amounts of CO2 has important implications for the composition of the earth's prebiotic atmosphere. The hydrogen budget of a high-CO2 primitive atmosphere would have been strongly influenced by rainout of H2O2 and H2CO. The reaction of H2O2 with dissolved ferrous iron in the early oceans could have been a major sink for atmospheric oxygen. The requirement that this loss of oxygen be balanced by a corresponding loss of hydrogen (by escape to space and rainout of H2CO) implies that the atmospheric H2 mixing ratio was greater than 2 x 10 to the -5th and the ground level O2 mixing ratio was below 10 to the -12th, even if other surface sources of H2 were small. These results are only weakly dependent on changes in solar UV flux, rainout rates, and vertical mixing rates in the primitive atmosphere.

  3. THE NATURE OF THE ATMOSPHERE OF THE TRANSITING SUPER-EARTH GJ 1214b

    SciTech Connect

    Miller-Ricci, Eliza; Fortney, Jonathan J.

    2010-06-10

    The newly discovered planet GJ 1214b is the first known transiting super-Earth requiring a significant atmosphere to explain its observed mass and radius. Models for the structure of this planet predict that it likely possesses an H-He envelope of at least 0.05% of the total mass of the planet. However, models without a significant H-He atmosphere are not entirely ruled out by the available data. Here, we explore a range of possible atmospheres for the planet, ranging from solar composition gas, to pure CO{sub 2} or water (steam). We present transmission and emission spectra for each of these cases. We find that, if GJ 1214b possesses a hydrogen-rich atmosphere as expected, then the primary transit depth for such an atmosphere would vary at a level of up to 0.3% as a function of wavelength, relative to the background light of its M-dwarf host star. Observations at this level of precision are potentially obtainable with current space-based instrumentation. Successful detection of the transmission signature of this planet at the {approx}0.1% level would therefore provide confirmation of the hydrogen-rich nature of the planetary atmosphere. It follows that transmission spectroscopy at this level of precision could provide a first glimpse into answering the question of whether planets in the super-Earth mass regime (1-10 M{sub +}) more closely resemble large terrestrial planets or small gas giant planets.

  4. Constraints on Earth degassing history from the argon isotope composition of Devonian atmosphere

    NASA Astrophysics Data System (ADS)

    Stuart, F. M.; Mark, D.

    2012-04-01

    The primordial and radiogenic isotopes of the noble gases combine to make them a powerful tool for determining the time and tempo of the outgassing of the Earth's interior. The outgassing history of the Earth is largely constrained from measurements of the isotopic composition of He, Ne, Ar and Xe in samples of modern mantle, crust and atmosphere. There have been few unequivocal measurement of the isotopic composition of noble gases in ancient atmosphere. We have re-visited whether ancient Ar is trapped in the ~400 Ma Rhynie chert [1]. We have analysed samples of pristine Rhynie chert using the ARGUS multi-collector mass spectrometer calibrated against the new determination of atmospheric Ar isotope ratios [2]. 40Ar/36Ar ratios are low, with many lower than the modern air value (298.8). Importantly these are accompanied by atmospheric 38Ar/36Ar ratios indicating that the low 40Ar/36Ar are not due to mass fractionation. We conclude that the Rhynie chert has captured Devonian atmosphere-derived Ar. The data indicate that the Devonian atmosphere 40Ar/36Ar was at least 3 % lower than the modern air value. Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last 400 million years, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the rate determined from ice cores for the last 800,000 years [3] and implies that there has been no resolvable temporal change in Earth outgassing rate since mid-Palaeozoic times. The new data require the Earth outgassed early, and suggests that pristine samples of Archaean and Proterozoic chert may prove useful as palaeo-atmosphere tracers. [1] G. Turner, J. Geol. Soc. London 146, 147-154 (1989) [2] D. Mark, F.M. Stuart, M. de Podesta, Geochim. Cosmochim. Acta 75, 7494-7501 [3] M. Bender et al., Proc. Nat. Acad. Sci. 105, 8232-8237 (2008)

  5. Spectral Characteristic of Tholin Produced from Possible Early Earth Atmospheres and its Role in Antigreenhouse Effect on Early Earth

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Imanaka, H.; Wilhite, P.; McKay, C.; Bakes, E.; Cruikshank, D. P.; Arakawa, E. T.

    2003-01-01

    We have produced organic material simulating a methane photochemical haze in a CO2- rich atmosphere of the early Earth by irradiating gas mixtures in an inductively coupled cold plasma chamber with pressure approx. 0.25 mbar at 100 W total power. The flow rate was 24 cm3 min. We added progressively higher levels of CH, by combining gas mixtures of N2/CH4 (9/1) and N2/CO2 (9/1) to change the ratio of CH4/CO2. Tholin was accumulated for 5 hours in each experiment; the onset of tholin formation is in the range CH4/CO2 = 0.5 to 1. As the mixing ratio of CH, is increased, the production rate of the brownish tholin film increases. IR spectra showed the C-H and N-H bands similar to that of Titan tholin and closely resemble Titan tholin made at 0.13 mbar pressure. A decrease in the CH bonds on decreasing CH4/CO2 is noted. Ether bands (-(2-O-C) were tentatively detected, but no detectable carbonyl (C=O) band was found. The absorption in the UV region for the early Earth tholin is found to be substantially greater than the Titan tholin. Quantitative values of the optical constants of early Earth tholin are currently being measured.

  6. L2 Earth Atmosphere Observatory: Formation Guidance, Metrology and Control Synthesis

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Mettler, Edward; Breckenridge, William G.; Macenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    The Earth Observatory Formation at L2, a Lagrange libration point, is a unique large aperture (25 m diameter) space telescope concept that will improve the knowledge and understanding of dynamic, chemical and radiative mechanisms that cause changes in the atmosphere, and can lead to the development of models and techniques to predict short and long-term climate changes. The results of this concept definition study show that the telescope concept is feasible, and can have technology readiness in the 2020 time frame. Further advanced development in several subsystems is needed, such as higher efficiency Xenon ion thrusters with throttling, and optical quality large membrane mirror with active shape control. It presents an analysis and solution of guidance, sensing, control, and propulsion problems for a formation of two spacecraft on the Sun-Earth line in the neighborhood of the Sun-Earth L2 point, that observes Earth s atmosphere during continuous solar occultation by the Earth. A system architecture is described for the observatory, and its components that include unique mission specific metrology. The formation must follow a powered trajectory with strictly limited fuel use to observe solar occultation. A configuration of ion thrusters and reaction wheels for translation and attitude control is designed along with algorithms for orbit following and formation control. Simulation results of the orbital and formation dynamics are presented that verify performance of the control systems.

  7. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Katsing, J. F.

    1986-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of the atmosphere of Venus. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of thes CO2 may have resided in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises is whether this much CO2 would have resulted in a runaway greenhouse effect. One dimensional radiative/convective model calculations presented showed that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 was less than 100 C; thus no runaway greenhouse effect would have occurred. The climatic stability of the early atmosphere is a consequence of three factors: reduced solar luminosity at that time, an increase in planetary albedo caused by Rayleigh scattering by CO2, and the stabilizing effects of a moist convection. The latter two factors are sufficient to prevent a CO2 induced runaway greenhouse effect on the present Earth as well, for CO2 levels up to 100 bars. Further studies are being undertaken to determine whether a runaway greenhouse effect could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed one the influx of material slowed down.

  8. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of Venus' atmosphere. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of this CO2 may have resulted in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises concerning this hypothesis is whether this would have resulted in a runaway greenhouse affect. One-dimensional radiative/convective model calculations show that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 would have been less than 100C and no runaway greenhouse should have occurred. The climatic stability of the early atmosphere is a consequence of three factors: (1) reduced solar luminosity at that time; (2) an increase in planetary albedo caused by Rayleigh scattering by CO2; and (3) the stabilizing effects of moist convection. The latter two factors are sufficient to prevent a CO2-induced runaway greenhouse on the present Earth and for CO2 levels up to 100 bars. It is determined whether a runaway greenhouse could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed once the influx of material slowed down.

  9. Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth.

    PubMed

    Lunine, J I; McKay, C P

    1995-03-01

    The surface and atmosphere of Titan constitute a system which is potentially as complex as that of the Earth, with the possibility of precipitation, surface erosion due to liquids, chemistry in large surface or subsurface hydrocarbon reservoirs, surface expressions of internal activity, and occasional major impacts leading to crustal melting. While none of the above have been observed as yet, the composition, density and thermal properties of Titan's atmosphere make it uniquely suited in the outer solar system as a place where such processes may occur. The one attribute of the Earth not expected on Titan is biological activity, which has had a profound effect on the evolution of the Earth's surface-atmosphere system. The earliest environment of Titan could have been warm enough for liquid ammonia-water solutions to exist on or near surface; pre-biotic organic processes may have taken place in such an environment. After a few hundred million years surface ammonia-water would have disappeared. Therefore, study of Titan through the Cassini-Huygens mission, planned for launch in 1997, primarily affords the opportunity to understand planet-wide surface-atmosphere interactions in the presence of fluids but in the absence of life. More speculative is the possibility that endogenic and exogenic heating continue to provide short-lived environments on Titan wherein pre-biotic organic processes in the presence of water happen.

  10. Further Analysis of Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Orientation.

    NASA Astrophysics Data System (ADS)

    Stamatakos, N. G.; McCarthy, D. D.; Eubanks, T. M.; Salstein, D.

    2015-12-01

    We continue to investigate the use of U.S.-produced atmospheric and oceanic angular momentum (AAM and OAM) estimates to improve the determination of near real-time observations of Earth rotation and polar motion parameters and their short-term predictions. This effort builds on work begun in 2014, presented at the AGU Fall 2014 meeting in San Francisco[1]. The U.S. Navy atmospheric AAM (NAVGEM) and OAM series (HYCOM) are considered, as they are available in near real-time for Earth orientation estimation. Additionally, use of a combination of these series should be internally consistent as the NAVGEM atmospheric analyses are used as forcing for the Navy HYCOM model. A Kalman filter or other optimal combination techniques may be used to enhance and expedite the evaluation process. [1] Salstein, D., Stamatakos, N., New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion, G13A-0521 POSTER at the American Geophysical Union Meeting, San Francisco, California, December 2014.

  11. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density < 2 kg/m3 and probably > 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a

  12. Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO) - A pioneering research facility in Cyprus

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Teller, Amit; Keleshis, Christos; Ioannou, Stelios; Philimis, Panayiotis; Lelieveld, Jos; Levin, Zev

    2010-05-01

    The use of Unmanned Aerial Systems (UASs) has increased dramatically in the recent decades. UASs are widely used for different civil applications such as land management, earth sciences, contaminant detection and monitoring and commercial use. The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO UAS platforms will provide the unique ability to produce 3D measurements for determining: physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into: surface morphology, vegetation and land use patterns, archaeological site reconnaissance, contaminant detection and ocean surface properties (biology, waves, currents) at high spatial resolution. Through a modular design philosophy, APAESO will be very adaptable for a variety of scientific investigations enabling scientific collaborations between the Cyprus Institute and national and international research organizations. The Cyprus Institute is currently procuring the "Cruiser", which is a medium size Unmanned Aerial Vehicle (UAV) that is capable of carrying a payload of up to 10 kg, fly to altitude of 5000 m AGL with an endurance of up to 10 hours. Within the next phase of the project, the "Cruiser" will be equipped with instruments for atmospheric and earth surface observations. The poster will present the different components of the project: the UAS platform, payload to be integrated and scientific challenges that we are about to tackle and solve.

  13. Earth-Atmospheric Coupling During Strong Earthquakes by Analyzing MODIS Data

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Williams, Robin G.; Freund, Friedemann

    2001-01-01

    Interactions between the Earth and the atmosphere during major earthquakes (M greater than 5) are the subject of this investigation. Recently a mechanism has been proposed predicting the build-up of positive ground potentials prior to strong earthquake activity. Connected phenomena include: transient conductivity of rocks, injection of currents, possibly also electromagnetic emission and light emission from high points at the surface of the Earth. To understand this process we analyze vertical atmospheric profiles, land surface and brightness (temperature) data, using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite launched in December 1999. MODIS covers the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km). Using MODIS data we look for correlations between the atmospheric dynamics and solid Earth processes for the January 2001 strong earthquakes in San Salvador and India. As part of the build-up of positive grounds potential, an IR luminescence is predicted to occur in the 8-12 micrometer band. We use the MODIS data to differentiate between true "thermal" signals and IR luminescence. Indeed, on the basis of a temporal and spatial distribution analysis, a thermal anomaly pattern is found that appears to be related to the seismic activity. Aerosol content and atmospheric instability parameters also change when ground charges build up causing ion emission and leading to a thin aerosol layer over land. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index. Anomalous trends have been identified in few days prior to the main shocks. The significance of this observation should be explored further using other data sets.

  14. Development status of the EarthCARE Mission and its atmospheric Lidar

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira Do Carmo, J.; Lefebvre, A.; Eisinger, M.; Wehr, T.

    2016-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution up to 100 m from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are also separated and measured on dedicated channels. This paper gives an overview of the mission science objective, the satellite configuration with its four instruments and details more specifically the implementation and development status of the Atmospheric Lidar. Manufacturing status and first equipment qualification test results, in particular for what concerns the laser transmitter development are presented.

  15. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  16. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi K.

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  17. Earth's changing global atmospheric energy cycle in response to climate change

    NASA Astrophysics Data System (ADS)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  18. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  19. Earth's changing global atmospheric energy cycle in response to climate change.

    PubMed

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  20. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    SciTech Connect

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard E-mail: hwchen@bu.edu

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  1. Galactic cosmic rays - atmosphere clouds effect and bifurcation model of the Earth global climate

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander

    The possible physical linkage between the cosmic rays, atmosphere cloud and indirect aerosol effects is discussed using analysis of first indirect aerosol effect (Twomey effect) and its experimental representation as the dependence of mean cloud droplet effective radius versus aerosol index defining the column aerosol number. It is shown that the main kinetic equation of Earth climate energy-balance model [1] is described by the bifurcation equation (relative to the Earth surface temperature) in the form of fold catastrophe with two controlling parameters defining the variations of insolation and Earth magnetic field (or cosmic rays intensity in the atmosphere) respectively. The results of comparative analysis on the time-dependent solution (time series of global paleotemperature ) of Earth climate energy-balance model taking into account nontrivial role of galactic cosmic rays and the known experimental data on the palaeotemperature from the EPICA Dome C and Vostok ice core are pre-sented. It is discussed the sin-earth mechanism of arising the abnormal temperature breaks which are observed in the EPICA Dome C and Vostok experiments. It has been found its link with the ‘order-chaos' transitions in evolution of the convection in the Earth liquid core which are responsible for mechanism of arising inversions of the magnetic field of the Earth. It should be noted a stabilization role of the slow nuclear burning [1] georeactor with power 30 TW) on the boundary of the liquid and solid phases of the Earth's core in evolution of convection in the Earth liquid core and magnetic field. In the bifurcation model (i) the possibility of abrupt glacial climate changes analogous to the Dansgaard-Oeschger events due to stochastic resonance is theoretically argued, (ii) the concept of the climatic sensitivity of water (vapour and liquid) in the atmosphere is introduced. This concept reveals the property of temperature instability in a form of so-called hysteresis loop. It is

  2. Study of the dynamics of meteoroids through the Earth's atmosphere and retrieval of meteorites

    NASA Astrophysics Data System (ADS)

    Guadalupe Cordero Tercero, Maria; Farah-Simon, Alejandro; Velázquez-Villegas, Fernando

    2016-07-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each and every one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors (shooting stars) are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c ) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f ) recover and study meteorites. During this meeting, the academic

  3. Loss of Water in Early Earth's Atmosphere and Its Effects on Habitability

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Khazanov, George

    2015-08-01

    The short wavelength emission from the Sun has a profound impact on the Earth’s atmosphere. High energy photons ionize the atmosphere and produce photoelectrons. This process provides a major contribution to the acceleration of atmospheric ions due to the vertical separation of ions and electrons, and the formation of the resulting ambipolar electric field. Observations and theory suggest that even a relatively small fraction of super-thermal electrons (photoelectrons) produced due to photoionization can drive the ”polar wind” that is responsible for the transport of ionospheric constituents to the Earth’s magnetosphere.The young Sun was a magnetically active star generating powerful radiative output from its chromosphere, transition region and corona which was a few hundred times greater than that observed today. What effects would the photoionization processes due to the X-ray-UV solar flux from early Sun have on the loss of water from the early Earth?We use the Fokker-Plank code coupled with 1D hydrodynamic code to model the effect of intensive short-wavelength (X-rays to UV band) emission from the young Sun (3.8 and 4.4 Ga) on Earth's atmosphere. Our simulations include the photoionization processes of the Earth’s atmosphere forming a population of photoelectrons (E<600 eV), the kinetic effects of their propagation associated and their contribution in ionosphere - magnetosphere energy redistribution. Our coupled simulations show that the ambipolar electric field can drag atmospheric ions of oxygen and hydrogen to the magnetosphere and produce significant mass loss that can affect the loss of water from the early Earth in the first half a billion years. This process became less efficient in the next 0.2-0.3 Ga that could have provided a window of opportunity for origin of life.

  4. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.

    PubMed

    Xu, Yisheng; Nadykto, Alexey B; Yu, Fangqun; Herb, J; Wang, Wei

    2010-01-14

    Atmospheric aerosols formed via nucleation in the Earth's atmosphere play an important role in the aerosol radiative forcing associated directly with global climate changes and public health. Although it is well-known that atmospheric aerosol particles contain organic species, the chemical nature of and physicochemical processes behind atmospheric nucleation involving organic species remain unclear. In the present work, the interaction of common organic acids with molecular weights of 122, 116, 134, 88, 136, and 150 (benzoic, maleic, malic, pyruvic, phenylacetic, and tartaric acids) with nucleation precursors and charged trace species has been investigated. We found a moderate strong effect of the organic species on the stability of neutral and charged ionic species. In most cases, the free energies of the mixed H(2)SO(4)-organic acid dimer formation are within 1-1.5 kcal mol(-1) of the (H(2)SO(4))(NH(3)) formation energy. The interaction of the organic acids with trace ionic species is quite strong, and the corresponding free energies far exceed those of the (H(3)O(+))(H(2)SO(4)) and (H(3)O(+))(H(2)SO(4))(2) formation. These considerations lead us to conclude that the aforementioned organic acids may possess a substantial capability of stabilizing both neutral and positively charged prenucleation clusters, and thus, they should be studied further with regard to their involvement in the gas-to-particle conversion in the Earth's atmosphere.

  5. THEORETICAL EMISSION SPECTRA OF ATMOSPHERES OF HOT ROCKY SUPER-EARTHS

    SciTech Connect

    Ito, Yuichi; Ikoma, Masahiro; Kawahara, Hajime; Nagahara, Hiroko; Kawashima, Yui; Nakamoto, Taishi

    2015-03-10

    Motivated by recent detection of transiting high-density super-Earths, we explore the detectability of hot rocky super-Earths orbiting very close to their host stars. In an environment hot enough for their rocky surfaces to be molten, they would have an atmosphere composed of gas species from the magma oceans. In this study, we investigate the radiative properties of the atmosphere that is in gas/melt equilibrium with the underlying magma ocean. Our equilibrium calculations yield Na, K, Fe, Si, SiO, O, and O{sub 2} as the major atmospheric species. We compile the radiative absorption line data of those species available in the literature and calculate their absorption opacities in the wavelength region of 0.1–100 μm. Using them, we integrate the thermal structure of the atmosphere. Then, we find that thermal inversion occurs in the atmosphere because of the UV absorption by SiO. In addition, we calculate the ratio of the planetary to stellar emission fluxes during secondary eclipse, and we find prominent emission features induced by SiO at 4 μm detectable by Spitzer, and those at 10 and 100 μm detectable by near-future space telescopes.

  6. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  7. Observational and Modeling Studies of Radiative, Chemical, and Dynamical Interactions in the Earth''s Atmosphere

    NASA Technical Reports Server (NTRS)

    Salby, Murry

    1998-01-01

    A 3-dimensional model was developed to support mechanistic studies. The model solves the global primitive equations in isentropic coordinates, which directly characterize diabatic processes forcing the Brewer-Dobson circulation of the middle atmosphere. It's numerical formulation is based on Hough harmonics, which partition horizontal motion into its rotational and divergent components. These computational features, along with others, enable 3D integrations to be performed practically on RISC computer architecture, on which they can be iterated to support mechanistic studies. The model conserves potential vorticity quite accurately under adiabatic conditions. Forced by observed tropospheric structure, in which integrations are anchored, the model generates a diabatic circulation that is consistent with satellite observations of tracer behavior and diabatic cooling rates. The model includes a basic but fairly complete treatment of gas-phase photochemistry that represents some 20 chemical species and 50 governing reactions with diurnally-varying shortwave absorption. The model thus provides a reliable framework to study transport and underlying diabatic processes, which can then be compared against chemical and dynamical structure observed and in GCM integrations. Integrations with the Langley GCM were performed to diagnose feedback between simulated convection and the tropical circulation. These were studied in relation to tropospheric properties controlling moisture convergence and environmental conditions supporting deep convection, for comparison against mechanistic integrations of wave CISK that successfully reproduce the Madden-Julian Oscillation (MJO) of the tropical circulation. These comparisons were aimed at identifying and ultimately improving aspects of the convective simulation, with the objective of recovering a successful simulation of the MJO in the Langley GCM, behavior that should be important to budgets of upper-tropospheric water vapor and

  8. Atmospheric heating in an irradiated transiting super-Earth and super-Neptune

    NASA Astrophysics Data System (ADS)

    Miller, Brendan

    2014-09-01

    We propose Chandra observations of HD 97658 (13 ks) and HAT-P-11 (8 ks) to determine the high-energy radiation incident upon their short-period transiting planets. HD 97658 b is a hot super-Earth with a density between Earth and ice giants, while HAT-P-11 b is a hot super-Neptune orbiting an active K4 star. Measurement of the stellar X-ray (and UV; we contribute Swift time) luminosities provides a current epoch estimate of atmospheric heating and constrains whether these planets are likely to experience significant mass loss through atmospheric evaporation over their total lifetimes. These observations provide essential empirical input for understanding and modeling the potential evolutionary transformation of hot gas giants into less massive and more dense remnants.

  9. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  10. Impact-generated atmospheric plumes: The threat to satellites in low-earth orbit

    SciTech Connect

    Boslough, M.B.; Crawford, D.A.

    1996-02-01

    Computational simulations of the impacts of comet Shoemaker-Levy 9 (SL9) fragments on Jupiter provide a framework for interpreting the observations. A reasonably consistent picture has emerged, along with a more detailed understanding of atmospheric collisional processes. The knowledge gained from the observations and simulations of SL9 has led us to consider the threat of impact-generated plumes to satellites in low-Earth orbit (LEO). Preliminary simulations suggest that impacts of a size that recur about once per century on Earth generate plumes that rise to nearly 1000 km over an area thousands of km in diameter. Detailed modeling of such plumes is needed to quantify this threat to satellites in LEO. Careful observations of high-energy atmospheric entry events using both satellite and ground- based instruments would provide validation for these computational models.

  11. The young sun and the atmosphere and photochemistry of the early earth

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampapa, M. S.

    1983-01-01

    The origin and evolution of the earth's early atmosphere depend crucially on the dissipation time of the primitive solar nebula (SN). Using different theories of turbulence, the dissipation time of an SN of 0.1 solar mass is estimated as 2.5-8.3 Myr. Because accretion times are usually much longer, it is concluded that most planetary accretion must have occurred in a gas-free environment. Using new IUE data, a wavelength-dependent UV flux is constructed for the young sun which is then used to study the photochemistry and concentrations of O, O2, O3, OH, H, HCO and formaldehyde H2CO in the earth's early prebiological atmosphere.

  12. Atmospheric heating in an irradiated transiting super-Earth and super-Neptune

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2016-01-01

    We present new Chandra observations of HD 97658 (13 ks) and HAT-P-11 (8 ks), obtained to determine the high-energy radiation incident upon their short-period transiting planets. HD 97658 b is a hot super-Earth with a density between Earth and ice giants, while HAT-P-11 b is a hot super-Neptune orbiting an active K4 star. Our measurement of the stellar X-ray (and UV, from Swift) luminosities provides a current epoch estimate of atmospheric heating. We discuss whether these planets are likely to have experienced significant mass loss through atmospheric evaporation over their total lifetimes. These observations provide essential empirical input for understanding and modeling the potential evolutionary transformation of hot gas giants into less massive and more dense remnants.

  13. Thermal evolution of the earth - Effects of volatile exchange between atmosphere and interior

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Schubert, Gerald

    1989-01-01

    The thermal history of the earth is investigated using a parameterized model of mantle convection, that includes the effects of volatile exchange between the mantle and the surface reservoir and the softening of the mantle by the dissolved volatiles. The mantle degassing rate is taken to be directly proportional to the rate of seafloor spreading which depends on the mantle heat flow. It is shown that the dependence of the mantle viscosity on the volatile content has important effects on the thermal evolution of planetary interiors and the evolution of planetary atmospheres. Degassing is compensated by an increase in temperature, while regassing is compensated by a decrease in temperature. Reasonable degassing scenarios can account for an early rapid formation of the earth's atmosphere inferred from noble gas abundances.

  14. Atmospheric circulation modeling of super Earths and terrestrial extrasolar planets using the SPARC/MITgcm

    NASA Astrophysics Data System (ADS)

    Kataria, T.; Showman, A. P.; Haberle, R. M.; Marley, M. S.; Fortney, J. J.; Freedman, R. S.

    2013-12-01

    The field of exoplanets continues to be a booming field of research in astronomy and planetary science, with numerous ground-based (e.g., SuperWASP, HARPS-N and S) and space-based surveys (e.g., Kepler) that detect and characterize planets ranging from hot Jupiters, Jovian-sized planets orbiting less than 0.1 AU from their star, to super Earths and terrestrial exoplanets, planets that have masses equal to or less than 10 times that of Earth with a range of orbital distances. Atmospheric circulation modeling plays an important role in the characterization of these planets, helping to constrain observations that probe their atmospheres. These models have proven successful in understanding observations of transiting exoplanets (when the planet passes in front of the star along our line of sight) particularly when the planet is passing through secondary eclipse (when the planet's dayside is visible). In modeling super Earths and terrestrial exoplanets, we must consider not only planets with thick fluid envelopes, but also traditional terrestrial planets with solid surfaces and thinner atmospheres. To that end, we present results from studies investigating the atmospheric circulation of these classes of planets using the SPARC/MITgcm, a state-of-the-art model which couples the MIT General Circulation Model with a plane-parallel, two-stream, non-gray radiative transfer model. We will present results from two studies, the first focusing on the circulation of GJ 1214b, a super-Earth detected by the MEarth ground-based survey, and a second study which explores the circulation of terrestrial exoplanets orbiting M-dwarfs.

  15. A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.

    1992-01-01

    This report describes a new software tool, ATRAN, which computes the transmittance of Earth's atmosphere at near- and far-infrared wavelengths. We compare the capabilities of this program with others currently available and demonstrate its utility for observational data calibration and reduction. The program employs current water-vapor and ozone models to produce fast and accurate transmittance spectra for wavelengths ranging from 0.8 microns to 10 mm.

  16. Mapping the downwelling atmospheric radiation at the Earth's surface: A research strategy

    NASA Technical Reports Server (NTRS)

    Raschke, E.

    1986-01-01

    A strategy is presented along with background material for determining downward atmospheric radiation at the Earth's surface on a regional scale but over the entire globe, using available information on the temperature and humidity of the air near the ground and at cloud base altitudes. Most of these parameters can be inferred from satellite radiance measurements. Careful validation of the derived radiances will be required using ground-based direct measurements of radiances, to avoid systematic biases of these derived field quantities.

  17. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  18. Determining the Atmospheric Nature of Super-Earth and Sub-Neptune Exoplanets

    NASA Astrophysics Data System (ADS)

    Lothringer, Joshua; Crossfield, Ian; Benneke, Bjoern; Knutson, Heather; Dragomir, Diana; Fortney, Jonathan J.; Howard, Andrew; McCullough, Peter R.; Gilliland, Ronald L.; Kempton, Eliza; Morley, Caroline

    2016-01-01

    Proper characterization of the atmospheric composition of super-Earth and sub-Neptune planets will constrain the models that describe the formation and evolution of exoplanetary systems, yet the transition between Earth-mass and Neptune-mass exoplanets is still not well understood. Due to degeneracies between the bulk density and composition of planets in this range, even the basic make-up of many planets is unknown. Transit spectroscopy offers a method to characterize exoplanetary atmospheres and break this compositional degeneracy. We will present preliminary analysis and data reduction techniques for an ongoing large-scale Hubble Space Telescope survey of five planets between 1 and 22 Earth-masses. Using both optical and infrared primary transit spectra from STIS and WFC3, we will measure molecular signatures in the atmospheres of these small, cool planets, as well as any high-altitude clouds and hazes that may dampen such signatures. Results from this investigation will pave the way for future observations of small planets, especially in preparation for the James Webb Space Telescope (JWST) and the Transiting Exoplanet Survey Satellite (TESS).

  19. An impact-induced terrestrial atmosphere and iron-water reactions during accretion of the Earth

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1985-01-01

    Shock wave data and theoretical calculations were used to derive models of an impact-generated terrestrial atmosphere during accretion of the Earth. The models showed that impacts of infalling planetesimals not only provided the entire budget of terrestrial water but also led to a continuous depletion of near-surface layers of water-bearing minerals of their structural water. This resulted in a final atmospheric water reservoir comparable to the present day total water budget of the Earth. The interaction of metallic iron with free water at the surface of the accreting Earth is considered. We carried out model calcualtions simulating these processes during accretion. It is assumed that these processes are the prime source of the terrestrial FeO component of silicates and oxides. It is demonstrated that the iron-water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed. In order to obtain the necessary amount of terrestrial water, slightly heterogeneous accretion with initially 36 wt% iron planetesimals, as compared with a homogeneous value of 34 wt% is required.

  20. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.

  1. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  2. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.

    PubMed

    Canfield, Donald E; Ngombi-Pemba, Lauriss; Hammarlund, Emma U; Bengtson, Stefan; Chaussidon, Marc; Gauthier-Lafaye, François; Meunier, Alain; Riboulleau, Armelle; Rollion-Bard, Claire; Rouxel, Olivier; Asael, Dan; Pierson-Wickmann, Anne-Catherine; El Albani, Abderrazak

    2013-10-15

    The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth's oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest-lived positive δ(13)C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.

  3. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  4. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    NASA Astrophysics Data System (ADS)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  5. Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2016-03-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. Aims: We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Methods: Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N2-O2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. Results: We find that up to 20% of stratospheric ozone is destroyed by cosmic-ray protons. The effect on the planetary spectra, however, is negligible. The reduction of the planetary ozone layer leads to an increase in the weighted surface UV flux by two orders of magnitude under stellar UV flare conditions. The resulting biological effective dose rate is, however, too low to strongly affect surface life. We also examine the surface particle flux: For a planet with a terrestrial atmosphere (with a surface pressure of 1033 hPa), a reduction of the magnetic shielding efficiency can increase the biological radiation dose rate by a factor of two, which is non-critical for biological systems. For a planet with a weaker atmosphere (with a surface pressure of 97.8 hPa), the planetary magnetic field has a much stronger influence on the biological radiation dose, changing it by up to two orders of magnitude. Conclusions: For a planet with an Earth-like atmospheric pressure, weak or absent magnetospheric shielding against galactic cosmic

  6. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  7. The role of artificial atmospheric CO2 removal in stabilizing Earth's climate

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Tokarska, K.

    2014-12-01

    The current CO2 emission trend entails a risk that the 2°C target will be missed, potentially causing "dangerous" changes in Earth's climate system. This research explores the role of artificial atmospheric CO2 removal (also referred to as "negative emissions") in stabilizing Earth's climate after overshoot. We designed a range of plausible CO2 emission scenarios, which follow a gradual transition from a fossil fuel driven economy to a zero-emission energy system, followed by a period of negative emissions. The scenarios differ in peak emissions rate and, accordingly, the amount of negative emissions, to reach the same cumulative emissions compatible with the 2°C temperature stabilization target. The climate system components' responses are computed using the University of Victoria Earth System Climate Model of intermediate complexity. Results suggest that negative emissions are effective in reversing the global mean temperature and stabilizing it at a desired level (2°C above pre-industrial) after overshoot. Also, changes in the meridional overturning circulation and sea ice are reversible with the artificial removal of CO2 from the atmosphere. However, sea level continues to rise and is not reversible for several centuries, even under assumption of large amounts of negative emissions. For sea level to decline, atmospheric CO2 needs to be reduced to pre-industrial levels in our simulations. During the negative emission phase, outgassing of CO2 from terrestrial and marine carbon sinks offsets the artificial removal of atmospheric CO2, thereby reducing its effectiveness. On land, the largest CO2 outgassing occurs in the Tropics and is partially compensated by CO2 uptake at northern high latitudes. In the ocean, outgassing occurs mostly in the Southern Ocean, North Atlantic and tropical Pacific. The strongest outgassing occurs for pathways entailing greatest amounts of negative emissions, such that the efficiency of CO2 removal - here defined as the change in

  8. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  9. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  10. XUV complex refractive indices of aerosols in the atmospheres of Titan and the primitive Earth

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Neumann, Maciej; Bulkin, Pavel; Popescu, Horia; Steffan, Martin; Esser, Norbert; Carrasco, Nathalie

    2016-10-01

    The complex refractive indices of tholins, simulating aerosols in the atmosphere of Titan and the primitive earth, have been measured over a wide spectral range, including the soft X-ray, vacuum-ultraviolet (VUV), and UV-Visible. The soft X-ray and VUV spectral ranges are in particular relevant to radiative transfer models of solar irradiation of primitive atmospheres (Lammer et al. 2008) and may elucidate the (anti-)greenhouse potential of photochemical aerosols.Thin films were grown using the PAMPRE capacitively coupled plasma setup (Szopa et al. 2006; Carrasco et al. 2009). Gas mixtures consisting of CH4/N2 with 5:95 ratios were used to simulate Titan's atmospheric composition. For the primitive Earth, gas mixtures of N2/CO2/H2 and N2/CO2/CH4 were used as described in Fleury et al. (2014).State-of-the-art laboratory techniques were used to determine the refractive indices of such tholin films. These include VUV ellipsometry (performed in collaboration with the Metrology Light Source in Berlin) and synchrotron X-ray spectroscopy (performed at the SEXTANTS beamline of the SOLEIL synchrotron). While VUV spectroscopy reveals new electronic transitions due to plasmon resonances in tholins, X-ray spectra reveal the C and O absorption edges of these solids. The refractive indices are compared to results from Khare et al. (1984). Implications on the optical properties of these aerosol analogs on the radiative modeling of primitive atmospheres will be discussed.

  11. New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion

    NASA Astrophysics Data System (ADS)

    Salstein, D. A.; Stamatakos, N.

    2014-12-01

    We are reviewing the state of the art in available datasets for both atmospheric angular momentum (AAM) and oceanic angular momentum (OAM) for the purposes of analysis and prediction of both polar motion and length of day series. Both analyses and forecasts of these quantities have been used separately and in combination to aid in short and medium range predictions of Earth rotation parameters. The AAM and OAM combination, with the possible addition of hydrospheric angular momentum can form a proxy index for the Earth rotation parameters themselves due to the conservation of angular momentum in the Earth system. Such a combination of angular momentum of the geophysical fluids has helped in forecasts within periods up to about 10 days, due to the dynamic models, and together with extended statistical predictions of Earth rotation parameters out even as far as 90 days, according to Dill et al. (2013). We assess other dataset combinations that can be used in such analysis and prediction efforts for the Earth rotation parameters, and demonstrate the corresponding skill levels in doing so.

  12. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  13. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth.

    PubMed

    Cao, Xiaobin; Bao, Huiming

    2013-09-03

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of (17)O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere-atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the "snowball' Earth hypothesis produce a typical MOSD duration of less than 10(6) y and a magnitude of (17)O depletion reaching approximately -35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate (17)O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean-atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event.

  14. Kinetic Theory of Meteor Plasma in the Earth's atmosphere: Implications for Radar Head Echo

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.

    2015-12-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to be observed visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma and how it interacts with the Earth's atmosphere. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo often accompanied by a much longer non-specular trail (see the Figure). Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma responsible for the radar head echo. This theory produces analytic expressions describing the ion and neutral velocity distributions along with the detailed 3-D spatial structure of the near-meteoroid plasma. These expressions predict a number of unexpected features such as shell-like velocity distributions. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a strongly non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements, estimates of the ionization efficiency, and should help calculate meteoroid and atmosphere parameters from radar head-echo observations. This theory could also help clarify the physical nature of electromagnetic pulses observed during recent meteor showers and associated with the passage of fast-moving meteors through the

  15. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth

    PubMed Central

    Cao, Xiaobin; Bao, Huiming

    2013-01-01

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of 17O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere–atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the “snowball’ Earth hypothesis produce a typical MOSD duration of less than 106 y and a magnitude of 17O depletion reaching approximately −35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate 17O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean–atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event. PMID:23898167

  16. Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements

    NASA Technical Reports Server (NTRS)

    Dave, J. V.

    1977-01-01

    Results are presented on the effect of atmospheric aerosols on the value of total ozone, in an atmospheric column of the terrestrial atmosphere, estimated from the simulated measurements of the ultraviolet radiation back scattered by the earth atmosphere models. Simulated measurements were used in five (configuration of the BUV experiment of Nimbus-4 satellite), and in six (configuration of the TOMS section of the SBUV/TOMS experiment on Nimbus-G) narrow spectral regions in the ultraviolet part of the spectrum.

  17. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  18. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  19. Observations of the Earth's Radiation Budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world's oceans

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.

    1994-01-01

    This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.

  20. Noble Gas Isotopic Evidence for Primordial Evolution of the Earth's Atmosphere in Three Distinct Stages

    NASA Astrophysics Data System (ADS)

    Harper, C. L., Jr.; Jacobsen, S. B.

    1995-09-01

    The deep Earth is the key to understanding the primordial evolution of the Earth's atmosphere. However the atmosphere was not derived by degassing of the Earth, as widely held. Isotopic characterization of mantle noble gases and modeling based on this information [1] suggests the atmosphere experienced a 3-stage early history. This follows from 5 basic observations: (i) Ne in the mantle is solar-like, with light (high) 20Ne/22Ne relative to the atmosphere [2]; (ii) mantle Xe has higher 128Xe/130Xe than the atmosphere [3], which carries an extreme heavy isotope enriched mass fractionation signature of >3%/amu (iii) most of the radiogenic Xe from l29I and 244Pu decay in the Earth is not present either in the mantle or in the atmosphere; (iv) the inferred abundances of noble gases in the deep Earth "plume source" are insufficient to generate the present atmospheric abundances, even for whole mantle degassing; and (v) mantle noble gases indicate a 2 component structure, with solar light gases (He and Ne) and planetary heavy gases [4]. The present day noble gas budgets (and likely also N2) must derive from late accretion of a volatile-rich "veneer." This is stage III. Stage II is a naked (no atmosphere) epoch indicated by evidence for Hadean degassing of 244Pu (T1/2 = 80 Ma) fission Xe from the whole mantle, which was not retained in the present atmosphere. The naked stage must have lasted for more than ~200 Ma, and was supported by the early intense solar EUV luminosity. Stage I, a massive solar-composition protoatmosphere, occurred during the Earth's early accretion phase. Its existence is indicated by the presence of the solar gas component in the Earth. This is not attributable to subduction of solar wind rich cosmic dust, or solar wind irradiation of coagulating objects. It is best explained by accretion of a solar composition atmosphere from the nebula. This provided a thermal blanket supporting a magma ocean in which solar gases dissolved. Under these conditions

  1. Calculations of cosmogenic nuclide production rates in the Earth's atmosphere and their inventories

    NASA Technical Reports Server (NTRS)

    Obrien, K.

    1986-01-01

    The production rates of cosmogenic isotopes in the Earth's atmosphere and their resulting terrestrial abundances have been calculated, taking into account both geomagnetic and solar-modulatory effects. The local interstellar flux was assumed to be that of Garcia-Munoz, et al. Solar modulation was accounted for using the heliocentric potential model and expressed in terms of the Deep River neutron monitor count rates. The geomagnetic field was presented by vertical cutoffs calculated by Shea and Smart and the non-vertical cutoffs calculated using ANGRI. The local interstellar particle flux was first modulated using the heliocentric potential field. The modulated cosmic-ray fluxes reaching the earth's orbit then interacted with the geomagnetic field as though it were a high-pass filter. The interaction of the cosmic radiation with the Earth's atmosphere was calculated utilizing the Bolztmann transport equation. Spallation cross sections for isotope production were calculated using the formalism of Silberberg and Tsao and other cross sections were taken from standard sources. Inventories were calculated by accounting from the variation in solar modulation and geomagnetic field strength with time. Results for many isotope, including C-14, Be-7 and Be-10 are in generally good agreement with existing data. The C-14 inventory, for instance, amounts to 1.75/sq cm(e)/s, in excellent agreement with direct estimates.

  2. Excitation of Earth's continuous free oscillations by atmosphere-ocean-seafloor coupling.

    PubMed

    Rhie, Junkee; Romanowicz, Barbara

    2004-09-30

    The Earth undergoes continuous oscillations, and free oscillation peaks have been consistently identified in seismic records in the frequency range 2-7 mHz (refs 1, 2), on days without significant earthquakes. The level of daily excitation of this 'hum' is equivalent to that of magnitude 5.75 to 6.0 earthquakes, which cannot be explained by summing the contributions of small earthquakes. As slow or silent earthquakes have been ruled out as a source for the hum (except in a few isolated cases), turbulent motions in the atmosphere or processes in the oceans have been invoked as the excitation mechanism. We have developed an array-based method to detect and locate sources of the excitation of the hum. Our results demonstrate that the Earth's hum originates mainly in the northern Pacific Ocean during Northern Hemisphere winter, and in the Southern oceans during Southern Hemisphere winter. We conclude that the Earth's hum is generated by the interaction between atmosphere, ocean and sea floor, probably through the conversion of storm energy to oceanic infragravity waves that interact with seafloor topography.

  3. Equilibrium Chemistry of the Atmospheres of Hot Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Lodders, K.; Fegley, B.

    2010-10-01

    The Kepler and COROT missions and Earth-based observations have discovered putative rocky exoplanets and at least some of these are very hot because they orbit their stars at close distance, e.g., CoRot-7b. Here we discuss atmospheric chemistry for an Earth-like planet hot enough to vaporize its crust. We computed the chemical equilibrium composition of a system with elemental abundances of the terrestrial continental crust from 500 - 4000 K as a function of pressure from 10-6 to 10+2.5 bars. Calculations were done with a Gibbs energy minimization code. We will present results for the major volatile elements H, C, N, O, and S, and the lithophile elements Na, K, Fe, Si, Mg, Al, Ca, and Ti at a nominal pressure of 100 bars as a function of temperature. The major gases are H2O and CO2 at low temperatures, and SiO, O, H, and O2 at high temperatures. We also present condensation temperatures for major compounds as a function of pressure, which will be useful in determining cloud composition. These results should be useful in planning spectroscopic studies of the atmospheres of hot Earth-like exoplanets. This work was supported by the NSF Astronomy Program and the NASA Astrobiology Program.

  4. Displacements of the earth's surface due to atmospheric loading - Effects of gravity and baseline measurements

    NASA Technical Reports Server (NTRS)

    Van Dam, T. M.; Wahr, J. M.

    1987-01-01

    Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.

  5. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  6. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  7. Rare earth element components in atmospheric particulates in the Bayan Obo mine region.

    PubMed

    Wang, Lingqing; Liang, Tao; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM10) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m(3), and those for PM10 were 42.8 and 68.9 ng/m(3), in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM10 and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM10 were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N), Gd(N)/Yb(N)).

  8. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  9. Noble gas patterns in the atmospheres of Mars and Earth: A comparison via the SNC meteorites

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.; Becker, R. H.

    1985-01-01

    Noble gas and nitrogen compositions in the glassy phase of the EETA 79001 shergottite correspond closely with Viking measurements. This direct evidence for the origin of the SNC meteorites on Mars, and for trapping of an unfractionated sample of Martian atmospheric gases in the 79001 glass, provides a reasonable basis for comparing the Martian and terrestrial atmospheres with more precision than that afforded by the Viking data set. Results are that, with one exception, elemental and isotopic compositions of nonradiogenic Martian noble gases are similar to those in the Earth's atmosphere; relatively small isotopic discrepancies in Kr and perhaps Xe may be attributable to different degrees of mass fractionation of a common parent reservoir. The anomaly is in Ar composition, where Martian Ar-36/AR-38 approx. 4 is strikingly lower than the values near 5.3 that characterize both the Earth and major meteoritic gas carriers. Although a primordial Martian ratio of 5.3 could in principle be altered by some planet specific process (e.g., cosmic ray spallation of surface materials) operating over geologic time, one has not been found that works.

  10. Earth System Data Microsets for Education From the Atmospheric Sciences Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Oots, P. C.; Moore, S. W.; Lorentz, K. E.; Dalton, A. J.

    2004-12-01

    The Atmospheric Sciences Data Center (ASDC) at NASA's Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. Scientists have been analyzing the extensive data to discover and quantify the complex interactions and feedbacks in the Earth system, communicating conclusions frequently with colleagues, policy makers and the general public. NASA's Science Mission Directorate aims to stimulate public interest in the understanding of these Earth system science findings and to encourage young scholars to consider careers in science, technology, engineering and mathematics. However, barriers still exist to the use of actual satellite observations in the classroom to energize the educational process. NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities at all levels of formal and informal education by reducing the ASDC data holdings to `microsets' that will be easily accessible and explored by the K-12 and the citizen scientist communities. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. Teacher workshops will be held each summer for five years to help teachers learn about incorporating the microsets in their curriculum. Additionally, a Live Access Server (LAS) has been populated with ASDC data holdings such that users can create custom microsets for desired time series, parameters and geographical regions. Currently, parameters from the Clouds and the Earth's Radiant Energy System (CERES), the Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud

  11. Evaluating carbon dioxide variability in the Community Earth System Model against atmospheric observations

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Randerson, J. T.; Lindsay, K. T.; Stephens, B. B.; Moore, J. K.; Doney, S. C.; Thornton, P. E.; Mahowald, N. M.; Hoffman, F. M.; Sweeney, C.; Tans, P. P.; Wennberg, P. O.; Wofsy, S. C.

    2012-12-01

    Changes in atmospheric CO_2 variability during the 21st century may provide insight on ecosystem responses to climate change and have implications for the design of carbon monitoring programs. We analyzed results from a fully coupled climate-carbon simulation using the Community Earth System Model (CESM1-BGC). We evaluated CO2 simulated for the historical period against surface, aircraft, and column observations. The mean annual cycle in total column atmospheric CO2 was underestimated throughout the northern hemisphere relative to TCCON observations, suggesting that the growing season net flux in the land component of CESM was too weak by 50%. Sampling CESM along HIPPO transects confirmed low growing season uptake, but also showed that spring drawdown in the Northern Hemisphere began too early. The vertical gradients in CESM generally agreed with HIPPO data and with NOAA aircraft profiles outside the growing season, but were too weak during the summer. The seasonal bias suggests that vertical transport in CAM4 (the atmospheric component of CESM) was too weak year round. Model evaluation and improvement based on atmospheric observations is crucial. The simulation of surface exchange and atmospheric transport of CO2 in coupled models such as CESM may help with the design of optimal detection strategies. For example, in the simulations of the 21st century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Both north-south and east-west contrasts in CO2 strengthened due to changing patterns in fossil fuel emissions and terrestrial carbon exchange, and northern hemisphere interannual variability increased as well. Our results suggest that using atmospheric observations to gain insight about changing terrestrial and ocean processes over the next several decades may become more challenging as anthropogenic contributions to variability on multiple temporal and spatial scales continue to grow.

  12. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  13. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  14. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  15. The Shuttle era - A challenge to the earth scientist. [observations of land, ocean and atmosphere phenomena

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.; Wilmarth, V. R.

    1977-01-01

    Satellite observations of large-scale earth features and phenomena, with either instruments or astronauts, are discussed on the basis of earlier experience (mainly Skylab). Off-nadir views and photographs by astronauts have provided valuable supplements to instrument nadir views, providing cross-checks through remote sensing at different angles, different altitudes, and in different seasons. New information on plate tectonics, global cooling/drying trends, global oceanographic data (changing positions of major ocean current patterns, evolution of warm and cold eddies and their relation to sea temperatures and concentrations of marine fauna, location of internal sea waves, interactions between ocean currents and atmosphere, plankton blooms), storm development, snow cover patterns, lake and sea ice growth, sand-dune patterns, desert storms blown out to sea, effects of grazing and swidden agriculture, and other earth features and phenomena are surveyed.

  16. Huygens probe mission simulation in Earth's atmosphere: a stratospheric balloon experiment for the Huygens Atmospheric Structure Instrument (HASI)

    NASA Astrophysics Data System (ADS)

    Colombatti, G.; Gaborit, V.; Ferri, F.; Bettanini, C.; Bastianello, S.; Flamini, E.; Antonello, M.; Aboudan, A.; Lion Stoppano, P. F.; Fulchignoni, M.

    2003-04-01

    On May, 30th 2002, a balloon experiment was successfully performed from the ASI stratospheric balloons launch base of Trapani-Milo in Sicily, in order to simulate the descent of the Huygens probe into Titan's atmosphere. This test consisted of the release in the Earth's atmosphere of a 1:1 scale mockup of the Huygens probe, lifted up to the altitude of 32.5 km by means of a stratospheric balloon and decelerated by a parachute. The on-board payload consisted of the HASI instrumentation (pressure, temperature sensors and accelerometers), Huygens SSP tilt sensor, Beagle2 UV sensor and an add-on package of complementary sensors. The descent lasted about 54 minutes and was a unique opportunity to investigate the behaviour of the HASI sensors and to get a real data set for trajectory reconstruction. Other added sensors such as a three axial magnetometer, sun sensors and the tilt sensor were used to investigate the attitude of the probe along the descent. During the flight, all the instrumentation was nominally functioning providing data for the determination of the atmospheric vertical pressure and temperature profiles and the acceleration descent profile of the mockup. The whole data set has been used for the determination of the mockup descent and attitude, and to test the algorithms developed for the Huygens trajectory reconstruction. In the same way, the data analysis improved our understanding of the probe motion (mainly pendulum) and how this motion affects accelerometer measurements. From a scientific point of view, this flight was a success and a new balloon experiment is foreseen in summer 2003 in order to integrate other instruments of the real Huygens probe and to improve and complete the existing results.

  17. Thermal Characteristics of Air in the Problem of Hypersonic Motion of Bodies in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Alhussan, K.; Morozov, D. O.; Stankevich, Yu. A.; Stanchits, L. K.; Stepanov, K. L.

    2014-07-01

    The thermal properties of hot air needed for describing the hypersonic motion of bodies in the Earth's atmosphere have been considered. Such motion, as is known, is accompanied by the propagation of strong shock waves analogous to waves generated by powerful explosions. Calculations have been made and data banks have been created for the equations of state and thermal characteristics of air in the temperature and density ranges corresponding to velocities of motion of bodies of up to 10 km/s at altitudes of 0-100 km. The formulation of the problem of hypersonic motion in the absence of thermodynamic equilibrium is discussed.

  18. The Due Innovators II Apollo Project: Monitoring Atmospheric Pollution with Earth Observations

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Del Frate, F.; Di Noia, A.; Sambucini, V.; Bojkov, B. R.

    2010-12-01

    In this paper we present the Innovators II - APOLLO (monitoring Atmospheric POLLution with earth Observation) project which has been carried out in the framework of the ESA Data User Element programme (http://www.esa.int/due). The projects aims at the development of an innovative service for the monitoring of the air quality from ground based measurements and by means of satellite data e.g. provided by the OMI mission. The core of the APOLLO project is the OMI-TOC NN (neural networks) algorithm.

  19. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1972-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra were calculated using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron-leakage spectrum at the particular latitude considered support the theory that the cosmic-ray-albedo-neutron-decay mechanism is the source of the protons and electrons trapped in the Van Allen belts.

  20. Comment on the letter 'On the influx of small comets into the earth's upper atmosphere'

    NASA Technical Reports Server (NTRS)

    Davis, P. M.

    1986-01-01

    A critical comment is made on the proposal by Frank et al. (1986) that a flux of small comets constantly impacts the earth's atmosphere. The seismic amplitudes generated in the moon by such comets impacting that body are calculated, and it is concluded that the proposed flux of comets is 100,000 times greater than would be supported by either the seismic impact rate of the moon or the amplitude of its steady state reverberation. Frank et al. reply that this discrepancy may be traced to the insensitivity of the lunar seismic stations for the detection of the impacts of tenuous, weakly bound comets relative to those of dense, stony meteoroids.

  1. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  2. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    SciTech Connect

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham E-mail: ggonzalezabad@cfa.harvard.edu

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  3. Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Lin, Henry W.; Gonzalez Abad, Gonzalo; Loeb, Abraham

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ~1.2 days (~1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl3F (CF4) to ~10 times the current terrestrial level.

  4. Earth-atmosphere system and surface reflectivities in arid regions from LANDSAT multispectral scanner measurements

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Fraser, R. S.

    1976-01-01

    Programs for computing atmospheric transmission and scattering solar radiation were used to compute the ratios of the Earth-atmosphere system (space) directional reflectivities in the vertical direction to the surface reflectivity, for the four bands of the LANDSAT multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa and Central America from the spectral radiance levels measured by the LANDSAT MSS. From these space reflectivities, surface vertical reflectivities were computed applying the pertinent graphs. These surface reflectivities were used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory measurements.

  5. The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research

  6. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    SciTech Connect

    Fraine, Jonathan D.; Deming, Drake; Gillon, Michaeel; Jehin, Emmanueel; Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara; Lewis, Nikole K.; Knutson, Heather; Desert, Jean-Michel

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  7. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  8. A mathematical model of the passage of an asteroid-comet body through the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Shaydurov, V.; Shchepanovskaya, G.; Yakubovich, M.

    2015-10-01

    In the paper, a mathematical model and a numerical algorithm are proposed for modeling the complex of phenomena which accompany the passage of a friable asteroid-comet body through the Earth's atmosphere: the material ablation, the dissociation of molecules, and the radiation. The proposed model is constructed on the basis of the Navier-Stokes equations for viscous heat-conducting gas with an additional equation for the motion and propagation of a friable lumpy-dust material in air. The energy equation is modified for the relation between two its kinds: the usual energy of the translation of molecules (which defines the temperature and pressure) and the combined energy of their rotation, oscillation, electronic excitation, dissociation, and radiation. For the mathematical model of atmosphere, the distribution of density, pressure, and temperature in height is taken as for the standard atmosphere. An asteroid-comet body is taken initially as a round body consisting of a friable lumpy-dust material with corresponding density and significant viscosity which far exceed those for the atmosphere gas. A numerical algorithm is proposed for solving the initial-boundary problem for the extended system of Navier-Stokes equations. The algorithm is the combination of the semi-Lagrangian approximation for Lagrange transport derivatives and the conforming finite element method for other terms. The implementation of these approaches is illustrated by a numerical example.

  9. Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2011-08-01

    This paper deals with two common problems and then considers major aspects of chemistry in the atmospheres of Mars and Venus. (1) The atmospheres of the terrestrial planets have similar origins but different evolutionary pathways because of the different masses and distances to the Sun. Venus lost its water by hydrodynamic escape, Earth lost CO 2 that formed carbonates and is strongly affected by life, Mars lost water in the reaction with iron and then most of the atmosphere by the intense meteorite impacts. (2) In spite of the higher solar radiation on Venus, its thermospheric temperatures are similar to those on Mars because of the greater gravity acceleration and the higher production of O by photolysis of CO 2. O stimulates cooling by the emission at 15 μm in the collisions with CO 2. (3) There is a great progress in the observations of photochemical tracers and minor constituents on Mars in the current decade. This progress is supported by progress in photochemical modeling, especially by photochemical GCMs. Main results in these areas are briefly discussed. The problem of methane presents the controversial aspects of its variations and origin. The reported variations of methane cannot be explained by the existing data on gas-phase and heterogeneous chemistry. The lack of current volcanism, SO 2, and warm spots on Mars favor the biological origin of methane. (4) Venus' chemistry is rich and covers a wide range of temperatures and pressures and many species. Photochemical models for the middle atmosphere (58-112 km), for the nighttime atmosphere and night airglow at 80-130 km, and the kinetic model for the lower atmosphere are briefly discussed.

  10. MECA Workshop on Atmospheric H2O Observations of Earth and Mars. Physical Processes, Measurements and Interpretations

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M. (Editor); Haberle, Robert M. (Editor)

    1988-01-01

    The workshop was held to discuss a variety of questions related to the detection and cycling of atmospheric water. Among the questions addressed were: what factors govern the storage and exchange of water between planetary surfaces and atmospheres; what instruments are best suited for the measurement and mapping of atmospheric water; do regolith sources and sinks of water have uniquely identifiable column abundance signatures; what degree of time and spatial resolution in column abundance data is necessary to determine dynamic behavior. Of special importance is the question, does the understanding of how atmospheric water is cycled on Earth provide any insights for the interpretation of Mars atmospheric data.

  11. From Sub-Neptunes to Earth-like Exoplanets: Modeling Optically Thick and Thin Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Chen, Howard; Rogers, Leslie; Kasting, James

    2016-01-01

    Exoplanet surveys have revealed a wide diversity of planet properties in the Milky Way. Here, we present the results from two projects modeling planet atmospheres; one considering the hydrogen/helium envelopes of sub-Neptune-mass planets, and the other, the climate of Earth-like planets.First, we modify the state-of-the-art stellar evolution code Modules for Experimental Astrophysics (MESA) to model the thermal evolution of gaseous Sub-Neptune sized planets. Including photo-evaporation, we find a resulting convergent evolution trend that could potentially imprint itself on the close-in planet population as a preferred H/He mass fraction of 0.5-3%.We also use an updated version of a radiative-convective climate model to calculate the upper atmospheric conditions of planets warmer than the present Earth. In our simulations, cold, dry stratospheres are predicted at lower surface temperatures. However, onset of moist greenhouse water-loss limit to habitability emerges when the surface temperature reaches above 350 K. This result places constraint on a more accurate calculation of the inner edge of the habitable zone around Sun-like stars.

  12. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing].

    PubMed

    Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui

    2014-01-01

    Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.

  13. Subdiurnal atmospheric and oceanic excitation of Earth rotation estimated from 3-hourly AAM and OAM data

    NASA Astrophysics Data System (ADS)

    Brzezinski, A.; Dobslaw, H.; Thomas, M.; Slusarczyk, L.

    2012-04-01

    Diurnal and subdiurnal variations of global atmospheric and nontidal oceanic angular momenta (AAM, OAM) contribute at measurable level to all components of Earth rotation, including precession-nutation, polar motion and universal time UT1. Here we study this problem using a new set of 3-hourly AAM and OAM series covering 1990-2009. The data is based on the ERA Interim short-term forecasts, which have been both used to derive AAM as well as force a OMCT (Ocean Model for Circulation and Tides) simulation that provides the corresponding OAM. We apply the complex demodulation technique to extract the diurnal, semidiurnal and terdiurnal signals from both the equatorial and axial components of the excitation series. Next we estimate parameters of the harmonic components of excitation and perform spectral analysis of the nonharmonic residuals. The estimated contributions to Earth rotation are compared to other results which are either estimated from alternative geophysical models or are expected from analysis of Earth rotation data.

  14. Implications of solar irradiance variability upon long-term changes in the Earth's atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.

  15. Study of strong interaction between atmosphere and solid Earth by using hurricane data

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro

    2016-04-01

    The original energy of seismic noise is in the atmosphere although the most well-known seismic noise (microseism) gets excited through the ocean, i.e. the atmosphere (winds) excites ocean waves that in turn generate seismic noise in the solid earth. The oceans work as an intermediary in this case. But there is some seismic noise that is directly caused by the atmosphere-solid earth interactions. An extreme example for such a direct interaction can be found in the case of hurricanes (tropical cyclones) when they landfall and move on land. If we had such data, we could study the process of atmosphere-solid earth interactions directly. The Earthscope TA (Transportable Array) provided a few examples of such landfallen hurricanes which moved through the TA that had both seismometers and barometers. This data set allows us to study how ground motions changed as surface pressure (i.e., the source strength) varied over time. Because effects of surface pressure show up at short distances more clearly, we first examine the correlation between pressure and ground motion for the same stations. Plots of vertical ground velocity PSD (Power Spectral Density) vs. surface pressure PSD show that there are no significant ground motions unless pressure PSD becomes larger than 10 (Pa^2/s). Above this threshold, ground motion increases as P**1.69 (P is pressure and 1.69 is close to 5/3). Horizontal ground motions are larger than vertical ground motions (in seismic data), approximately by a factor of 10-30. But we note that the variations of horizontal motions with pressure show a linear relationship. Considering the instrumental design of TA stations, this is more likely due to the tilt of the whole recording system as (lateral) strong winds apply horizontal force on it. This linear trend exists for the whole range of the observed pressure PSD data, extending to small pressure values. We interpret that tilt signals overwhelmed other seismic signals in horizontal seismograms for

  16. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  17. How large is the cosmic dust flux into the Earth's atmosphere?

    NASA Astrophysics Data System (ADS)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  18. A Methane-rich Proterozoic Atmosphere: Possible Link to the Neoproterozoic Snowball Earth Glaciations

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Kasting, J. F.; Hurtgen, M.; Arthur, M. A.

    2001-12-01

    anoxic, sulfate-poor Proterozoic ocean net production of methane could have been substantially higher. Towards, the end of the Proterozoic, oceanic sulfate abundances began to increase, as indicated by measurements of trace sulfate minerals in carbonates. The corresponding increase in the abundance of sulfate-reducing bacteria should have led to a decrease in methane production, by the arguments given above We propose that the Neoproterozoic Snowball Earth episodes at 750 Ma and 600 Ma may have been triggered by a rise in sulfate and/or O2 and a corresponding decrease in atmospheric CH4.

  19. Investigation of the validity of the non-rotating planet assumption for three-dimensional earth atmospheric entry

    NASA Astrophysics Data System (ADS)

    Karasopoulos, Harry A.

    1988-06-01

    The assumption of a non-rotating planet, common in most analytical entry trajectory analyses, has been shown to produce significant errors in some solutions for the lifting atmospheric entry to the earth. This thesis investigates the validity of the non-rotating planet assumption for general three-dimensional Earth atmospheric entry. First, the three-dimensional equations of motion for lifting atmospheric entry are expanded to include a rotating planet model. A strictly exponential atmosphere, rotating at the same rate as the planet, is assumed with density as a function of radial distance from the planet's surface. Solutions are developed for the non-rotating Earth equations of motion and for one of the rotating Earth equations of motion using the method of matched asymptotic expansions. It is shown that the non-rotating Earth assumption produces incorrect entry trajectory results for entry orbital inclination angles between 0.5 and 75.0 deg and vehicle speeds ranging from circular orbital velocities to low supersonic speeds. However, a variety of realistic trajectory states exist where some of the non-rotating Earth equations of motion are found to be valid for the same entry trajectory states.

  20. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  1. Bidirectional Spectral Reflectance of Earth Resources: Influence of Scene Complexity and Atmospheric Effects on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Diner, D. J.

    1984-01-01

    Practical methods for remote sensing when scene complexity and atmospheric effects modify intrinsic reflective properties are developed. The radiation history from ground to space of light reflected from individual leaves is initially multiply scattered within the crop canopy, whose geometry provides a controlling influence, then scattered and attenuated as a result of transmission through the Earth's atmosphere. The experimental and theoretical tools for studying these effects quantitatively are under development. A new radiative transfer code which uses Fourier transforms to solve the 3-D equation of transfer was developed. The initial version permits inhomogeneous non-Lambertian surfaces but assumes horizontal uniformity for the atmosphere. The computational results are in excellent agreement with Monte Carlo calculations. Laboratory apparatus to study the variation of spectral reflectance of individual leaves as a function of illumination incidence angle and reflection angle was used. These data can then be used in models to determine canopy scattering effects. Stress tests by observing leaf reflectance at 0.9 microns as a function of time following clipping from the stem was performed. A reflectance increase due to loss of water has been observed.

  2. CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model

    SciTech Connect

    Lamarque, J.-F.; Emmons, L.; Hess, Peter; Kinnison, Douglas E.; Tilmes, S.; Vitt, Francis; Heald, C. L.; Holland, Elisabeth A.; Lauritzen, P. H.; Neu, J.; Orlando, J. J.; Rasch, Philip J.; Tyndall, G. S.

    2012-03-27

    We discuss and evaluate the representation of atmospheric chemistry in the global Community Atmosphere Model (CAM) version 4, the atmospheric component of the Community Earth System Model (CESM). We present a variety of configurations for the representation of tropospheric and stratospheric chemistry, wet removal, and online and offline meteorology. Results from simulations illustrating these configurations are compared with surface, aircraft and satellite observations. Major biases include a negative bias in the high-latitude CO distribution, a positive bias in upper-tropospheric/lower-stratospheric ozone, and a positive bias in summertime surface ozone (over the United States and Europe). The tropospheric net chemical ozone production varies significantly between configurations, partly related to variations in stratosphere-troposphere exchange. Aerosol optical depth tends to be underestimated over most regions, while comparison with aerosol surface measurements over the United States indicate reasonable results for sulfate, especially in the online simulation. Other aerosol species exhibit significant biases. Overall, the model-data comparison indicates that the offline simulation driven by GEOS5 meteorological analyses provides the best simulation, possibly due in part to the increased vertical resolution (52 levels instead of 26 for online dynamics). The CAM-chem code as described in this paper, along with all the necessary datasets needed to perform the simulations described here, are available for download at www.cesm.ucar.edu.

  3. Microwave Radiometric Complex for Studying the Thermal Structure of the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryskin, V. G.; Shvetsov, A. A.; Kulikov, M. Yu.; Belikovich, M. V.; Bol'shakov, O. S.; Krasil'nikov, A. A.; Kukin, L. M.; Lesnov, I. V.; Skalyga, N. K.; Feigin, A. M.

    2017-01-01

    We describe a microwave radiometric complex intended for remote passive monitoring of the atmospheric temperatures from the Earth's surface. The complex consists of three spectroradiometers operating in a frequency range of 50-60 GHz, which covers the central part of the absorption band of molecular oxygen and its low-frequency slope. The radiometers have different spectral resolutions and allow one to simultaneously study the thermal structure of the surface air, the free troposphere, and the stratosphere. To ensure internal calibration of the intensity of the received atmospheric radiation, a built-in device of the modulator-calibrator type on the basis of the Schottky-barrier GaAs diodes is used. The complex is equipped with an automated system to control the measurement process, calibration, and preliminary data processing. Using the microwave sensing results, we intend to retrieve the atmospheric temperature profiles in an altitude interval of 0.05-55 km on the basis on the Bayesian approach to solving ill-posed inverse problems.

  4. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  5. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, S.; Riley, F.S.

    1990-01-01

    The response to Earth tides is strongly governed by a dimensionless aquifer frequency Q???u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q???u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q???u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q???u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. -from Authors

  6. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect

    Hoffman, Forrest M; Randerson, James T.; Arora, Vivek K.; Bao, Qing; Cadule, Patricia; Ji, Duoying; Jones, Chris D.; Kawamiya, Michio; Khatiwala, Samar; Lindsay, Keith; Obata, Atsushi; Shevliakova, Elena; Six, Katharina D.; Tjiputra, Jerry F.; Volodin, Evgeny M.; Wu, Tongwen

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in

  7. A High Performance Computing approach to model multiple Rayleigh scattering in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Franssens, Ghislain; Dekemper, Emmanuel; Mateshivili, Nina; Vanhellemont, filip; fussen, didier; pieroux, didier

    2016-04-01

    The retrieval of atmospheric trace gases and aerosols in the Earth atmosphere from light scattering measurements typically involves an iterative inversion algorithm. A key part of this algorithm is its forward model, which takes care of calculating the amount of light that the remote sensing instrument will see, for any assumed atmosphere composition. The forward model is usually an atmospheric radiative transfer code. It is a serious challenge for a radiative transfer code to be, at the same time, sufficiently accurate and sufficiently fast, so that it can be included in the iterative retrieval loop of an operational service. An accurate code must be able to calculate multiple Rayleigh scattering (important in the UV and/or at lower altitudes) by the air in a spherical atmosphere. This is something that currently only a Monte Carlo algorithm can do. However, any Monte Carlo code is far too slow to be included in the retrieval loop, even if we make use of the currently available HPC power. We report some first results that were obtained by a new solution to this old problem. We first use a HPC cluster to tabulate multiple Rayleigh scattering in a standard Earth atmosphere, using a Monte Carlo code, as function of 6 parameters (albedo, view zenith angle, solar zenith angle, relative azimuth angle, altitude and wavelength). Then, a well chosen empirical function is fitted on the tabulated data. From this function, correction factors are derived and appropriately inserted in a fast single scattering algorithm, which so effectively becomes a multiple scattering algorithm. Since the evaluation of the empirical function is also very fast, we end up with a radiative transfer code that is both accurate and sufficiently fast for operational data production. Our conclusion is that commonly available and affordable HPC systems can still not directly solve the retrieval problem with sufficient accuracy in real time. However, the above described two step approach now becomes

  8. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  9. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Au, Andrew Y.

    1998-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55%, 42%, and 80% for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231% (x), 191% (y), and 77% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3% (x), 4% (y), and 5% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68% and 69%, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1%) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the zonal. The x-component exhibits

  10. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio

    1999-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55\\%, 42\\%, and 80\\t for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231\\% (x), 191\\% (y), and 77\\% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3\\% (x), 4\\% (y), and 5\\% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric'torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68\\% and 69 %, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1\\ ) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42\\% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6\\% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the

  11. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  12. Dating Earth Core and Atmospheric Formation Through Hf-W and I-Pu-Xe Clocks

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Ozima, M.

    2003-12-01

    It was the discovery of the radioactivities and nuclear energy at the beginning of last century that settled the long lasting debate about the ages of the Earth and the Sun, between elegant physical arguments advanced by Lord Kelvin favoring short timescale vs. Charles Darwin's trouble for not having enough time for evolution of species, hence resorted to geological observation of sedimentation rate favoring longtime scale. Claire Patterson­_s landmark work on Pb isotopes (1956) establishes the age of meteorites and the Earth at 4.56 Ga, albeit with somewhat wrong half-life of U and wrong sample (one ocean sediment landing on meteorite isochron). Modeling of planetary accretion rate via statistical approach pioneered by Safranov suggested planet formation lasted over 100 Ma. This long timescale was shaken by modern computer simulation. When actual orbital characteristics of the accreting bodies were considered (aided by ever-increasing computing power), the timescale for the inner planet formation is typically around 30 Ma. Discoveries of extrasolar planets place demanding constraints for the timescale of planet formation, i.e. gaseous giant planets must form before the disk dissipation (typically less than 10 Ma). No conventional long-lived isotopic systems are likely to place constraints for the planet formation with sufficient precision and resolution (30/4567), nor do we have 4.56 Ga-old terrestrial sample to work with. Modern approach to the problem is to exploit the now-extinct radioactive isotopes that were once extent at the beginning of the solar system, and look for radiogenic signatures of its daughter isotopes affected by planet wide fractionation. In this sense, we treat the Earth as one piece of whole rock; metallic core, silicate mantle and atmosphere are its mineral constituents. Both Hf-W and I-Pu-Xe clocks are uniquely affected by large-scale processes, core-mantle segregation in the Hf-W system and atmosphere-solid Earth segregation in the I

  13. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  14. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  15. A smooth and robust Harris-Priester atmospheric density model for low Earth orbit applications

    NASA Astrophysics Data System (ADS)

    Hatten, Noble; Russell, Ryan P.

    2017-01-01

    The modified Harris-Priester model is a computationally inexpensive method for approximating atmospheric density in the thermosphere and lower exosphere - a vital step in low Earth orbit trajectory propagation. This work introduces a revision, dubbed cubic Harris-Priester, which ensures continuous first derivatives, eliminates singularities, and adds a mechanism for introducing smooth functional dependencies on environmental conditions. These changes increase the accuracy, robustness, and utility of the model, particularly for preliminary orbit propagation, estimation, and optimization applications in which fast, reasonably accurate force models and sensitivities are desirable. Density results and computational efficiency are compared to other density models. The Fortran code used to implement the model is provided as an electronic supplement.

  16. Nonequilibrium radiative heat transfer in conditions of superorbital entry in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Gorelov, V. A.; Kireev, A. Yu.; Shilenkov, S. V.; Surzhikov, S. T.

    2003-12-01

    This paper considers the peculiarities of thermophysical processes at superorbital space vehicles entry into the Earth's atmosphere. The summary of the simplified CFD-model, taking into account the effect of local thermodynamic equilibrium (LTE) disturbance owing to depopulation of several excited atomic N and O states in emission processes in a shock layer is presented. Some experimental results obtained in the Arc-Driven Shock Tube (ADST) and argumentative the LTE disturbance effect impact are shown. These results are used for verification of the created CFD-model. Additionally, this model is verified by comparison of computations with flight measured data obtained in FIRE II Project. The carried out verification of the model shows a possibility of the presented CFD-model using for calculations of radiative and total heat fluxes at superorbital entry conditions.

  17. Excitation of earth's polar motion by atmospheric angular momentum variations, 1980-1990

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    1993-01-01

    We compute the polar-motion excitation function due to the atmospheric angular momentum (AAM) for both IB (inverted-barometer) and non-IB cases, as well as the excitation function from geodetically observed Earth orientation data for the period 1980-1990. The two are then compared in studying the AAM contribution to the polar motion excitation. The polar drifts with periods longer than about two years have similar characteristics, but the comparison is inconclusive because of data uncertainties. For the seasonal wobble excitation, the agreement is poor except for the prograde annual wobble, indicating the influence of other geophysical excitations than AAM. For the Chandler wobble excitation, a correlation coefficient of 0.53 for non-IB and 0.58 for IB are found for 1986-1990. Together with a coherence spectral analysis, they clearly demonstrate a strong contribution of AAM to the Chandler wobble excitation.

  18. A new code SORD for simulation of polarized light scattering in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-05-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel Earth atmosphere. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering1, 2). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork3 (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/ or ftp://maiac.gsfc.nasa.gov/pub/SORD.zip

  19. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth

    NASA Technical Reports Server (NTRS)

    Kuhn, W. R.; Atreya, S. K.

    1979-01-01

    Photochemical calculations indicate that in the prebiotic atmosphere of earth ammonia would have been irreversibly converted to N2 in less than 40 years if the ammonia surface mixing ratio were no more than 0.0001. However, if a continuous outgassing of ammonia were maintained, radiative-equilibrium calculations indicate that a surface mixing ratio of ammonia of 0.0001 or greater would provide a sufficient greenhouse effect to keep the surface temperature above freezing. With a 0.0001 mixing ratio of ammonia, 60% to 70% of the present-day solar luminosity would be adequate to maintain surface temperatures above freezing. A lower limit to the time constant for accumulation of an amount of nitrogen equivalent to the present day value is 10 my if the outgassing were such as to provide a continuous surface mixing ratio of ammonia of at least 0.00001.

  20. Aerodynamic Evidence Pertaining to the Entry of Tektites into the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R.; Larson, Howard K.; Anderson, Lewis A.

    1962-01-01

    Evidence is presented which shows that the Australian and Java tektites entered the earth's atmosphere and experienced ablation by severe aerodynamic heating in hypervelocity flight. The laboratory experiments on hypervelocity ablation have reproduced ring-wave flow ridges and coiled circumferential flanges like those found on certain of these tektites. Systematic striae distortions exhibited in a thin layer beneath the front surface of australites also are reproduced in the laboratory ablation experiments, and are shown to correspond to the calculated distortions for aerodynamic ablation of a glass. About 98 percent of Australian tektites represent aerodynamically stable configurations during the ablative portion of an entry trajectory. Certain meteorites exhibit surface features similar to those on tektites.

  1. On the atmospheric drag in orbit determination for low Earth orbit

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  2. Polarisation of the auroral red line in the Earth's upper atmosphere: a review (Invited)

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Lilensten, J.; Bommier, V.; Simon Wedlund, C.

    2013-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Polarimetry of auroral emission lines in the Earth's upper atmosphere has been overlooked for decades. However, the bright red auroral line (6300Å) produced by collisional impact with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated recently with observations obtained by Lilensten et al (2008), Barthélemy et al (2011) and Lilensten et al (2013) with a photopolarimeter. Analysis of the data indicates that the red auroral emission line is polarised at a level of a few percent. The results are compared to theoretical predictions of Bommier et al (2011) that were obtained for a collimated beam. The comparison suggests the existence of depolarization processes whose origin will be discussed. A new dedicated spectropolarimeter currently under development will also be presented. This instrument will cover the optical spectrum from approximately 400 to 700 nm providing simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... The importance of these polarisation measurements in the context of upper atmosphere modelling and geomagnetic activity will be discussed. Lilensten, J. et al, Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 26, 269, 2008 Barthélemy M. et al, Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments, Annales Geophysicae, Volume 29, Issue 6, 2011, 1101-1112, 2011. Bommier V. et al, The Theoretical Impact Polarization of the O I 6300 Å Red Line of Earth Auroræ, Annales Geophysicae, Volume 29, Issue 1, 2011, 71-79, 2011 Lilensten, J. et al, The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis, Journal of Space Weather and Space

  3. Solar spectral irradiance variation and its impact on earth's atmosphere as observed by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Weber, M.; Pagaran, J.; Burrows, J. P.; Dikty, S.; von Savigny, C.; DeLand, M. T.; Floyd, L. E.; Harder, J. W.; Langematz, U.

    2011-12-01

    SCIAMACHY is a UV/vis/NIR spectrometer aboard ENVISAT which provides routine observations of ozone and other trace gases in the earth's atmosphere since 2002. Ozone profile data are provided from limb, lunar, and solar occultation observations, while the nadir viewing geometry allows measurements of total ozone columns. For normalizing observed backscattered earth radiances for trace gas retrievals, daily measurements of solar irradiance at moderately high spectral resolution (<1.5 nm) from 230 nm to 2400 nm, with some gaps in the NIR, are made. From the solar observations a Mg II index can be derived that in combination with other satellite data becomes a useful solar UV activity proxy indicator during the satellite era (since 1978). Using solar proxies for faculae brightening and sunspot darkening fitted to SCIAMACHY irradiance time-series a SCIA proxy model has been derived that allows us to describe solar cycle irradiance changes covering several decades. This talk will present highlights from SCIAMACHY solar observations, comparisons with other satellite data, and presents results on solar influence on ozone, i. e. 27 day solar rotation signal in the upper stratosphere and solar cycle effects on polar ozone losses.

  4. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.

    PubMed

    Luo, Genming; Ono, Shuhei; Beukes, Nicolas J; Wang, David T; Xie, Shucheng; Summons, Roger E

    2016-05-01

    Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.

  5. The radiation balance of the earth-atmosphere system from Nimbus 3 radiation measurements

    NASA Technical Reports Server (NTRS)

    Raschke, E.; Vonderhaar, T. H.; Pasternak, M.; Bandeen, W. R.

    1973-01-01

    The radiation balance of the earth-atmosphere system and its components was computed from global measurements of radiation reflected and emitted from the earth to space. These measurements were made from the meteorological satellite Nimbus 3 during the periods from April 16 to August 15, 1969; October 3 to 17, 1969; and January 21 to February 3, 1970. Primarily the method of evaluation, its inherent assumptions, and possible error sources were discussed. Results are presented by various methods: (1) global, hemispherical, and zonal averages obtained from measurements in all semimonthly periods and (2) global maps of the absorbed solar radiation, the albedo, the outgoing longwave radiation, and the radiation balance obtained from measurements during semimonthly periods in each season (May 1 to 15, July 16 to 31, and October 3 to 17, 1969, and January 21 to February 3, 1970). Annual global averages of the albedo and of the outgoing longwave radiation were determined. These values balance to within 1 percent the annual global energy input by solar radiation that was computed for a solar constant.

  6. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Cimorelli, A. J.; House, F. B.

    1974-01-01

    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  7. The effect of earth's atmosphere on contrast reduction for a nonuniform surface albedo and 'two-halves' field

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Kaufman, Y. J.

    1980-01-01

    The paper presents a model for contrast reduction by atmospheric haze developed for the 'two-halves' field of the earth's surface and other geometries of the earth's surface albedo. The model is based on a simplified solution of the equation of radiative transfer in two dimensions, resulting in a method for calculation of the upward zenith intensity in the atmosphere as a function of the distance from the border between the two half planes, for an unabsorbing atmosphere. The adjacency effect between two infinitesimal areas of different albedos is calculated; the resultant simplified solution is used to develop expressions for the line-spread function of the atmosphere and the modulation transfer function. The line-spread function is used to calculate the point spread function, which can be used to compute the intensity above any surface with given spatial dependence of the reflectivity.

  8. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  9. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  10. Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Purqon, Acep; Viridi, Sparisoma

    2016-01-01

    Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles with the box is applied through implementation of boundary conditions (BC). Periodic BC is applied on the left and the right side, specular reflection on the top side, while bounce-back on the bottom side. Simulation program is executed in Arch Linux and running in notebook with processor Intel i5 @2700 MHz with 10 GB DDR3 RAM. The results show behaviors of the particles obey kinetic theory for ideal gas when gravitational acceleration value is proportional to the particle mass. Density distribution as a function of altitude also meets atmosphere's hydrostatic theory.

  11. On the brightness of sprites in the atmospheres of Earth, Saturn and Jupiter

    NASA Astrophysics Data System (ADS)

    Dubrovin, D.; Yair, Y.; Nijdam, S.; Clevis, T. T.; Price, C. G.; Ebert, U.

    2012-12-01

    Sprites are transient luminous events below the ionosphere that are triggered by lightning strokes; their optical emissions originate primarily from fast propagating streamer heads and also from secondary ionization waves known as glowing trails. Streamer heads in sprites are related through scaling laws with laboratory streamer discharges at sea level density. Since lightning was confirmed on Saturn and Jupiter, it is reasonable to expect that sprites exist there as well. In this work we investigate the brightness of sprites, represented by laboratory streamers, in artificial gas mixtures simulating the atmospheres of Earth, Jupiter and Saturn. We derive a scaling relation for the streamer brightness as function of neutral gas density for these atmospheres. We propose that time-integrated photon radiance (TI-radiance, photons/steradian/cm2) of streamers scales with density for streamers under otherwise similar conditions, and that it is proportional to the diameter at fixed density. Here we examine the former assertion. We focus on streamers of minimal diameter and velocity which provide a very lower bound for the radiance of sprites. We test our prediction for Earth, where the TI-radiance of minimal laboratory streamers, extrapolated to mesospheric densities, is at least two orders of magnitude dimmer than the faintest sprite streamers observed in nature [Stenbaek-Nielsen et al., 2007]. It is likely that those streamers that are observed in sprites are not minimal, and that minimal streamers in sprites are too faint to be imaged. These findings are used as a benchmark to provide a lower estimation for the brightness of sprites on Saturn. The spectra of sprites and lightning on Saturn are markedly different, and sprite spectrum is dominated by near UV emissions. We suggest that the observation of such sprite emissions can be achieved from orbiting spacecraft. On Earth sprites and halos are initiated just below the base of the ionosphere, as demonstrated through

  12. Earth-atmospheric coupling prior to earthquakes by analyzing remote sensing data

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.

    2003-04-01

    Satellite thermal imaging data indicate long-lived thermal fields associated with large linear structures and fault systems in the Earth's crust [Carreno at al, 2001] but also short-lived anomalies prior to major earthquakes [Chengyu, 2001]. The short-lived anomalies typically appear 7-14 days before an earthquake, affect several thousands or tens of thousand km^2. More recently several processes have been considered as possible contributors to the thermal anomalies: Piezoelectric and elastic strain dilatation forces; Positive holes migration as result of activation of electric charge by deformation processes; Rising fluids that would lead to increased gas seepage and, hence, to the emanation of warm gases; A transient high in the thermal conductivity profile of the subsurface rocks; Rising well water levels; and CO_2 spreading. [Gorny, 1988; Salman, 1992; Tronin at al, 2002, Freund, 2000]. Because the short-lived anomalies come and go so quickly, the possibility that they would be caused by an actual heat pulse arriving at the surface from deep within the Earth can be ruled out. Connected phenomena to the thermal anomalies include: transient conductivity of rocks, injection of currents, possibly also electromagnetic emission and light emission from high points at the surface of the Earth. To understand this process we analyze vertical atmospheric profiles, land/sea surface and brightness (temperature) data, using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite launched in December 1999. Using MODIS data information about the short-lived thermal anomalies can be retrieved by means of multi-spectral techniques [Ouzounov and Freund, 2001]. We uses the MODIS data to differentiate between true "thermal" signals and IR luminescence. Indeed, on the basis of a temporal and spatial distribution analysis, a thermal anomaly pattern is found that appears to be related to the seismic activity for the world major earthquakes in 2000

  13. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    NASA Astrophysics Data System (ADS)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    The evolution of metabolic pathways is closely linked to the evolution of the redox state of the terrestrial atmosphere. Nitrogen has been an essential biological element since the emergence of life when reduced nitrogen compounds (e.g. ammonia) were utilized in the prebiotic synthesis of proteins and nucleic acids. The nitrogen isotopic composition of sediments has been used to trace the origin of sedimentary organic matter in the rock record. Nitrogen is therefore suitable as a biosignature to trace the emergence of life on Earth or other planetary bodies as well as to follow the subsequent evolution of the biosphere in response to global redox changes. Evidence is strong that biological nitrogen fixation evolved very early in the history of life. The Last Common Ancestor (LCA) on Earth was most likely capable of nitrogen fixation as seen from the phylogenetic distribution of nitrogen-fixing organisms in both the domains of Bacteria and Archaea. Phylogenetic trees plotted with nitrogen-fixing gene (Nif) sequences from lineages of Bacteria and Archaea suggest that the Nif genes originated in a common ancestor of the two domains. Other phylogenetic analyses have also demonstrated that the paralogous duplication of the nifDK and nifEN operons, central to nitrogen fixation, predated the divergence of Archaea from Bacteria and therefore occurred prior to the emergence of the LCA. Although the same may be true for denitrification, this metabolic pathway probably did not become dominant until atmospheric pO2 increased between ~2.4 to 1.9 Ga during the Great Oxygenation Event (GOE). Recent work has shown a general depletion in 15N content of Archean (pre-2.5 Ga) relative to Phanerozoic (<540 Ma) kerogens. Studies have shown that the distribution of the δ15N values in kerogens shift from negative values in the Early Archean (from -6 to +6‰ with an average near 0‰ ) to approximately contemporary positive values (from +2 to +10‰ with an average at +6‰ ) by the

  14. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    NASA Technical Reports Server (NTRS)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  15. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, F.; Grenfell, J. L.; Grießmeier, J.-M.; Rauer, H.

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of previous works, who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV-0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundance of up to 80%. Furthermore, the cosmic ray induced HOx molecules react with NOx to produce HNO3, which produces strong HNO3 signals in the theoretical spectra and reduces NOx-induced catalytic destruction of ozone so that more than 25% of the ozone column remains. Hence, an ozone signal remains visible in the theoretical spectrum (albeit with a weaker intensity) when incorporating the new cosmic ray induced NOx and HOx schemes, even for a constantly flaring M-star case. We also find that HNO3 levels may be high enough to be potentially detectable. Since ozone concentrations, which act as the key shield against harmful UV radiation, are affected by cosmic rays via NOx-induced catalytic destruction of ozone, the impact of stellar cosmic rays on surface UV fluxes is also studied.

  16. A sensitivity study of the obliquity of the early Earth with the ECHAM/MESSy Atmospheric Chemistry model

    NASA Astrophysics Data System (ADS)

    Hamann-Reinus, Anke; Kunze, Markus; Langematz, Ulrike; Godolt, Mareike; Jöckel, Patrick; Rauer, Heike

    Studying the evolution of early Earth's atmosphere is of crucial importance for the understand-ing of the habitability of the terrestrial planets and, in the end, the development of life. In this contribution we investigate the influence of the Earth's obliquity on atmospheric dynam-ics. For this parameter study of obliquity we use here the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry model). According to Ito and Hamano (1995), the obliquity of the Earth's axis was only 19.5 at the age of 2.5 Gyr. To analyse in particular the sen-sitivity of the model dynamics we selected therefore three representative obliquity values: 23.5 (control run), 19.5 (lowered obliquity, see Ito and Hamano (1995)), 27.5 (increased obliquity-comparative study). For our numerical experiments we use the present day atmospheric compo-sition, land-mask, and solar luminosity. We present results regarding the atmospheric dynamics and circulation focussing thereby on the middle atmosphere.

  17. The Significance of Land-Atmosphere Processes in the Earth System

    NASA Astrophysics Data System (ADS)

    Suni, T.; Kulmala, M. T.; Guenther, A. B.

    2012-12-01

    The land-atmosphere interface is where humans primarily operate. Humans modify the land surface in many ways that influence the fluxes of energy and trace gases between land and atmosphere. Their emissions change the chemical composition of the atmosphere and anthropogenic aerosols change the radiative balance of the globe directly by scattering sunlight back to space and indirectly by changing the properties of clouds. Feedback loops among all these processes, land, the atmosphere, and biogeochemical cycles of nutrients and trace gases extend the human influence even further. Over the last decade, the importance of land-atmosphere processes and feedbacks in the Earth System has been shown on many levels and with multiple approaches, and a number of publications have shown the crucial role of the terrestrial ecosystems as regulators of climate [1-6]. Modellers have clearly shown the effect of missing land cover changes and other feedback processes and regional characteristics in current climate models and recommended actions to improve them [7-11]. Unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation have also been provided [12-14]. Land-cover change has been emphasized with model intercomparison projects that showed that realistic land-use representation was essential in land surface modelling [11, 15]. Crucially important tools in this research have been the networks of long-term flux stations and large-scale land-atmosphere observation platforms that are also beginning to combine remote sensing techniques with ground observations [16-20]. Human influence has always been an important part of land-atmosphere science but in order to respond to the new challenges of global sustainability, closer ties with social science and economics groups will be necessary to produce realistic estimates of land use and anthropogenic emissions by analysing future population increase, migration patterns, food production allocation, land

  18. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground

  19. Satellite-tracking and earth-dynamics research programs. [geodetic and geophysical investigations and atmospheric research using satellite drag data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.

  20. Detection of an Atmosphere Around the Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Tsiaras, A.; Rocchetto, M.; Waldmann, I. P.; Venot, O.; Varley, R.; Morello, G.; Damiano, M.; Tinetti, G.; Barton, E. J.; Yurchenko, S. N.; Tennyson, J.

    2016-04-01

    We report the analysis of two new spectroscopic observations in the near-infrared of the super-Earth 55 Cancri e, obtained with the WFC3 camera on board the Hubble Space Telescope. 55 Cancri e orbits so close to its parent star that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6σ confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, { T }-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such a result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.

  1. Application of the locality principle to radio occultation studies of the Earth's atmosphere and ionosphere

    NASA Astrophysics Data System (ADS)

    Pavelyev, A. G.; Liou, Y. A.; Matyugov, S. S.; Pavelyev, A. A.; Gubenko, V. N.; Zhang, K.; Kuleshov, Y.

    2015-07-01

    A new formulation of the previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO) remote sensing of the atmospheres and ionospheres of the Earth and other planets. The principle states that significant contributions to variations of the intensity and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case, if location of a tangent point relative to the spherical symmetry centre is known, the time derivatives of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i) if position of the centre of symmetry is known, the total absorption along the ray path can be determined at a single frequency; (ii) in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric) layers can be evaluated; (iii) the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the intensity and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1-4 db) of the radio waves at GPS frequencies corresponding to possible influence of the oxygen, water vapour, and hydrometeors can be measured with accuracy of about 0.1 db at a single frequency. In accordance with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with the S4 scintillation index is established. This

  2. Application of locality principle to radio occultation studies of the Earth's atmosphere and ionosphere

    NASA Astrophysics Data System (ADS)

    Pavelyev, A. G.; Liou, Y. A.; Matyugov, S. S.; Pavelyev, A. A.; Gubenko, V. N.; Zhang, K.; Kuleshov, Y.

    2015-01-01

    A new formulation of previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO) remote sensing of the atmospheres and ionospheres of the Earth and planets. The principle states that significant contributions to variations of the amplitude and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case if location of a tangent point relative to the spherical symmetry center is known, the derivatives on time of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i) if position of the center of symmetry is known, the total absorption along the ray path can be determined at a single frequency, (ii) in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric) layers can be evaluated, (iii) the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the amplitude and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1-4 db) of the radio waves at GPS frequencies corresponding to possible influence of the oxygen and water vapor can be measured with accuracy of about 0.1 db at a single frequency. According with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with S4 scintillation index is established. This correlation indicates the

  3. Sensitivity of elastic surface deformations caused by atmospheric, hydrologic, and oceanic loads to the Earth's crust and mantle properties

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Klemann, Volker; Kaban, Mikhail; Dobslaw, Henryk; Thomas, Maik

    2016-04-01

    The elastic deformation of the Earth's surface due to atmospheric surface pressure, terrestrial water storage, and ocean bottom pressure on seasonal or shorter time scales is usually represented by a set of elastic load Love numbers or the corresponding Green's function, determined from a radial Earth structure like PREM. Thereby, the influence of local deviations of the Earth's crustal and mantle properties is assumed to be negligible. However, local Green's functions derived individually for 1° grid cells from the 3D crustal structure model CRUST1 show large variations for in particular smaller distance angles. The loading response due to small-scale surface loads extending over less than 2500km2 significantly depends on the heterogeneous shallow structure of the Earth. In this contribution, we discuss the influence of lateral variations in the crust and mantle structure on atmospheric, hydrologic, and oceanic surface loads with regard to their spatial scales and distribution. Non-tidal atmospheric loading is calculated from an atmospheric surface pressure time series covering four decades (1976 - 2015) based on 3-hourly atmospheric data of ECMWF that has been homogenized by mapping surface pressure to a common reference orography. Hydrological loading is calculated for daily terrestrial water storage from LSDM over the same time period, where the surface water compartment is mapped from the 0.5° model resolution to a 0.125° GIS-based river network. Ocean tidal loading is exemplarily calculated based on the FES2014 ocean tidal model (0.0625°). Especially along the coasts of the oceans; in regions with steep orographic gradients; and in areas with thick crustal layers or sediments we will show the significant influence of the Earth's structure on small-scale deformation features caused by surface loads.

  4. The Tropical Cyclones as the Possible Sources of Gamma Emission in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimov, S. I.; Sharkov, E. A.; Zelenyi, L. M.

    2009-12-01

    [*S. I. Klimov*] (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1100; Fax: +7 (495) 333-1248; e-mail: sklimov@iki.rssi.ru)): E. A. Sharkov (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1366; Fax: +7 (495) 333-1248; e-mail: e.sharkov@mail.ru): L. M. Zelenyi (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-2588; Fax: +7 (495) 333-3311; e-mail: lzelenyi@iki.rssi.ru ): The tropical cyclones (TC) are the strongest sources of thunderstorm activity (and, correspondingly, electromagnetic activity in the wide frequency range) in the Earth's atmosphere. The area dimensions of active region comprise to 1000 km and they achieve vertical development to 16-20 km with speeds of the displacement of the charged drops of water of up to 30 m/s. In the work are evaluated the physical mechanisms of the possibility of generation by TC of gamma emission (TCGE), which can be fixed from the low-orbital spacecraft of the type of the potential Russian micro-satellite Chibis-M (MS) [Zelenyi, et al, Walter de Gruter, Berlin, New York, p. 443-451, 2005]. The study of the new physical mechanisms of the electrical discharges in the atmosphere is basic scientific task Chibis- M [Angarov et al. Wissenschaft und Technik Verlag, Berlin, 2009, p. 69-72]. Complex of scientific instruments of the Chibis-M (overall mass of 12,5 kg) including the instruments: - X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV), - UV detector (range UV - emission - 300-450 nm), - radiofrequency analyzer (20 - 50 MHz). - digital camber of optical range (spatial resolution 300 m). - plasma-wave complex (0.1-40 kHz), it can be used also for the TCGE study. Delivery Chibis-M into orbit, close to the ISS orbit is intended to carry out in second-half 2010. Micro-satellite "Chibis-M" now designed in IKI. Total mass "Chibis

  5. Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Zhang, Yongxin; Fasullo, John T.; Taguchi, Shoichi

    2015-05-01

    The monthly global and regional variability in Earth's radiation balance is examined using correlations and regressions between atmospheric temperatures and water vapor with top-of-atmosphere outgoing longwave (OLR), absorbed shortwave (ASR), and net radiation (RT = ASR - OLR). Anomalous global mean monthly variability in the net radiation is surprisingly large, often more than ±1 W m-2, and arises mainly from clouds and transient weather systems. Relationships are strongest and positive between OLR and temperatures, especially over land for tropospheric temperatures, except in the deep tropics where high sea surface temperatures are associated with deep convection, high cold cloud tops and thus less OLR but also less ASR. Tropospheric vertically averaged temperatures (surface = 150 hPa) are thus negatively correlated globally with net radiation (-0.57), implying 2.18 ± 0.10 W m-2 extra net radiation to space for 1°C increase in temperature. Water vapor is positively correlated with tropospheric temperatures and thus also negatively correlated with net radiation; however, when the temperature dependency of water vapor is statistically removed, a significant positive feedback between water vapor and net radiation is revealed globally with 0.87 W m-2 less OLR to space per millimeter of total column water vapor. The regression coefficient between global RT and tropospheric temperature becomes -2.98 W m-2 K-1 if water vapor effects are removed, slightly less than expected from blackbody radiation (-3.2 W m-2 K-1), suggesting a positive feedback from clouds and other processes. Robust regional structures provide additional physical insights. The observational record is too short, weather noise too great, and forcing too small to make reliable estimates of climate sensitivity.

  6. OBSERVATIONAL EVIDENCE FOR A METAL-RICH ATMOSPHERE ON THE SUPER-EARTH GJ1214b

    SciTech Connect

    Desert, Jean-Michel; Jacob Bean; Berta, Zachory K.; Charbonneau, David; Irwin, Jonathan; Burke, Christopher J.; Kempton, Eliza Miller-Ricci; Fortney, Jonathan; Nutzman, Philip

    2011-04-20

    We report observations of two consecutive transits of the warm super-Earth exoplanet GJ 1214b at 3.6 and 4.5 {mu}m with the Infrared Array Camera instrument on board the Spitzer Space Telescope. The two transit light curves allow for the determination of the transit parameters for this system. We find these parameters to be consistent with the previously determined values and no evidence for transit timing variations. The main investigation consists of measuring the transit depths in each bandpass to constrain the planet's transmission spectrum. Fixing the system scale and impact parameters, we measure R{sub p} /R{sub *} = 0.1176{sup +0.0008}{sub -0.0009} and 0.1163{sup +0.0010}{sub -0.0008} at 3.6 and 4.5 {mu}m, respectively. Combining these data with the previously reported MEarth Observatory measurements in the red optical allows us to rule out a cloud-free, solar composition (i.e., hydrogen-dominated) atmosphere at 4.5{sigma} confidence. This independently confirms a recent finding that was based on a measurement of the planet's transmission spectrum using the Very Large Telescope (VLT). The Spitzer, MEarth, and VLT observations together yield a remarkably flat transmission spectrum over the large wavelength domain spanned by the data. Consequently, cloud-free atmospheric models require more than 30% metals (assumed to be in the form of H{sub 2}O) by volume to be consistent with all the observations.

  7. Exploring Earth's Ionosphere with CINDI: Bringing an Upper Atmosphere Mission into Pre-College Classrooms

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Hairston, M. R.; Richardson, J. M.; Olson, C.

    2003-12-01

    We will present the Education and Public Outreach work in progress for the joint Air Force/NASA project CINDI (Coupled Ion Neutral Dynamic Investigation), which will launch in early 2004 on a US Air Force C/NOFS (Communications/Navigations Outage Forecast System) Satellite. CINDI, in conjunction with the other instruments on C/NOFS, will study how radio signals sent through the ionosphere are affected by variability with this layer of the atmosphere. The Educational outreach for CINDI is focused on helping students, educators, and the general public better understand the link between the ionosphere and our technological civilization. The ionosphere is typically neglected in pre-college science classes despite its impact on modern society and the substantial resources invested by funding agencies on furthering our understanding of this atmospheric layer. Our approach is to increase student understanding of the terrestrial ionosphere and Sun-Earth connections through strong connections to existing pre-college curricula and standards. We have created a partnership between the William B. Hanson Center for Space Sciences and the Science Education Program within the University of Texas at Dallas (UTD) to produce a quality Educator Guide and a Summer Educator Workshop. A senior graduate student in physics and an experienced middle school educator in UTD's Science Education Master of Science Teaching Program have been partnered to ensure that our the Educator Guide and Workshop will contain both science and pedagogy, and be easily integrated into secondary science classes. The summer 2004 workshop will be offered in the Dallas area, which has a significant population of minority and economically disadvantaged students. We will recruit teachers from districts that serve a large number of underserved/underrepresented students. The Educator Guide and workshop materials will be made available on the CINDI Web site for distribution to a national audience.

  8. Geostationary Spectrograph (GeoSpec) for Earth and Atmospheric Science Applications

    NASA Technical Reports Server (NTRS)

    Janz, Scott J.

    2003-01-01

    GeoSpec will support several possible future mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by measurement of both chemically linked atmospheric trace gas concentrations and profiles of important molecules such as OS, N02, CH20 and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept we will describe is a dual spectrograph covering the WMS wavelength region of 310- 481 nm and the VIS/NIR wavelength region of 500-900 nm. A third channel in the short- wave infrared (SWIR) region between 2.2 p and 2.4 pn for total column measurements of CO, CH4, and N20 will also be described. The goal is to design a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.2 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time- varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Technological advances in the design and fabrication of convex holographic gratings and large format, high dynamic range PIN/CMOS detectors at the focal plane will be exploited. By simply changing the focal length of the front-end telescope GeoSpec can accommodate different orbital altitudes, including low Earth orbit, the Sun-side Lagrangian point L1, and/or different spatial resolutions.

  9. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds.

    PubMed

    Miller, S L; Schlesinger, G

    1983-01-01

    The prebiotic synthesis of organic compounds using a spark discharge on various simulated prebiotic atmospheres at 25 degrees has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and the presence of added NH3, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all give about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For the H2/CO and H2/CO2 ratios less than 1, the yields fall off drastically to as low as 10(-3)%. Glycine is almost the only amino acid produced from CO and CO2 atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these results indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde parallel the amino acid results, with yields of HCN and H2CO as high as 13% based on the carbon. Ammonia is also produced from N2 in experiments with no added NH3 in yields as high as 4.9%. These results show that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges. The amount of ammonia formed by hydrolysis of HCN and various nitriles may have exceeded that formed directly in electric discharges.

  10. Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    NASA Technical Reports Server (NTRS)

    Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.

    2011-01-01

    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.

  11. Environmental networks for large-scale monitoring of Earth and atmosphere

    NASA Astrophysics Data System (ADS)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  12. Novel Hybrid Ablative/Ceramic Heatshield for Earth Atmospheric Re-Entry

    NASA Astrophysics Data System (ADS)

    Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.; de Montburn, A.; Descomps, M.; Zuber, C.; Rotaermel, W.; Hald, H.; Pereira, C.; Mergia, K.; Triantou, K.; Marinou, A.; Vekinis, G.; Ionescu, G.; Ban, C.; Stefan, A.; Leroy, V.; Bernard, D.; Massuti, B.; Herdrich, G.

    2014-06-01

    Original approaches based on ablative materials and novel TPS solutions are required for space applications, where resistance to extreme oxidative environments and high temperatures are required. For future space exploration the demands for the thermal shield go beyond the current state-of-the-art. Therefore, the development of new thermal protection materials and systems at a reasonable mass budget is absolutely essential to ensure European non-dependence on corresponding restricted technologies. The three year long FP7 project HYDRA aims at the development of a novel thermal protection system through the integration of a low density ablative outer-shield on top of an advanced thermo-structural ceramic composite layer and will provide an innovative technology solution consistent with the capabilities of European technologies and material providers. This paper summarizes the current status of the scientific activities carried out after two years of progress in terms of design, integration and verification of a robust and lightweight thermal shield solution for atmospheric earth re-entry.

  13. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  14. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  15. Laboratory studies on the heterogeneous chemistry of clay minerals in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Mashburn, Courtney Dyan

    Atmospheric mineral aerosol is a potentially important reactive surface that may provide a heterogeneous sink for gas phase species such as nitric acid and oxygenated organic compounds in the Earth's troposphere. Smectite clays, such as montmorillonite, are particularly interesting reactive surfaces because they are commonly found in the atmosphere and have a unique ability to swell. The swelling properties of montmorillonite allow for substantial adsorbed water under humid conditions, possibly promoting further reactivity. The heterogeneous uptake of water, nitric acid and a series of small organic acids on Na-montmorillonite clay under upper tropospheric temperatures and humidities was studied in a high vacuum chamber equipped with a quadrupole mass spectrometer (MS) and a transmission Fourier transform infrared (FT-IR) spectrometer used to detect the gas and condensed phases, respectively. Water adsorption on montmorillonite clay was measured using FT-IR as a function of relative humidity (RH) with respect to liquid water at temperatures from 212 to 232 K. The specific surface area and adsorbed water content of the swollen clay were determined and are consistent with previous results from gravimetric methods at room temperature. Thus, water adsorption appears to be independent of temperature down to upper tropospheric temperatures. However, the amount of adsorbed water and swollen surface area was found to increase significantly as the RH was raised. Na-montmorillonite was found to contain 10% water by mass at 50% RH and the observed growth curve is comparable to that of ammonium sulfate, a well characterized hygroscopic species. Thus, swelling clays entrained in the Earth's atmosphere may be important cloud condensation nuclei and may indirectly affect the Earth's climate. The heterogeneous uptake of the C1 to C4 organic acids on Na-montmorillonite clay was studied at 212 K as a function of RH, from 0% to 45% RH, organic acid pressure and clay mass. While the

  16. A study of temporal variability of clouds in exo-atmospheres using Earth observations as a proxy

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Zhai, Albert; Zhai, Alice; Su, Hui; Jiang, Jonathan H.; Yung, Yuk Ling

    2015-11-01

    Clouds are strongly linked to the dynamics of the atmosphere, and have been observed to vary over multiple spatial scales and timescales on Earth and the planets: hourly, diurnal, seasonal, interannual and decadal. The study of such variations in exoplanetary atmospheres could only be made through lightly constrained general circulation models (GCMs). In most cases, the exoplanet itself is unresolved from its star and individual cloud patches and their variations cannot be observed. However, temporal and spatial variation of cloud fields can have significant implications for the interpreting the observed phase-curve of the lights from the star-exoplanet system, yet it remains almost wholly unconstrained. To address this issue, we model Earth as an exoplanet, to understand changes in observables due to temporal and spatial variations of clouds by leveraging the rich datasets available for Earth. In particular, the International Satellite Cloud Climatology Project (ISCCP) has compiled cloud observations on Earth in the past three decades, producing a high-resolution dataset. We perform radiative transfer calculations using cloud profiles sampled from this dataset to produce disc integrated brightness and polarization phase curves which map seasonal and interannual cloud variations. This exercise gives us the first (pseudo)-observation based constraints for temporal variability of clouds in exo-atmospheres.

  17. Parameterized desert/clear atmosphere limb-darkening model derived from earth radiation budget satellite along-track measurements

    NASA Technical Reports Server (NTRS)

    Brooks, David R.; Fenn, Marta A.

    1989-01-01

    A parameterized desert/clear atmosphere limb-darkening model was derived using longwave measurements from the Earth Radiation Budget Satellite operating in a unique along-track mode that allows all points along the ground track to be viewed over an entire range of viewing zenith angles at essentially constant solar zenith angle. Application of the model to radiances for scenes defined as clear desert by the Earth Radiation Budget Experiment data analysis algorithms shows that this parameterized model reflects the geographical and diurnal behavior expected for the limb-darkening phenomenon.

  18. Numerical estimates of seismic effects after collisions of small bodies with the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Svetsov, Vladimir; Shuvalov, Valery

    Small bodies - meteoroids, asteroids or cometary objects of moderate size (10 - 100 m) every so often do not survive the entry through the planetary atmosphere and release their energy at some altitudes. Then the aerial blast waves reach the ground and generate Rayleigh seismic surface waves. The magnitude of the following earthquake can be significant as in the cases of the Tunguska event of 30 June 1908 or the Chelyabinsk airburst of 15 February 2013. If the pressure on the ground is known as a function of coordinates and time, the energy of seismic waves can be calculated using a solution of Lamb’s problem of the response to vertical load acting on the surface of an elastic half-space. The numerical procedure includes calculations of pressure spectra and integrals which are proportional to the energy of seismic waves. The final formula for the calculation of earthquake magnitudes was calibrated using published results of measurements made during nuclear tests on Novaya Zemlya in 1961 - 1962. We carried out numerical simulations of the aerial shock waves in Chelyabinsk event of 15 February 2013, using hydrodynamic codes. The energy input along the atmospheric trajectory inclined at 19° to the Earth surface was assumed to be proportional to the radiation intensity derived from numerous video records. The calculated magnitude of the seismic source proved to be 3.85 on the assumption that the initial kinetic energy of the asteroid was 300 kt TNT. For the energy of 500 kt TNT the magnitude was 4.0. These values are in agreement with the results of magnitude records within the measurement errors. We also calculated the magnitudes of earthquakes caused by spherical explosions with the energies from 30 kt to 30 Mt TNT (bodies from ~7 to 70 m in size) at altitudes from 5 to 45 km. The earthquake magnitude of the Chelyabinsk event corresponds to a spherical explosion at an altitude of about 35 km. For the Tunguska event of 1908, we obtained the earthquake magnitudes

  19. Trajectory Control for Vehicles Entering the Earth's Atmosphere at Small Flight Path Angles

    NASA Technical Reports Server (NTRS)

    Eggleston, John M.

    1959-01-01

    Methods of controlling the trajectories of high-drag-low-lift vehicles entering the earth's atmosphere at angles of attack near 90 deg and at initial entry angles up to 3 deg are studied. The trajectories are calculated for vehicles whose angle of attack can be held constant at some specified value or can be perfectly controlled as a function of some measured quantity along the trajectory. The results might be applied in the design of automatic control systems or in the design of instruments which will give the human pilot sufficient information to control his trajectory properly during an atmospheric entry. Trajectory data are compared on the basis of the deceleration, range, angle of attack, and, in some cases, the rate of descent. The aerodynamic heat-transfer rate and skin temperature of a vehicle with a simple heat-sink type of structure are calculated for trajectories made with several types of control functions. For the range of entry angles considered, it is found that the angle of attack can be controlled to restrict the deceleration down to an arbitrarily chosen level of 3g. All the control functions tried are successful in reducing the maximum deceleration to the desired level. However, in order to avoid a tendency for the deceleration to reach an initial peak decrease, and then reach a second peak, some anticipation is required in the control function so that the change in angle of attack will lead the change in deceleration. When the angle of attack is controlled in the aforementioned manner, the maximum rate of aerodynamic heat transfer to the skin is reduced, the maximum skin temperature of the vehicle is virtually unaffected, and the total heat absorbed is slightly increased. The increase in total heat can be minimized, however, by maintaining the maximum desired deceleration for as much of the trajectory as possible. From an initial angle of attack of 90 deg, the angle-of-attack requirements necessary to maintain constant values of deceleration (1g

  20. The fate of the hydroxyl radical in the earth's primitive atmosphere and implications for the production of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Vander Wood, T. B.; Thiemens, M. H.

    1980-01-01

    Behavior of the hydroxyl radical produced by the photolysis of water vapor in the earth's early atmosphere is examined. Because of the substantial OH radical reactivity with trace species (CO, HCl, SO2, H2S, NH3, and CH4) the formation of molecular oxygen may be prevented, even at a trace species mixing ratio. The photolysis rate of H2O, with corrections for hydrogen exospheric escape, is capable of describing the oxidation of the atmosphere and crust but may not be used to determine the rate of molecular oxygen generation without consideration of the various OH-trace species reactions.

  1. Comment on the letter 'On the influx of small comets into the earth's upper atmosphere. II - Interpretation'

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosio; Oberst, Jurgen; Clifford, Stephen M.; Bills, Bruce G.

    1986-01-01

    A critical comment is made on the proposal by Frank et al. (1986) that a flux of small comets constantly impacts the earth's atmosphere. It is argued that the interpretation of the 'atmospheric holes' in terms of such an influx is difficult to reconcile with the fact that the lunar seismic network set up during the Apollo project did not detect such an influx. Frank et al. reply that this discrepancy may be traced to the insensitivity of the lunar seismic stations for the detection of the impacts of tenuous, weakly bound comets relative to those of dense, stony meteoroids.

  2. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    SciTech Connect

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  3. Dielectric Properties of Rare-Earth-Oxide-Doped BaTiO3 Ceramics Fired in Reducing Atmosphere

    NASA Astrophysics Data System (ADS)

    Okino, Yoshikazu; Shizuno, Hisamitsu; Kusumi, Shinya; Kishi, Hiroshi

    1994-09-01

    In order to gain an understanding of highly reliable electrical characteristics for the Ho-doped multilayer ceramic capacitors with Ni electrodes, dielectric properties of various rare-earth-oxide-doped BaTiO3 ceramics were studied. The smaller ionic radius rare-earth-oxide (Dy, Ho, Er)-doped samples showed lower resistivity in reducing atmosphere, but higher resistivity in oxidizing atmosphere at the cooling stage, compared with the larger-ion (La, Sm, Gd)-doped samples. Multilayer ceramic capacitors with Ni electrodes using the smaller-ion-doped materials showed smaller aging rate and longer lifetime. We developed Ni-electrode MLCs with X7R specification as 1 µ F in the 2125 type.

  4. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth.

    PubMed

    Babikov, Dmitri

    2017-03-21

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: (33)S, (34)S, and (36)S. Interestingly, the ratio of capital [Formula: see text] values obtained within this model for (33)S and (36)S is -1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth.

  5. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  6. Pathways to Earth-Like Atmospheres. Extreme Ultraviolet (EUV)-Powered Escape of Hydrogen-Rich Protoatmospheres

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Kislyakova, K. G.; Odert, P.; Leitzinger, M.; Schwarz, R.; Pilat-Lohinger, E.; Kulikov, Yu. N.; Khodachenko, M. L.; Güdel, M.; Hanslmeier, A.

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  7. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    PubMed

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  8. The middle atmospheric circulation of a tidally locked Earth-like planet and the role of the sea surface temperature

    NASA Astrophysics Data System (ADS)

    Proedrou, Elisavet; Hocke, Klemens; Wurz, Peter

    2016-12-01

    We investigate the influence of the sea surface temperature (SST) changes on the middle atmosphere of a tidally locked Earth-like planet orbiting a G star using the coupled 3D chemistry-climate model CESM1(WACCM). We perform three 90 day simulations. The first simulation is a present-day Earth (PDE) simulation, the second is a simulation of a tidally locked Earth-like planet with a tidally locked aquaplanet sea surface temperature (cold TLE (CLTE)) and the third is a hybrid simulation of a tidally locked Earth-like planet with a present-day Earth sea surface temperature (warm TLE (WTLE)). Our results show that changes in the SST have an influence on the lower stratospheric temperature and the secondary ozone layer. Both atmospheres exhibit a dayside upwelling and a nightside downwelling extending from the surface to the mesosphere. They are also characterised by comparable lower and middle stratospheric horizontal winds and relatively different mesospheric horizontal winds. The temperature of the WTLE atmosphere is altered as a result of the SST changes, compared to the CTLE. Specifically, the WTLE lower tropospheric temperature is increased by 3.7 K on average, due to the absorption of the increased upwelling longwave radiation and the increased sensible and latent heat. The WTLE upper troposphere temperature is decreased by 4 K on average, is adiabatic in nature, and is generated by the increased WTLE upwelling. The WLTE lower stratospheric temperature is increased by 3.8 K on average due to the absorption of the increased upwelling longwave radiation. The lower mesospheric temperature is decreased by 1.13 K on average due to increased mesospheric wave breaking. The upper mesospheric temperature is increased by 4.3 K, and its generation mechanism is currently unknown. Furthermore, the secondary ozone volume mixing ratio is increased by 40.5 %. The occurrence of large-scale vortices and variable jet streams depends, to some extent, on the SST distribution.

  9. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  10. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  11. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    NASA Astrophysics Data System (ADS)

    Abdullah, Warith; Reddy, Remata

    From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat

  12. Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth

    NASA Astrophysics Data System (ADS)

    Harada, Mariko; Tajika, Eiichi; Sekine, Yasuhito

    2015-06-01

    The Earth is thought to have multiple stable, steady-states regarding climate modes and atmospheric oxygen levels. The Paleoproterozoic is a remarkable period in Earth's history because of the simultaneous occurrence of large climatic and redox transitions between steady states; i.e., snowball Earth glaciation and the rise of oxygen. Geochemical evidence suggests that the oxygen rise was a dynamic transition with an extensive, long-term overshoot. However, previous models have not explained the dynamics of the oxygen rise, leaving its causal mechanism poorly understood. In the present study, we suggest that the oxygen transition with an overshoot occurred in response to a climatic transition at the termination of the snowball glaciation. Biogeochemical cycle modelling indicates that prolonged super-greenhouse conditions and effective nutrient input to the ocean after the glaciation lead to high levels of primary productivity and burial of organic carbon. This causes an abrupt jump of oxygen levels within ∼104 yr after the glaciation and an extensive oxygen overshoot to the present atmospheric level. The overshoot persists for ∼108 yr because net consumption of oxygen in the atmosphere-ocean system is inefficient. We show that the post-glacial jump of oxygen levels occurred in biologically short timescale, which may have stimulated the ecological shift and/or biological innovations toward the prosperity of oxygen-dependent life.

  13. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  14. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  15. The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)

    1994-01-01

    The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.

  16. Experiment on the Vernov satellite: Transient energetic processes in the Earth's atmosphere and magnetosphere. Part I: Description of the experiment

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Svertilov, S. I.; Bogomolov, V. V.; Garipov, G. K.; Barinova, V. O.; Bogomolov, A. V.; Veden'kin, N. N.; Golovanov, I. A.; Iyudin, A. F.; Kalegaev, V. V.; Klimov, P. A.; Kovtyukh, A. S.; Kuznetsova, E. A.; Morozenko, V. S.; Morozov, O. V.; Myagkova, I. N.; Petrov, V. L.; Prokhorov, A. V.; Rozhkov, G. V.; Sigaeva, E. A.; Khrenov, B. A.; Yashin, I. V.; Klimov, S. I.; Vavilov, D. I.; Grushin, V. A.; Grechko, T. V.; Khartov, V. V.; Kudryashov, V. A.; Bortnikov, S. V.; Mzhel'skiy, P. V.; Papkov, A. P.; Krasnopeev, S. V.; Krug, V. V.; Korepanov, V. E.; Belyaev, S.; Demidov, A.; Ferenz, Ch.; Bodnar, L.; Szegedi, P.; Rotkel, H.; Moravskiy, M.; Park, Il; Jeon, Jin-A.; Kim, Ji-In; Lee, Jik

    2016-07-01

    The program of physical studies on the Vernov satellite launched on July 8, 2014 into a polar (640 × 830 km) solar-synchronous orbit with an inclination of 98.4° is presented. We described the complex of scientific equipment on this satellite in detail, including multidirectional gamma-ray detectors, electron spectrometers, red and ultra-violet detectors, and wave probes. The experiment on the Vernov satellite is mainly aimed at a comprehensive study of the processes of generation of transient phenomena in the optical and gamma-ray ranges in the Earth's atmosphere (such as high-altitude breakdown on runaway relativistic electrons), the study of the action on the atmosphere of electrons precipitated from the radiation belts, and low- and high-frequency electromagnetic waves of both space and atmospheric origin.

  17. Photochemistry of CO and H2O - Analysis of laboratory experiments and applications to the prebiotic earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wen, Jun-Shan; Pinto, Joseph P.; Yung, Yuk L.

    1989-01-01

    The role photochemical reactions in the early earth's atmosphere played in the prebiotic synthesis of simple organic molecules was examined, extending an earlier calculation of formaldehyde production rates to more reduced carbon species, such as methanol, methane, and acetaldehyde. The experimental results of Bar-Nun and Chang (1983) are simulated as an aid in the construction of the photochemical scheme and as a way of validating the model. The results indicate that some fraction of CO2 and H2 present in the primitive atmosphere could have been converted to simple organic molecules. The exact amount is dependent on the partial pressure of CO2 and H2 in the atmosphere and on what assumptions are made concerning the shape of the absorption spectra of CO2 and H2O.

  18. Global measurements of wind fields using the Laser Atmospheric Wind Sounder (LAWS) on the Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, Daniel E.

    1988-01-01

    The technology for measuring global wind fields in space by the Laser Atmospheric Wind Sounder (LAWS) to be flown on the Earth Observing System (EOS) is discussed. Studies initiated by NASA to determine the feasibility of using Doppler lidar from a platform in space to measure the wind globally have shown the general feasibility of the technique and have identified the technological problems that need to be resolved. Among the lidar systems being evaluated, CO2 coherent detection lidar is given special consideration. A comprehensive research program, the Global Backscatter Experiment, has been established to study global distribution of naturally occurring atmospheric aerosols that provide signal return at the wavelengths used by the techniques under consideration. Wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering the present knowledge of the large-scale atmospheric circulation and climate dynamics, and of global biogeochemical and hydrologic cycles.

  19. Rare earths: atmospheric signatures for oil-fired power plants and refineries.

    PubMed

    Olmez, I; Gordon, G E

    1985-09-06

    The concentration pattern of rare earth elements on fine airborne particles (less than 2.5 micrometers in diameter) is distorted from the crustal abundance pattern in areas influenced by emissions from oil-fired plants and refineries. For example, the ratio of lanthanum to samarium is often greater than 20 compared to a crustal ratio less than 6. The unusual pattern apparently results from the distribution of rare earths in zeolite catalysts used in refining oil. Oil industry emissions perturb the rare earth pattern even at remote locations such as the Mauna Loa Observatory in Hawaii. Rare earth ratios are probably better for long-range tracing of oil emissions than vanadium and nickel concentrations because the ratios of rare earths on fine particles are probably not influenced by deposition and other fractionating processes. Emissions from oil-fired plants can be differentiated from those of refineries on an urban scale by the much smaller amounts of vanadium in the latter.

  20. A TEOM (tm) particulate monitor for comet dust, near Earth space, and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Scientific missions to comets, near earth space, and planetary atmospheres require particulate and mass accumulation instrumentation for both scientific and navigation purposes. The Rupprecht & Patashnick tapered element oscillating microbalance can accurately measure both mass flux and mass distribution of particulates over a wide range of particle sizes and loadings. Individual particles of milligram size down to a few picograms can be resolved and counted, and the accumulation of smaller particles or molecular deposition can be accurately measured using the sensors perfected and toughened under this contract. No other sensor has the dynamic range or sensitivity attained by these picogram direct mass measurement sensors. The purpose of this contract was to develop and implement reliable and repeatable manufacturing methods; build and test prototype sensors; and outline a quality control program. A dust 'thrower' was to be designed and built, and used to verify performance. Characterization and improvement of the optical motion detection system and drive feedback circuitry was to be undertaken, with emphasis on reliability, low noise, and low power consumption. All the goals of the contract were met or exceeded. An automated glass puller was built and used to make repeatable tapered elements. Materials and assembly methods were standardized, and controllers and calibrated fixtures were developed and used in all phases of preparing, coating and assembling the sensors. Quality control and reliability resulted from the use of calibrated manufacturing equipment with measurable working parameters. Thermal and vibration testing of completed prototypes showed low temperature sensitivity and high vibration tolerance. An electrostatic dust thrower was used in vacuum to throw particles from 2 x 10(exp 6) g to 7 x 10(exp -12) g in size. Using long averaging times, particles as small as 0.7 to 4 x 10(exp 11) g were weighted to resolutions in the 5 to 9 x 10(exp -13) g range

  1. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  2. Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets and Their Satellites

    NASA Astrophysics Data System (ADS)

    Beebe, Reta; Barnet, Chris

    The author of this book states that he has attempted to produce a text that will be “intelligible to readers approaching atmospheric chemistry from any scientific discipline.” He proposes to provide the links between atmospheric chemistry and the traditional approaches to physics, chemistry, and biology. Within this context, he has presented a very readable general discussion at a level slightly higher than the popular level.Wayne has chosen not to interrupt the text with direct references but rather to group them at the back of each chapter. Although this sometimes raises a question concerning the basis of a specific statement, the references are in general adequate and extend through 1984. The manner in which the material is presented is not intimidating, and the book would be a good vehicle for introducing students to the subject and providing a starting point for individual research papers.

  3. Distribution of N2O in the atmosphere under global warming - a simulation study with the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf

    2014-05-01

    Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.

  4. A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars

    NASA Astrophysics Data System (ADS)

    Kulikov, Yuri N.; Lammer, Helmut; Lichtenegger, Herbert I. M.; Penz, Thomas; Breuer, Doris; Spohn, Tilman; Lundin, Rickard; Biernat, Helfried K.

    2007-03-01

    Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ˜100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters

  5. A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars

    NASA Astrophysics Data System (ADS)

    Kulikov, Yuri N.; Lammer, Helmut; Lichtenegger, Herbert I. M.; Penz, Thomas; Breuer, Doris; Spohn, Tilman; Lundin, Rickard; Biernat, Helfried K.

    Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans' escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ˜100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters

  6. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2014-10-15

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...ABSTRACT Build a compatible set of models which 1) calculate the atmospheric gravity waves (GWs) excited by a tsunami , 2) propagate these GWs into...modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon L. Vadas NWRA/CoRA 3380 S. Mitchell Lane Boulder, CO 80301, USA phone

  7. Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.

    1988-01-01

    Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.

  8. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  9. Preliminary Results From Observing The Fast Stardust Sample Return Capsule Entry In Earth's Atmosphere On January 15, 2006.

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.

    2006-08-01

    In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.

  10. Ongoing Efforts to Analyze and Use Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Orientation.

    NASA Astrophysics Data System (ADS)

    Stamatakos, Nicholas; Salstein, David; McCarthy, Dennis; Eubanks, Marshall

    2016-04-01

    We present our ongoing investigation of the use of U.S-produced atmospheric and oceanic angular momentum (AAM and OAM) estimates to improve the determination of near real-time Earth rotation and polar motion parameters and their short-term predictions. Previous investigations provided evidence that the use of AAM and OAM data sets could improve short-term EOP predictions for polar motion and possibly for UT1-UTC. The longer AAM and OAM time series created from the National Centers for Environmental Prediction (NCEP) reanalysis and the Estimating the Climate and Circulation of the Ocean (ECCO) models respectively are considered and used to determine a baseline (best-case) improvement in Earth rotation predictions. The shorter sets of data supplied by the Navy Global Environmental Model (NAVGEM) AAM and Hybrid Coordinate Ocean Model (HYCOM) OAM are then compared to the NCEP and ECCO data to estimate how well these models might be used to aid Earth Orientation predictions. The combination of NAVGEM and HYCOM model series should be internally consistent as the NAVGEM atmospheric analyses are used as forcing for the Navy HYCOM model.

  11. Investigations of High Resolution Imaging through the Earth’s Atmosphere Using Speckle Interferometry

    DTIC Science & Technology

    1984-03-07

    lightcurves were obtained at northern latitudes, when the spot was mostly invisible throughout the lightcurve . . No evidence for a satellite larger than...applied to observations of Earth-orbiting satellites , asteroids, .,,. Pluto/Charon, binary stars, bright supergiant stars, active galactic nuclei, and quasi...and e) measurements of sizes of Earth-orbiting satellites . Among limitations of this system, the most severe by far is the extremely limited signal

  12. Upper Atmospheric Research Satellite (UARS) ground data system - The first operational data system for the Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Herring, Ellen L.; Smith, Janice K.; Taylor, K. D.

    1993-01-01

    The initiation of the National Aeronautics and Space Administration (NASA) Mission to Planet Earth was realized with the activation of the Upper Atmosphere Research Satellite (LIARS) in mid-September 1991 following deployment from the Shuttle Transport System (STS) - 48. The UARS provides the first comprehensive study of the chemistry and dynamics of the upper atmosphere. The UARS ground data system provides the capabilities required to support upper atmospheric studies in a timely and flexible manner. The UARS ground data system policy and implementation plan incorporated by the UARS Project team provided the flexibility necessary to be able to respond to changing priorities and requirements and to permit the ground data system to evolve far beyond initial expectations. This paper describes the policies and plans in place during the initial design and implementation phases and provides an overview of the UARS ground data system. The paper then addresses the changing UARS ground data system design and implementation priorities, the early mission experiences instrumental in the achievement of higher than expected goals, and a brief look at the future for UARS, the first Mission to Planet Earth.

  13. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  14. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  15. The biota as ancient and modern modulator of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1978-01-01

    The composition of the terrestrial atmosphere is thought to have been markedly modified by surface microbiota and modulated around quantities of gases optimized for growth of these microbiota. Three diagrams illustrating these suppositions are presented. The first shows a probable order of appearance of major metabolic pathways in microbes that interact with sediment and atmosphere. It is based on evolutionary considerations and is devised independently of the fossil record. The second diagram shows the qualitative emissions and removals of atmospheric gases by anaerobic organisms; it approximates those processes thought to have dominated the terrestrial atmosphere in Archean times. The third diagrams gaseous emissions and removals by the major groups of organisms, including oxygen-releasing and -utilizing forms. Biological gas exchange processes thought to have dominated the atmosphere since the Proterozoic are thus represented.

  16. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  17. Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3

    NASA Technical Reports Server (NTRS)

    Pina, J. F.; House, F. B.

    1975-01-01

    Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.

  18. E-Collaboration for Earth Observation: Example Challenge Focused on the Atmospheric Correction of Ocean Colour Data

    NASA Astrophysics Data System (ADS)

    Lavender, Samantha; Boissier, Enguerran; Brito, Fabrice; Ribeiro, Rita; Aas, Christina; Casu, Francesco; Iapaolo, Michele

    2016-08-01

    The E-Collaboration for Earth Observation (E-CEO) project aimed to deliver a collaborative platform that, through data challenges, would improve the adoption and outreach of new applications and methods to process Earth Observation (EO) data. To test the E-CEO platform, a contest based on the Atmospheric Correction (AC) of ocean color data was proposed. Existing processors were tested, and the evaluation results analysed.Overall, the challenge showed that the E-CEO platform can be used to simplify the process of comparing different processors. Once the different participants' software is uploaded and connected to the data packages, the processing runs automatically, and so the processing is quick to re-run and adjust. However, additional work has shown it's important to continue to have human involvement in the evaluation step as otherwise statistics may be incorrectly interpreted due to outliers.

  19. The December 26, 2004, tsunami on Sumatra Island as a source of internal gravity waves in the earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.

    2016-09-01

    Records of the coastal mareographs during the December 26, 2004, tsunami are used to study the fine structure of the tsunami wave power spectra. It is shown that a series of maxima is observed in their spectra near the source in a range of internal gravity wave frequencies of 0.2-1.2 mHz, which coincides with the frequencies of the natural oscillations of the Earth. This experimental finding enables us to propose a possible physical mechanism for the formation of tsunami waves as a result of oscillations in the sea bottom at these frequencies. Internal gravity waves in the Earth's atmosphere excited in this way are found in the variations of the total electron content that resulted from this powerful earthquake.

  20. Rare earths: atmospheric signatures for oil-fired power plants and refineries

    SciTech Connect

    Olmez, I.; Gordon, G.E.

    1985-09-06

    The concentration pattern of rare earth elements on fine airborne particles (less than 2.5 micrometers in diameter) is distorted from the crustal abundance pattern in areas influenced by emissions from oil-fired plants and refineries. For example, the ratio of lanthanum to samarium is often greater than 20 compared to a crustal ratio less than 6. The unusual pattern apparently results from the distribution of rare earths in zeolite catalysts used in refining oil. Oil industry emissions perturb the rare earth pattern even at remote locations such as the Mauna Loa Observatory in Hawaii. Rare earth ratios are probably better for long-range tracing of oil emissions than vanadium and nickel concentrations because the ratios of rare earths on fine particles are probably not influenced by deposition and other fractionating processes. Emissions from oil-fired plants can be differentiated from those of refineries on an urban scale by the much smaller amounts of vanadium in the latter. 30 references, 1 figure, 3 tables.

  1. Remote sensing of the earth's atmosphere by infrared absorption spectroscopy - An update of the ATMOS program

    NASA Technical Reports Server (NTRS)

    Zander, R.; Gunson, M. R.; Farmer, C. B.

    1989-01-01

    The NASA's Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was designed to address the requirements of the remote sensing of atmospheric composition on a four-dimensional basis (latitude, longitude, altitude, and time), necessary for understanding and predicting the effect of changes on the chemical balance of the atmosphere. This paper describes the ATMOS program, overviews the ATMOS instrument and its performance, and presents the results obtained during its first flight as part of the Spacelab 3 Space Shuttle mission (April 29 through May 6, 1985). Also discussed are prospects for further missions.

  2. Estimate of Top-of-Atmosphere Albedo for a Molecular Atmosphere over Ocean using Clouds and the Earth's Radiant Energy System (CERES) Measurements

    NASA Technical Reports Server (NTRS)

    Kato, S.; Loeb, N. G.; Rutledge, C. K.

    2002-01-01

    The shortwave broadband albedo at the top of a molecular atmosphere over ocean between 40deg N and 40deg S is estimated using radiance measurements from the Clouds and the Earth's Radiant Energy System (CERES) instrument and the Visible Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The albedo monotonically increases from 0.059 at a solar zenith angle of 10deg to 0.107 at a solar zenith angle of 60deg. The estimated uncertainty in the albedo is 3.5 x 10(exp -3) caused by the uncertainty in CERES-derived irradiances, uncertainty in VIRS-derived aerosol optical thicknesses, variations in ozone and water vapor, and variations in surface wind speed. The estimated uncertainty is similar in magnitude to the standard deviation of 0.003 that is derived from 72 areas divided by 20deg latitude by 20deg longitude grid boxes. The empirically estimated albedo is compared with the modeled albedo using a radiative transfer model combined with an ocean surface bidirectional reflectivity model. The modeled albedo with standard tropical atmosphere is 0.061 and 0.111 at the solar zenith angles of 10deg and 60deg, respectively. This empirically estimated albedo can be used to estimate the direct radiative effect of aerosols at the top of the atmosphere over oceans.

  3. Comment on the paper 'On the influx of small comets into the earth's upper atmosphere. I - Observations'

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.

    1986-01-01

    The observations of transient decreases or holes in the EUV dayglow reported by Frank et al. (1986) and attributed to an influx of small comets into the earth atmosphere are discussed critically. The techniques used in acquiring and analyzing the observational data are examined, and it is argued that the decreases are probably instrument artifacts. A critique of the geophysical basis of the comet hypothesis is also included. In a reply by Frank et al., the instrument-artifact argument is rejected, in part on the basis of the statistical properties of the holes observed. Additional observational data are presented in graphs and dynamics Explorer 1 images are analyzed in detail.

  4. Miniature Tunable Laser Spectrometers for Quantifying Atmospheric Trace Gases, Water Resources, Earth Back-Contamination, and In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Blacksberg, Jordana; Flesch, Greg; Keymeulen, Didier; Christensen, Lance; Forouhar, Siamak

    2012-01-01

    The Tunable Laser Spectrometers (TLS) technique has seen wide applicability in gas measurement and analysis for atmospheric analysis, industrial, commercial and health monitoring and space applications. In Earth science using balloons and aircraft over 2 decades, several groups (JPL, NASA Langley & Ames, NOAA, Harvard U., etc) have demonstrated the technique for ozone hole studies, lab kinetics measurements, cloud physics and transport, climate change in the ice record. The recent availability of high-power (mW) room temperature lasers (TDL, IC, QC) has enabled miniaturized, high-sensitivity spectrometers for industry and space (1) Mars, Titan, Venus, Saturn, Moon (2) Commercial isotope ratio spectrometers are replacing bulkier, complex isotope ratio mass spectrometers.

  5. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  6. The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading

    USGS Publications Warehouse

    Rojstaczer, S.; Agnew, D.C.

    1989-01-01

    The water level in an open well can change in response to deformation of the surrounding material, either because of applied strains (tidal or tectonic) or surface loading by atmospheric pressure changes. Under conditions of no vertical fluid flow and negligible well bore storage (static-confined conditions), the sensitivities to these effects depend on the elastic properties and porosity which characterize the surrounding medium. The hydraulic diffusivity which governs pressure diffusion in response to surface loading is slightly smaller than that which governs fluid flow in response to applied strain. Analysis of the static-confined response of five wells to atmospheric loading and Earth tides gives generally reasonable estimates for material properties. -from Authors

  7. Temporal variation of the earth's low-degree zonal gravitational field caused by atmospheric mass redistribution - 1980-1988

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Au, Andrew Y.

    1991-01-01

    Temporal variations in the low-degree zonal harmonics of the earth's gravitational field have recently been observed by satellite laser ranging. A host of geophysical processes contribute to these variations. The present paper studies quantitatively a prime contributor, atmospheric mass redistribution, using ECMWF global surface pressure data for the period of 1980-1988. The annual and semiannual amplitudes and phases of the zonal J(l) coefficient with degree l = 2-6 with and without the oceanic inverted-barometer (IB) effect are computed to obtain the predicted effects on the orbit nodal residuals of Lageos and Starlette. These predicted values are then compared with observations. It is found that the atmospheric influence, combined with the hydrological influence agree well with the Lageos observation for the annual term. The corresponding match appears poorer for Starlette.

  8. Effect of aerosol variation on radiance in the earth's atmosphere-ocean system.

    NASA Technical Reports Server (NTRS)

    Plass, G. N.; Kattawar, G. W.

    1972-01-01

    Calculation of the radiance at the top and bottom of the atmosphere with a realistic model of both the atmosphere and ocean. It is found that the upward flux at the top of the atmosphere, as well as the angular distribution of the radiation, changes appreciably as the aerosol amount increases from normal to ten times normal. At the same time, the upward and downward radiance just above the ocean surface undergoes important changes. The radiance does not change appreciably with variations in the aerosol distribution with height so long as the total aerosol amount remains constant. Similarly, changes in the ozone amount cause only small changes in the radiance at the wavelengths considered (0.7, 0.9, and 1.67 micron). Very little radiation returns to the atmosphere from the ocean at 0.9 and 1.67 micron because of the high absorption of water at these wavelengths.

  9. Optical atmospheric scattering and absorption limitations on offset pointing from Earth Observatory Satellite /EOS/ sensors

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Fischbein, W. L.

    1975-01-01

    The Braslau-Dave atmospheric model which calculates the upward monochromatic light fluxes leaving the top of the atmosphere as a function of viewing angle, sun angle, and ground reflectance was employed to study the effect of atmospheric scattering and attenuation on universal apparent contrast for two EOS remote sensors operated at very large offset or pointing angles: the Thematic Mapper (TM) and the High Resolution Pointable Imager (HRPI). The TM offset off nadir could be plus or minus 20 degrees with an 11 degree scan angle and the HRPI pointing angle off nadir could be plus or minus 45 degrees with a 3 degree scan angle. The reduction of universal apparent contrast of EOS imagery is studied as a function of sun elevation angle, atmospheric aerosol loading, radiation wavelength and sensor look angles.

  10. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  11. Goose Bay radar observations of Earth-reflected, atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Samson, J.C.; Greenwald, R.A.; Ruohoniemi, J.M.; Frey, A.; Baker, K.B. )

    1990-06-01

    In the late fall and early winter, The Johns Hopkins University HF radar at Goose Bay, Labrador, observes the effects of atmospheric gravity waves on radar transmissions that are obliquely reflected from the ionosphere and subsequently backscattered from the Earth's surface. The waves exist under a wide variety of geomagnetic conditions; however, they are particularly noticeable under quiet conditions (O {le} Kp {le} 1 +). The clearest signatures of the waves are spatially localized enhancements in the backscattered power and quasi-periodic fluctuations in the backscatter powers, Doppler velocities, and reflection heights. The waves are generally observed during daylight hours and propagate equatorward from regions of high-latitude ionospheric backscatter that are located near the ionospheric convection reversal boundary. The gravity waves appear to be generated just equatorward of the dayside flow-reversal boundary in the vicinity of the auroral electrojet at altitudes of 115 to 135 km and propagate approximately perpendicular to the boundary along azimuths ranging from 156{degree} to 180{degree}. The waves propagate obliquely downward through the lower atmosphere until they are reflected by the Earth's surface back into the upper atmosphere. The frequencies associated with these gravity waves cover the range of 0.3 to 0.6 mHz, with wavelengths of 300 to 500 km, and with average phase velocities of 110 to 180 m/s. The maximum phase speeds are 270 to 300 m/s, which is slightly less than the speed of sound in the lower atmosphere. Poleward-propagating gravity waves are sometimes observed under disturbed conditions when the polar cap and convection reversal boundary have expanded equatorward.

  12. On the thermal process of atomic hydrogen escape from the earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.; Golovchanskaia, I. V.

    1983-10-01

    The authors' approach to the problem of the escape of gases from the planetary gravitational field is close to the consideration by Biutner (1958, 1959) which generalizes results obtained by Jones (1923) for the particular cases of the dense and rarefied atmosphere. The choice of the escape layer, the height distribution of the escape probability as well as escape intensity, have been investigated carefully by Biutner when considering the helium isotope escape from the atmosphere. The objects of the present paper include: (1) to take into account the escape of atomic hydrogen from the bulk atmospheric layer (h approximately 100-1000 km) using present-day data on the composition and temperature distribution in the upper atmosphere (Jacchia, 1977), (2) to find the perturbation of the velocity distribution function in energy space under escape conditions when it is not assumed to be Maxwellian or close to it in the whole dissipation layer and (3) to compare the escape rates obtained under such consideration with the production rates of atomic hydrogen in the atmosphere as well as with local values of the fluxes that are observed. The difference between the results obtained and those of Monte Carlo calculations is attributed to the placing of the lower boundary surface at a lower atmospheric level in the present model.

  13. First Measurements of the Earth's Electric Field at the Arctowski Antarctic Station, King George Island, by the New Polish Atmospheric Electricity Observation Network

    NASA Astrophysics Data System (ADS)

    Kubicki, Marek; Odzimek, Anna; Neska, Mariusz; Berliński, Jerzy; Michnowski, Stanisław

    2016-12-01

    Atmospheric electricity measurements are performed all over the globe for getting a better understanding of the processes and phenomena operating in the Earth's electric atmosphere, ionosphere and magnetosphere. Over recent years, we have established coordinated observations of atmospheric electricity, mainly of the vertical component of the Earth's atmospheric electric field, from Polish observation stations: Stanisław Kalinowski Geophysical Observatory in Świder, Poland, Stanisław Siedlecki Polar Station in Hornsund, Svalbard, Norway, and, for the first time, the Henryk Arctowski Antarctic Station in King George Island. The organisation of this network is presented here as well as a preliminary summary of geophysical conditions at Arctowski, important from the point of view of atmospheric electricity observations. In particular, we refer to the geomagnetic observations made at Arctowski station in 1978-1995. We also present the average fair-weather diurnal variation of the atmospheric electric field based on observations made so far between 2013 and 2015.

  14. Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust.

    PubMed

    Censi, P; Cibella, F; Falcone, E E; Cuttitta, G; Saiano, F; Inguaggiato, C; Latteo, V

    2017-02-01

    The relationship between the trace element distribution in atmospheric particles and leaves of some exposed plants in the environment was recently demonstrated. This indication would suggest that the trace element analysis of leaves in these plants could provide information about the composition, nature and origin of the atmospheric dust dispersed in the environment. In order to corroborate this hypothesis, the distribution of trace elements and Rare Earths were studied in leaves of some endemic plants, in the atmospheric fallout and in soils of rural, urban and industrial ecosystems in Sicily. These elements have been chosen to discriminate the source and nature of different source on atmospheric dust and the larger capability of the composition of the latter materials to influence the metal ion distribution in leaves of studied plants rather than the soil composition. These evidences are related to the recognition both of positive La anomaly and trace element enrichments in studied leaves and to their particular V/Th and Co/Ni signature. On the other hand, some particular normalised REE features recognised in leaves suggest that a limited contribution to the REE budget in studied leaves is provided by the REE migration from roots.

  15. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations

    NASA Astrophysics Data System (ADS)

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; Lawrence, David M.

    2016-12-01

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation, solar radiation, and vapor pressure deficit during 2002-2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. We describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.

  16. Characterization of Properties of Earth Atmosphere from Multi-Angular Polarimetric Observations of Polder/Parasol Using GRASP Algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Fuertes, D.; Huang, X.; Torres, B.; Aspetsberger, M.; Federspiel, C.

    2014-12-01

    The POLDER imager on board of the PARASOL micro-satellite is the only satellite polarimeter provided ~ 9 years extensive record of detailed polarmertic observations of Earth atmosphere from space. POLDER / PARASOL registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. Such observations have very high sensitivity to the variability of the properties of atmosphere and underlying surface and can not be adequately interpreted using look-up-table retrieval algorithms developed for analyzing mono-viewing intensity only observations traditionally used in atmospheric remote sensing. Therefore, a new enhanced retrieval algorithm GRASP (Generalized Retrieval of Aerosol and Surface Properties) has been developed and applied for processing of PARASOL data. GRASP relies on highly optimized statistical fitting of observations and derives large number of unknowns for each observed pixel. The algorithm uses elaborated model of the atmosphere and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are implemented during inversion and no look-up tables are used. The algorithm is very flexible in utilization of various types of a priori constraints on the retrieved characteristics and in parameterization of surface - atmosphere system. It is also optimized for high performance calculations. The results of the PARASOL data processing will be presented with the emphasis on the discussion of transferability and adaptability of the developed retrieval concept for processing polarimetric observations of other planets. For example, flexibility and possible alternative in modeling properties of aerosol polydisperse mixtures, particle composition and shape, reflectance of surface, etc. will be discussed.

  17. Influence of the Earth s Corotation Field on the Atmospheric Electricity: Latitudinal Variation and Response to the Solar Activity

    NASA Astrophysics Data System (ADS)

    Dumin, Y.

    Influence of the magnetospheric convection field on the atmospheric electricity is widely studied, both theoretically and experimentally, from the early 1970s. On the other hand, a considerably less attention was paid to the effects of plasmaspheric corotation field, since it was usually believed that the electric field of corotation of the solid Earth is fitted smoothly to the corotation field of plasmasphere, so that no potential difference is formed between them in the lower atmosphere. A conjecture on the important role of corotation field in the global atmospheric-electric circuit was done a few years ago in [P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys., 1996, v.58, p.601] and several subsequent works. Unfortunately, because of using an oversimplified model of plasmasphere (in the form of a spherically-symmetric envelope with isotropic conductivity and rigid-body rotation), no reliable numerical estimates were derived, and no comparison with experimental distributions of the atmospheric electric field could be conducted. The main aim of the present report is to study the corotation effects in the framework of a considerably more realistic analytical model, where conductivity of the plasmasphere is strongly anisotropic, and the magnetic field lines are substantially distorted (stretched to "infinity") in the polar regions. Escape of polarization electric charges along the distorted field lines results in appreciable decrease (by 10-15 V/m) in the average atmospheric electric field at high latitudes. Such phenomenon was experimentally discovered as early as the International Geophysical Year (1957-1958) but was not quantitatively explained by now. Yet another interesting effect following from our model is changing the high-latitude electric field due to variations in the degree of distortion of the magnetic field lines at different levels of the solar activity. These transient changes in the atmospheric electricity should be symmetric about the noon

  18. Correlations and linkages between the sun and the earth's atmosphere: Needed measurements and observations

    NASA Technical Reports Server (NTRS)

    Kellogg, W. W.

    1975-01-01

    A study was conducted to identify the sequence of processes that lead from some change in solar input to the earth to a change in tropospheric circulation and weather. Topics discussed include: inputs from the sun, the solar wind, and the magnetosphere; bremsstrahlung, ionizing radiation, cirrus clouds, thunderstorms, wave propagation, and gravity waves.

  19. E-CANES: A Research Network dedicated to Electromagnetic Coupling of the Atmosphere With Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Hanuise, C.; Blanc, E.; Crosby, N.; Ebert, U.; Mareev, E.; Neubert, T.; Rothkaehl, H.; Santolik, O.; Yair, Y.; Gille, P.

    2008-12-01

    Transient luminous events in the stratosphere and mesosphere, the sprites, elves, blue jets and gigantic jets, are observed above intense thunderstorms in association with particularly intense lightning discharges. Their recent discovery (1989) offers an opportunity to study the fundamental process of the electric discharge under the different conditions of the troposphere (lightning), stratosphere (blue jets) and the mesosphere (sprites) and the coupling between these regions by electric and magnetic fields. It further facilitates studies of the more general questions of thunderstorm effects on the atmosphere and the role of thunderstorms in a changing climate. New space missions will be launched in the coming years to study the various effects of thunderstorms. They will focus on transient luminous events, the generation of relativistic electron beams in discharges, and the perturbation to the atmosphere, ionosphere and magnetosphere of lightning, transient luminous events, water vapour transport and gravity waves. The missions are the French micro-satellite TARANIS, the ESA ASIM payload on board the International Space Station and the Japanese Sprite Sat mission. These highly interdisciplinary missions will result in a wealth of new data, which require knowledge based capacity building to underpin the observations with improved statistical data analysis and theoretical modelling. We are therefore establishing a global framework for research on thunderstorm processes and their effect on the atmosphere, in particular (1) the fundamental process of the electric discharge as manifested in the stratosphere and mesosphere as sprites and jets, (2) the relationship between cosmic rays, lightning discharges, transient luminous events and terrestrial gamma ray flashes, and (3) the environmental impact of the above physical processes, and thunderstorms in general, on the atmosphere and near-Earth space. The first step has been the creation of the European research group

  20. The Guara Campaign: Rocket-Radar Investigations of the Earth's Upper Atmosphere at the Magnetic and Geographic Equators

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F., Jr.; Goldberg, Richard A.; Schmidlin, F. J.; Sobral, J. H. A.; Abdu, M.; Trivedi, N.; Swartz, W. E.; LaBelle, J. W.; Larsen, M. F.

    1999-01-01

    The Guara Campaign consisted of a series of sounding rockets that were launched from August to October, 1994 at a new launch facility at Alcantara, Brazil, which is within one degree of the Earth's magnetic equator. The campaign was based on focused scientific experiments designed to investigate the electrodynamics and irregularities in the ionosphere and mesosphere at the Earth's magnetic equator and to study their relationship with neutral upper atmosphere motions. In all, 13 large sounding rockets and 20 small meteorological rockets were launched as part of four different experiment groups designed to investigate: (1) the daytime equatorial electrojet, (2) very high altitude Spread-F processes, (3) sunset electrodynamics, and (4) middle atmosphere-thermosphere coupling at the equator. The instrumentation on the sounding rockets varied with each investigation, but primarily included experiments to measure electric fields, currents, plasma densities,- neutral winds, neutral densities and temperatures, and ionospheric instabilities. All of the experiments utilized ground-based scientific instruments including a VHF backscatter radar interferometer, magnetometers, ionosondes, and scintillation receivers. An overview of each investigation is provided, along with a description of the launch site and the ground-based experiments. Scientific highlights of the campaign are provided.

  1. Investigation of GNSS Based ERP-series to Validate Atmospheric and Oceanic Contributions to High Frequency Earth Rotation

    NASA Astrophysics Data System (ADS)

    Weber, R.; Nastula, J.; Boehm, S.

    2009-12-01

    Over the past 25 years several authors have shown that polar motions and variations of Universal Time (UT1) or length of day (LOD), respectively, from seasonal time scales down to one week are forced to a great extent by atmospheric and oceanic angular momentum (AAM and OAM) changes (Barnes, 1983; Rosen and Salstein, 1983; Brzezinski, 1992, 1994; Nastula and Salstein, 1999; Kolaczek et al., 2000; Nastula et al., 2002; Ponte and Ali,2002) and by the solid Earth tides and ocean tides. Oceanic tides also cause variations in UT1/LOD and in polar motion in particular at shorter time scales with diurnal and semi-diurnal periods. Theoretical and semi-empirical models were published by e.g. Gross (1993), Ray et al. (1994). All studies were based on ocean tide models or were using ocean tidal measurements by satellite altimetry. The Ray et al. (1994) model based on TOPEX/Poseidon satellite altimetry data is still the model which is recommended in the IERS Conventions 2003. The high-frequency variations of the Earth rotation parameters due to ocean tides can also be empirically determined from time series derived by space geodetic techniques like Very Long Baseline Interferometry (VLBI) or the Global Positioning System (GPS). Within this investigation high-quality ERP (Earth Rotation Parameter) series, i.e. polar motion (PM), and UT1 or length of day (LOD) with a time resolution of one hour have been established by processing observation data from both active GNSS-systems (GPS+GLONASS). Their correlation with oceanic- (OAM) and atmospheric-induced angular momentum (AAM) acting on the Earth’s surface are investigated. The investigations concentrate on short period variations of Earth rotation with periods of a few days down to a few hours. The amplitudes and phases of these short period tidally and non-tidally induced variations are compared to recent semi-empirical models of the oceanic and atmospheric excitation. Contrary to the standard processing scheme an improved

  2. High-energy cosmic-ray fluxes in the Earth atmosphere: Calculations vs experiments

    NASA Astrophysics Data System (ADS)

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2008-12-01

    A new calculation of the atmospheric fluxes of cosmic-ray hadrons and muons in the energy range 10-105 GeV has been performed for the set of hadron production models, EPOS 1.6, QGSJET II-03, SIBYLL 2.1, and others that are of interest to cosmic-ray physicists. The fluxes of secondary cosmic rays at several levels in the atmosphere are computed using directly data of the ATIC-2, GAMMA experiments, and the model proposed recently by Zatsepin and Sokolskaya as well as the parameterization of the primary cosmic-ray spectrum by Gaisser and Honda. The calculated energy spectra of the hadrons and muon flux as a function of zenith angle are compared with measurements as well as other calculations. The effect of uncertainties both in the primary cosmic-ray flux and hadronic model predictions on the spectra of atmospheric hadrons and muons is considered.

  3. Rapid change of atmosphere on the Hadean Earth: Beyond Habitable Trinity on a tightrope

    NASA Astrophysics Data System (ADS)

    Arai, T.; Maruyama, S.

    2014-12-01

    Surface environment of Hadean Earth is a key to bear life on the Earth. All of previous works assumed that high pCO2 has been decreased to a few bars in the first a few hundreds millions of years (e.g., Zhanle et al., 2011). However, this process is not easy because of material and process barriers as shown below. Four barriers are present. First, the ultra-acidic pH (<0.1) of 4.4Ga ocean prevented the precipitation of carbonates at mid-oceanic ridge through water-rock interaction after the birth of primordial ocean driven by plate tectonics or pseudo-plate tectonics system. To overcome this barrier, primordial (anorthosite + KREEP) continents must have been above sea-level to increase pH rapidly through hydrological process. Second, major cap rocks on the Hadean oceanic crust must have been komatiite with minor basaltic rocks to precipitate carbonates through water-rock interaction and transport them into mantle through subduction at higher than the intermediate P/T geotherm on the Benioff plane. If not, carbonate minerals are all decarbonated at shallower depths than the Moho plane. Komatiite production depends on mantle potential temperature which must have been rapidly decreased to yield only Fe-enriched MORB by 3.8Ga. Third, the primordial continents composed of anorthosite with subordinate amounts of KREEP basalts must have been annihilated by 4.0Ga to alter pH to be possible to precipitate carbonates by hydrothermal process. The value of pCO2 must have been decreased down to a few bars from c.a. 50 bars at TSI (total surface irradiance) = 75% under the restricted time limit. If failed, the Earth must have been Venus state which is impossible to bear life on the planet. Fourth is the role of tectonic erosion to destroy and transport the primordial continent of anorthosite into deep mantle by subduction. Anorthosite + KREEP was the mother's milk grow life on the Earth, but disappeared by 4.0Ga or even earlier, but alternatively granites were formed and

  4. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  5. Remote sensing of the earth's biosphere - A tool for studies of the global atmospheric environment

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Harriss, Robert C.; Bartlett, Karen B.

    1987-01-01

    Recent advances in remote sensing technology and its use for global studies of the biospheric processes are described. Special consideration is given to research related to two issues: (1) quantifying the impacts of natural vegetation and its changing patterns of occurrence on the atmospheric CO2 budget and (2) assessing wetlands (such as the swamps and marshes of Florida's Everglades) as sources of atmospheric CH4. The results include the data from NOAA-AVHRR sensors and from experiments in remote detection of plant growth rate.

  6. Geodetic and Atmospheric Measurements GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.

    1994-09-01

    Beginning in June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers. Three products are produced and distributed weekly: (i) precise GPS satellite ephemerides, (ii) estimates of daily polar motion and length-of-day, and (iii) a descriptive narrative of the analysis for the week. These are typically made available to the public approximately two wecks following the data recording. In addition, more sophisticated data reduction techniques have been developed for non-routine, research-oriented GPS data analysis. These have been successfully utilized to measure subdaily Earth orientation fluctuations. Based on comparisons of our earth orientation parameters with independent techniques, we estimate daily pole position accuracies (la) of ±0.6 milliarcseconds and length-ofday accuracies of ±0.13 msec. Ongoing work at JPL is aimed at continuing the trend of producing more and higher-quality results at lower cost.

  7. The mysterious atmosphere of the Earth. ATLAS: Instruction guide with activities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This teacher's guide presents lesson plans addressing various aspects of atmospheric physics and chemistry; the interactions between land, air, and sea; air pollution; and the mechanisms of climate change. The science concepts in this guide have been designed to complement the middle school curriculum. However, many activities can be used with younger or older students.

  8. Thermal emission spectra of the Earth and atmosphere from the Nimbus 4 Michelson interferometer experiment.

    PubMed

    Hanel, R A; Conrath, B J

    1970-10-10

    Profiles of atmospheric temperature, humidity and ozone can be recovered from the thermal emission spectra in the interval 400 to 1,500 cm(-1) obtained from the Nimbus 4 satellite. The spectra can also be used to study surface restrahlen effects and other geophysical and meteorological phenomena.

  9. Microwave Propagation Attenuation due to Earth's Atmosphere and Weather at SHF Band

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Wang, Charles; Gritton, Kelly; Angkasa, Kris

    2004-01-01

    In this study we have estimated radio wave propagation losses at super high frequency (SHF) band by applying available propagation models into several Air Force benchmark scenarios. The study shows that dominantly additional losses over the free space loss are atmospheric absorption, clouds, fog, and precipitation, as well as scintillation /multipath at low elevation angles. The free space loss equation has been modified to include all atmospheric attenuation and fading effects that cannot be neglected over the range of frequency of interest. Terrain profiles along all directions of interest within the coastal areas and inland areas for four benchmark cases have been analyzed in detail. We find that while the atmospheric gaseous absorption plays a significant role under a clear weather, heavy rainfalls can cause several tens of dB loss for a 100- km path through the rain. At very low elevation angles (< 5 deg), atmospheric scintillation/multipath fading becomes a very important factor. There are significant differences in the feature of anomalous mode (ducting) propagation between the east and the west coastal receiving stations.

  10. Perfluorocarbons (PFCs), Some of the Immortal Molecules in the Earth's Atmosphere

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Martin, Damien

    2011-01-01

    Perfluorocarbons (PFCs) are fully fluorinated hydrocarbons that are used as blood plasma substitutes, in medical imaging and in the cosmetics industry. Most are inert and can also be used as tracers for applications such as air flow. However, because of their C-F bonds and their longevity in the atmosphere, PFCs have large global warming…

  11. Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere.

    PubMed

    Dominguez, Gerardo; Jackson, Terri; Brothers, Lauren; Barnett, Burton; Nguyen, Bryan; Thiemens, Mark H

    2008-09-02

    Sulfate (SO(4)) and its precursors are significant components of the atmosphere, with both natural and anthropogenic sources. Recently, our triple-isotope ((16)O, (17)O, (18)O) measurements of atmospheric sulfate have provided specific insights into the oxidation pathways leading to sulfate, with important implications for models of the sulfur cycle and global climate change. Using similar isotopic measurements of aerosol sulfate in a polluted marine boundary layer (MBL) and primary sulfate (p-SO(4)) sampled directly from a ship stack, we quantify the amount of p-SO(4) found in the atmosphere from ships. We find that ships contribute between 10% and 44% of the non-sea-salt sulfate found in fine [diameter (D) < 1.5 microm) particulate matter in coastal Southern California. These fractions are surprising, given that p-SO(4) constitutes approximately 2-7% of total sulfur emissions from combustion sources [Seinfed JH, Pandis SN (2006) Atmospheric Chemistry and Physics (Wiley-Interscience, New York)]. Our findings also suggest that the interaction of SO(2) from ship emissions with coarse hydrated sea salt particles may lead to the rapid removal of SO(2) in the MBL. When combined with the longer residence time of p-SO(4) emissions in the MBL, these findings suggest that the importance of p-SO(4) emissions in marine environments may be underappreciated in global chemical models. Given the expected increase of international shipping in the years to come, these findings have clear implications for public health, air quality, international maritime law, and atmospheric chemistry.

  12. High-energy neutrino fluxes and flavor ratio in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Sinegovskaya, T. S.; Morozova, A. D.; Sinegovsky, S. I.

    2015-03-01

    We calculate the atmospheric neutrino fluxes in the energy range 100 GeV-10 PeV with the use of several known hadronic models and a few parametrizations of the cosmic-ray spectra which take into account the knee. The calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube, and ANTARES. An analytic description is presented for the conventional (νμ+ν¯ μ ) and (νe+ν¯e) energy spectra, averaged over zenith angles, which can be used to obtain test data of the neutrino event reconstruction in neutrino telescopes. The sum of the calculated atmospheric νμ flux and the IceCube best-fit astrophysical flux gives the evidently higher flux as compared to the IceCube59 data, giving rise the question concerning the hypothesis of the equal flavor composition of the high-energy astrophysical neutrino flux. Calculations show that the transition from the atmospheric electron neutrino flux to the predominance of the astrophysical neutrinos occurs at 30-100 TeV if the prompt neutrino component is taken into consideration. The neutrino flavor ratio, extracted from the IceCube data, does not tend to increase with the energy as is expected for the conventional neutrino flux in the energy range 100 GeV-30 TeV. A depression of the ratio Rνμ/νe possibly indicates that the atmospheric electron neutrino flux obtained in the IceCube experiment contains an admixture of the astrophysical neutrinos in the range 10-50 TeV.

  13. Using the EC-Earth atmospheric model to quantify the impact of recent thinning of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Lang, Andreas Michael; Yang, Shuting; Kaas, Eigil

    2016-04-01

    The atmospheric general circulation model EC-EARTH has been employed to investigate the influence of a realistic change in recent Arctic sea ice thickness on local and remote climate. To investigate the atmospheric response of a realistically thinning sea ice compared to a uniform ice thickness of 1.5 m, two 32-year-long sets of simulations have been performed covering the period 1982-2013 and driven by observed SST and SIC which are only differing by the description of the sea ice thickness. Thickness data is taken from the GIOMAS dataset, which assimilates observed sea ice conditions. The results suggest that the atmospheric impact of recent declining thickness compared to a uniform thickness shows a higher warming trend over the central Arctic, consistent with the observed sea ice thinning, and a less strong warming trend over continental Europe. The influence of a variable thickness is most pronounced in winter and in the lowermost troposphere. Overall, the Arctic SAT response to a realistic sea ice loss including its thinning is in better agreement with the one seen in the reanalysis product ERA-Interim. Precipitation and cloud cover responses do not show a significant reponse to a realistic thickness change. Further analysis of potential remote responses to Arctic sea ice thinning is currently being performed.

  14. Investigations of High Resolution Imaging through the Earth’s Atmosphere Using Speckle Interferometry.

    DTIC Science & Technology

    1987-03-15

    Imaged and Measured 3 2.4 Real-time Data Processing is Proposed 6 3. A Productive Scientific Program is Published 6 3.1 Atmospheric Calibrations 6 3.2...Mirror Telescope as a Phased Array Telescope 256 Real-Time Signal Processing Requirements for Diffraction 268 Limited Optical Imaging High-Speed Digital...Signal Processing for Speckle Inter(eroretry 278 Diffraction Limited Image of a Geosynchronous Object Using the 286 Multiple Mirror Telescope and

  15. Photographic coronagraph, Skylab particulate experiment T025. [earth atmospheric pollution and Kohoutek Comet monitoring

    NASA Technical Reports Server (NTRS)

    Giovane, F.; Schuerman, D. W.; Greenberg, J. M.

    1977-01-01

    A photographic coronagraph, built to monitor Skylab's extravehicular contamination, is described. This versatile instrument was used to observe the earth's vertical aerosol distribution and Comet Kohoutek (1973f) near perihelion. Although originally designed for deployment from the solar airlock, the instrument was modified for EVA operation when the airlock was rendered unusable. The results of the observations made in four EVA's were almost completely ruined by the failure of a Skylab operational camera used with the coronagraph. Nevertheless, an aerosol layer at 48 km was discovered in the southern hemisphere from the few useful photographs.

  16. Earth-based remote sensing of planetary surfaces and atmospheres at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Dickel, J. R.

    1982-01-01

    Two reasons for remote sensing from the Earth are given: (1) space exploration, particularly below the surfaces or underneath cloud layers, is limited to only a very few planets; and (2) a program of regular monitoring, currently impractical with a limited number of space probes, is required. Reflected solar and nonthermal radiation are discussed. Relativistic electrons, trapped in large magnetospheres on Saturn and Jupiter, are discussed. These electrons produce synchrotron radiation and also interact with the ionosphere to produce bursts of low frequency emission. Because most objects are black-bodies, continuum radiometry is emphasized. Spectroscopic techniques and the measurement of nonthermal emission are also discussed.

  17. Update on the Atmospheric Composition Measurements by Curiosity: Three (Earth) Years on Mars

    NASA Astrophysics Data System (ADS)

    Malespin, C.; Trainer, M. G.; Franz, H. B.; Mahaffy, P. R.; Wong, M. H.; Atreya, S. K.; McKay, C.; Conrad, P. G.; Eigenbrode, J. L.; Pepin, R. O.; Becker, R. H.; Owen, T. C.; Manning, H. L.; McConnochie, T. H.; Martín-Torres, J.; Zorzano, M. P.; Navarro-Gonzalez, R.

    2015-12-01

    The Sample Analysis at Mars (SAM) instrument on Curiosity has conducted a survey of major (CO2) and minor (Ar, N2, O2, CO) components of the Mars atmosphere over the course of one and a half martian years in Gale Crater. Here we present the details on the volume mixing ratios of these atmospheric species, which have been monitored as a function of season, temperature, and pressure, in conjunction with meteorological measurements conducted by the Mars Science Laboratory (MSL) rover environmental monitoring station (REMS). We will present data on the relative mixing ratio of CO2, and the computed partial pressure, which shows a distinct trend with season as a result of CO2 transported to and from the poles, coinciding with changes in local atmospheric pressure. We will also present data on the mixing ratios of the non-condensable species, which show relatively small seasonal changes at the near-equatorial site of Curiosity. Where relevant, comparisons to orbital and ground-based observations, as well as previous in situ measurements, will be discussed. Results from landing through the most recent measurements on Mars will be presented to demonstrate seasonal reproducibility.

  18. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  19. The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service - A meteorological data center with geodetic applications

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Kann, Deirdre M.; Miller, Alvin J.; Rosen, Richard D.

    1993-01-01

    By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.

  20. 40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.

    1991-01-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.

  1. A Study of the Motion and Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at High Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Allen, H. Julian; Eggers, A. J., Jr.

    1953-01-01

    A simplified analysis is made of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds. It is found that, in general, the gravity force is negligible compared to the aerodynamic drag force and, hence, that the trajectory is essentially a straight line. A constant drag coefficient and an exponential variation of density with altitude are assumed and generalized curves for the variation of missile speed and deceleration with altitude are obtained. A curious finding is that the maximum deceleration is independent of physical characteristics of a missile (e.g., mass, size, and drag coefficient) and is determined only by entry speed and flight-path angle, provided this deceleration occurs before impact. This provision is satisfied by missiles presently of more usual interest.

  2. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    SciTech Connect

    Gettelman, Andrew

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  3. Test of developing long-term forecasts of world energy impact on the earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.

    2015-03-01

    It has been established that the historical approach to world energy forecasting can yield useful results at time horizons with a depth of several decades. The genetic forecast supposes reaching a plateau of global energy consumption at the level of 30 billion tons of coal equivalent and an increase in the carbon dioxide concentration almost to 500 parts per million by the end of the century against the background of a continuing decrease in sulfur dioxide emission. From the historical point of view, the implementation of the most aggressive scenarios of human impact on the atmosphere and climate seems very unlikely.

  4. New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena; Heaps, William S.; Huang,Wen

    2011-01-01

    We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system.

  5. Studies of the earth-limb absorptions in the near ultraviolet. [atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.

    1980-01-01

    The use of solar occultation techniques as a means of obtaining data on the photochemistry of the ozone layer was investigated. A spectrometer equipped with a photomultiplier detector and associated electronics necessary to amplify the output of the detector up to a level suitable for on-board recording and also for telemetering to the ground, was packaged with a solar telescope and flown by balloon in order to obtain solar spectra in the region between 3080 A and 3100 A with a resolution of close to 0.05 A. Data reduction techniques required to remove solar OH lines from atmospheric OH line spectra are described as well as the instrument package.

  6. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    NASA Astrophysics Data System (ADS)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  7. Measurement of atmospheric air-earth current density from a tropical station using improvised Wilson's plate antenna

    NASA Astrophysics Data System (ADS)

    Anil Kumar, C. P.; Panneerselvam, C.; Nair, K. U.; Jeeva, K.; Selvaraj, C.; Johnson Jeyakumar, H.; Gurubaran, S.

    2009-07-01

    We have developed an experimental set-up to measure the atmospheric air-earth current (conduction current). Data obtained with the continuous measurements of Wilson's plate are used to study of air-earth current density, with the aim of gaining an understanding of the experimental set-up's response to different meteorological conditions, including fair-weather days. This paper is a part of the on-going Global Electric Circuit (GEC) studies from Tirunelveli (8.7°N, 77.8°E), a measurement site in the tropical and southern tip of the Indian peninsula. Attempts have been made in past few years to obtain the global signature in this region with this sensor, but on most of the occasions it has been impossible to obtain the global signature during fair-weather days. The data used for February-April, 2007 have the well-defined nature of this global signature, which is in agreement with the well-established classical Carnegie curve of GEC. This paper also deals with very important observations made at sunrise and during those hours when fog existed. It is noted that the resistivity of the atmosphere increased significantly with the onset of fog and later decreased as the fog disappeared, based on the measured value of conduction current density when compared with the electric field measured by horizontal passive wire antenna. Also, during fair-weather conditions, conduction current and electric field variations are similar because the conductivity during this period is more or less constant at this site. Observations made during different meteorological conditions, such as different wind speeds, humidities, and temperatures, are also discussed.

  8. Earth observation and atmospheric sounding based on a high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Liu, Yanyang; Luo, Haiying; Liu, Dong; Yang, Yongying

    2015-10-01

    Obtain accurate detection data on the distribution of water vapor and aerosol is the basis for researches on numerical weather prediction and dynamic meteorology. It also has great importance for finding haze formation and digestion mechanism. In this paper, the high spectral resolution lidar (HSRL) is employed to obtain the optical properties of the atmosphere such as optical depth and backscatter coefficient which are very helpful to get the accurate detection data on distribution and Interaction of water vapor and aerosol continuously. A forward simulation model is established to simulate the typical atmospheric conditions and aerosol distribution, and considered the presence of sunlight during the day and the background noise. The simulation result shows that the HSRL proposed here can perform well with satisfactory measurement accuracy for the altitudes below 8km, which is better than 10%, so that HSRL is very helpful to the improvement of the accuracy of weather forecasts and to the study on the prevention and control measures of haze and other weather disasters.

  9. Dust of Orionid meteor shower in the Earth atmosphere before and after Halley's Comet

    NASA Technical Reports Server (NTRS)

    Mateshvili, G.; Mateshvili, YU.

    1989-01-01

    Among the interesting questions concerning meteor streams associated with Comet Halley is the question of whether or not the activity of a meteor stream was connected with the approach of the comet to the terrestrial orbit in 1985 to 1986. Meteoric aerosols getting to the upper atmosphere can be detected by twilight sounding, as has been done previously. It turns out that not only parameters describing some properties of aerosol can be obtained by twilight sounding, but also characteristics concerning the structure of the stream can be derived. Among the yearly active streams, the Orionides have always attracted the attention of scientists. The period of activity of the Orionides is October 18 to 26, and the maximum stream activity is October 21. In detecting aerosol layers in the terrestrial atmosphere, a notion of the logarithmic intensity gradient of scattered twilight light is used, d log I/dH, where I is intensity and H is the real twilight beam height, which is a function of the wavelength observed. A photoelectric photometer with an interference filter at the wavelength of 610 nm is used. The observation were carried out in two points of the solar vertical; the zenith angle of the observation points was + or - 60 degrees. The recording was carried on continuously in each direction during a minute, then the system was switched to the other direction. A calibration standard was recorded before each observation. The observation dates in the Orionid periods of 1984, 1986, and 1987 are given.

  10. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    SciTech Connect

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solar radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.

  11. Point Return from a Lunar Mission for a Vehicle that Maneuvers Within the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sommer, Simon C.; Short, Barbara J.

    1961-01-01

    An investigation has been made of point return of a vehicle with a lift-to-drag ratio of 1/2, returning from a lunar mission. It was found that the available longitudinal and lateral range allowed considerable tolerances in entry conditions for a point return. Longitudinal range capability for a vehicle that was allowed to skip to an altitude not exceeding 400 miles was about 3-1/2 times greater than the range capability of a vehicle that was restricted to remain in the atmosphere after entry. Longitudinal range is very sensitive to changes in both velocity and flight-path angle at the bottom of the first pull-out and at exit. An investigation showed that after a skip a vehicle could be placed in a circular orbit for a relatively modest weight penalty. A skip maneuver was found to have no effect on lateral range when the roll was initiated at a velocity near satellite speed after the vehicle had re-entered the atmosphere. However, when the roll was initiated at the earliest possible time along the undershoot boundary, lateral range was increased by a factor of about 2-1/2. The tolerable errors in time of arrival and in inclination of the orbital plane at point of entry were greater for the skip trajectory than for the no-skip trajectory.

  12. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis.

    PubMed

    Liang, Mao-Chang; Hartman, Hyman; Kopp, Robert E; Kirschvink, Joseph L; Yung, Yuk L

    2006-12-12

    During Proterozoic time, Earth experienced two intervals with one or more episodes of low-latitude glaciation, which are probable "Snowball Earth" events. Although the severity of the historical glaciations is debated, theoretical "hard Snowball" conditions are associated with the nearly complete shutdown of the hydrological cycle. We show here that, during such long and severe glacial intervals, a weak hydrological cycle coupled with photochemical reactions involving water vapor would give rise to the sustained production of hydrogen peroxide. The photochemical production of hydrogen peroxide has been proposed previously as the primary mechanism for oxidizing the surface of Mars. During a Snowball, hydrogen peroxide could be stored in the ice; it would then be released directly into the ocean and the atmosphere upon melting and could mediate global oxidation events in the aftermath of the Snowball, such as that recorded in the Fe and Mn oxides of the Kalahari Manganese Field, deposited after the Paleoproterozoic low-latitude Makganyene glaciation. Low levels of peroxides and molecular oxygen generated during Archean and earliest Proterozoic non-Snowball glacial intervals could have driven the evolution of oxygen-mediating and -using enzymes and thereby paved the way for the eventual appearance of oxygenic photosynthesis.

  13. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the

  14. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  15. Photochemical and thermal modeling in the early atmosphere of the earth

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    1988-01-01

    The simplest carbon compounds, present in the terrestrial and planetary atmospheres, exhibit a wide range of oxidation states, carbon dioxide and methane being the most oxidized and the most reduced form of carbon, respectively. The question arises as to the origin and the interconversion among the carbon species. The chemical pathways for the conversion of CH4 to CO and CO2 are for the most part known. The reverse process, the reduction of CO to CH4 is however, poorly understood. A new reaction is proposed, H2CO + H + M yields CH3O + M, which might play a fundamental role in the reduction of CO or CH4. An update is presented of nitrile photochemistry on Titan.

  16. A Comparison among Solar Diameter Measurements Carried Out from the Ground and outside Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Djafer, D.; Thuillier, G.; Sofia, S.

    2008-03-01

    The solar diameter has been measured since the 17th century, using different methods and instruments, and without a clear strategy of measurement, which could explain the lack of coherence between the results obtained. The present study confirms that the discrepancies between solar diameter measurements are mostly due to differences in instrumental characteristics, the spectral domain of observation of each investigation, and atmospheric turbulence for ground measurements. We show that correcting the measurements for the effects introduced by the properties of each instrument reduces the differences between the radius measurements to the level of uncertainty of each instrument. This study makes use of simulated and real data. For the simulated data, we use an empirical model of the solar limb shape, and for observations, we use measurements carried out with the Solar Disk Sextant experiment, the CCD solar astrolabe of Calern Observatory, and the Michelson Doppler Imager on board SOHO.

  17. Moisture and wave-mean flow interactions in the general circulation of Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Yamada, Ray

    Baroclinic eddies play an important role in shaping the midlatitude climate and its variability. They are the dominant means by which heat, momentum, and water vapor are transported in the atmosphere, but their turbulent nature makes it challenging to grasp their aggregate effect on the mean circulation. Wave-mean flow diagnostics provide an effective means for understanding the interactions between eddies and the mean circulation. These diagnostics are derived by dynamically motivated averaging of the equations of motion, which exposes the total explicit eddy effect on the mean circulation tendency. Most of the classic formulations of these diagnostics have been limited by the fact that they do not account for the eddy flux of water vapor, which can drive circulation through latent heat released from condensation. In the first part of this thesis, a moist isentropic generalization of the Eliassen-Palm (EP) flux diagnostic is developed. Moist isentropes are often not invertible with height, which prevents the standard techniques used to derive the dry diagnostic from being applied in the moist case. This issue is resolved by using a conditional-averaging approach to define a weak coordinate transformation. The primitive equations, EP flux, and EP theorem are derived in generality for non- invertible coordinates, without assumptions of quasi-geostrophy or small wave-amplitude. It is shown that, in the reanalysis climatology, the moist EP flux is twice as strong as the dry EP flux and has a greater equatorward extent. Physically, the increase in momentum exchange is tied to an enhancement of the form drag associated with the horizontal structure of midlatitude eddies, where the poleward flow of moist air is located in regions of strong eastward pressure gradients. The second part of this thesis studies the effect of latent heating on the mean flow adjustment in idealized baroclinic life cycles. The life cycles are simulated in an idealized moist general circulation

  18. High resolution infrared absorption spectra of various trace gases present in the upper atmosphere of the Earth

    NASA Technical Reports Server (NTRS)

    Hunt, Robert H.

    1988-01-01

    The objective of NASA Grant NsG 7473 was to obtain and analyze high resolution infrared absorption spectra of various trace gases present in the Earth's upper atmosphere. The goal of the spectral analysis was to obtain values of absorption line strengths, widths and frequencies of sufficient accuracy for use in upper atmosphere trace gas monitoring. During the early phase of the grant, high resolution spectra were obtained from two instruments. One was the 0.02/cm resolution vacuum grating spectrometer at the Florida State University and the other was the 0.01/cm resolution Fourier transform spectrometer at the McMath solar telescope at the Kitt Peak Observatory. Using these instruments, a considerable amount of spectra of methane and hydrogen peroxide were obtained and analyzed. During the latter years of the project, data taking was halted while efforts were devoted to building a new 0.0025/cm resolution vacuum Fourier transform spectrometer. Progress during this phase of the grant then became greatly slowed due to a lack of suitable graduate students in the program. However, the instrument was completed and brought to the point of producing interferograms.

  19. Goose Bay radar observations of earth-reflected atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Samson, J.C.

    1990-05-03

    An HF backscatter radar at Goose Bay, Labrador made it possible to observe irregularities in the distribution of ionospheric ionization at E and F region altitudes (100 - 600 km) in the high-latitude (65 - 85 deg Lambda) ionosphere. Recently it has been established that the passage of atmospheric gravity waves perturbs the ionosphere in ways that are readily detected in returns that reflect off the ionospheric layers. The particular strength of the technique lies in the nearly instantaneous measurement of gravity wave effects over large areas ( 1 million sq. km). With this information the propagation of gravity waves can be accurately modelled. Generally gravity waves are observed during daylight hours propagating away from the auroral electrojets. The propagation mode involves penetration of wave energy through the lower atmosphere and subsequent reflection by the earth's surface. The frequencies associated with the waves lie in the 0.4 - 0.6 mHz range and the wavelengths vary from 300 to 500 km. The excitation sources appear to lie in the vicinity of the high-latitude electrojets. In this paper we outline the analysis of gravity wave effects on HF propagation and present an example of a modelled gravity wave event.

  20. Anomalous diurnal variation of atmospheric potential gradient and air-Earth current density observed at Maitri, Antarctica

    NASA Astrophysics Data System (ADS)

    Jeeva, K.; Gurubaran, S.; Williams, E. R.; Kamra, A. K.; Sinha, A. K.; Guha, A.; Selvaraj, C.; Nair, K. U.; Dhar, Ajay

    2016-11-01

    The scope of this paper is to explore the mechanisms operating over Maitri (70.76°S, 11.74°E, 117 m above mean sea level), a coastal Antarctic station, that produce an anomalous fair-weather diurnal pattern of the atmospheric electric potential gradient (PG) and air-Earth current density (AEC). The anomaly in the diurnal variations of AEC and the PG is displaying an ostensible minimum at 10 UT and a diminished response to the thunderstorm over the African continent in the 14-16 UT time frame. The data sets (2005-2014, except 2012) of the PG, and to some extent, AEC, from Maitri, are used to explore this anomaly. It follows that the fair-weather electrical phenomena over Maitri can be ascribed to global electrified convection on the one hand and to regional phenomena like convection due to the replacement of warm air by katabatic winds on the other hand. The katabatic winds originate on the polar plateau and blow from 130° at Maitri which are likely to transport various elements from the mountain slopes, and space charge from the polar plateau is expected to produce various disturbances in the PG and AEC monitored over the coastal Antarctica. This mechanism may be responsible for peaks in the early UT hours and also for the anomalous behavior of atmospheric electrical parameters observed at Maitri. Maitri data are compared with that of Carnegie cruise and Vostok to explain the source of anomaly.

  1. Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Manizza, M.; Keeling, R. F.; Kahru, M.; Bopp, L.; Dunne, J.; Tiputra, J.; Ilyina, T.; Mitchell, B. G.

    2015-01-01

    The observed seasonal cycles in atmospheric potential oxygen (APO) at a range of mid- to high-latitude surface monitoring sites are compared to those inferred from the output of six Earth system models (ESMs) participating in the fifth phase of the Coupled Model Intercomparison Project phase 5 (CMIP5). The simulated air-sea O2 fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Three of the ocean biogeochemistry models tested are able to reproduce the observed APO cycles at most sites, to within the large TransCom3-era ATM uncertainty used here, while the other three generally are not. Net primary production (NPP) and net community production (NCP), as estimated from satellite ocean color data, provide additional constraints, albeit more with respect to the seasonal phasing of ocean model productivity than overall magnitude. The present analysis suggests that, of the tested ocean biogeochemistry models, the community ecosystem model (CESM) and the Geophysical Fluid Dynamics Laboratory (GFDL) ESM2M are best able to capture the observed APO seasonal cycle at both northern and southern hemispheric sites. In most models, discrepancies with observed APO can be attributed to the underestimation of NPP, deep ventilation or both in the northern oceans.

  2. Evaluating the ocean biogeochemical components of earth system models using atmospheric potential oxygen (APO) and ocean color data

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Manizza, M.; Keeling, R. F.; Kahru, M.; Bopp, L.; Dunne, J.; Tjiputra, J.; Mitchell, B. G.

    2014-06-01

    The observed seasonal cycles in atmospheric potential oxygen (APO) at a range of mid to high latitude surface monitoring sites are compared to those inferred from the output of 6 Earth System Models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The simulated air-sea O2 fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Half of the ocean biogeochemistry models tested are able to reproduce the observed APO cycles at most sites, to within the current large ATM uncertainty, while the other half generally are not. Net Primary Production (NPP) and net community production (NCP), as estimated from satellite ocean color data, provide additional constraints, albeit more with respect to the seasonal phasing of ocean model productivity than the overall magnitude. The present analysis suggests that, of the tested ocean biogeochemistry models, CESM and GFDL ESM2M are best able to capture the observed APO seasonal cycle at both Northern and Southern Hemisphere sites. In the northern oceans, the comparison to observed APO suggests that most models tend to underestimate NPP or deep ventilation or both.

  3. Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC20058-5234

    NASA Astrophysics Data System (ADS)

    Sullivan, D. J.; Metcalfe, T. S.; O'Donoghue, D.; Winget, D. E.; Kilkenny, D.; van Wyk, F.; Kanaan, A.; Kepler, S. O.; Nitta, A.; Kawaler, S. D.; Montgomery, M. H.; Nather, R. E.; O'Brien, M. S.; Bischoff-Kim, A.; Wood, M.; Jiang, X. J.; Leibowitz, E. M.; Ibbetson, P.; Zola, S.; Krzesinski, J.; Pajdosz, G.; Vauclair, G.; Dolez, N.; Chevreton, M.

    2008-06-01

    We present the analysis of a total of 177h of high-quality optical time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC20058-5234. The bulk of the observations (135h) were obtained during a WET campaign (XCOV15) in 1997 July that featured coordinated observing from four southern observatory sites over an 8-d period. The remaining data (42h) were obtained in 2004 June at Mt John Observatory in NZ over a one-week observing period. This work significantly extends the discovery observations of this low-amplitude (few per cent) pulsator by increasing the number of detected frequencies from 8 to 18, and employs a simulation procedure to confirm the reality of these frequencies to a high level of significance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of unique pulsation mode properties using any clearly discernable trends. However, we have used a global modelling procedure employing genetic algorithm techniques to identify the n,l values of eight pulsation modes, and thereby obtain asteroseismic measurements of several model parameters, including the stellar mass (0.55 Msolar) and Teff (~28200K). These values are consistent with those derived from published spectral fitting: Teff ~ 28400K and logg ~ 7.86. We also present persuasive evidence from apparent rotational mode splitting for two of the modes that indicates this compact object is a relatively rapid rotator with a period of 2h. In direct analogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude pulsation behaviour of EC20058 is entirely consistent with its inferred effective temperature, which indicates it is close to the blue edge of the DBV instability strip. Arguably, our most significant result from this work is the clear demonstration that EC20058 is a very stable pulsator with several dominant pulsation modes that can be monitored for their long-term stability.

  4. Optical characteristics of the earth's surface and atmosphere from the point of view of the remote sensing of natural resources: Review of the contemporary status of the problem

    NASA Technical Reports Server (NTRS)

    Tarnopolskiy, V. I.

    1978-01-01

    Widely used remote probing methods, and especially the multispectral method, for studying the earth from aerospace platforms necessitate the systematization and accumulation of data on the relationships between remote observations and measured parameters and characteristic properties and conditions of phenomena on the earth's surface. Data were presented on the optical characteristics of natural objects which arise during observations of these objects over a wide spectral interval which encompasses solar radiation reflected by the object as well as the object's inherent thermal radiation. The influence of the earth's atmosphere on remote measurements and several problems in simulation and calculation are discussed.

  5. Remote Sounding of the Earth's Atmospheric Limb From a Micro-Satellite Platform: a Feasibility Study of the ALTIUS Mission

    NASA Astrophysics Data System (ADS)

    Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.

    2008-08-01