Sample records for earth atmosphere

  1. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  2. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  3. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  4. Giant Impacts and Earth's Primordial Atmosphere

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2002-09-01

    Estimates of Earth's accretion timescale based on modeling (e.g. Wetherill 1990) and isotopic evidence (Halliday and Porcelli 2000) indicate that the Earth formed in 25-100 Myr. At least a portion of this accretion took place in the presence of the solar nebula. While the problem of nailing down the nebular lifetime remains open, observations of dust disks surrounding young stars and meteoritic evidence suggest that the gas disk existed and was involved in making planetary material for 10 Myr (e.g. Podosek & Cassen 1994, Trilling et al. 2001). The persistence of a remnant of the nebula's original gas disk during terrestrial planet accretion is certainly plausible. The existence of this remnant nebula has dynamical (Agnor & Ward 2002, Kominami & Ida 2002) and geochemical (Porcelli & Pepin 2000) implications for terrestrial planet formation. Nakazawa et al. (1985) explored the structure of Earth's primordial atmosphere as the solar nebula was dissipating. They found that even for low surface densities of nebular gas ( σ gas ~ 1 g cm-2 or ~0.1% of the minimum mass nebula), Earth can capture a significant primordial atmosphere directly from the nebula (i.e. total mass up to a few lunar masses, or ~ 105 times the current atmosphere). Such a massive primordial atmosphere may have played a dynamical role in the formation of the Moon (e.g. models of lunar capture have employed aerodynamic drag in Earth's atmosphere as the primary mechanism for reducing the Moon's orbital energy, Nakazawa et al. 1983). Conversely, the formation of the Moon may have played a role in removing Earth's primordial atmosphere. Giant impacts have been suggested as one possible mechanism that could accomplish global atmospheric removal (Ahrens 1993). We are using smooth particle hydrodynamics (SPH) to model the removal of Earth's primordial atmosphere via giant impact. We employ initial conditions similar to recent works on lunar formation (e.g. Canup & Asphaug 2001) but also include ideal gas

  5. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  6. Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A. H.; Walker, K.; Drob, D. P.; de Groot-Hedlin, C. D.

    2012-05-01

    The recently reinvigorated field of infrasonics is poised to provide insight into atmospheric structure and the physics of large atmospheric phenomena, just as seismology has shed considerable light on the workings and structure of Earth's solid interior. Although a natural tool to monitor the atmosphere and shallow Earth for nuclear explosions, it is becoming increasingly apparent that infrasound also provides another means to monitor a suite of natural hazards. The frequent observation of geophysical sources—such as the unsteady sea surface, volcanoes, and earthquakes—that radiate energy both up into the atmosphere and down into the liquid or solid Earth and transmission of energy across Earth's boundaries reminds us that Earth is an interconnected system. This review details the rich history of the unheard sound in the atmosphere and the role that infrasonics plays in helping us understand the Earth system.

  7. Atmospheres and evolution. [of microbial life on earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1981-01-01

    Studies concerning the regulation of the earth atmosphere and the relation of atmospheric changes to the evolution of microbial life are reviewed. The improbable nature of the composition of the earth atmosphere in light of the atmospheric compositions of Mars and Venus and equilibrium considerations is pointed out, and evidence for the existence of microbial (procaryotic) life on earth as far back as 3.5 billion years ago is presented. The emergence of eucaryotic life in the Phanerozoic due to evolving symbioses between different procaryotic species is discussed with examples given of present-day symbiotic relationships between bacteria and eucaryotes. The idea that atmospheric gases are kept in balance mainly by the actions of bacterial cells is then considered, and it is argued that species diversity is necessary for the maintenance and origin of life on earth in its present form.

  8. CLOUDS IN SUPER-EARTH ATMOSPHERES: CHEMICAL EQUILIBRIUM CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbarek, Rostom; Kempton, Eliza M.-R., E-mail: mbarekro@grinnell.edu, E-mail: kemptone@grinnell.edu

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer and Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solarmore » and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350–3000 K. Clouds should form along the temperature–pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K{sub 2}SO{sub 4} and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.« less

  9. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Mbarek, Rostom; Kempton, Eliza M.-R.

    2016-08-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.

  10. Atmospheric neutrino oscillations for Earth tomography

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  11. A hydrogen-rich early Earth atmosphere.

    PubMed

    Tian, Feng; Toon, Owen B; Pavlov, Alexander A; De Sterck, H

    2005-05-13

    We show that the escape of hydrogen from early Earth's atmosphere likely occurred at rates slower by two orders of magnitude than previously thought. The balance between slow hydrogen escape and volcanic outgassing could have maintained a hydrogen mixing ratio of more than 30%. The production of prebiotic organic compounds in such an atmosphere would have been more efficient than either exogenous delivery or synthesis in hydrothermal systems. The organic soup in the oceans and ponds on early Earth would have been a more favorable place for the origin of life than previously thought.

  12. Atmospheric Escape from the Closest Super-Earth

    NASA Astrophysics Data System (ADS)

    Ehrenreich, David

    2015-10-01

    In July 2015, we announced the discovery of the super-Earth HD 219134b, orbiting a V = 5.57 star 6.5-pc away from us (Motalebi et al. 2015). This is the brightest and closest transiting system known so far. With Spitzer and HARPS-N, we measured the density of HD 219134b, which is compatible with a rocky planet, possibly containing a large amount of volatile species. The planet receives high stellar irradiation, which could significantly erode its atmosphere. Preliminary estimates indicate that this 4.5 Earth-mass object should nonetheless retain a substantial atmosphere. HD 219134b lies sufficiently far from its star to allow the formation of a hydrogen cloud with a detectable coma. HST is the only telescope able to detect, for the first time, atmospheric escape from a super-Earth, by observing a Lyman-alpha transit. The detection of escaping hydrogen will represent a smoking gun for the presence of water vapor in the lower atmosphere. Constraining the mass-loss rate will allow us to probe the evolution of super-Earths and assess whether hotter super-Earths can be evaporation remnants. Resolving the Lyman-alpha absorption signal will also bring new insights on the dynamics in the exospheric clouds, revealing interaction between the host star and its super-Earth through radiation pressure and stellar wind. A non-detection could hint at a CO/CO2-rich 'super-Venus' and will prepare for adapted follow-up observations. Both outcomes will thus motivate new proposals in Cycle 24.

  13. Atmospheric Expression of Seasonality on the Early Earth and Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Olson, S. L.; Schwieterman, E. W.; Reinhard, C. T.; Ridgwell, A.; Lyons, T. W.

    2017-12-01

    Biologically modulated seasonality impacts nearly every chemical constituent of Earth's atmosphere. For example, seasonal shifts in the balance of photosynthesis and respiration manifest as striking oscillation in the atmospheric abundance of CO2 and O2. Similar temporal variability is likely on other inhabited worlds, and seasonality is often regarded as a potential exoplanetary biosignature. Seasonality is a particularly intriguing biosignature because it may allow us to identify life through the abundance of spectrally active gases that are not uniquely biological in origin (e.g., CO2 or CH4). To date, however, the discussion of seasonality as a biosignature has been exclusively qualitative. We lack both quantitative constraints on the likelihood of spectrally detectable seasonality elsewhere and a framework for evaluating potential false positive scenarios (e.g., seasonal CO2 ice sublimation). That is, we do not yet know for which gases, and under which conditions, we could expect to detect seasonality and reliably infer the presence of an active biosphere. The composition of Earth's atmosphere has changed dramatically through time, and consequently, the atmospheric expression of seasonality has necessarily changed throughout Earth history as well. Thus, Earth offers several case studies for examining the potential for observable seasonality on chemically and tectonically diverse exoplanets. We outline an approach for exploring the history of seasonality on Earth via coupled biogeochemical and photochemical models, with particular emphasis on the seasonal cycles of CO2, CH4, and O2/O3. We also discuss the remote detectability of these seasonal signals on directly imaged exoplanets via reflectance and emission spectra. We suggest that seasonality in O2 on the early Earth was biogeochemically significant—and that seasonal cycles in O3, an indirect biological product coupled to biogenic O2, may be a readily detectable fingerprint of life in the absence of

  14. Evolution of Earth&'s Atmosphere and Climate

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2004-12-01

    Earth's climate prior to 2.5 Ga seems to have been, if anything, warmer than today (1,2), despite the faintness of the young Sun (3). The idea that the young Sun was 25-30 percent less bright has been bolstered by data on mass loss from young, solar-type stars (4). Sagan and Mullen (1) suggested many years ago that the warming required to offset low solar luminosity was provided by high concentrations of reduced greenhouse gases. Ammonia has since been shown to be photochemically unstable in low-O2 atmospheres (5), but methane is a viable candidate. Methane photolyzes only at wavelengths shorter than 145 nm, so it is long-lived in the absence of O2 and O3. Furthermore, it is produced by anaerobic bacteria (methanogens) that are thought to have evolved early in Earth history (6). A biological methane flux comparable to today's flux, ~500 Tg CH4/yr, could have been generated by methanogens living in an anaerobic early ocean and sediments (7). This flux should have increased once oxygenic photosynthesis evolved because of increased production and recycling of organic matter (8). An Archean methane flux equal to today's flux could have generated atmospheric CH4 concentrations in excess of 1000 ppmv (9). This, in turn, could have provided 30 degrees or more of greenhouse warming (10) enough to have kept the early Earth warm even if atmospheric CO2 was no higher than today. All of this does not imply that CO2 concentrations must have been low throughout the Archean. Indeed, siderite-coated stream pebbles imply that pCO2 was greater than 2.5,e10-3 bar, or ~7 times present, at 3.2 Ga (11). Atmospheric CO2 could have been much higher than this if the continents had formed slowly (12) and/or if subduction of carbonates was inhibited (13). The rise in O2 at ~2.3 Ga (14,15) brought an end to the methane greenhouse and may have triggered the Huronian glaciation (10). Although methane concentrations declined with the rise of O2, they may still have remained much higher than

  15. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  16. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  17. Expedition Seven Takes Breathtaking Photo of Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Expedition Seven image, taken while aboard the International Space Station (ISS), shows the limb of the Earth at the bottom transitioning into the orange-colored stratosphere, the lowest and most dense portion of the Earth's atmosphere. The troposphere ends abruptly at the tropopause, which appears in the image as the sharp boundary between the orange- and blue-colored atmosphere. The silvery blue noctilucent clouds extend far above the Earth's troposphere. The silver of the setting moon is visible at upper right.

  18. Background Lamb waves in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nishida, Kiwamu; Kobayashi, Naoki; Fukao, Yoshio

    2014-01-01

    Lamb waves of the Earth's atmosphere in the millihertz band have been considered as transient phenomena excited only by large events. Here, we show the first evidence of background Lamb waves in the Earth's atmosphere from 0.2 to 10 mHz, based on the array analysis of microbarometer data from the USArray in 2012. The observations suggest that the probable excitation source is atmospheric turbulence in the troposphere. Theoretically, their energy in the troposphere tunnels into the thermosphere at a resonant frequency via thermospheric gravity wave, where the observed amplitudes indeed take a local minimum. The energy leak through the frequency window could partly contribute to thermospheric wave activity.

  19. Background Lamb waves in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Kobayashi, N.; Fukao, Y.

    2013-12-01

    Lamb waves of the Earth's atmosphere in the millihertz band have been considered as transient phenomena excited only by large events [e.g. the major volcanic eruption of Krakatoa in 1833, the impact of Siberian meteorite in 1908, the testing of large nuclear tests and the huge earthquakes, Garrett1969]. In a case of the solid Earth, observation of background free oscillations in the millihertz band-now known as Earth's background free oscillations or seismic hum, has been firmly established. Above 5 mHz, their dominant excitation sources are oceanic infragravity waves. At 3.7 and 4.4 mHz an elasto-acoustic resonance between the solid Earth and the atmosphere was observed [Nishida et al., 2000]. These seismic observations show that the contribution of atmospheric disturbances to the seismic hum is dominant below 5 mHz. Such contribution implies background excitations of acoustic-gravity waves in this frequency range. For direct detection of the background acoustic-gravity waves, our group conducted observations using an array of barometers [Nishida et al. 2005]. However, the spatial scale of the array of about 10 km was too small to detect acoustic modes below 10 mHz. Since then, no direct observations of these waves have been reported. In 2011, 337 high-resolution microbarometers were installed on a continental scale at USArray Transportable Array. The large and dense array enables us to detect the background atmospheric waves. Here, we show the first evidence of background Lamb waves in the Earth's atmosphere from 0.2 to 10 mHz, based on the array analysis of microbarometer data from the USArray in 2012. The observations suggest that the excitation sources are atmospheric disturbances in the troposphere. Theoretically, their energy in the troposphere tunnels into the thermosphere at a resonant frequency via thermospheric gravity wave, where the observed amplitudes indeed take a local minimum. The energy leak through the frequency window could partly contribute to

  20. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  1. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  2. Atmospheres of partially differentiated super-Earth exoplanets

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Sasselov, Dimitar

    2015-11-01

    Terrestrial exoplanets have been discovered in a range of sizes, densities and orbital locations that defy our expectations based upon the Solar System. Planets discovered to date with radii less than ~1.5-1.6 Earth radii all seem to fall on an iso-density curve with the Earth [1]. However, mass and radius determinations, which depend on the known properties of the host star, are not accurate enough to distinguish between a fully differentiated three-layer planet (core, mantle, ocean/atmosphere) and an incompletely differentiated planet [2]. Full differentiation of a planet will depend upon the conditions at the time of accretion, including the abundance of short-lived radioisotopes, which will vary from system to system, as well as the number of giant impacts the planet experiences. Furthermore, separation of metal and silicates at the much larger pressures found inside super-Earths will depend on how the chemistry of these materials change at high pressures. There are therefore hints emerging that not all super-Earths will be fully differentiated. Incomplete differentiation will result in a more reduced mantle oxidation state and may have implications for the composition of an outgassed atmosphere. Here we will present the first results from a chemical equilibrium model of the composition of such an outgassed atmosphere and discuss the possibility of distinguishing between fully and incompletely differentiated planets through atmospheric observations.[1] Rogers, L. 2015. ApJ, 801, 41. [2] Zeng, L. & Sasselov, D. 2013. PASP, 125, 227.

  3. Earth Global Reference Atmospheric Model (GRAM99): Short Course

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2007-01-01

    Earth-GRAM is a FORTRAN software package that can run on a variety of platforms including PC's. For any time and location in the Earth's atmosphere, Earth-GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc.. Dispersions (perturbations) of these parameters are also provided and have realistic correlations, means, and variances - useful for Monte Carlo analysis. Earth-GRAM is driven by observations including a tropospheric database available from the National Climatic Data Center. Although Earth-GRAM can be run in a "stand-alone" mode, many users incorporate it into their trajectory codes. The source code is distributed free-of-charge to eligible recipients.

  4. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  5. CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Laura; Fegley, Bruce, E-mail: laura_s@levee.wustl.ed, E-mail: bfegley@levee.wustl.ed

    2009-10-01

    We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds suchmore » as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.« less

  6. Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Inamdar, Niraj K.; Schlichting, Hilke E.

    Combined mass and radius observations have recently revealed many short-period planets a few times the size of Earth but with significantly lower densities. A natural explanation for the low density of these super Earths super-Earth is a voluminous gas atmosphere that engulfs more compact rocky cores. Planets with such substantial gas atmospheres may be a missing link between smaller planets, that did not manage to obtain or keep an atmosphere, and larger planets, that accreted gas too quickly and became gas giants gas- . In this chapter we review recent advancements in the understanding of low-density low- super-Earth formation and evolution. Specifically, we present a consistent picture of the various stages in the lives of these planets: gas accretion from the protoplanetary disk, possible atmosphere heating and evaporation mechanisms, collisions between planets, and finally, evolution up to the age at which the planets are observed.

  7. Biological modulation of planetary atmospheres: The early Earth scenario

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  8. Evolution of a steam atmosphere during earth's accretion

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Kasting, J. F.; Pollack, J. B.

    1988-04-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  9. Evolution of a steam atmosphere during earth's accretion

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Kasting, James F.; Pollack, James B.

    1988-01-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  10. GCM simulations of cold dry Snowball Earth atmospheres

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  11. Biological modulation of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1974-01-01

    Review of the evidence that the earth's atmosphere is regulated by life on the surface so that the probability of growth of the entire biosphere is maximized. Acidity, gas composition including oxygen level, and ambient temperature are enormously important determinants for the distribution of life. The earth's atmosphere deviates greatly from that of the other terrestrial planets in particular with respect to acidity, composition, redox potential and temperature history as predicted from solar luminosity. These deviations from predicted steady state conditions have apparently persisted over millions of years. These anomalies may be evidence for a complex planet-wide homeostasis that is the product of natural selection. Possible homeostatic mechanisms that may be further investigated by both theoretical and experimental methods are suggested.

  12. First Super-Earth Atmosphere Analysed

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are

  13. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  14. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes

  15. Surface and atmosphere parameter maps from earth-orbiting radiometers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.

    1976-01-01

    Earlier studies have shown that an earth-orbiting electrically scanned microwave radiometer (ESMR) is capable of inferring the extent, concentration, and age of sea ice; the extent, concentration, and thickness of lake ice; rainfall rates over oceans; surface wind speeds over open water; particle size distribution in the deep snow cover of continental ice sheets; and soil moisture content in unvegetated fields. Most other features of the surface of the earth and its atmosphere require multispectral imaging techniques to unscramble the combined contributions of the atmosphere and the surface. Multispectral extraction of surface parameters is analyzed on the basis of a pertinent equation in terms of the observed brightness temperature, the emissivity of the surface which depends on wavelength and various parameters, the sensible temperature of the surface, and the total atmospheric opacity which is also wavelength dependent. Implementation of the multispectral technique is examined. Properties of the surface of the earth and its atmosphere to be determined from a scanning multichannel microwave radiometer are tabulated.

  16. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less

  17. Catalytic processes in the atmospheres of earth and Venus

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Yung, Y. L.

    1982-01-01

    Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (ClOx) act as catalysts in the two atmospheres. On earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of ClOx catalysis and sulful dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.

  18. The effect of aerosols on the earth-atmosphere albedo

    NASA Technical Reports Server (NTRS)

    Herman, B. M.; Browning, S. R.

    1975-01-01

    The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).

  19. Cosmic dust in the earth's atmosphere.

    PubMed

    Plane, John M C

    2012-10-07

    This review discusses the magnitude of the cosmic dust input into the earth's atmosphere, and the resulting impacts from around 100 km to the earth's surface. Zodiacal cloud observations and measurements made with a spaceborne dust detector indicate a daily mass input of interplanetary dust particles ranging from 100 to 300 tonnes, which is in agreement with the accumulation rates of cosmic-enriched elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle atmosphere - by radar, lidar, high-flying aircraft and satellite remote sensing - indicate that the input is between 5 and 50 tonnes per day. There are two reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and undergo significant ablation. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: the formation of layers of metal atoms and ions; the nucleation of noctilucent clouds, which are a sensitive marker of climate change; impacts on stratospheric aerosols and O(3) chemistry, which need to be considered against the background of a cooling stratosphere and geo-engineering plans to increase sulphate aerosol; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  20. Impact-induced atmospheres and oceans on earth and Venus

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Abe, Y.

    1986-01-01

    The effects of planetesimal-impact induced atmosphere formation on the earth and Venus are modeled to gain an indication why the two planets, at relatively equal distances from the sun, evolved so differently. Both planets gained approximately 10 to the 21 kg of water from the impacts. The water mass of the accreting planetesimals would have remained, initially, as a hot atmosphere. A two-stream approximation is defined for the temperature profile of a plane parallel atmosphere in radiative equilibrium. It is shown that the Venus atmosphere did not, as happened on earth, condense into a hot ocean after the impact epoch. Instead, the greenhouse effect caused the Venus equilibrium thermal structure to remain higher than the vapor pressure, keepinig the atmosphere in a vapor phase until the vapor dissociated and H2 atoms eventually escaped into space.

  1. Earth Atmosphere Observations taken by the Expedition 35 Crew

    NASA Image and Video Library

    2013-04-03

    Earth atmosphere observation taken by the Expedition 35 crew aboard the ISS. The colors roughly denote the layers of the atmosphere (the orange troposphere, the white stratosphere, and the blue mesosphere).

  2. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bétrémieux, Yan; Kaltenegger, Lisa, E-mail: betremieux@mpia.de

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth,more » and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.« less

  3. [How did the earth's oxygen atmosphere originate?].

    PubMed

    Schäfer, G

    2004-09-01

    The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.

  4. Atmospherics: A Look at the Earth's Airy Shell.

    ERIC Educational Resources Information Center

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  5. The rise of oxygen in Earth's early ocean and atmosphere.

    PubMed

    Lyons, Timothy W; Reinhard, Christopher T; Planavsky, Noah J

    2014-02-20

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  6. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  7. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All of us who live on Earth must recognize that we play an ever-growing role in causing some of these changes. We must solve this great atmospheric mystery if we are to understand all these changes and know what to do about them.

  8. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    NASA Astrophysics Data System (ADS)

    1991-11-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All of us who live on Earth must recognize that we play an ever-growing role in causing some of these changes. We must solve this great atmospheric mystery if we are to understand all these changes and know what to do about them.

  9. Early evolution of the Earth: Accretion, atmosphere formation, and thermal history

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka; Matsui, Takafumi

    1986-03-01

    Atmospheric and thermal evolution of the earth growing by planetesimal impacts was modeled by taking into account the blanketing effect of an impact-induced H2O atmosphere and the temperature dependence of H2O degassing. When the water content of planetesimals is larger than 0.1% by weight and the accretion time of the earth is less than 5 × 107 years, the surface of the accreting earth melts and thus a “magma ocean” forms and covers the surface. The formation of a “magma ocean” will result in the initiation of core-mantle separation and mantle differentiation during accretion. Once a magma ocean is formed, the surface temperature, the degree of melting in the magma ocean, and the mass of the H2O atmosphere are nearly constant as the protoplanet grows further. The final mass of the H2O atmosphere is about 1021 kg, a value which is insensitive to variations in the model parameter values such as the accretion time and the water content of planetesimals. That the final mass of the H2O atmosphere is close to the mass of the present oceans suggests an impact origin for the earth's hydrosphere. On the other hand, most of the H2O retained in planetesimals will be deposited in the solid earth. Free water within the proto-earth may affect differentiation of the proto-mantle, in particular, the mantle FeO abundance and the incorporation of a light element in the outer core.

  10. Atmospheric CO2: principal control knob governing Earth's temperature.

    PubMed

    Lacis, Andrew A; Schmidt, Gavin A; Rind, David; Ruedy, Reto A

    2010-10-15

    Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.

  11. Thermochemistry and Photochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    NASA Astrophysics Data System (ADS)

    Hu, R.; Seager, S.

    2013-12-01

    Dectection and characterization of low-mass exoplanets is poised to accelerate in the coming decade. Some low-mass exoplanets, namely super Earths and some mini Neptunes, will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model, we have simulated the molecular composition of thick atmospheres on warm and hot super Earths/mini Neptunes, and classified thick atmospheres into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres, depending on the hydrogen abundance and the carbon to oxygen abundance ratio. We find that carbon has to be in the form of CO2 rather than CH4 or CO in an H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons. For future observations, we find for GJ 1214b that (1) C2H2 features at 1.0 and 1.5 μm in transmission are diagnostic for hydrocarbon-rich atmospheres; (2) a constraint on the thermal emission at 4.5 μm could differentiate water-rich atmospheres versus hydrocarbon-rich atmospheres; (3) a detection of water-vapor features and a confirmation of nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. For a hot super Earth like 55 Cnc e, the diagnostic features of water-rich atmospheres (H2O) and the diagnostic features of hydrocarbon-rich atmospheres (CO and C2H2) are well separated in transmission spectra at 0.6-5 μm, which would enable straightforward characterization. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Theoretical transmission spectra and thermal emission

  12. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  13. The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth

    NASA Technical Reports Server (NTRS)

    Mukhin, Lev M.; Gerasimov, M. V.

    1991-01-01

    The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth is discussed. The following subject areas are covered: (1) Earth's initial atmosphere; (2) continuous degassing; (3) impact processes and the Earth's protoatmosphere; and (4) the evolution of an impact-generated atmosphere.

  14. Atmospheric and oceanic excitation of decadal-scale Earth orientation variations

    NASA Astrophysics Data System (ADS)

    Gross, Richard S.; Fukumori, Ichiro; Menemenlis, Dimitris

    2005-09-01

    The contribution of atmospheric wind and surface pressure and oceanic current and bottom pressure variations during 1949-2002 to exciting changes in the Earth's orientation on decadal timescales is investigated using an atmospheric angular momentum series computed from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and an oceanic angular momentum series computed from a near-global ocean model that was forced by surface fluxes from the NCEP/NCAR reanalysis project. Not surprisingly, since decadal-scale variations in the length of day are caused mainly by interactions between the mantle and core, the effect of the atmosphere and oceans is found to be only about 14% of that observed. More surprisingly, it is found that the effect of atmospheric and oceanic processes on decadal-scale changes in polar motion is also only about 20% (x component) and 38% (y component) of that observed. Therefore redistribution of mass within the atmosphere and oceans does not appear to be the main cause of the Markowitz wobble. It is also found that on timescales between 10 days and 4 years the atmospheric and oceanic angular momentum series used here have very little skill in explaining Earth orientation variations before the mid to late 1970s. This is attributed to errors in both the Earth orientation observations prior to 1976 when measurements from the accurate space-geodetic techniques became available and to errors in the modeled atmospheric fields prior to 1979 when the satellite era of global weather observing systems began.

  15. A Case for an Atmosphere on Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  16. Atmospheric Neutrinos as a Tool for Exploring the Earth's Inner Parts

    NASA Astrophysics Data System (ADS)

    Naumov, P. Yu.; Sinev, V. V.

    2017-11-01

    Investigation of the Earth's inner parts requires developing new methods. It is well known that atmospheric neutrinos traverse the Earth, undergoing virtually no interaction. The change in the neutrino flux is due exclusively to neutrino oscillations, which are enhanced by the effect of Earth's matter. At the present time, there are two projects outside Russia (PINGU and ORCA) that are aimed at detecting atmospheric neutrinos that traversed the Earth, which are supposed to be used for purposes of Earth's tomography. The creation of a large neutrino detector on the basis of a liquid scintillator is planned at the BaksanNeutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) in the North Caucasus. After testing this detector, there will arise the possibility of employing it as part of the worldwide network of neutrino detectors for studying the Earth's inner parts.

  17. Biospheric-atmospheric coupling on the early Earth

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1991-01-01

    Theoretical calculations performed with a one-dimensional photochemical model have been performed to assess the biospheric-atmospheric transfer of gases. Ozone reached levels to shield the Earth from biologically lethal solar ultraviolet radiation (220-300 nm) when atmospheric oxygen reached about 1/10 of its present atmospheric level. In the present atmosphere, about 90 percent of atmospheric nitrous oxide is destroyed via solar photolysis in the stratosphere with about 10 percent destroyed via reaction with excited oxygen atoms. The reaction between nitrous oxide and excited oxygen atoms leads to the production of nitric oxide in the stratosphere, which is responsible for about 70 percent of the global destruction of oxygen in the stratosphere. In the oxygen/ozone deficient atmosphere, solar photolysis destroyed about 100 percent of the atmospheric nitrous oxide, relegating the production of nitric oxide via reaction with excited oxygen to zero. Our laboratory and field measurements indicate that atmospheric oxygen promotes the biogenic production of N2O and NO via denitrification and the biogenic production of methane by methanogenesis.

  18. Water inventories on Earth and Mars: Clues to atmosphere formation

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1992-01-01

    Water is distributed differently on Earth and on Mars and the differences may have implications for the accretion of the two planets and the formation of their atmospheres. The Earth's mantle appears to contain at least several times the water content of the Martian mantle even accounting for differences in plate tectonics. One explanation is that the Earth's surface melted during accretion, as a result of development of a steam atmosphere, thereby allowing impact-devolitalized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second possibility is suggested by the siderophile elements in the Earth's mantle, which indicates the Earth acquired a volatile-rich veneer after the core formed. Mars may have acquired a late volatile-rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water rich veneer. This perception of Mars with a wet surface but dry interior is consistent with our knowledge of Mars' geologic history.

  19. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    NASA Image and Video Library

    1991-05-06

    STS039-610-037 (28 April-6 May 1991) --- Numerous atmospheric scattering layers over Earth are apparent in this frame. The layers consist of fine particles suspended in very stable layers of the atmosphere. This photo was taken with a 70mm Rolliflex camera during the Space Shuttle Discovery's eight day mission. Crew members onboard were astronauts Michael L. Coats, L. Blaine Hammond, Guion S. Bluford, Richard J. Hieb, Gregory J. Harbaugh, Donald R. McMonagle and Charles L. (Lacy) Veach.

  20. Structure and Abundance of Nitrous Oxide Complexes in Earth's Atmosphere.

    PubMed

    Salmon, Steven R; de Lange, Katrina M; Lane, Joseph R

    2016-04-07

    We have investigated the lowest energy structures and binding energies of a series of atmospherically relevant nitrous oxide (N2O) complexes using explicitly correlated coupled cluster theory. Specifically, we have considered complexes with nitrogen (N2-N2O), oxygen (O2-N2O), argon (Ar-N2O), and water (H2O-N2O). We have calculated rotational constants and harmonic vibrational frequencies for the complexes and the constituent monomers. Statistical mechanics was used to determine the thermodynamic parameters for complex formation as a function of temperature and pressure. These results, in combination with relevant atmospheric data, were used to estimate the abundance of N2O complexes in Earth's atmosphere as a function of altitude. We find that the abundance of N2O complexes in Earth's atmosphere is small but non-negligible, and we suggest that N2O complexes may contribute to absorption of terrestrial radiation and be relevant for understanding the atmospheric fate of N2O.

  1. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    PubMed

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  2. Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-12-01

    Vegetation, wildfire and atmospheric oxygen on Earth have changed throughout geological times, and are dependent on each other, determining the evolution of ecosystems, the carbon cycle, and the climate, as found in the fossil record. Previous work in the literature has only studied flaming wildfires, but smouldering is the most persistent type of fire phenomena, consuming large amounts of biomass. In this study, the dependence of smouldering fires in peatlands, the largest wildfires on Earth, with atmospheric oxygen is investigated. A physics-based computational model of reactive porous media for peat fires, which has been previously validated against experiments, is used. Simulations are conducted for wide ranges of atmospheric oxygen concentrations and fuel moisture contents to find thresholds for ignition and extinction. Results show that the predicted rate of spread increases in oxygen-rich atmospheres, while it decreases over wetter fuels. A novel nonlinear relationship between critical oxygen and critical moisture is found. More importantly, we show that compared to previous work on flaming fires, smouldering fires can be ignited and sustained at substantially higher moisture contents (up to 100% MC vs. 40% for 21% oxygen level), and lower oxygen concentrations (down to 13% vs. 16%). This defines a new atmospheric oxygen threshold for wildfires (13%), even lower than previously thought in Earth Sciences (16%). This finding should lead to reinterpretation of how the char remains observed in the fossil record constrain the lower concentration of oxygen in Earth's atmosphere in geological timescale. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Earth-Atmospheric Coupling During Strong Earthquakes by Analyzing MODIS Data

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Williams, Robin G.; Freund, Friedemann

    2001-01-01

    Interactions between the Earth and the atmosphere during major earthquakes (M greater than 5) are the subject of this investigation. Recently a mechanism has been proposed predicting the build-up of positive ground potentials prior to strong earthquake activity. Connected phenomena include: transient conductivity of rocks, injection of currents, possibly also electromagnetic emission and light emission from high points at the surface of the Earth. To understand this process we analyze vertical atmospheric profiles, land surface and brightness (temperature) data, using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite launched in December 1999. MODIS covers the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km). Using MODIS data we look for correlations between the atmospheric dynamics and solid Earth processes for the January 2001 strong earthquakes in San Salvador and India. As part of the build-up of positive grounds potential, an IR luminescence is predicted to occur in the 8-12 micrometer band. We use the MODIS data to differentiate between true "thermal" signals and IR luminescence. Indeed, on the basis of a temporal and spatial distribution analysis, a thermal anomaly pattern is found that appears to be related to the seismic activity. Aerosol content and atmospheric instability parameters also change when ground charges build up causing ion emission and leading to a thin aerosol layer over land. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index. Anomalous trends have been identified in few days prior to the main shocks. The significance of this observation should be explored further using other data sets.

  4. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  5. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-06

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  6. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  7. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b.

    PubMed

    Kreidberg, Laura; Bean, Jacob L; Désert, Jean-Michel; Benneke, Björn; Deming, Drake; Stevenson, Kevin B; Seager, Sara; Berta-Thompson, Zachory; Seifahrt, Andreas; Homeier, Derek

    2014-01-02

    Recent surveys have revealed that planets intermediate in size between Earth and Neptune ('super-Earths') are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7 - 17), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet's atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5σ confidence. The planet's atmosphere must contain clouds to be consistent with the data.

  8. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N.; Richardson, S.; Sarmiento, D. P.; Hardesty, M.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Razlivanov, I. N.; Song, Y.; O'Keeffe, D.; Turnbull, J. C.; Vimont, I.; Whetstone, J. R.; Possolo, A.; Prasad, K.; Lopez-Coto, I.

    2014-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  9. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  10. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-04-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  11. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  12. Development status of the EarthCARE Mission and its atmospheric Lidar

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira Do Carmo, J.; Lefebvre, A.; Eisinger, M.; Wehr, T.

    2016-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution up to 100 m from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are also separated and measured on dedicated channels. This paper gives an overview of the mission science objective, the satellite configuration with its four instruments and details more specifically the implementation and development status of the Atmospheric Lidar. Manufacturing status and first equipment qualification test results, in particular for what concerns the laser transmitter development are presented.

  13. Atmospheric Production of Perchlorate on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  14. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Renyu; Seager, Sara, E-mail: hury@caltech.edu

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmospheremore » and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 μm in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.« less

  15. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    NASA Astrophysics Data System (ADS)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  16. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    PubMed

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-04

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  17. Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses

    PubMed Central

    Gebauer, S.; Godolt, M.; Palczynski, K.; Rauer, H.; Stock, J.; von Paris, P.; Lehmann, R.; Selsis, F.

    2013-01-01

    Abstract Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5–M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process

  18. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  19. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  20. The effects from high-altitude storm discharges in Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Kozak, L.; Odzimek, A.; Ivchenko, V.; Kozak, P.; Gala, I.; Lapchuk, V.

    2016-06-01

    The regularities of appearance of transient luminous effects in Earth atmosphere and features of their ground-based observations are considered. Using video-observations obtained in the Institution of Geophysics of Poland Academy of Sciences the energy of atmospheric afterglow from these processes in visual wavelength range has been determined. Calibrating curve was plotted using unfocal images of Vega. The star spectrum,atmosphere absorption coefficient and characteristics of the observational camera were used.

  1. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  2. Apollo 13 Service Module and Lunar Module as entering Earth's atmosphere

    NASA Image and Video Library

    1970-04-18

    S70-17646 (18 April 1970) --- An unidentified airline passenger snapped these bright objects, believed to be the Apollo 13 Service Module (SM) and Lunar Module (LM) as they entered Earth's atmosphere over the Pacific Ocean on April 18, 1970. The aircraft, an Air New Zealand DC-8 was midway between the Fiji Islands (Nandi Island to be specific) and Auckland, New Zealand, when the photograph was taken. The crew men of the problem plagued Apollo 13 mission jettisoned the LM and SM prior to entering Earth's atmosphere in the Apollo 13 Command Module (CM).

  3. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  4. Constraints on Earth degassing history from the argon isotope composition of Devonian atmosphere

    NASA Astrophysics Data System (ADS)

    Stuart, F. M.; Mark, D.

    2012-04-01

    The primordial and radiogenic isotopes of the noble gases combine to make them a powerful tool for determining the time and tempo of the outgassing of the Earth's interior. The outgassing history of the Earth is largely constrained from measurements of the isotopic composition of He, Ne, Ar and Xe in samples of modern mantle, crust and atmosphere. There have been few unequivocal measurement of the isotopic composition of noble gases in ancient atmosphere. We have re-visited whether ancient Ar is trapped in the ~400 Ma Rhynie chert [1]. We have analysed samples of pristine Rhynie chert using the ARGUS multi-collector mass spectrometer calibrated against the new determination of atmospheric Ar isotope ratios [2]. 40Ar/36Ar ratios are low, with many lower than the modern air value (298.8). Importantly these are accompanied by atmospheric 38Ar/36Ar ratios indicating that the low 40Ar/36Ar are not due to mass fractionation. We conclude that the Rhynie chert has captured Devonian atmosphere-derived Ar. The data indicate that the Devonian atmosphere 40Ar/36Ar was at least 3 % lower than the modern air value. Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last 400 million years, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the rate determined from ice cores for the last 800,000 years [3] and implies that there has been no resolvable temporal change in Earth outgassing rate since mid-Palaeozoic times. The new data require the Earth outgassed early, and suggests that pristine samples of Archaean and Proterozoic chert may prove useful as palaeo-atmosphere tracers. [1] G. Turner, J. Geol. Soc. London 146, 147-154 (1989) [2] D. Mark, F.M. Stuart, M. de Podesta, Geochim. Cosmochim. Acta 75, 7494-7501 [3] M. Bender et al., Proc. Nat. Acad. Sci. 105, 8232-8237 (2008)

  5. Haze production in the atmospheres of super-Earths and mini-Neptunes: Insight from PHAZER lab

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; He, Chao; Kempton, Eliza; Moses, Julianne I.; Vuitton, Veronique; Lewis, Nikole

    2017-10-01

    Super-Earths and mini-Neptunes (~1.2-3 Earth radii) comprise a large fraction of planets in the universe and TESS (Transiting Exoplanet Survey Satellite) will increase the number that are amenable to atmospheric characterization with observatories like JWST (James Webb Space Telescope). These atmospheres should span a large range of temperature and atmospheric composition phase space, with no solar system analogues. Interpretation of current and future atmospheric observations of super-Earths and mini-Neptunes requires additional knowledge about atmospheric chemistry and photochemical haze production. We have experimentally investigated haze formation for H2, H2O, and CO2 dominated atmospheres (100x, 1000x, and 10000x solar metallicity) for a range of temperatures (300 K, 400 K, and 600 K) using the PHAZER (Planetary Haze Research) experiment at Johns Hopkins University. This is a necessary step in understanding which, if any, super-Earths and mini-Neptunes possess the conditions required for efficient production of photochemical haze in their atmospheres. We find that the production rates vary over a few orders of magnitudes with some higher than our nominal Titan experiments. We therefore expect that planets in this temperature and atmospheric composition phase space will exhibit a range of particle concentrations and some may be as hazy as Titan.

  6. Life of the Earth in the solar atmosphere (multimedia manual)

    NASA Astrophysics Data System (ADS)

    Kononovich, E. V.; Smirnova, O. B.; Matveychuk, T. V.; Jakunina, G. V.; Krasotkin, S. A.

    2006-08-01

    The purpose of this manual is to illustrate the major physical processes occurring in the Sun - Earth system and ecology of the planet life. The material includes three individual parts: "The Earth", "The Sun" and "The solar-terrestrial connections". Sections do not require cross-references since each of them is self-complete. Inside the sections the material is located in sequences based on the principle: from simple to complex. The material is designed for students of the senior classes of high school and junior university level interested by the problem. The section "The Earth" is devoted to the description of the basic characteristics of the planet: internal structure, magnetic field, lithosphere and an atmosphere together with various occurring in them tectonic, hydro- and atmospheric processes. The top layers of an atmosphere, an ionosphere, a zone of polar lights, radiating belts, magnetosphere are also considered. The section "The Sun" includes the following subsections: the Sun as a star, internal structure of the Sun, Solar atmosphere, solar activity, cyclicity of the solar activity, helioseismology. In the section "The solar-terrestrial connections" the previous material is used to present the influence of the active solar processes on the most various aspects of a terrestrial life: ecological, biological, mental, social, economic and so forth. The problem of forecasting of the solar activity as the key parameter determining a condition of the so-called space weather is considered.

  7. Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.

    2016-12-01

    The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information

  8. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  9. THEORETICAL EMISSION SPECTRA OF ATMOSPHERES OF HOT ROCKY SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Yuichi; Ikoma, Masahiro; Kawahara, Hajime

    Motivated by recent detection of transiting high-density super-Earths, we explore the detectability of hot rocky super-Earths orbiting very close to their host stars. In an environment hot enough for their rocky surfaces to be molten, they would have an atmosphere composed of gas species from the magma oceans. In this study, we investigate the radiative properties of the atmosphere that is in gas/melt equilibrium with the underlying magma ocean. Our equilibrium calculations yield Na, K, Fe, Si, SiO, O, and O{sub 2} as the major atmospheric species. We compile the radiative absorption line data of those species available in the literature andmore » calculate their absorption opacities in the wavelength region of 0.1–100 μm. Using them, we integrate the thermal structure of the atmosphere. Then, we find that thermal inversion occurs in the atmosphere because of the UV absorption by SiO. In addition, we calculate the ratio of the planetary to stellar emission fluxes during secondary eclipse, and we find prominent emission features induced by SiO at 4 μm detectable by Spitzer, and those at 10 and 100 μm detectable by near-future space telescopes.« less

  10. Potential biosignatures in super-Earth atmospheres II. Photochemical responses.

    PubMed

    Grenfell, J L; Gebauer, S; Godolt, M; Palczynski, K; Rauer, H; Stock, J; von Paris, P; Lehmann, R; Selsis, F

    2013-05-01

    Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with

  11. Atmospheric heat engines on earth and Mars

    NASA Astrophysics Data System (ADS)

    Philip, J. R.

    1987-06-01

    The character of the earth's atmospheric heat engine depends, inter alia, on the relatively tight linkage between surface fluxes of energy and of H2O. On Mars, on the other hand, H2O-based latent heat fluxes are only a trivial fraction of total surface energy fluxes, and the dominant component of the working fluid is CO2. These considerations are made quantitative through evaluation of Lambda, the equivalent temperature excess at the surface for a particular component of the working fluid. The very different values (and latitudinal distribution) of Lambda on the two planets signalize vividly their different meteorology. Preliminary study of the climatology of Lambda on earth brings out, in particular, the tightness of the H2O-energy linkage in the tropics.

  12. Organic chemistry in a CO2 rich early Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  13. A new model of the Earth system nitrogen cycle: how plates and life affect the atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2017-12-01

    Nitrogen is the main component of Earth's atmosphere. It plays a key role in the evolution of the biosphere and surface of Earth [1]. There are contrasting views, however, on how N has evolved on the surface of the Earth over time. Some modeling efforts [e.g., 2] indicate a steady-state level of N in the atmosphere over geologic time, while geochemical [e.g., 3], other proxies [e.g., 4], and more recent models [5] indicate the mass of N in the atmosphere can change dramatically over Earth history. This conundrum, and potential solutions to it, present distinct interpretations of the history of Earth, and teleconnections between the surface and interior of the planet have applications to other terrestrial bodies as well. To help investigate this conundrum, we have constructed an Earth-system N cycle box model. To our knowledge, this is the most capable model for addressing evolution of the N reservoirs of Earth through time. The model combines biologic and geologic processes, driven by a mantle cooling history, to more fully describe the N cycle through geologic history. In addition to a full biologic N cycle (fixing, nitrification, denitrification), we also dynamically solve for PO4 through time and we have a prescribed O2 history. Results indicate that the atmosphere of Earth could have experienced major changes in mass over geologic time. Importantly, the amount of N in the atmosphere today appears to be directly related to the total N budget of the silicate Earth. For example, high initial atmospheric mass, suggested as a solution to the Faint Young Sun Paradox [1], is drawn down over time. This supports work that indicates the mantle has significantly more N than the atmosphere does today [6]. Contrastingly, model runs with low total N result in a crash in atmospheric mass. In nearly all model runs the bulk silicate Earth contains the majority of the planet's N. [1] Goldblatt et al. (2009) Nat. Geosci., 2, 891-896. [2] Berner, R. (2006) Geology., 34, 413

  14. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Freund, F.; Ouzounov, D.

    2001-12-01

    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  15. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.

  16. The primary solar-type atmosphere surrounding the accreting Earth: H2O-induced high surface temperature.

    NASA Astrophysics Data System (ADS)

    Sasaki, S.

    In the solar nebula, a growing planet attracts ambient gas to form a solar-type atmosphere. The structure of this H2-He atmosphere is calculated assuming the Earth was formed in the nebula. The blanketing effect of the atmosphere renders the planetary surface molten when the planetary mass exceeds 0.2 ME (ME being the present Earth's mass). Reduction of the surface melt by atmospheric H2 should add a large amount of H2O to the atmosphere: under the quartz-iron-fayalite oxygen buffer, partial pressure ratio P(H2O)/P(H2) becomes higher than 0.1. Enhancing opacity and gas mean molecular weight, the excess H2O raises the temperature and renders the atmosphere in convective equilibrium, while the dissociation of H2 suppresses the adiabatic temperature gradient. The surface temperature of the proto-Earth can be as high as 4700K when its mass is 1 ME. Such a high temperature may accelerate the evaporation of surface materials. A deep totally-molten magma ocean should exist in the accretion Earth.

  17. Is the ;Earth-ionosphere capacitor; a valid component in the atmospheric global electric circuit?

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Rycroft, Michael; Williams, Earle; Price, Colin

    2017-11-01

    This paper examines whether the Earth-ionosphere capacitor (EIC) model is correct, by comparing observed atmospheric electrical properties with those expected for a spherical capacitor, as defined in electrostatics. The comparisons suggest that the EIC concept cannot be reconciled with, and hence cannot account for, the observations, particularly the rapid reduction of the atmospheric electric field with height that is measured. This means that the spherical EIC concept is incorrect by being too simplistic; it is thus misleading. The reason for this flawed concept is simple: the model disregards the non-uniform conductivity of the atmosphere which requires the presence of a net positive charge in the lower atmosphere that equals in magnitude the Earth's negative charge. This positive charge shields the action of the Earth's negative charge from polarizing the ionosphere positively. Thus, the lower D region ionosphere remains electrically neutral, which makes the EIC concept inappropriate.

  18. Comment on "A hydrogen-rich early Earth atmosphere".

    PubMed

    Catling, David C

    2006-01-06

    Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H2. The model also neglects Earth's magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.

  19. Chemistry of Earth's Putative Steam Atmosphere

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Schaefer, L.

    2007-12-01

    The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.

  20. Revised Atmospheric Angular Momentum Series Related to Earth's Variable Rotation under Consideration of Surface Topography

    NASA Technical Reports Server (NTRS)

    Zhou, Y. H.; Salstein, D. A.; Chen, J. L.

    2006-01-01

    The atmospheric angular momentum is closely related to variations in the Earth rotation. The atmospheric excitation function (AEF), or namely atmospheric effective angular momentum function, is introduced in studying the atmospheric excitation of the Earth's variable rotation. It may be separated into two portions, i.e, the "wind" terms due to the atmospheric motion relative to the mantle and the "pressure" terms due to the variations of atmospheric mass distribution evident through surface pressure changes. The AEF wind terms during the period of 1948-2004 are re-processed from the NCEP/NCAR (National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis 6-hourly wind and pressure fields. Some previous calculations were approximate, in that the wind terms were integrated from an isobaric lower boundary of 1000 hPa. To consider the surface topography effect, however, the AEF is computed by integration using the winds from the Earth's surface to 10 hPa, the top atmospheric model level, instead of from 1000 hPa. For these two cases, only a minor difference, equivalent to approx. 0.004 milliseconds in length-of-day variation, exists with respect to the axial wind term. However, considerable differences, equivalent to 5-6 milliarcseconds in polar motion, are found regarding equatorial wind terms. We further compare the total equatorial AEF (with and without the topographic effect) with the polar motion excitation function (PMEF) during the period of 1980-2003. The equatorial AEF gets generally closer to the PMEF, and improved coherences are found between them when the topography effect is included. Keywords: Atmospheric angular momentum, Atmospheric excitation function, Earth rotation, Topography, Wind, Pressure.

  1. Earth's Mysterious Atmosphere: Atlas 1 Teacher's Guide with Activities.

    ERIC Educational Resources Information Center

    Essex Corp., Huntsville, AL.

    This atmospheric studies teacher's guide for use with middle school students blends lessons in chemistry, physics, and the life, earth, and space sciences in an attempt to accomplish the following: to nurture students' natural curiosity and excitement about science, mathematics, and technology; to encourage career exploration in science,…

  2. Earth rotation and ENSO events: combined excitation of interannual LOD variations by multiscale atmospheric oscillations

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Ding, Xiaoli; Zhou, Yonghong; Chen, Yongqi

    2003-03-01

    Time series of the length of day characterizing the rate of Earth rotation, the atmospheric angular momentum and the Southern Oscillation Index from 1962 to 2000 are used to reexamine the relationships between the ENSO events and the changes in the length of day, as well as the global atmospheric angular momentum. Particular attention is given to the different effects of the 1982-1983 and 1997-1998 ENSO events on the variations of Earth rotation. The combined effects of multiscale atmospheric oscillations (seasonal, quasi-biennial and ENSO time scales) on the anomalous variations of the interannual rates of Earth rotation are revealed in this paper by studying the wavelet spectra of the data series.

  3. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  4. Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere.

    PubMed

    Plass, G N; Kattawar, G W

    1970-05-01

    The polarization of the reflected and transmitted radiation is calculated for a realistic model of the earth's atmosphere at five wavelengths ranging from 0.27 micro to 1.67 micro. The single scattering matrix is calculated from the Mie theory for an aerosol size distribution appropriate for our atmosphere. The solar photons are followed through multiple collisions with the aerosols and the Rayleigh scattering centers in the atmosphere by a Monte Carlo method. The aerosol number density as well as the ratio of aerosol to Rayleigh scattering varies with height. The proportion of aerosol to Rayleigh scattering is adjusted for each wavelength; ozone absorption is included where appropriate. The polarization is presented as a function of the zenith and azimuthal angle for six values of the earth's albedo, two values of the solar zenith angle, and four values of the total aerosol concentration. In general the polarization decreases as the wavelength increases and as the total aerosol concentration increases (because of the increasing importance of aerosol scattering). In most situations the polarization is much more sensitive than the radiance to changes in the parameters which specify the atmosphere.

  5. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of Venus' atmosphere. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of this CO2 may have resulted in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises concerning this hypothesis is whether this would have resulted in a runaway greenhouse affect. One-dimensional radiative/convective model calculations show that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 would have been less than 100C and no runaway greenhouse should have occurred. The climatic stability of the early atmosphere is a consequence of three factors: (1) reduced solar luminosity at that time; (2) an increase in planetary albedo caused by Rayleigh scattering by CO2; and (3) the stabilizing effects of moist convection. The latter two factors are sufficient to prevent a CO2-induced runaway greenhouse on the present Earth and for CO2 levels up to 100 bars. It is determined whether a runaway greenhouse could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed once the influx of material slowed down.

  6. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  7. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  8. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  9. Applying Authentic Data Analysis in Learning Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.

    2017-09-01

    The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.

  10. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  11. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  12. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  13. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  14. Contributions of high-altitude winds and atmospheric moment of inertia to the atmospheric angular momentum-earth rotation relationship

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.

    1985-01-01

    For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.

  15. Atmospheric breakup of a small comet in the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Teterev, A. V.; Misychenko, N. I.; Rudak, L. V.; Romanov, G. S.; Smetannikov, A. S.; Nemchinov, I. V.

    1993-01-01

    The aerodynamic stresses can lead to the deformation and even to destruction of the meteoroids during their flight through the atmosphere. The pressure at the blunt nose of the cosmic body moving at very high speed through the dense layers of the atmosphere may be much larger than the tensile or the compressive strength of the body. So the usage of the hydrodynamics theory is validated. The estimates show that the transverse velocity of the substance of the body U is of the order of (rho(sub a)/rho(sub o))(sup 1/2)V where V is the velocity of the body and rho(sub o) is its density, rho(sub a) is the density of the atmosphere. The separation of the fragments is larger than the diameter of the body D if D is less than D(sub c) = 2H(square root of rho(sub a)/rho(sub o)), where H is the characteristic scale of the atmosphere. For an icy body one obtains U = 1/30(V) and critical diameter D(sub C) = 500 m. The process of the disintegration of the body is still not fully understood and so one can use the numerical simulation to investigate it. Such simulations where conducted for the Venusian atmosphere and the gaseous equation of state of the body was used. For the Earth atmosphere for the velocity V = 50 km/s the pressure at the blunt nose of the body is 25 kbar, and is of the order of bulk modulus of compressibility of the water or ice. The realistic EOS of water in tabular form was used. It was assumed that the initial shape of the body was spherical and the initial diameter D(sub o) of the body is 200 m and so it is smaller than the critical diameter D(sub C). The initial kinetic energy of the icy body is equivalent to the energy of the explosion 1200 Mt of TNT. The results of the simulation of the deformation of the body during its vertical flight through the atmosphere and during its impact into the ocean are presented.

  16. A statistical look at the retrieval of exoplanetary atmospheres of super Earths and giant planets

    NASA Astrophysics Data System (ADS)

    Rocchetto, Marco; Waldmann, Ingo Peter; Tinetti, Giovanna; Yurchenko, Sergey; Tennyson, Jonathan

    2015-08-01

    Over the past decades transit spectroscopy has become one of the pioneering methods to characterise exoplanetary atmospheres. With the increasing number of observations, and the advent of new ground and spaced based instruments, it is now crucial to find the most optimal and objective methodologies to interpret these data, and understand the information content they convey. This is particularly true for smaller and fainter super Earth type planets.In this conference we will present a new take on the spectral retrieval of transiting planets, with particular focus on super Earth atmospheres. TauREx (Waldmann et al. 2015a,b.) is a new line-by-line radiative transfer atmospheric retrieval framework for transmission and emission spectroscopy of exoplanetary atmospheres, optimised for hot Jupiters and super Earths. The code has been built from scratch with the ideas of scalability, flexibility and automation. This allows to run retrievals with minimum user input that can be scaled to large cluster computing. Priors on the number and types of molecules considered are automatically determined using a custom built pattern recognition algorithm able to identify the most likely absorbers/emitters in the exoplanetary spectra, minimising the human bias in selecting the major atmospheric constituents.Using these tools, we investigate the impact of signal to noise, spectral resolution and wavelength coverage on the retrievability of individual model parameters from transit spectra of super Earths, and put our models to test (Rocchetto et al. 2015). Characterisation of the atmospheres of super Earths through transit spectroscopy is paramount, as it can provide an indirect - and so far unique - way to probe the nature of these planets. For the first time we analyse in a systematic way large grids of spectra generated for different observing scenarios. We perform thousands of retrievals aimed to fully map the degeneracies and understand the statistics of current exoplanetary

  17. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  18. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  19. Implications of Δ33S for Evolution of Earth's Sulfur Cycle and Atmosphere

    NASA Astrophysics Data System (ADS)

    Farquhar, J.; Wing, B. A.

    2002-12-01

    The recent observation of large magnitude Δ33S anomalies in parts of the rock record has changed the way that we view the sulfur cycle. On the basis of Δ33S we can divide the sulfur cycle into three distinct phases - an Archean phase, an early Paleoproterozoic phase, and a modern phase. The occurrence of large magnitude Δ33S anomalies in rocks of Archean age (>2.45 Ga) is attributed to deep UV photolysis of sulfur dioxide in an atmosphere that was largely anoxic with <= 10-5 PAL O2. The presence of multiple exit channels for both oxidized and reduced atmospheric sulfur allowed efficient transfer of sulfur isotope anomalies to the Earth's surface reservoirs under these conditions (see Pavlov and Kasting, 2002). The absence of an active cycle of surface oxidation and bacterial (?) sulfate reduction insured preservation of the anomalies in the rock record. During the early Paleoproterozoic (<2.45 Ga but > 2.1 Ga) the occurrence of isotopic anomalies with substantially smaller magnitudes points to an atmosphere with higher but probably still diminutive levels of oxygen. As suggested by variations in Δ33S associated with rocks representing global glacial intervals, oxygen levels were probably fluctuating during this interval and reflect the preference of Earth's atmosphere for either a stable reduced or oxidized state. The absence of measurable anomalies in the rock record after 2.1 Ga points to an atmosphere that has been largely oxidized (> 10-5 to 10-2 PAL O2) since then. New Δ33S data from a variety of terrestrial rock samples provide unique insights into the nature of Earth's early surface environment and allow well-constrained speculation about the evolution of Earth's sulfur cycle.

  20. Hadley cell dynamics of a cold and virtually dry Snowball Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Held, Isaac; Marotzke, Jochem

    2010-05-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate a cold and virtually dry Snowball Earth atmosphere that results from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2. The aim of this study is the investigation of the zonal-mean circulation of a Snowball Earth atmosphere, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. To ease comparison with theories, incoming solar insolation follows permanent equinox conditions with disabled diurnal cycle. The meridional circulation consists of a thermally direct cell extending from the equator to 45 N/S with ascent in the equatorial region, and a weak thermally indirect cell with descent between 45 and 65 N/S and ascent in the polar region. The former cell corresponds to the present-day Earth's Hadley cell, while the latter can be viewed as an eddy-driven Ferrell cell; the present-day Earth's direct polar cell is missing. The Hadley cell itself is subdivided into a vigorous cell confined to the troposphere and a weak deep cell reaching well into the stratosphere. The dynamics of the vigorous Snowball Earth Hadley cell differ substantially from the dynamics of the present-day Hadley cell. The zonal momentum balance shows that in the poleward branch of the vigorous Hadley cell, mean flow meridional advection of absolute vorticity is not only balanced by eddy momentum flux convergence but also by vertical diffusion. Inside the poleward branch, eddies are more important in the upper part and vertical diffusion is more important in the lower part. Vertical diffusion also contributes to the meridional momentum balance as it decelerates the vigorous Hadley cell by downgradient momentum mixing between its poleward and equatorward branch. Zonal winds, therefore, are not in thermal wind balance in

  1. Our life is protected by the Earth's atmosphere and magnetic field: what aurora research tells us.

    PubMed

    Kamide, Y

    2001-01-01

    Our sun is an average middle-aged star. Without the sun, there would be no atmosphere, no water, and no life on the Earth. The sun is constantly changing, providing the Earth with energy through a complicated chain of processes that occur in space surrounding the Earth. This paper demonstrates that life on Earth is protected by two barriers, i.e., the atmosphere and the magnetic field, against otherwise menacing events in space. Because of these shielding effects, we, peacefully sitting on the Earth's surface, are not aware of a number of critical and potentially dangerous episodes that are taking place only 100 km above the Earth's surface. The aurora, which dances in the polar sky also because of the two barriers, is sending us a crucial hint about what is happening in space.

  2. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  3. The equilibrium of atmospheric sodium. [in atmospheres of Earth, Io, Mercury and Moon

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.

    1992-01-01

    We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres: Earth, Io, Mercury and the moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1 percent of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the moon is meteoroidal bombardment; at Mercury and perhaps the moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.

  4. Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction

    NASA Astrophysics Data System (ADS)

    Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques

    2015-04-01

    Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.

  5. Probing the atmosphere of the coolest super-Earth

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, David; Berta, Zachory; Burke, Christopher; Irwin, Jonathan; Nutzman, Philip; Miller-Ricci, Eliza

    2010-02-01

    Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Our team recently detected a super-Earth transiting the nearby low-mass star GJ1214 (Charbonneau et al., 2009). This detection has opened the door to testing predictions of low mass planet atmosphere theories. We propose to use the Spitzer space telescope to detect the atmosphere and infer the molecular composition of GJ1214b. The mid-infrared (MIR) is particularly well suited to observe numerous molecular signatures such as water vapor. We plan to observe the primary eclipse of the planet (when the planet passes in front of the parent star) with the IRAC instrument in the two available channels at 3.6 and 4.5 microns. Comparing the radius measurements obtained in the two band-passes will allow us to detect the atmosphere of this object and to place constraints on its molecular composition. This study is possible because of the small size of the host star GJ1214. Consequently, the expected atmospheric signatures observed in transmission (0.1%) can be detected with the same level of confidence as has successfully been accomplished with much larger planets (hot-Jupiters). Moreover, the high photometric precision, continuous coverage and no limb-darkening of these light curves will improve the planetary parameters, and allow to search for transiting moons.

  6. A New Model of the Earth System Nitrogen Cycle: How Plates and Life Affect the Atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2017-11-01

    We have developed an Earth system N cycle model, including biologic and geologic fluxes and key nutrients such as phosphorus. The atmosphere can change mass significantly over Earth history, and the solid Earth contains most of the planet's N.

  7. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  8. An impact-induced terrestrial atmosphere and iron-water reactions during accretion of the Earth

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1985-01-01

    Shock wave data and theoretical calculations were used to derive models of an impact-generated terrestrial atmosphere during accretion of the Earth. The models showed that impacts of infalling planetesimals not only provided the entire budget of terrestrial water but also led to a continuous depletion of near-surface layers of water-bearing minerals of their structural water. This resulted in a final atmospheric water reservoir comparable to the present day total water budget of the Earth. The interaction of metallic iron with free water at the surface of the accreting Earth is considered. We carried out model calcualtions simulating these processes during accretion. It is assumed that these processes are the prime source of the terrestrial FeO component of silicates and oxides. It is demonstrated that the iron-water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed. In order to obtain the necessary amount of terrestrial water, slightly heterogeneous accretion with initially 36 wt% iron planetesimals, as compared with a homogeneous value of 34 wt% is required.

  9. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  10. Formation of the Aerosol of Space Origin in Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kozak, P. M.; Kruchynenko, V. G.

    2011-01-01

    The problem of formation of the aerosol of space origin in Earth s atmosphere is examined. Meteoroids of the mass range of 10-18-10-8 g are considered as a source of its origin. The lower bound of the mass range is chosen according to the data presented in literature, the upper bound is determined in accordance with the theory of Whipple s micrometeorites. Basing on the classical equations of deceleration and heating for small meteor bodies we have determined the maximal temperatures of the particles, and altitudes at which they reach critically low velocities, which can be called as velocities of stopping . As a condition for the transformation of a space particle into an aerosol one we have used the condition of non-reaching melting temperature of the meteoroid. The simplified equation of deceleration without earth gravity and barometric formula for the atmosphere density are used. In the equation of heat balance the energy loss for heating is neglected. The analytical solution of the simplified equations is used for the analysis.

  11. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  12. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    ERIC Educational Resources Information Center

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  13. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  14. A GCM simulation of the earth-atmosphere radiation balance for winter and summer

    NASA Technical Reports Server (NTRS)

    Wu, M. L. C.

    1979-01-01

    The radiation balance of the earth-atmosphere system simulated by using the general circulation model (GCM) of the Laboratory for Atmospheric Sciences (GLAS) is examined in regards to its graphical distribution, zonally-averaged distribution, and global mean. Most of the main features of the radiation balance at the top of the atmosphere are reasonably simulated, with some differences in the detailed structure of the patterns and intensities for both summer and winter in comparison with values as derived from Nimbus and NOAA (National Oceanic and Atmospheric Administration) satellite observations. Both the capability and defects of the model are discussed.

  15. Origin of the moon - Capture by gas drag of the earth's primordial atmosphere

    NASA Astrophysics Data System (ADS)

    Nakazawa, K.; Komuro, T.; Hayashi, C.

    1983-06-01

    The novel lunar formation scenario proposed is an extension of planetary formation process studies suggesting that the earth originated in a gaseous solar nebula. Attention is given to a series of dynamical processes in which a low energy planetesimal is trapped within the terrestrial Hill sphere under circumstances in which the primordial atmosphere's gas density gradually decreases. An unbound planetesimal entering the Hill sphere would have had to dissipate its kinetic energy and then come into a bound orbit, before escaping from the Hill sphere, without falling onto the earth's surface. The kinetic energy dissipation condition is considered through the calculation of the solar gravity and atmospheric gas drag effects on the planetesimal's orbital motion. The result obtained shows that a low energy planetesimal of less than lunar mass can be trapped in the Hill sphere with a high probability, if it enters at those stages before atmospheric density has decreased to about 1/50th of the initial value.

  16. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2013-12-01

    Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  17. The role of artificial atmospheric CO2 removal in stabilizing Earth's climate

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Tokarska, K.

    2014-12-01

    The current CO2 emission trend entails a risk that the 2°C target will be missed, potentially causing "dangerous" changes in Earth's climate system. This research explores the role of artificial atmospheric CO2 removal (also referred to as "negative emissions") in stabilizing Earth's climate after overshoot. We designed a range of plausible CO2 emission scenarios, which follow a gradual transition from a fossil fuel driven economy to a zero-emission energy system, followed by a period of negative emissions. The scenarios differ in peak emissions rate and, accordingly, the amount of negative emissions, to reach the same cumulative emissions compatible with the 2°C temperature stabilization target. The climate system components' responses are computed using the University of Victoria Earth System Climate Model of intermediate complexity. Results suggest that negative emissions are effective in reversing the global mean temperature and stabilizing it at a desired level (2°C above pre-industrial) after overshoot. Also, changes in the meridional overturning circulation and sea ice are reversible with the artificial removal of CO2 from the atmosphere. However, sea level continues to rise and is not reversible for several centuries, even under assumption of large amounts of negative emissions. For sea level to decline, atmospheric CO2 needs to be reduced to pre-industrial levels in our simulations. During the negative emission phase, outgassing of CO2 from terrestrial and marine carbon sinks offsets the artificial removal of atmospheric CO2, thereby reducing its effectiveness. On land, the largest CO2 outgassing occurs in the Tropics and is partially compensated by CO2 uptake at northern high latitudes. In the ocean, outgassing occurs mostly in the Southern Ocean, North Atlantic and tropical Pacific. The strongest outgassing occurs for pathways entailing greatest amounts of negative emissions, such that the efficiency of CO2 removal - here defined as the change in

  18. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2014-12-01

    also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  19. IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikoma, M.; Hori, Y., E-mail: ikoma@eps.s.u-tokyo.ac.jp, E-mail: yasunori.hori@nao.ac.jp

    2012-07-01

    Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. Wemore » have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.« less

  20. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  1. On the possibility of space objects invasion observations into the Earth's atmosphere with the help of a multifunctional polarimeter

    NASA Astrophysics Data System (ADS)

    Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.

  2. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  3. Nitrogen evolution within the Earth's atmosphere-mantle system assessed by recycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael

    2018-01-01

    Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to

  4. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment.

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.

    1973-01-01

    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  5. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  6. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.

    PubMed

    Planavsky, Noah J; Reinhard, Christopher T; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H; Johnson, Thomas; Fischer, Woodward W; Lyons, Timothy W

    2014-10-31

    The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans. Copyright © 2014, American Association for the Advancement of Science.

  7. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    PubMed

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  8. Laboratory Simulations of Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes: Particle Color and Size Distribution

    NASA Astrophysics Data System (ADS)

    He, Chao; Hörst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.-R.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Super-Earths and mini-Neptunes are the most abundant types of planets among the ∼3500 confirmed exoplanets, and are expected to exhibit a wide variety of atmospheric compositions. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. However, the compositions, size distributions, and optical properties of these particles in exoplanet atmospheres are poorly understood. Here, we present the results of experimental laboratory investigations of photochemical haze formation within a range of planetary atmospheric conditions, as well as observations of the color and size of produced haze particles. We find that atmospheric temperature and metallicity strongly affect particle color and size, thus altering the particles’ optical properties (e.g., absorptivity, scattering, etc.); on a larger scale, this affects the atmospheric and surface temperature of the exoplanets, and their potential habitability. Our results provide constraints on haze formation and particle properties that can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of super-Earths and mini-Neptunes with the Transiting Exoplanet Survey Satellite, the James Webb Space Telescope, and the Wide-Field Infrared Survey Telescope.

  9. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  10. Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface

    NASA Astrophysics Data System (ADS)

    Eltsov, Anatoli V.; Karasev, Vladimir I.; Kolotkov, Vjacheslav V.; Kondranin, Timothy V.

    1997-06-01

    The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter

  11. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.

    PubMed

    Xu, Yisheng; Nadykto, Alexey B; Yu, Fangqun; Herb, J; Wang, Wei

    2010-01-14

    Atmospheric aerosols formed via nucleation in the Earth's atmosphere play an important role in the aerosol radiative forcing associated directly with global climate changes and public health. Although it is well-known that atmospheric aerosol particles contain organic species, the chemical nature of and physicochemical processes behind atmospheric nucleation involving organic species remain unclear. In the present work, the interaction of common organic acids with molecular weights of 122, 116, 134, 88, 136, and 150 (benzoic, maleic, malic, pyruvic, phenylacetic, and tartaric acids) with nucleation precursors and charged trace species has been investigated. We found a moderate strong effect of the organic species on the stability of neutral and charged ionic species. In most cases, the free energies of the mixed H(2)SO(4)-organic acid dimer formation are within 1-1.5 kcal mol(-1) of the (H(2)SO(4))(NH(3)) formation energy. The interaction of the organic acids with trace ionic species is quite strong, and the corresponding free energies far exceed those of the (H(3)O(+))(H(2)SO(4)) and (H(3)O(+))(H(2)SO(4))(2) formation. These considerations lead us to conclude that the aforementioned organic acids may possess a substantial capability of stabilizing both neutral and positively charged prenucleation clusters, and thus, they should be studied further with regard to their involvement in the gas-to-particle conversion in the Earth's atmosphere.

  12. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  13. Atmospheric Constituents in GEOS-5: Components for an Earth System Model

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah

    2011-01-01

    The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.

  14. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  15. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density < 2 kg/m3 and probably > 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a

  16. An atmosphere around the super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Tsiaras, Angelos; Rocchetto, Marco; Waldmann, Ingo; Venot, Olivia; Varley, Rayan; Morello, Giuseppe; Damiano, Mario; Tinetti, Giovanna; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; ExoLights, ExoMol

    2016-10-01

    One of the most successful instruments for observing exoplanetary atmospheres is the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). In particular, the use of the spatial scanning technique has given us the opportunity for even more efficient observations of the brightest targets, achieving the necessary precision of 10 - 100 ppm. With such data and new advanced reduction and statistical techniques, we were able to detect modulations in the spectrum of the hot super-Earth 55 Cancri e, which suggest the existence of a light-weight atmosphere around this planet. Given the brightness of 55 Cancri, the observers adopted a very long scanning length and a very high scanning speed. We took these effects into account, as they can introduce systematics when coupled with the geometrical distortions of the instrument. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we used a chemical model, developed with combustion specialists, to explain its pressence. This model indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio, suggesting this super-Earth is a carbon-rich environment even more exotic than previously thought.

  17. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  18. Role of Earth's plasmasphere in coupling of upper atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Mishra, Sandhya; Dohare, S. K.

    2010-02-01

    The near-Earth space environment is a complex, ever changing system of magnetized plasmas whose behaviour has a profound impact upon our technology dependent society. The exploration of the cold, relatively dense, inner region of upper atmosphere (the plasmasphere) and its unexpectedly sharp outer boundary (the plasma pause) has proceeded through a combination of in-situ observations and ground based whistler observations. Studies have shown that plasmasphere is highly variable both spatially and temporally responding to changes in geomagnetic indices, ring current, penetration and shielding electric fields and subauroral electric fields. Consequently the plasmasphere exhibits erosion, emptying and refilling during active times. Infact, it is the electric field that plays one of the most important roles in coupling of upper atmosphere. The atmospheric dynamo is the main generator of the large-scale electric field in the upper atmosphere. It arises because of a special situation which electrons and ions move with different velocities across the magnetic field because of different collisions between electrons and neutral particles and ions with neutral particles. This process leads to charge separation and consequently to an electric field. In the present paper, storm/ quiet period VLF whistler data recorded at lower latitudes/mid latitudes are analyzed and attempt has been made to look at plasmasphere response on coupling of ionosphere and magnetosphere.

  19. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  20. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  1. Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Lin, Henry W.; Gonzalez Abad, Gonzalo; Loeb, Abraham

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ~1.2 days (~1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl3F (CF4) to ~10 times the current terrestrial level.

  2. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Lisa J.; De Mooij, Ernst J. W.; Watson, Chris

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDSmore » on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.« less

  3. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  4. Evaluating atmospheric blocking in the global climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    Hartung, Kerstin; Hense, Andreas; Kjellström, Erik

    2013-04-01

    Atmospheric blocking is a phenomenon of the midlatitudal troposphere, which plays an important role in climate variability. Therefore a correct representation of blocking in climate models is necessary, especially for evaluating the results of climate projections. In my master's thesis a validation of blocking in the coupled climate model EC-Earth is performed. Blocking events are detected based on the Tibaldi-Molteni Index. At first, a comparison with the reanalysis dataset ERA-Interim is conducted. The blocking frequency depending on longitude shows a small general underestimation of blocking in the model - a well known problem. Scaife et al. (2011) proposed the correction of model bias as a way to solve this problem. However, applying the correction to the higher resolution EC-Earth model does not yield any improvement. Composite maps show a link between blocking events and surface variables. One example is the formation of a positive surface temperature anomaly north and a negative anomaly south of the blocking anticyclone. In winter the surface temperature in EC-Earth can be reproduced quite well, but in summer a cold bias over the inner-European ocean is present. Using generalized linear models (GLMs) I want to study the connection between regional blocking and global atmospheric variables further. GLMs have the advantage of being applicable to non-Gaussian variables. Therefore the blocking index at each longitude, which is Bernoulli distributed, can be analysed statistically with GLMs. I applied a logistic regression between the blocking index and the geopotential height at 500 hPa to study the teleconnection of blocking events at midlatitudes with global geopotential height. GLMs also offer the possibility of quantifying the connections shown in composite maps. The implementation of the logistic regression can even be expanded to a search for trends in blocking frequency, for example in the scenario simulations.

  5. The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service - A meteorological data center with geodetic applications

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Kann, Deirdre M.; Miller, Alvin J.; Rosen, Richard D.

    1993-01-01

    By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.

  6. Entry-probe studies of the atmospheres of earth, Mars, and Venus - A review (Von Karman Lecture)

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1990-01-01

    This paper overviews the history (since 1963) of the exploration of planetary atmospheres by use of entry probes. The techniques used to measure the compositions of the atmospheres of the earth, Mars, and Venus are described together with the key results obtained. Attention is also given to the atmosphere-structure experiment aboard the Galileo Mission, launched on October 17, 1989 and now under way on its 6-yr trip to Jupiter, and to future experiments.

  7. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  8. Observation of The Top of The Atmosphere Outgoing Longwave Radiation Using The Geostationary Earth Radiation Budget Sensor

    NASA Astrophysics Data System (ADS)

    Spencer, G.; Llewellyn-Jones, D.

    In the summer of 2002 the Meteosat Second Generation (MSG) satellite is due to be launched. On board the MSG satellite is the Geostationary Earth Radiation Budget (GERB) sensor. This is a new radiometer that will be able to observe and measure the outgoing longwave radiation from the top of the atmosphere for the whole ob- served Earth disc, due to its unique position in geostationary orbit. Every 15 minutes the GERB sensor will make a full Earth disc observation, centred on the Greenwich meridian. Thus, the GERB sensor will provide unprecedented coupled temporal and spatial resolution of the outgoing longwave radiation (4.0 to 30.0 microns), by first measuring the broadband radiation (0.32 to 30.0 microns) and then subtracting the measured reflected shortwave solar radiation (0.32 to 4.0 microns), from the earth- atmosphere system. The GERB sensor is able to make measurements to within an accuracy of 1 W/sq. m. A forward model is being developed at Leicester to simulate the data from the GERB sensor for representative geophysical scenes and to investigate key parameters and processes that will affect the top of the atmosphere signal. At the heart of this model is a line-by-line radiative transfer model, the Oxford Reference Forward Model (RFM) that is to be used with model atmospheres generated from ECMWF analysis data. When MSG is launched, cloud data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), also on board, is to be used in conjunction with GERB data.

  9. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Wakeford, Hannah R.; Lewis, Nikole K.; Delrez, Laetitia; Gillon, Michaël; Selsis, Frank; Leconte, Jérémy; Demory, Brice-Olivier; Bolmont, Emeline; Bourrier, Vincent; Burgasser, Adam J.; Grimm, Simon; Jehin, Emmanuël; Lederer, Susan M.; Owen, James E.; Stamenković, Vlada; Triaud, Amaury H. M. J.

    2018-03-01

    Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres3-6. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones6-8. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures9. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere10, 11. Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface12-14. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation15, 16, these observations further support their terrestrial and potentially habitable nature.

  10. Connecting the dots: a versatile model for the atmospheres of tidally locked Super-Earths

    NASA Astrophysics Data System (ADS)

    Carone, L.; Keppens, R.; Decin, L.

    2014-11-01

    Radiative equilibrium temperatures are calculated for the troposphere of a tidally locked Super-Earth based on a simple greenhouse model, using Solar system data as a guideline. These temperatures provide in combination with a Newtonian relaxation scheme thermal forcing for a 3D atmosphere model using the dynamical core of the Massachusetts Institute of Technology global circulation model. Our model is of the same conceptional simplicity than the model of Held & Suarez and is thus computationally fast. Furthermore, because of the coherent, general derivation of radiative equilibrium temperatures, our model is easily adaptable for different planets and atmospheric scenarios. As a case study relevant for Super-Earths, we investigate a Gl581g-like planet with Earth-like atmosphere and irradiation and present results for two representative rotation periods of Prot = 10 d and Prot = 36.5 d. Our results provide proof of concept and highlight interesting dynamical features for the rotating regime 3 < Prot < 100 d, which was shown by Edson et al. to be an intermediate regime between equatorial superrotation and divergence. We confirm that the Prot = 10 d case is more dominated by equatorial superrotation dynamics than the Prot = 36.5 d case, which shows diminishing influence of standing Rossby-Kelvin waves and increasing influence of divergence at the top of the atmosphere. We argue that this dynamical regime change relates to the increase in Rossby deformation radius, in agreement with previous studies. However, we also pay attention to other features that are not or only in partial agreement with other studies, like, e.g. the number of circulation cells and their strength, the role and extent of thermal inversion layers, and the details of heat transport.

  11. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    NASA Astrophysics Data System (ADS)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  12. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Cimorelli, A. J.; House, F. B.

    1974-01-01

    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  13. About the Influence of the initial Atmosphere on the Earth's Temperature Distribution during it's Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Y.; Anfilogov, V.; Antipin, A.

    2012-04-01

    We suggested a new model for accumulation of planets of the Earth's group [1], which is based on the contemporary results of geochemical analyses, which allow to obtain the concentrations of short living radioactive isotopes of 26Al in the matter of the pre planet cloud [2]. With use of that data new estimations of temperature distribution into the growing planetary pre planetary bodies into the Earth's nebular zone had been obtained. For the further Earth's temperature evolution, as it had been showed by the results of numerical modeling, the main role belongs to the temperature distribution in the forming Earth's core and the existence of a dense and transparent atmosphere. The shadow influence of the initial atmosphere had been researched in the paper [3]. We shall give the main consideration to these problems in that paper. It had been shown in [1], that on the earliest accumulation stage the heat release by the decay of 26Al it is sufficient for forming a central melted area and solid relatively thin mainly silicate upper envelope in the pre planetary body, with dimensions, larger than (50-100) km. The impact velocities on that stage are yet not large, therefore by the bodies impact with these or near dimensions liquid and mainly iron their parts merge, but the masses of the pre planetary bodies are not sufficient to gravitational keeping of silicate parts of the cold solid envelope. On that stage they remain into the nebular zone of the proto planet and the mechanism of matter differentiation for the future core and mantle reservoirs realizes. The process takes place yet in small bodies and is in time to finish during less than 10 million years. The next forming of the core and mantle structure continues according to all known estimations about 100 million years. Because of the merging of inner liquid parts of impacting bodies occur due to inelastic impact, the main part of potential energy transforms into heat. That continues up to that time when the iron

  14. Effects of atmospheric aerosols on scattering reflected visible light from earth resource features

    NASA Technical Reports Server (NTRS)

    Noll, K. E.; Tschantz, B. A.; Davis, W. T.

    1972-01-01

    The vertical variations in atmospheric light attenuation under ambient conditions were identified, and a method through which aerial photographs of earth features might be corrected to yield quantitative information about the actual features was provided. A theoretical equation was developed based on the Bouguer-Lambert extinction law and basic photographic theory.

  15. A review of carbon monoxide sources, sinks, and concentrations in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Bortner, M. H.; Kummler, R. H.; Jaffe, L. S.

    1972-01-01

    Carbon monoxide is a toxic pollutant which is continually introduced into the earth's atmosphere in significant quantities. There are apparently some mechanisms operating which destroy most of the CO in the atmosphere, i.e., a carbon monoxide sink. These mechanisms have not as yet been established in a quantitative sense. This report discusses the various possible removal mechanisms which warrant serious consideration. Particular emphasis is given to chemical reactions (especially that with OH), soil bacteria and other biological action, and transport effects. The sources of carbon monoxide, both natural and anthropogenic, are reviewed and it is noted that there is quite possibly a significant undefined natural source. Atmospheric CO concentrations are discussed and their implications on carbon monoxide lifetime, sinks and sources are considered.

  16. Simple model to estimate the contribution of atmospheric CO2 to the Earth's greenhouse effect

    NASA Astrophysics Data System (ADS)

    Wilson, Derrek J.; Gea-Banacloche, Julio

    2012-04-01

    We show how the CO2 contribution to the Earth's greenhouse effect can be estimated from relatively simple physical considerations and readily available spectroscopic data. In particular, we present a calculation of the "climate sensitivity" (that is, the increase in temperature caused by a doubling of the concentration of CO2) in the absence of feedbacks. Our treatment highlights the important role played by the frequency dependence of the CO2 absorption spectrum. For pedagogical purposes, we provide two simple models to visualize different ways in which the atmosphere might return infrared radiation back to the Earth. The more physically realistic model, based on the Schwarzschild radiative transfer equations, uses as input an approximate form of the atmosphere's temperature profile, and thus includes implicitly the effect of heat transfer mechanisms other than radiation.

  17. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. Wemore » estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.« less

  18. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  19. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  20. Calculations of Reflected and Transmitted Radiance for Earth's Atmosphere.

    PubMed

    Plass, G N; Kattawar, G W

    1968-06-01

    The reflected and transmitted radiance of the earth's atmosphere is calculated by Monte Carlo techniques. The exact scattering function for the aerosols is used as calculated from the Mie theory. The aerosol vs height distributions proposed by Elterman and by Kondratiev et al. are compared. The Rayleigh and aerosol scattering events are included in the calculation, as well as the ozone absorption, where appropriate. Results are given at wavelengths of 0.27 micro, 0.3 micro, 0.4 micro, 0.7 micro, and 1.67 micro. The mean optical paths of the reflected and transmitted photons, the flux at the lower boundary, and the planetary albedo are tabulated.

  1. Study of the dynamics of meteoroids through the Earth's atmosphere and retrieval of meteorites

    NASA Astrophysics Data System (ADS)

    Guadalupe Cordero Tercero, Maria; Farah-Simon, Alejandro; Velázquez-Villegas, Fernando

    2016-07-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each and every one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors (shooting stars) are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c ) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f ) recover and study meteorites. During this meeting, the academic

  2. Calculations of cosmogenic nuclide production rates in the Earth's atmosphere and their inventories

    NASA Technical Reports Server (NTRS)

    Obrien, K.

    1986-01-01

    The production rates of cosmogenic isotopes in the Earth's atmosphere and their resulting terrestrial abundances have been calculated, taking into account both geomagnetic and solar-modulatory effects. The local interstellar flux was assumed to be that of Garcia-Munoz, et al. Solar modulation was accounted for using the heliocentric potential model and expressed in terms of the Deep River neutron monitor count rates. The geomagnetic field was presented by vertical cutoffs calculated by Shea and Smart and the non-vertical cutoffs calculated using ANGRI. The local interstellar particle flux was first modulated using the heliocentric potential field. The modulated cosmic-ray fluxes reaching the earth's orbit then interacted with the geomagnetic field as though it were a high-pass filter. The interaction of the cosmic radiation with the Earth's atmosphere was calculated utilizing the Bolztmann transport equation. Spallation cross sections for isotope production were calculated using the formalism of Silberberg and Tsao and other cross sections were taken from standard sources. Inventories were calculated by accounting from the variation in solar modulation and geomagnetic field strength with time. Results for many isotope, including C-14, Be-7 and Be-10 are in generally good agreement with existing data. The C-14 inventory, for instance, amounts to 1.75/sq cm(e)/s, in excellent agreement with direct estimates.

  3. Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes

    NASA Technical Reports Server (NTRS)

    He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; hide

    2018-01-01

    UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).

  4. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1990-01-01

    Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.

  5. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  6. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth.

    PubMed

    Cao, Xiaobin; Bao, Huiming

    2013-09-03

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of (17)O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere-atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the "snowball' Earth hypothesis produce a typical MOSD duration of less than 10(6) y and a magnitude of (17)O depletion reaching approximately -35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate (17)O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean-atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event.

  7. Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather

    NASA Astrophysics Data System (ADS)

    Anthes, R. A.

    2011-01-01

    The launch of the proof-of-concept mission GPS/MET in 1995 began a revolution in profiling earth's atmosphere through radio occultation (RO). GPS/MET; subsequent single-satellite missions CHAMP, SAC-C, GRACE, METOP-A, and TerraSAR-X; and the six-satellite constellation, FORMOSAT-3/COSMIC, have proven the theoretical capabilities of RO to provide accurate and precise profiles of electron density in the ionosphere and refractivity, containing information on temperature and water vapor, in the stratosphere and troposphere. This paper summarizes results from these RO missions and the applications of RO observations to atmospheric research and operational weather analysis and prediction.

  8. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  9. Combined 2-micron Dial and Doppler Lidar: Application to the Atmosphere of Earth or Mars

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Ismail, Syed; Kavaya, Michael; Yu, Jirong; Wood, Sidney A.; Emmitt, G. David

    2006-01-01

    A concept is explored for combining the Doppler and DIAL techniques into a single, multifunctional instrument. Wind, CO2 concentration, and aerosol density can all be measured. Technology to build this instrument is described, including the demonstration of a prototype lidar. Applications are described for use in the Earth science. The atmosphere of Mars can also be studied, and results from a recently-developed simulation model of performance in the Martian atmosphere are presented.

  10. A Model of Volcanic Outgassing for Earth's Early Atmosphere

    NASA Astrophysics Data System (ADS)

    Dhaliwal, J. K.; Kasting, J. F.; Zhang, Z.

    2017-12-01

    We build on historical paradigms of volcanic degassing [1] to account for non-linear relations among C-O-H-S volatiles, their speciation, solubility and concentrations in magmatic melts, and the resulting contribution to atmospheric volatile inventories. We focus on the build-up of greenhouse-relevant carbon species (CO2 and CH4) and molecular oxygen to better understand the environments of early life and the Great Oxygenation Event [2,3,4]. The mantle is an important reservoir of C-O-H-S volatiles [5], and melt concentrations depend on temperature, pressure and oxygen fugacity. We present a preliminary chemical model that simulates volatile concentrations released into the Earth's atmosphere at 1 bar, or pressures corresponding to the early Earth prior to 2.4 Ga. We maintain redox balance in the system using H+ [2, 6] because the melt oxidation state evolves with volatile melt concentrations [7] and affects the composition of degassed compounds. For example, low fO2 in the melt degasses CO, CH4, H2S and H2 while high fO2 yields CO2, SO2 and H2O [1,8,9]. Our calculations incorporate empirical relations from experimental petrology studies [e.g., 10, 11] to account for inter-dependencies among volatile element solubility trends. This model has implications for exploring planetary atmospheric evolution and potential greenhouse effects on Venus and Mars [12]­, and possibly exoplanets. A future direction of this work would be to link this chemical degassing model with different tectonic regimes [13] to account for degassing and ingassing, such as during subduction. References: [1] Holland, H. D. (1984) The chemical evolution of the atmosphere and oceans [2] Kasting, J. F. (2013) Chem. Geo. 362, 13-25 [3] Kasting, J.F. (1993) Sci. 259, 920-926 [4] Duncan, M.S. & Dasgupta, R. (2017) Nat. Geoscience 10, 387-392. [5] Hier-Majumder, S. & Hirschmann, M.M. (2017) G3, doi: 10.1002/2017GC006937 [6] Gaillard, F. et al. (2003) GCA 67, 2427- 2441 [7] Moussalam, Y. et al. (2014

  11. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  12. Comparison of Regression Methods to Compute Atmospheric Pressure and Earth Tidal Coefficients in Water Level Associated with Wenchuan Earthquake of 12 May 2008

    NASA Astrophysics Data System (ADS)

    He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang

    2016-07-01

    The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.

  13. An objective frequency domain method for subsurface characterisation using Earth and atmospheric tides

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Acworth, I. R.; Halloran, L. J. S.; Rau, G. C.; Bernadi, T. L.

    2017-12-01

    It has long been recognised that hydraulic properties can be derived from the response of piezometric heads to tidal loadings. However, there is a degree of subjectivity in existing graphical approaches most commonly used to calculate barometric efficiency leading to uncertainties in derived values of compressible storage. Here we demonstrate a novel approach to remove these uncertainties by objectively deriving the barometric efficiency from groundwater hydraulic head responses using a frequency domain method. We take advantage of the presence of worldwide and ubiquitous atmospheric tide fluctuations which occur at 2 cycles per day (cpd). First we use a Fourier transform to calculate the amplitudes of the 2 cpd signals from co-located atmospheric pressure and hydraulic head time series measurements. Next we show how the Earth tide response at the same frequency can be quantified and removed so that this effect does not interfere with the calculation of the barometric efficiency. Finally, the ratio of the amplitude of the response at 2 cpd of hydraulic head to atmospheric pressure is used to quantify the barometric efficiency. This new method allows an objective quantification using `passive' in situ monitoring rather than resorting to aquifer pumping or laboratory tests. The minimum data requirements are 15 days duration of 6-hourly hydraulic head and atmospheric pressure measurements, and modelled Earth tide records which are readily conducted using freely available software. The new approach allows for a rapid and cost-effective alternative to traditional methods of estimating aquifer compressible storage properties without the subjectivity of existing approaches, and will be of importance to improving the spatial coverage of subsurface characterisation for groundwater resource evaluation and land subsidence assessment.

  14. MECA Workshop on Atmospheric H2O Observations of Earth and Mars. Physical Processes, Measurements and Interpretations

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M. (Editor); Haberle, Robert M. (Editor)

    1988-01-01

    The workshop was held to discuss a variety of questions related to the detection and cycling of atmospheric water. Among the questions addressed were: what factors govern the storage and exchange of water between planetary surfaces and atmospheres; what instruments are best suited for the measurement and mapping of atmospheric water; do regolith sources and sinks of water have uniquely identifiable column abundance signatures; what degree of time and spatial resolution in column abundance data is necessary to determine dynamic behavior. Of special importance is the question, does the understanding of how atmospheric water is cycled on Earth provide any insights for the interpretation of Mars atmospheric data.

  15. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  16. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  17. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheresmore » are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.« less

  18. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    PubMed

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  19. Cosmic Dust and the Earth's Atmosphere (Vilhelm Bjerknes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.

    2017-04-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s-1), and ablate at heights between 80 and 120 km in the mesosphere/lower thermosphere (MLT). The resulting metallic vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke particles (MSPs)". MSPs are too small to sediment downwards and so are transported by the general circulation of the atmosphere, taking roughly 4 years to reach the surface. Smoke particles play a potentially important role as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere, where they also facilitate freezing of the clouds. There are also potential implications for climate, as the input of bio-available cosmic Fe in the Southern Ocean can increase biological productivity and stimulate CO2 drawdown from the atmosphere. However, current estimates of the magnitude of the cosmic dust mass input rate into the Earth's atmosphere range from 2 to over 200 tonnes per day, depending on whether the measurements are made in space, in the middle atmosphere, or in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there must be serious flaws in the interpretation of observations that have been used to make the estimates. Furthermore, given this degree of uncertainty, the significance of these potential atmospheric impacts remains speculative. In this lecture I will describe the results of a large study designed to determine the size of the cosmic dust input rate using a self-consistent treatment of cosmic dust from the outer solar system to the Earth's surface. An astronomical model which tracks the evolution of dust from various sources into the inner solar system was combined with a

  20. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  1. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  2. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity

    NASA Astrophysics Data System (ADS)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl

    2017-11-01

    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  3. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  4. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Momary, Thomas; Bolton, Scott; Levin, Steven; Hansen, Candice; Janssen, Michael; Adriani, Alberto; Gladstone, G. Randall; Bagenal, Fran; Ingersoll, Andrew

    2017-04-01

    The Juno mission has promoted and coordinated a network of Earth-based observations, including both Earth-proximal and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: https://www.missionjuno.swri.edu/planned-observations. Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 μm through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (2016 August 27), 3 (2016 December 11), 4 (2017 February 2) and possibly "early" results from 5 (2017 March 27). Besides a global network of professional astronomers, the Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who provided a quasi-continuous picture of the evolution of features observed by

  5. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    NASA Technical Reports Server (NTRS)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  6. Displacements of the earth's surface due to atmospheric loading - Effects of gravity and baseline measurements

    NASA Technical Reports Server (NTRS)

    Van Dam, T. M.; Wahr, J. M.

    1987-01-01

    Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.

  7. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018216 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against the darkness of space, a faint line of airglow over a dark cloud-covered Earth, on its way home, was photographed by the crew of the International Space Station. Airglow over Earth can be seen in the background.

  8. Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements

    NASA Technical Reports Server (NTRS)

    Dave, J. V.

    1977-01-01

    Results are presented on the effect of atmospheric aerosols on the value of total ozone, in an atmospheric column of the terrestrial atmosphere, estimated from the simulated measurements of the ultraviolet radiation back scattered by the earth atmosphere models. Simulated measurements were used in five (configuration of the BUV experiment of Nimbus-4 satellite), and in six (configuration of the TOMS section of the SBUV/TOMS experiment on Nimbus-G) narrow spectral regions in the ultraviolet part of the spectrum.

  9. Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  10. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Melott, Adrian L.; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.; Ejzak, Larissa M.

    2005-11-01

    Gamma-ray bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. The gamma radiation from a burst within a few kiloparsecs would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, damaging DNA and causing sunburn. In addition, NO2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to NO2 opacity, and deposition of nitrates through rainout of HNO3. For the ``typical'' nearest burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 yr after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. The impact scales with the total fluence of the GRB at the Earth but is insensitive to the time of day of the burst and its duration (1-1000 s). We find DNA damage of up to 16 times the normal annual global average, well above lethal levels for simple life forms such as phytoplankton. The greatest damage occurs at mid- to low latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed, lasting several years. We discuss how these results support the

  11. The Atmosphere.

    ERIC Educational Resources Information Center

    Ingersoll, Andrew P.

    1983-01-01

    The composition and dynamics of the earth's atmosphere are discussed, considering the atmosphere's role in distributing the energy of solar radiation received by the earth. Models of this activity which help to explain climates of the past and predict those of the future are also considered. (JN)

  12. Atmosphere Impact Losses

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  13. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  14. Mapping the downwelling atmospheric radiation at the Earth's surface: A research strategy

    NASA Technical Reports Server (NTRS)

    Raschke, E.

    1986-01-01

    A strategy is presented along with background material for determining downward atmospheric radiation at the Earth's surface on a regional scale but over the entire globe, using available information on the temperature and humidity of the air near the ground and at cloud base altitudes. Most of these parameters can be inferred from satellite radiance measurements. Careful validation of the derived radiances will be required using ground-based direct measurements of radiances, to avoid systematic biases of these derived field quantities.

  15. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.

    PubMed

    Luo, Genming; Ono, Shuhei; Beukes, Nicolas J; Wang, David T; Xie, Shucheng; Summons, Roger E

    2016-05-01

    Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.

  16. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground

  17. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  18. Combined ground-based and satellite remote sensing of atmospheric aerosol and Earth surface in the Antarctic

    NASA Astrophysics Data System (ADS)

    Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.

    2016-01-01

    The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.

  19. A carbon dioxide radiance model of the earth planet using the conical earth sensor data

    NASA Astrophysics Data System (ADS)

    Deng, Loulou; Mei, Zhiwu; Tu, Zhijun; Yuan, Jun; He, Ting; Wei, Yi

    2013-10-01

    Climate Modeling results show that about 50% of the Earth's outgoing radiation and 75% of the atmospheric outgoing radiation are contained in the far infrared. Generally the earth is considered as a 220~230 K blackbody, and the peak breadth of the Earth's outgoing radiation is around the wavelength of 10 micron. The atmospheric outgoing radiation are contained with five spectral intervals: the water vapor band from 6.33 to 6.85 microns, the ozone band from 8.9 to 10.1microns, the atmospheric window from 10.75 to 11.75 microns, the carbon dioxide band from 14 to 16 microns, and finally the rotational water vapor band from 21 to 125 microns. The properties of the carbon dioxide band is stable than other bands which has been chosen for the work Spectrum of the earth sensors. But the radiation energy of carbon dioxide band is variety and it is a function of latitude, season and weather conditions. Usually the luminance of the Earth's radiation (14 to 16 μm) is from 3 to 7 W/m2Sr. Earth sensor is an important instrument of the Attitude and Orbit Control System (AOCS), and it is sensitive to the curve of the earth's and atmospheric outgoing radiation profile to determine the roll and pitch angles of satellite which are relative to nadir vector. Most earth sensors use profile data gathered form Project Scanner taken in August and December 1966. The earth sensor referred in this paper is the conical scanning earth sensor which is mainly used in the LEO (Low Earth Orbit) satellite. A method to determine the luminance of earth's and atmospheric outgoing radiation (carbon dioxide) using the earth sensor is discussed in this paper. When the conical scanning sensor scan form the space to the earth, a pulse is produced and the pulse breadth is scale with the infrared radiation luminance. Then the infrared radiation luminance can be calculated. A carbon dioxide radiance model of the earth's and atmospheric outgoing radiation is obtained according the luminance data about with

  20. Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3

    NASA Technical Reports Server (NTRS)

    Pina, J. F.; House, F. B.

    1975-01-01

    Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.

  1. Greenhouse effect in the atmosphere

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2016-04-01

    Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.

  2. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kan, Valery; Gorbunov, Michael E.; Sofieva, Viktoria F.

    2018-02-01

    We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1) the isotropic Kolmogorov turbulence and (2) the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  3. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep

    2017-04-01

    The net flux of carbon between the Earth's interior and exterior, which is critical for redox evolution and planetary habitability, relies heavily on the extent of carbon subduction. While the fate of carbonates during subduction has been studied, little is known about how organic carbon is transferred from the Earth's surface to the interior, although organic carbon sequestration is related to sources of oxygen in the surface environment. Here we use high pressure-temperature experiments to determine the capacity of rhyolitic melts to carry carbon under graphite-saturated conditions in a subducting slab, and thus to constrain the subduction efficiency of organic carbon, the remnants of life, through time. We use our experimental data and a thermodynamic model of CO2 dissolution in slab melts to quantify organic carbon mobility as a function of slab parameters. We show that the subduction of graphitized organic carbon, and the graphite and diamond formed by reduction of carbonates with depth, remained efficient even in ancient, hotter subduction zones where oxidized carbon subduction probably remained limited. We suggest that immobilization of organic carbon in subduction zones and deep sequestration in the mantle facilitated the rise (~103-5 fold) and maintenance of atmospheric oxygen since the Palaeoproterozoic and is causally linked to the Great Oxidation Event. Our modelling shows that episodic recycling of organic carbon before the Great Oxidation Event may also explain occasional whiffs of atmospheric oxygen observed in the Archaean.

  4. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    NASA Astrophysics Data System (ADS)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  5. Hydrodynamics of embedded planets' first atmospheres - III. The role of radiation transport for super-Earth planets

    NASA Astrophysics Data System (ADS)

    Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.

    2017-11-01

    The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.

  6. The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research

  7. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  8. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; National Academy of Sciences, Washington, D.C. 20001; Ackermann, M.

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-lawmore » shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.« less

  9. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    ERIC Educational Resources Information Center

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  10. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    ERIC Educational Resources Information Center

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  11. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  12. Ultraviolet stellar occultation measurement of the H2 and O2 densities near 100 km in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.; Wasser, B.; Donahue, T. M.; Sharp, W. E.; Drake, J. F.; Riegler, G. R.

    1976-01-01

    Results are presented for an experimental study designed to measure the density of H2 near 100 km in the earth's atmosphere from occultation of a star, Gamma Vel, by the earth's atmosphere at several wavelengths near the H2 absorption line at 1108.128 A by a spectrometer on an orbiting astronomical observatory. Measurement of the O2 density between 95 and 123 km is also reported. Attention is focused on testing the predictions of a model of the distribution of hydrogen constituents, H, H2, H2O, CH4, OH, and H2O in the upper atmosphere related to a theory of hydrogen escape developed by Hunten and Strobel (1974) and by Liu and Donahue (1974). The measured H2 densities are found to be in good agreement with recent theoretical predictions, whereas the measured O2 density profile generally agrees with the models except for a wavelike structure in the range 104-114 km.

  13. On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1976-01-01

    The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.

  14. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  15. The weathering of organic carbon and pyrite sulfur in Earth's crust and its importance for regulating atmospheric composition, seawater chemistry, and stable isotope records

    NASA Astrophysics Data System (ADS)

    Reinhard, C. T.; Planavsky, N.; Bolton, E. W.

    2016-12-01

    Earth's crust stores extremely large reservoirs of organic carbon and pyrite sulfur, and transient or secular changes in the sizes of these reservoirs have the capacity to dramatically alter atmospheric composition, climate, seawater acid-base chemistry, and the propagation of isotopic signals into the geologic record. This talk will present and discuss new quantitative approaches toward better understanding the factors that control organic carbon and pyrite sulfur weathering under a wide range of Earth surface conditions, as well as their downstream effects on seawater chemistry, stability of atmospheric pO2, and conventional interpretations of stable carbon isotope mass balance during pivotal events in Earth's biogeochemical evolution. In particular, we will focus on (1) development of a weathering-driven scaling between atmospheric pO2 and geologic carbon isotope signals that explains the relative stability of marine δ13C through time and provides a mechanism for protracted negative δ13C excursions during transient increases in atmospheric pO2; (2) experimental and theoretical approaches aimed at better understanding the role of pyrite sulfur weathering in stabilizing atmospheric pO2; and (3) the importance of redox balance in the sedimentary rock cycle for controlling the marine carbonate system and atmospheric pCO2.

  16. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  17. New Data for Modeling Hypersonic Entry into Earth's Atmosphere: Electron-impact Ionization of Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Ciccarino, Christopher

    2017-06-01

    Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.

  18. Environmental networks for large-scale monitoring of Earth and atmosphere

    NASA Astrophysics Data System (ADS)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  19. Detecting Water on Super-Earths Using JAVST

    NASA Technical Reports Server (NTRS)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  20. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing].

    PubMed

    Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui

    2014-01-01

    Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.

  1. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1988-01-01

    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space.

  2. Simultaneous Precipitation of Solar Protons and Relativistic Electrons as a New Factor Affecting the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Shirochkov, A. V.; Sokolov, S. N.

    In the field of solar - terrestrial physics during the last decade there has been renewed interest in the effects produced in the Earth atmosphere and ionosphere by fluxes of precipitated highly relativistic electrons. A series of investigation on the subject (preferably by means of satellite measurements) was performed recently, which discussed different aspects of these phenomena called HRE events. More careful study of the HRE events revealed previously unnoticed geophysical phenomenon: a great majority of the solar proton events (SPE) were accompanied by simultaneous precipitation of relativistic electron fluxes. The studies of previous SPE events attributed their atmospheric and ionospheric effects entirely to the solar proton fluxes. It turned out that such an assumption is wrong. Therefore we have actually a new class of geophysical phenomena when the Earth's atmosphere and ionosphere experience combined impact of simultaneously precipitating fluxes of solar protons and relativistic electrons. If one takes into accounts effect of enhanced density of the solar wind during the SPEs (i.e. its dynamic pressure) the real situation during these combined events became more complicated. In this paper the effects during the storm of May 1992 are analyzed as an example of such unusual combination. The methods of separation of the effects produced by different precipitation particles are presented. Other similar events are considered to demonstrate that such complex events are not unique geophysical phenomena.

  3. Atmosphere-Wave-Ocean Coupling from Regional to Global Earth System Models for High-Impact Extreme Weather Prediction

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Curcic, M.

    2017-12-01

    The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.

  4. Photochemical reactions of water and carbon monoxide in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Chang, S.

    1983-01-01

    The gas-phase photolysis of H2O at 1849 A in the presence of CO yields mainly CO2 and H2 and a variety of organic compounds, including C1-C3 hydrocarbons, alcohols, aldehydes, acetone, and acetic acid. The overall quantum yield for conversion of CO to organic compounds varies between 0.23 and 0.03 as a function of the CO abundance. These results indicate that even if primitive earth's atmosphere initially contained no molecular hydrogen and contained carbon only in the form of CO or a mixture of CO and CO2, the prebiotic environment would have become enriched with a variety of organic compounds produced by photochemical processes.

  5. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  6. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  7. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  8. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  9. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  10. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  11. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    PubMed

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-04

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is

  12. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  13. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  14. A Coupled Ice-Atmosphere-Dust Model for a Neoproterozoic "Mudball Earth"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Strom, D.

    2010-12-01

    The Neoproterozoic "Snowball Earth" glaciations remain a subject of intense debate. While many have used field data to argue for either a totally or partially ice-covered Earth, fewer efforts have been made to establish the basic physical climate state and internal dynamics of these alternatives. Description of feedbacks is especially important: how does a globally ice-covered Earth reinforce itself as a stable climate system, and/or sow the seeds for its own destruction? In previous work, we investigated the flow properties of thick floating global ice sheets, and found that flow from pole to equator tends to eliminate regions of thin ice in the tropics. We briefly mentioned that ice flow and sublimation could lead to a "lag deposit" of dust on top of the tropical ice. The consequences of this were explored in detail by Dorian Abbott and others, who found that the accumulation of dust atop tropical ice causes a strong warming effect, which strongly promotes deglaciation of a Snowball climate. However, Abbott et al specified a dust layer ab initio in their GCM simulations, leaving aside the processes which produce it. Here, we present the results of our efforts to add dust processes to an earlier coupled atmosphere/ocean/ice model originally developed by David Pollard and Jim Kasting. Their model includes energy balance equations for the atmosphere and an ice mechanics model for glacial flow. To this we have added variables tracking the fraction of dust incorporated into snow and ice; the transport and accumulation of this dust through ice flow; the effects of dust on albedo and penetration of sunlight into the ice; restriction of evaporation from dust-covered surfaces; and density and buoyancy effects of dusty ice. Dust is added to the surface globally at a fixed rate, and is removed by meltwater runoff. We find that ice in tropical regions of net evaporation quickly develops a surface dust layer which drastically lowers its albedo. This dust layer develops

  15. Gamma emission of the atmosphere in the vicinity of the Earth. [28 keV to 4. 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golenetskii, S.V.; Gur'yan, Yu.A.; Il'inskii, V.N.

    1975-01-01

    The X-ray and ..gamma..-emissions of the earth's atmosphere were measured on Kosmos 461 in the range of 28 keV to 4.1 MeV. The energy spectrum of the emission was measured and the geomagnetic dependence of intensity in the continuous spectrum and in the 0.511-MeV line was determined. Measurements on Kosmos 135 yielded data on the height dependence of the atmospheric ..gamma..-quantum flux. 10 references.

  16. A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.

    1992-01-01

    This report describes a new software tool, ATRAN, which computes the transmittance of Earth's atmosphere at near- and far-infrared wavelengths. We compare the capabilities of this program with others currently available and demonstrate its utility for observational data calibration and reduction. The program employs current water-vapor and ozone models to produce fast and accurate transmittance spectra for wavelengths ranging from 0.8 microns to 10 mm.

  17. Study of the Dynamics of Meteoroids Through the Earth's Atmosphere and Retrieval of Meteorites: The Mexican Meteor Network

    NASA Astrophysics Data System (ADS)

    Cordero Tercero, M. G.; Farah Simon, A.; Velazquez-Villegas, F.

    2016-12-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f) recover and study meteorites. During this meeting, the progress of the project will be presented.

  18. Degree and Direction of Polarization of Multiple Scattered Light. 2: Earth's Atmosphere with Aerosols.

    PubMed

    Plass, G N; Kattawar, G W

    1972-12-01

    The degree of polarization as well as the direction of the polarization are calculated by a Monte Carlo method for the reflected and transmitted photons from the earth's atmosphere. The solar photons are followed through multiple collisions with the aerosols and the Rayleigh scattering centers in the atmosphere. The aerosol number density as well as the ratio of aerosol to Rayleigh scattering vary with height. The aerosol index of refraction is assumed to be 1.55. The proportion of aerosol to Rayleigh scattering is appropriately chosen at each wavelength (lambda = 0.4 micro and 0.7 micro); ozone absorption is included where appropriate. Three different aerosol number densities are used to study the effects of aerosol variations. Results are given for a solar zenith angle of 81.37 degrees and various surface albedos. The radiance and polarization of the reflected and transmitted photons is particularly sensitive to the amount of aerosols in the atmosphere at certain angles of observation. The direction of pola ization shows little dependence on the surface albedo.

  19. Satellite-tracking and earth-dynamics research programs. [geodetic and geophysical investigations and atmospheric research using satellite drag data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.

  20. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  1. A Concept for Differential Absorption Lidar and Radar Remote Sensing of the Earth's Atmosphere and Ocean from NRHO Orbit

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Marshak, A.; Omar, A.; Lin, B.; Baize, R.

    2018-02-01

    We propose a concept that will put microwave and laser transmitters on the Deep Space Gateway platform for measurements of the Earth's atmosphere and ocean. Receivers will be placed on the ground, buoys, Argo floats, and cube satellites.

  2. Effect of Aerosol Variation on Radiance in the Earth's Atmosphere-Ocean System.

    PubMed

    Plass, G N; Kattawar, G W

    1972-07-01

    The reflected and transmitted radiance is calculated for a realistic model of the atmosphere-ocean system. Multiple scattering to all orders as well as anisotropic scattering from aerosols are taken into account by a Monte Carlo technique. The probability for reflection or refraction at the ocean surface is calculated for each photon. Scattering and absorption by water molecules (Rayleigh) and by hydrosols (Mie) are taken into account within the ocean. The radiance is calculated for a normal aerosol distribution as well as for a three and ten times normal distribution. Calculations are also made for an aerosol layer near the earth as well as for one in the stratosphere. The upward radiance at the top of the atmosphere depends strongly on the total number of aerosols but not on their spatial distribution. Variations in the ozone amount also have little effect on the upward radiance. The calculations are made at the following wavelengths: 0.7 micro, 0.9 micro, 1.67 micro. The radiance above and below the ocean surface as well as the flux at various levels are also discussed.

  3. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    PubMed

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  4. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Charnay, Benjamin D.; Gao, Peter; Yung, Yuk L.; Russell, Michael J.

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life.

  5. Evolution of the atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Theories on the origin of the Earth atmosphere and chemical composition are presented. The role of oxygenic photosynthesis on the determination of the Earth's origin is discussed. The research suggests that further analysis of the geologic record is needed to more accurately estimate the history of atmospheric oxygen.

  6. Earth-atmosphere system and surface reflectivities in arid regions from Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Fraser, R. S.

    1976-01-01

    Previously developed programs for computing atmospheric transmission and scattering of the solar radiation are used to compute the ratios of the earth-atmosphere system (space) directional reflectivities in the nadir direction to the surface Lambertian reflectivity, for the four bands of the Landsat multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa, and Central America from the spectral radiance levels measured by the Landsat MSS. From these space reflectivities, surface reflectivities are computed applying the pertinent graphs. These surface reflectivities are used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory and in situ measurements.

  7. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  8. Implications of solar irradiance variability upon long-term changes in the Earth's atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.

  9. Results from Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Bolton, S. J.; Levin, S.; Hansen, C. J.; Janssen, M. A.; Adriani, A.; Gladstone, R.; Bagenal, F.; Ingersoll, A. P.; Momary, T.; Payne, A.

    2016-12-01

    The Juno mission has promoted and coordinated a network of Earth-based observations, including both space- and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: https://www.missionjuno.swri.edu/planned-observations. Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind described elsewhere in this meeting. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 microns through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (August 27), 2 (October 19), 3 (November 2), 4 (November 15), and 5 (November 30). The Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who, besides providing input needed for public operation of the JunoCam visible camera, tracked the evolution of features in Jupiter

  10. Atmospheric Research 2016 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  11. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  12. Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links.

    PubMed

    Belmonte, Aniceto; Taylor, Michael T; Hollberg, Leo; Kahn, Joseph M

    2017-07-10

    The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two-way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.

  13. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M; Randerson, James T.; Arora, Vivek K.

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisonsmore » with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests

  14. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Arora, V. K.; Bao, Q.; Cadule, P.; Ji, D.; Jones, C. D.; Kawamiya, M.; Khatiwala, S.; Lindsay, K.; Obata, A.; Shevliakova, E.; Six, K. D.; Tjiputra, J. F.; Volodin, E. M.; Wu, T.

    2014-02-01

    The strength of feedbacks between a changing climate and future CO2 concentrations is uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations—in which atmospheric CO2levels were computed prognostically—for historical (1850-2005) and future periods (Representative Concentration Pathway (RCP) 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2levels for the multimodel ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2estimates of 600±14 ppm at 2060 and 947±35 ppm at 2100, which were 21 ppm and 32 ppm below the multimodel mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2from Mauna Loa, our analysis suggests that

  15. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  16. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  17. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  18. We reside in the sun's atmosphere.

    PubMed

    Kamide, Y

    2005-10-01

    The Sun is the origin of all activities of the Earth, including its solid, liquid and gas states, as well as life on the Earth surface. Life was created on this planet and was further evolved after long physical/chemical processes, so that life here matches with what this planet requires. This paper contends that the Earth is located within the solar atmosphere, but we do not feel it in a daily life because of the blocking effects of the Earth's magnetic field and atmosphere, preventing the entry of the solar atmosphere directly into the Earth's domain. This paper emphasizes that we should not attempt to change the quality of the natural environment that delicate interactions between the Sun and the Earth have established for us by taking a long time.

  19. Earth views and an illuminated earth limb

    NASA Image and Video Library

    1998-11-20

    STS047-54-016 (12 - 20 Sept 1992) --- The colors in this photograph provide insight into the relative density of the atmosphere. The crew members had many opportunities to witness sunrises and sunsets, considering they orbit the Earth every 90 minutes, but few, they said, compared to this scene. It captures the silhouette of several mature thunderstorms with their cirrus anvil tops spreading out against the tropopause (the top of the lowest layer of Earth's atmosphere) at sunset. The lowest layer (troposphere) is the densest and refracts light at the red end of the visible spectrum (7,400 Angstroms), while the blues (4,000 Angstroms) are separated in the least dense portion of the atmosphere (middle and upper atmosphere, or stratosphere and mesosphere). Several layers of blue can be seen. NASA scientists studying the photos believe this stratification to be caused by the scattering of light by particulate trapped in the stratosphere and mesosphere particulate that generally originate from volcanic eruptions, such as those of Mt. Pinatubo in the Philippines and, most recently, Mt. Spurr in Alaska.

  20. Aerodynamic Evidence Pertaining to the Entry of Tektites into the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R.; Larson, Howard K.; Anderson, Lewis A.

    1962-01-01

    Evidence is presented which shows that the Australian and Java tektites entered the earth's atmosphere and experienced ablation by severe aerodynamic heating in hypervelocity flight. The laboratory experiments on hypervelocity ablation have reproduced ring-wave flow ridges and coiled circumferential flanges like those found on certain of these tektites. Systematic striae distortions exhibited in a thin layer beneath the front surface of australites also are reproduced in the laboratory ablation experiments, and are shown to correspond to the calculated distortions for aerodynamic ablation of a glass. About 98 percent of Australian tektites represent aerodynamically stable configurations during the ablative portion of an entry trajectory. Certain meteorites exhibit surface features similar to those on tektites.

  1. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  2. How large is the cosmic dust flux into the Earth's atmosphere?

    NASA Astrophysics Data System (ADS)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  3. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  4. Earth-atmosphere system and surface reflectivities in arid regions from LANDSAT multispectral scanner measurements

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Fraser, R. S.

    1976-01-01

    Programs for computing atmospheric transmission and scattering solar radiation were used to compute the ratios of the Earth-atmosphere system (space) directional reflectivities in the vertical direction to the surface reflectivity, for the four bands of the LANDSAT multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa and Central America from the spectral radiance levels measured by the LANDSAT MSS. From these space reflectivities, surface vertical reflectivities were computed applying the pertinent graphs. These surface reflectivities were used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory measurements.

  5. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.

    PubMed

    Wong, Michael L; Charnay, Benjamin D; Gao, Peter; Yung, Yuk L; Russell, Michael J

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO 3 - ) and nitrite (NO 2 - ) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO 2 and N 2 , will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H 2 O vapor will then produce acids such as HNO, HNO 2 , HNO 3 , and HO 2 NO 2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO 2 models, we calculate the NOx delivery to be 2.4 × 10 5 , 6.5 × 10 8 , and 1.9 × 10 8 molecules cm -2 s -1 . After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life. Key Words: Nitrogen oxides-Nitrate-Nitrite-Photochemistry-Lightning-Emergence of life. Astrobiology 17, 975-983.

  6. The radiation balance of the earth-atmosphere system from Nimbus 3 radiation measurements

    NASA Technical Reports Server (NTRS)

    Raschke, E.; Vonderhaar, T. H.; Pasternak, M.; Bandeen, W. R.

    1973-01-01

    The radiation balance of the earth-atmosphere system and its components was computed from global measurements of radiation reflected and emitted from the earth to space. These measurements were made from the meteorological satellite Nimbus 3 during the periods from April 16 to August 15, 1969; October 3 to 17, 1969; and January 21 to February 3, 1970. Primarily the method of evaluation, its inherent assumptions, and possible error sources were discussed. Results are presented by various methods: (1) global, hemispherical, and zonal averages obtained from measurements in all semimonthly periods and (2) global maps of the absorbed solar radiation, the albedo, the outgoing longwave radiation, and the radiation balance obtained from measurements during semimonthly periods in each season (May 1 to 15, July 16 to 31, and October 3 to 17, 1969, and January 21 to February 3, 1970). Annual global averages of the albedo and of the outgoing longwave radiation were determined. These values balance to within 1 percent the annual global energy input by solar radiation that was computed for a solar constant.

  7. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    GRAM is a Fortran software package that can run on a variety of platforms including PC's. GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc. GRAM99 covers all global locations, all months, and heights from the surface to approx. 1000 km). Dispersions (perturbations) of these parameters are also provided and are spatially and temporally correlated. GRAM can be run in a stand-alone mode or called as a subroutine from a trajectory program. GRAM07 is diagnostic, not prognostic (i.e., it describes the atmosphere, but it does not forecast). The source code is distributed free-of-charge to eligible recipients.

  8. Application of the Regional Atmospheric Modeling System to the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.

    1998-01-01

    The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.

  9. Ozone, Climate, and Global Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  10. Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity

    NASA Astrophysics Data System (ADS)

    Vallis, Geoffrey K.; Colyer, Greg; Geen, Ruth; Gerber, Edwin; Jucker, Martin; Maher, Penelope; Paterson, Alexander; Pietschnig, Marianne; Penn, James; Thomson, Stephen I.

    2018-03-01

    Isca is a framework for the idealized modelling of the global circulation of planetary atmospheres at varying levels of complexity and realism. The framework is an outgrowth of models from the Geophysical Fluid Dynamics Laboratory in Princeton, USA, designed for Earth's atmosphere, but it may readily be extended into other planetary regimes. Various forcing and radiation options are available, from dry, time invariant, Newtonian thermal relaxation to moist dynamics with radiative transfer. Options are available in the dry thermal relaxation scheme to account for the effects of obliquity and eccentricity (and so seasonality), different atmospheric optical depths and a surface mixed layer. An idealized grey radiation scheme, a two-band scheme, and a multiband scheme are also available, all with simple moist effects and astronomically based solar forcing. At the complex end of the spectrum the framework provides a direct connection to comprehensive atmospheric general circulation models. For Earth modelling, options include an aquaplanet and configurable continental outlines and topography. Continents may be defined by changing albedo, heat capacity, and evaporative parameters and/or by using a simple bucket hydrology model. Oceanic Q fluxes may be added to reproduce specified sea surface temperatures, with arbitrary continental distributions. Planetary atmospheres may be configured by changing planetary size and mass, solar forcing, atmospheric mass, radiation, and other parameters. Examples are given of various Earth configurations as well as a giant planet simulation, a slowly rotating terrestrial planet simulation, and tidally locked and other orbitally resonant exoplanet simulations. The underlying model is written in Fortran and may largely be configured with Python scripts. Python scripts are also used to run the model on different architectures, to archive the output, and for diagnostics, graphics, and post-processing. All of these features are publicly

  11. Novel Hybrid Ablative/Ceramic Heatshield for Earth Atmospheric Re-Entry

    NASA Astrophysics Data System (ADS)

    Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.; de Montburn, A.; Descomps, M.; Zuber, C.; Rotaermel, W.; Hald, H.; Pereira, C.; Mergia, K.; Triantou, K.; Marinou, A.; Vekinis, G.; Ionescu, G.; Ban, C.; Stefan, A.; Leroy, V.; Bernard, D.; Massuti, B.; Herdrich, G.

    2014-06-01

    Original approaches based on ablative materials and novel TPS solutions are required for space applications, where resistance to extreme oxidative environments and high temperatures are required. For future space exploration the demands for the thermal shield go beyond the current state-of-the-art. Therefore, the development of new thermal protection materials and systems at a reasonable mass budget is absolutely essential to ensure European non-dependence on corresponding restricted technologies. The three year long FP7 project HYDRA aims at the development of a novel thermal protection system through the integration of a low density ablative outer-shield on top of an advanced thermo-structural ceramic composite layer and will provide an innovative technology solution consistent with the capabilities of European technologies and material providers. This paper summarizes the current status of the scientific activities carried out after two years of progress in terms of design, integration and verification of a robust and lightweight thermal shield solution for atmospheric earth re-entry.

  12. Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves.

    PubMed

    Plass, G N; Kattawar, G W; Guinn, J A

    1975-08-01

    The radiance in the earth's atmosphere and ocean is calculated for a realistic model including an ocean surface with waves. Individual photons are followed in a Monte Carlo calculation. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols as well as molecular and aerosol absorption are taken into account. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate single-scattering functions are used which are calculated separately for the aerosols and the hydrosols from the Mie theory with appropriate and different size distributions in each case. The scattering angles are determined from the appropriate scattering function including the strong forwardscattering peak when there is aerosol or hydrosol scattering. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the oceanc surface. The wave slope is chosen from the Cox-Munk distribution. Graphs show the influence of the waves on the upward radiance at the top of the atmosphere and just above the ocean surface and on the downward radiance just below the ocean surface as well as deeper within the ocean. The radiance changes are sufficient at the top of the atmosphere to determine the sea state from satellite measurements. Within the ocean the waves smooth out the abrupt transition that occurs at the edge of the allowed cone for radiation entering a calm ocean. The influence of the waves on the contrast between the sky and sea at the horizon is discussed. It is shown that the downward flux just below the surface increases with wind speed at all solar angles.

  13. Mini-EUSO: A Precursor Mission on the International Space Station for the Observation of Atmosphere and Earth in the UV Light

    NASA Astrophysics Data System (ADS)

    Ricci, Marco

    For any experiment aiming at the observation of Ultra High Energy Cosmic Rays (UHECRs) from space, one key measurement is related to the UV emissions produced in the Earth's atmosphere. In view of the planned missions under study (KLYPVE-EUSO, JEM-EUSO, EUSO-FF) at the International Space Station (ISS) and on board of free-flyer satellites, a small, compact UV telescope, Mini-EUSO, is being developed by the JEM-EUSO International Collaboration to be placed at the UV-transparent, nadir looking window of the Russian module of the ISS. In addition to the main purpose of mapping the Earth in the UV range (300-400 nm), Mini-EUSO will also perform studies of atmospheric phenomena, observation of meteors, strange quark matter search and space debris tracking. It will as well enhance the technological readiness level of the EUSO concept and instruments. Mini-EUSO is a mission approved and selected by the Italian Space Agency (ASI) and, under the name "UV atmosphere", by the Russian Space Agency Roscosmos.

  14. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  15. Earth Observation

    NASA Image and Video Library

    2011-08-02

    ISS028-E-020276 (2 Aug. 2011) --- This photograph of polar mesospheric clouds was acquired at an altitude of just over 202 nautical miles (about 322 kilometers) in the evening hours (03:19:54 Greenwich Mean Time) on Aug. 2, 2011, as the International Space Station was passing over the English Channel. The nadir coordinates of the station were 49.1 degrees north latitude and 5.5 degrees west longitude. Polar mesospheric clouds (also known as noctilucent, or ?night-shining? clouds) are transient, upper atmospheric phenomena that are usually observed in the summer months at high latitudes (greater than 50 degrees) of both the Northern and Southern Hemispheres. They appear bright and cloudlike while in deep twilight. They are illuminated by sunlight when the lower layers of the atmosphere are in the darkness of Earth?s shadow. The horizon of Earth appears at the bottom of the image, with some layers of the lower atmosphere already illuminated by the rising sun. The higher, bluish-colored clouds look much like wispy cirrus clouds, which can be found as high as 60,000 feet (18 kilometers) in the atmosphere. However noctilucent clouds, as seen here, are observed in the mesosphere at altitudes of 250,000 to 280,000 feet (about 76 to 85 kilometers). Astronaut observations of polar mesospheric clouds over northern Europe in the summer are not uncommon.

  16. Optical Instability of the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kucherov, N. I. (Editor)

    1966-01-01

    The atmosphere is not stationary: it changes continuously and its optical properties are inherently unstable. This optical instability of the air medium is of considerable significance in various fields of research and observation where light transmission through the atmosphere plays a basic role. Under the category of optical instabilities we mainly have the different atmospheric perturbations whose integrated effect constitutes the astroclimate: these are image pulsation, scintillation, and the blurring of the diffraction disk. The artificial satellites and space probes collected a great amount of new data on the upper atmosphere and on the outer space environment. New interesting and important problems arose, which attracted the attention of many geophysicists and astronomers. This shift in the center of gravity of scientific interests and efforts is observed mainly among scientists specializing in atmospheric physics. Recently, scientific organizations engaged on optical instability research switched to astroclimatic topics. Twelve scientific organizations were represented at the Soviet astronomers have recently been charged with a very difficult and responsible task: to select suitable sites for the erection of new observatories, including an astrophysical observatory with the largest telescope in the USSR. A considerable number of research groups were dispatched into various areas of the Soviet Union, and many astronomical observatories took part in the astroclimatic survey. The work of these expeditions remains un-paralleled by any other country in the world. On the other hand, these researches aroused a definite interest in astroclimate in Soviet astronomical observatories. International astronomical circles pay an ever growing attention to the problems of astroclimate.

  17. The Significance of Land-Atmosphere Processes in the Earth System

    NASA Astrophysics Data System (ADS)

    Suni, T.; Kulmala, M. T.; Guenther, A. B.

    2012-12-01

    The land-atmosphere interface is where humans primarily operate. Humans modify the land surface in many ways that influence the fluxes of energy and trace gases between land and atmosphere. Their emissions change the chemical composition of the atmosphere and anthropogenic aerosols change the radiative balance of the globe directly by scattering sunlight back to space and indirectly by changing the properties of clouds. Feedback loops among all these processes, land, the atmosphere, and biogeochemical cycles of nutrients and trace gases extend the human influence even further. Over the last decade, the importance of land-atmosphere processes and feedbacks in the Earth System has been shown on many levels and with multiple approaches, and a number of publications have shown the crucial role of the terrestrial ecosystems as regulators of climate [1-6]. Modellers have clearly shown the effect of missing land cover changes and other feedback processes and regional characteristics in current climate models and recommended actions to improve them [7-11]. Unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation have also been provided [12-14]. Land-cover change has been emphasized with model intercomparison projects that showed that realistic land-use representation was essential in land surface modelling [11, 15]. Crucially important tools in this research have been the networks of long-term flux stations and large-scale land-atmosphere observation platforms that are also beginning to combine remote sensing techniques with ground observations [16-20]. Human influence has always been an important part of land-atmosphere science but in order to respond to the new challenges of global sustainability, closer ties with social science and economics groups will be necessary to produce realistic estimates of land use and anthropogenic emissions by analysing future population increase, migration patterns, food production allocation, land

  18. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018217 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew on the International Space Station. Airglow over Earth can be seen in the background.

  19. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018188 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  20. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018199 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  1. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018177 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  2. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018200 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  3. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018221 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  4. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018218 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  5. From Titan to the primitive Earth

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Gpcos Team

    Our knowledge of the conditions prevailing in the environment of the primitive Earth is still very limited, due to the lack of geological data. Fortunately, there are a few planetary objects in the solar system which present similarities with our planet, including during its early history. Titan is one of these. With a diameter of more than 5100 km, Titan, the largest moon of Saturn, is also the only one to have a dense atmosphere. This atmosphere, clearly evidenced by the presence of haze layers, extends to approximately 1500 km. Like the Earth, Titan's atmosphere is mainly composed of dinitrogen, N2 . The other main constituents are methane, CH4 , about 1.6% to 2.0% in the stratosphere, as measured by CIRS on Cassini and GC-MS on Huygens and dihydrogen (H2 , approximate 0.1%). With surface temperatures of approximately 94 K, and an average surface pressure of 1.5 bar, Titan's atmosphere is nearly five times denser than the Earth's. Despite of these differences between Titan and the Earth there are several analogies that can be drawn between the two planetary bodies. The first resemblances concern the vertical atmospheric structure. Although Titan is much colder, with a troposphere (˜94-˜70 K), a tropopause (70.4 K) and a stratosphere (˜70-175 K) its atmosphere presents a similar complex structure to that of the Earth. These analogies are linked to the presence in both atmospheres of greenhouse gases: CH4 and H2 on Titan, equivalent respectively to terrestrial condensable H2 O and non-condensable CO2 . In addition the haze particles and clouds in Titan's atmosphere play an antigreenhouse effect similar to that of the terrestrial atmospheric aerosols and clouds. Indeed, methane on Titan seems to play the role of water on the Earth, with a complex cycle, which still has to be understood. The possibility that Titan is covered with hydrocarbon oceans is now ruled out, but it is still possible that Titan's surface include lakes of methane and ethane. Moreover, the

  6. A Numerical Study of Micrometeoroids Entering Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Templeton, M.; Kress, M. E.

    2011-01-01

    A study using numerical integration techniques has been performed to analyze the temperature profiles of micrometeors entering the atmosphere of Saturn s moon Titan. Due to Titan's low gravity and dense atmosphere, arriving meteoroids experience a significant cushioning effect compared to those entering the Earth's atmosphere. Temperature profiles are presented as a function of time and altitude for a number of different meteoroid sizes and entry velocities, at an entry angle of 45. Titan's micrometeoroids require several minutes to reach peak heating (ranging from 200 to 1200 K), which occurs at an altitude of about 600 km. Gentle heating may allow for gradual evaporation of volatile components over a wide range of altitudes. Computer simulations have been performed using the Cassini/Huygens atmospheric data for Titan. Keywords micrometeoroid Titan atmosphere 1 Introduction On Earth, incoming micrometeoroids (100 m diameter) are slowed by collisions with air molecules in a relatively compact atmosphere, resulting in extremely rapid deceleration and a short heating pulse, often accompanied by brilliant meteor displays. On Titan, lower gravity leads to an atmospheric scale height that is much larger than on Earth. Thus, deceleration of meteors is less rapid and these particles undergo more gradual heating. This study uses techniques similar to those used for Earth meteoroid studies [1], exchanging Earth s planetary characteristics (e.g., mass and atmospheric profile) for those of Titan. Cassini/Huygens atmospheric data for Titan were obtained from the NASA Planetary Atmospheres Data Node [4]. The objectives of this study were 1) to model atmospheric heating of meteoroids for a range of micrometeor entry velocities for Titan, 2) to determine peak heating temperatures and rates for micrometeoroids entering Titan s atmosphere, and 3) to create a general simulation environment that can be extended to incorporate additional parameters and variables, including different

  7. Runaway greenhouse atmospheres: Applications to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  8. Disequilibrium in planetary atmospheres and the search for habitability

    NASA Astrophysics Data System (ADS)

    Simoncini, E.

    It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important for its potential role in the detection of life on other suitable planets \\citep{Lovelock_1965,Kleidon_2010,Simoncini_2015}. We developed a methodology to calculate the extent of atmospheric chemical disequilibrium\\citep{Simoncini_2015,Kondepudi_1996}. This tool allows us to understand, on a thermodynamic basis, how life affected - and still affects - geochemical processes on Earth, and if other planetary atmospheres are habitable or have a disequilibrium similar to the Earth's one. A new computational framework called KROME has been applied to atmospheric models in order to give a correct computation of reactions´ kinetics \\citep{Grassi_2015}. In this work we present a first computation of the extent of disequilibrium for the present Earth atmosphere, considering the specific contribution of the different atmospheric processes, such as thermochemical reactions, eddy diffusion, photochemistry, deposition, and the effect of the biosphere. We then assess the effect of life on atmospheric disequilibrium of the Earth and provide a useful discussion about how the study of atmospheric disequilibrium can help in finding habitable (exo)planets. We finally compare the chemical disequilibrium of Earth and Mars atmospheres, for present and early conditions.

  9. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  10. Geostationary Spectrograph (GeoSpec) for Earth and Atmospheric Science Applications

    NASA Technical Reports Server (NTRS)

    Janz, Scott J.

    2003-01-01

    GeoSpec will support several possible future mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by measurement of both chemically linked atmospheric trace gas concentrations and profiles of important molecules such as OS, N02, CH20 and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept we will describe is a dual spectrograph covering the WMS wavelength region of 310- 481 nm and the VIS/NIR wavelength region of 500-900 nm. A third channel in the short- wave infrared (SWIR) region between 2.2 p and 2.4 pn for total column measurements of CO, CH4, and N20 will also be described. The goal is to design a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.2 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time- varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Technological advances in the design and fabrication of convex holographic gratings and large format, high dynamic range PIN/CMOS detectors at the focal plane will be exploited. By simply changing the focal length of the front-end telescope GeoSpec can accommodate different orbital altitudes, including low Earth orbit, the Sun-side Lagrangian point L1, and/or different spatial resolutions.

  11. The Rise of Oxygen in the Earth's Atmosphere Controlled by the Efficient Subduction of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2017-12-01

    Carbon cycling between the Earth's surface environment, i.e., the ocean-atmosphere system, and the Earth's interior is critical for differentiation, redox evolution, and long-term habitability of the planet. This carbon cycle is influenced heavily by the extent of carbon subduction. While the fate of carbonates during subduction has been discussed in numerous studies [e.g., 1], little is known how organic carbon is quantitatively transferred from the Earth's surface to the interior. Efficient subduction of organic carbon would remove reduced carbon from the surface environment over the long-term (≥100s Myrs) while release at subduction zone arc volcanoes would result in degassing of CO2. Here we conducted high pressure-temperature experiments to determine the carbon carrying capacity of slab derived, rhyolitic melts under graphite-saturated conditions over a range of P (1.5-3.0 GPa) and T (1100-1400 °C) at a fixed melt H2O content (2 wt.%) [2]. Based on our experimental data, we developed a thermodynamic model of CO2 dissolution in C-saturated slab melts, that allows us to quantify the extent of organic carbon mobility as a function of slab P, T, and fO2 during subduction through time. Our experimental data and thermodynamic model suggest that the subduction of graphitized organic C, and graphite/diamond formed by reduction of carbonates with depth [e.g., 3], remained efficient even in ancient, hotter subduction zones - conditions at which subduction of carbonates likely remained limited [1]. Considering the efficiency the subduction of organic C and potential conditions for ancient subduction, we suggest that the lack of remobilization in subduction zones and deep sequestration of organic C in the mantle facilitated the rise and maintenance atmospheric oxygen in the Paleoproterozoic and is causally linked to the Great Oxidation Event (GOE). Our modeling shows that episodic subduction and organic C sequestration pre-GOE may also explain occasional whiffs of

  12. Propagation of sound through the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Meredith, R. W.; Becher, J.

    1983-01-01

    The data collected at a pressure of one atmosphere for the different temperatures and relative humidities of the air-water vapor mixtures is summarized. The dew point hygrometer used in these measurements did not give reliable results for dew points much above the ambient room temperature. For this reason measurements were not attempted at the higher temperatures and humidities. Viscous wall losses in the resonant tube at 0 C so dominate the molecular relaxation of nitrogen, in the air-water vapor mixture, that reliable data could not be obtained using the free decay method in a resonant tube at one atmosphere. In an effort to obtain viable data at these temperatures, measurements were performed at a pressure of 10 atmospheres. Since the molecular relaxation peak is proportional to the pressure and the viscous losses are proportional to the inverse square root of the pressure the peak height should be measurable at the higher pressure. The tradeoff here is that at 10 atmospheres; the highest relative humidity attainable is 10 percent. The data collected at 10 atmospheres is also summarized.

  13. A Supernova at 50 pc: Effects on the Earth's Atmosphere and Biota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melott, A. L; Thomas, B. C.; Kachelrieß, M.

    Recent {sup 60}Fe results have suggested that the estimated distances of supernovae in the last few million years should be reduced from ∼100 to ∼50 pc. Two events or series of events are suggested, one about 2.7 million years to 1.7 million years ago, and another about 6.5–8.7 million years ago. We ask what effects such supernovae are expected to have on the terrestrial atmosphere and biota. Assuming that the Local Bubble was formed before the event being considered, and that the supernova and the Earth were both inside a weak, disordered magnetic field at that time, TeV–PeV cosmic raysmore » (CRs) at Earth will increase by a factor of a few hundred. Tropospheric ionization will increase proportionately, and the overall muon radiation load on terrestrial organisms will increase by a factor of ∼150. All return to pre-burst levels within 10 kyr. In the case of an ordered magnetic field, effects depend strongly on the field orientation. The upper bound in this case is with a largely coherent field aligned along the line of sight to the supernova, in which case, TeV–PeV CR flux increases are ∼10{sup 4}; in the case of a transverse field they are below current levels. We suggest a substantial increase in the extended effects of supernovae on Earth and in the “lethal distance” estimate; though more work is needed. This paper is an explicit follow-up to Thomas et al. We also provide more detail on the computational procedures used in both works.« less

  14. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  15. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    NASA Technical Reports Server (NTRS)

    Neubert, Torsten; Banks, Peter M.

    1990-01-01

    Analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft are presented. The problem is described by two coupled nonlinear differential equations in the up-going (along a magnetic field line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results form the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere interaction are discussed. First, the limits on the electron beam current that can be emitted from a spacecraft without substantial spacecraft charging are investigated. This is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam electrons and thereby limits the ionization of the neutral atmosphere. As an example, we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1 to 10 keV electron beams from sounding rockets, completely balance the beam current, thereby allowing the emission of very high beam currents. Second, the amount of plasma production in the beam-streak is discussed. Results are shown for selected values of the beam energy, spacecraft velocity, and spacecraft altitude.

  16. Preliminary Results From Observing The Fast Stardust Sample Return Capsule Entry In Earth's Atmosphere On January 15, 2006.

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.

    2006-08-01

    In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.

  17. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  18. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  19. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  20. Identifying Life from Varying Atmospheres

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    Theres no hiding changes in Earths atmosphere over the seasons are a dead giveaway to the fact that Earth hosts life. Now a new study explores whether we might use atmospheric seasonality like Earths to detect life on other planets.Looking for ChangeMost of the searches for life beyond our planet focus on identifying static biosignatures, like the presence of methane or large amounts of oxygen in an exoplanetary atmosphere. This approach suffers from many ambiguities, however including a high likelihood of false positives (processes that chemically mimic life signatures but arent life) and false negatives (non-detections despite the presence of life).Earths atmospheric carbon dioxide (top) and methane (bottom) levels vary seasonally, as seen in these data from NOAAs Earth System Research Laboratory. [Olson et al. 2018]In a new study led by Stephanie Olson (UC Riverside and NASA Astrobiology Institute Alternative Earths and Virtual Planetary Laboratory Teams), a team of scientists has proposed an alternative approach: to search for distinctive variability of exoplanet atmospheres that indicates the presence of life.Seasons and Lifeif youre like me, you probably havent spent a lot of time thinking about interactions between the Earths biosphere and its axial tilt. Nonetheless, this interplay is responsible for detectable and distinctive seasonal changes in our planets atmosphere!This schematic shows how oxygen and carbon dioxide levels in the atmosphere vary in opposing phase seasonally, with the increased sunlight in summer driving greater conversion of carbon dioxide into oxygen. [Olson et al. 2018]Since so much of our globe is covered by photosynthesizing life, the seasonal availability of sunlight regulates the conversion of carbon dioxide to oxygen, providing a signature in our atmosphere that varies over the course of the year. And photosynthesis isnt the only culprit! Other biological products evolve seasonally as well as the surface temperature on our globe

  1. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    PubMed Central

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  2. Oblique Shot of Earth

    NASA Image and Video Library

    2008-09-05

    This highly oblique image shot over northwestern part of the African continent captures the curvature of the Earth and shows its atmosphere as seen by NASA EarthKAM. You can see clouds and even the occasional thunderhead.

  3. The fate of the hydroxyl radical in the earth's primitive atmosphere and implications for the production of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Vander Wood, T. B.; Thiemens, M. H.

    1980-01-01

    Behavior of the hydroxyl radical produced by the photolysis of water vapor in the earth's early atmosphere is examined. Because of the substantial OH radical reactivity with trace species (CO, HCl, SO2, H2S, NH3, and CH4) the formation of molecular oxygen may be prevented, even at a trace species mixing ratio. The photolysis rate of H2O, with corrections for hydrogen exospheric escape, is capable of describing the oxidation of the atmosphere and crust but may not be used to determine the rate of molecular oxygen generation without consideration of the various OH-trace species reactions.

  4. Middle atmospheric electrodynamics

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  5. Assessing Atmospheric Water Injection from Oceanic Impacts

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.

    2005-01-01

    Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

  6. Atmospheric Research 2014 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  7. The Earth is a Planet Too!

    NASA Technical Reports Server (NTRS)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  8. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  9. Refractive indices of Early Earth organic aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Carrasco, N.; Fleury, B.; Vettier, L.

    2017-09-01

    Organic hazes in the early Earth atmosphere are hypothesized to provide additional shielding to solar radiation. We simulate the conditions of this primitive atmosphere by adding CO2 to a N2:CH4 gas mixture feeding a plasma. In this plasma, solid organic films were produced simulating early aerosols. We performed ellipsometry on these films from the visible to the near-ultraviolet range. Such measurements reveal how organic aerosols in the early Earth atmosphere preferentially absorb photons of shorter wavelengths than typical Titan tholins, suggesting a coolant role in the early Earth.

  10. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  11. E-CANES: A Research Network dedicated to Electromagnetic Coupling of the Atmosphere With Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Hanuise, C.; Blanc, E.; Crosby, N.; Ebert, U.; Mareev, E.; Neubert, T.; Rothkaehl, H.; Santolik, O.; Yair, Y.; Gille, P.

    2008-12-01

    Transient luminous events in the stratosphere and mesosphere, the sprites, elves, blue jets and gigantic jets, are observed above intense thunderstorms in association with particularly intense lightning discharges. Their recent discovery (1989) offers an opportunity to study the fundamental process of the electric discharge under the different conditions of the troposphere (lightning), stratosphere (blue jets) and the mesosphere (sprites) and the coupling between these regions by electric and magnetic fields. It further facilitates studies of the more general questions of thunderstorm effects on the atmosphere and the role of thunderstorms in a changing climate. New space missions will be launched in the coming years to study the various effects of thunderstorms. They will focus on transient luminous events, the generation of relativistic electron beams in discharges, and the perturbation to the atmosphere, ionosphere and magnetosphere of lightning, transient luminous events, water vapour transport and gravity waves. The missions are the French micro-satellite TARANIS, the ESA ASIM payload on board the International Space Station and the Japanese Sprite Sat mission. These highly interdisciplinary missions will result in a wealth of new data, which require knowledge based capacity building to underpin the observations with improved statistical data analysis and theoretical modelling. We are therefore establishing a global framework for research on thunderstorm processes and their effect on the atmosphere, in particular (1) the fundamental process of the electric discharge as manifested in the stratosphere and mesosphere as sprites and jets, (2) the relationship between cosmic rays, lightning discharges, transient luminous events and terrestrial gamma ray flashes, and (3) the environmental impact of the above physical processes, and thunderstorms in general, on the atmosphere and near-Earth space. The first step has been the creation of the European research group

  12. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  13. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.

    2004-01-01

    There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.

  14. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  15. Hydrodynamic escape from planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  16. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duval, Aleta; Keller, Vernon W.

    2003-01-01

    There are eight destinations in the Solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Robe entry at Titan, are discussed. Recent updates to the Mars atmospheric model, in support of ongoing Mars aerocapture systems analysis studies, are also presented.

  17. Models of Mars' atmosphere (1974)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Atmospheric models for support of design and mission planning of space vehicles that are to orbit the planet Mars, enter its atmosphere, or land on the surface are presented. Quantitative data for the Martian atmosphere were obtained from Earth-base observations and from spacecraft that have orbited Mars or passed within several planetary radii. These data were used in conjunction with existing theories of planetary atmospheres to predict other characteristics of the Martian atmosphere. Earth-based observations provided information on the composition, temperature, and optical properties of Mars with rather coarse spatial resolution, whereas spacecraft measurements yielded data on composition, temperature, pressure, density, and atmospheric structure with moderately good spatial resolution. The models provide the temperature, pressure, and density profiles required to perform basic aerodynamic analyses. The profiles are supplemented by computed values of viscosity, specific heat, and speed of sound.

  18. Detection of an Atmosphere Around the Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Tsiaras, A.; Rocchetto, M.; Waldmann, I. P.; Venot, O.; Varley, R.; Morello, G.; Damiano, M.; Tinetti, G.; Barton, E. J.; Yurchenko, S. N.; Tennyson, J.

    2016-04-01

    We report the analysis of two new spectroscopic observations in the near-infrared of the super-Earth 55 Cancri e, obtained with the WFC3 camera on board the Hubble Space Telescope. 55 Cancri e orbits so close to its parent star that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6σ confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, { T }-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such a result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.

  19. Space Science in Action: Earth's Atmosphere [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the layers of the atmosphere and why each is important to the survival of life on the planet. Students discover why the atmosphere is responsible for weather and see how special aircraft actually fly into hurricanes. Students build their own working barometer in a hands-on activity. Contents…

  20. Laboratory for Atmospheres 2008 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2009-01-01

    The 2008 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report. The Laboratory for Atmospheres (Code 613) is part of the Earth Sciences Division (Code 610), formerly the Earth Sun Exploration Division, under the Sciences and Exploration Directorate (Code 600) based at NASA s Goddard Space Flight Center in Greenbelt, Maryland. In line with NASA s Exploration Initiative, the Laboratory executes a comprehensive research and technology development program dedicated to advancing knowledge and understanding of the atmospheres of Earth and other planets. The research program is aimed at understanding the influence of solar variability on the Earth s climate; predicting the weather and climate of Earth; understanding the structure, dynamics, and radiative properties of precipitation, clouds, and aerosols; understanding atmospheric chemistry, especially the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and advancing our understanding of physical properties of Earth s atmosphere. The research program identifies problems and requirements for atmospheric observations via satellite missions. Laboratory scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology for remote sensing of the atmosphere. Laboratory members conduct field measurements for satellite data calibration and validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud-resolving models, and development of next-generation Earth system models. Interdisciplinary research is carried

  1. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  2. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  3. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  4. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  5. Improvements to AMS Pre-College Programs: Results of a Self-Study on DataStreme Atmosphere, Ocean and Earth's Climate System

    NASA Astrophysics Data System (ADS)

    Moses, M. N.; Brey, J. A.; Geer, I. W.; Mills, E. W.; McGinnis, J. R.; Nugnes, K. A.

    2011-12-01

    The American Meteorological Society (AMS) believes that all teachers should be earth science literate. To achieve this, the AMS Education Program offers content-rich, professional development courses for precollege teachers in the geosciences. During the Fall and Spring semesters, AMS partners with NOAA, NASA and SUNY Brockport to offer DataStreme Atmosphere, Ocean, and Earth's Climate System. These courses are delivered to small groups of K-12 teachers through Local Implementation Teams (LITs) in nearly all 50 states, with twice-weekly online study materials, weekly mentoring, and several face-to-face meetings, supplemented by a provided textbook and investigations manual. Upon completion of each course, teachers receive three free graduate credits from SUNY Brockport. In 2010, AMS embarked on a comprehensive review to assess the program's practices and impacts. A significant aspect of the self-study was a case study of the AMS DataStreme LIT located in Wisconsin. Lead by an external evaluator, the focus of the study was to gain insight into the AMS DataStreme Model and its affect on knowledge growth and pedagogical development for K-12 teacher participants and their instructors. In particular, environmental literacy in atmospheric science, oceanography, and climate science was examined. The study also tracked the number of DataStreme courses offered in areas with groups traditionally underrepresented in science. In Spring 2011, 47% of DataStreme Atmosphere participants and 38% of DataStreme Ocean participants worked in schools with more than 25% minority student population. Data was retrieved using several different methods. The external evaluator conducted phone interviews with the LIT instructors and participating K-12 teachers, and an end-of-course survey data was collected and examined. Preliminary results look extremely favorable. When the participants were asked to what extent their participation in DataStreme Earth's Climate System increased their

  6. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  7. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Au, Andrew Y.

    1998-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55%, 42%, and 80% for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231% (x), 191% (y), and 77% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3% (x), 4% (y), and 5% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68% and 69%, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1%) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the zonal. The x-component exhibits

  8. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio

    1999-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55\\%, 42\\%, and 80\\t for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231\\% (x), 191\\% (y), and 77\\% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3\\% (x), 4\\% (y), and 5\\% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric'torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68\\% and 69 %, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1\\ ) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42\\% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6\\% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the

  9. Modelling exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Rauer, Heike

    While the number of known extrasolar planets is steadily increasing recent years have shown the beginning of a new phase of our understanding of exoplanets due to the spectroscopic determi-nation of their atmospheric composition. Atmospheres of hot extrasolar giant gas planets have already been investigated by UV, optical and IR spectroscopy today. In future, spectroscopy of large, terrestrial planets ("super-Earth"), in particular planets in the habitable zone of their parent star, will be a major goal of investigation. Planning future space satellite observations of super-Earths requires modelling of atmospheres of terrestrial planets in different environments, such as e.g. central star type, orbital distance, as well as different atmospheric compositions. Whether planets able to support life "as we know it" exist outside our solar system is one of the most profound questions today. It can be addressed by characterizing the atmospheres of ter-restrial extrasolar planets searching for spectroscopic absorption bands of biomarker molecules. An overview of expected planetary conditions in terms of their habitability will be presented for several model scenarios of terrestrial extrasolar planets.

  10. A Synergistic Approach to Interpreting Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha E.

    We will soon have the technological capability to measure the atmospheric composition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet's atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets. In order to demonstrate the intricacies in modeling terrestrial planets, I use early Mars as a case study. I leverage a combination of one-dimensional climate, photochemical and energy balance models in order to create one self-consistent model that closely matches currently available climate data. One-dimensional models can address several processes: the influence of greenhouse gases on heating, the effect of the planet's geological processes (i.e. volcanoes and the carbonatesilicate cycle) on the atmosphere, the effect of rainfall on atmospheric composition and the stellar irradiance. After demonstrating the number of assumptions required to build a model, I look towards what exactly we can learn from remote observations of temperate Earths and Super Earths. However, unlike in-situ observations from our own solar system, remote sensing techniques need to be developed and understood in order to accurately characterize exo-atmospheres. I describe the models used to create synthetic transit transmission observations, which includes models of

  11. Atmospheric Research 2012 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Lau, William K -M.

    2013-01-01

    This annual report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2012.The report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres, Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center. The overall mission of the office is advancing knowledge and understanding of the Earths atmosphere. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential to our continuing research.

  12. Middle Atmosphere Program. Handbook for MAP, volume 25

    NASA Technical Reports Server (NTRS)

    Roper, R. G. (Editor)

    1987-01-01

    GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.

  13. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and

  14. Testing Earth System Models with Earth System Data: using C isotopes in atmospheric CO2 to probe stomatal response to future climate change

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Miller, J. B.; Bowling, D. R.; Tans, P. P.; Baker, I. T.

    2013-12-01

    The global cycles of water and carbon are inextricably linked through photosynthesis. This link is largely governed by stomatal conductance that regulates water loss to the atmosphere and carbon gain to the biosphere. Although extensive research has focused on the response of stomatal conductance to increased atmospheric CO2, much less research has focused on the response of stomatal conductance to concomitant climate change. Here we make use of intensive and extensive measurements of C isotopes in source CO2 to the atmosphere (del-bio) to make inferences about stomatal response to climatic factors at a single forest site and across a network of global observation sites. Based on intensive observations at the Niwot Ridge Ameriflux site we discover that del-bio is an excellent physical proxy of stomatal response during the growing season and this response is highly sensitive to atmospheric water vapor pressure deficit (VPD). We use these intensive single forest site observations to inform our analysis of the global observation network, focusing in on the growing season across an array of terrestrial sites. We find that stomatal response across most of these terrestrial sites is also highly sensitive to VPD. Lastly, we simulate the response of future climate change on stomatal response and discover that future increases in VPD may limit the biosphere's capacity to assimilate future CO2 emissions. These results have direct implications for the benchmarking of Earth System Models as stomatal conductance in many of these models does not vary as a function of VPD.

  15. Quantitative modeling of the rise in atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Claire, Mark W.

    The abrupt rise of molecular oxygen in Earth's atmosphere approximately 2.4 billion years ago was perhaps the most profound event in Earth's history after the evolution of life itself. Biogeochemical cycles in Earth's atmosphere, ocean, and crust were completely reorganized and it also likely marked the first moment when our planet could be deemed "inhabited" across interstellar space via identification of biogenically produced O 2 and O 3 in a spectrum of Earth's atmosphere. This dissertation explores the "Great Oxidation Event" via numerical modeling of evolving ancient atmospheres. In creating a self-consistent description of evolving redox fluxes in the Earth system, we reach the following conclusions. After the evolution of oxygenic photosynthesis, the atmosphere has two primary stable states--one is methane- rich and produces mass-independent fractionation of sulfur isotopes (MIF-S), and one is oxygen-rich and does not produce MIF-S. These two stable states are separated by only a few percent in the fluxes of O 2 and CH 4 needed to sustain them. The atmosphere evolves rapidly from one state to the other when the net flux of reductants drops below the net flux of oxidants into the atmosphere. The transition between the two states - "the rise of oxygen" - is only feasible once methane levels drop below ~50 ppm. We show numerically that hydrogen escape can drive irreversible oxidation of Earth's crust, leading to decreasing CH 4 concentrations over long timescales. We argue that the disappearance of the MIF-S signal is better described as recording a collapse of atmospheric CH 4 , rather than the appearance of O 2 . As CH 4 levels decrease, a positive feedback between oxidative weathering, oceanic sulfate concentrations, and the anaerobic oxidation of methane further drives atmospheric instability. Once a critical threshold in CH 4 concentration is overcome, the atmosphere transitions from an anoxic to oxic state on the timescale of 10 3 years. The post

  16. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  17. Cosmic Influence on the Sun-Earth Environment

    PubMed Central

    Mukherjee, Saumitra

    2008-01-01

    SOHO satellite data reveals geophysical changes before sudden changes in the Earth's Sun-Earth environment. The influence of extragalactic changes on the Sun as well as the Sun-Earth environment seems to be both periodic and episodic. The periodic changes in terms of solar maxima and minima occur every 11 years, whereas the episodic changes can happen at any time. Episodic changes can be monitored by cosmic ray detectors as a sudden increase or decrease of activity. During these solar and cosmic anomaly periods the environment of the Earth is affected. The Star-Sun-Earth connection has the potential to influence the thermosphere, atmosphere, ionosphere and lithosphere. Initial correlation of the cosmic and Sun-Earth connection has shown the possibility of predicting earthquakes, sudden changes in atmospheric temperatures and erratic rainfall/snowfall patterns. PMID:27873955

  18. On the division of contribution of the atmosphere and ocean in the radiation of the earth for the tasks of remote sensing and climate

    NASA Astrophysics Data System (ADS)

    Sushkevich, T. A.; Strelkov, S. A.; Maksakova, S. V.

    2017-11-01

    We are talking about the national achievements of the world level in theory of radiation transfer in the system atmosphere-oceans and about the modern scientific potential developing in Russia, which adequately provides a methodological basis for theoretical and computational studies of radiation processes and radiation fields in the natural environments with the use of supercomputers and massively parallel processing for problems of remote sensing and the climate of Earth. A model of the radiation field in system "clouds cover the atmosphere-ocean" to the separation of the contributions of clouds, atmosphere and ocean.

  19. Earth - South America (first frame of Earth Spin Movie)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  20. European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a planetary mission to Earth, proposed in response to the ESA M5-call

    NASA Astrophysics Data System (ADS)

    Dandouras, I.; Yamauchi, M.; Rème, H.; De Keyser, J.; Marghitu, O.; Fazakerley, A.; Grison, B.; Kistler, L.; Milillo, A.; Nakamura, R.; Paschalidis, N.; Paschalis, A.; Pinçon, J.-L.; Sakanoi, T.; Wieser, M.; Wurz, P.; Yoshikawa, I.; Häggström, I.; Liemohn, M.; Tian, F.

    2017-09-01

    ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmospheric composition over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets, which is essential for habitability.

  1. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  2. Earth Observation

    NASA Image and Video Library

    2014-06-07

    ISS040-E-008174 (7 June 2014) --- Layers of Earth's atmosphere, brightly colored as the sun rises, are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  3. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Jack S.; Palmer, Paul I.; Biller, Beth

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through themore » AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.« less

  4. A simple method to compute the change in earth-atmosphere radiative balance due to a stratospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Tanre, D.; Deschamps, P. Y.; Herman, M.

    1982-01-01

    A computer code was developed in terms of a three-layer model for the earth-atmosphere system, using a two-stream approximation for the troposphere and stratosphere. The analysis was limited to variable atmosphere loading by solar radiation over an unperturbed section of the atmosphere. The scattering atmosphere above a Lambertian ground layer was considered in order to derive the planar albedo and the spherical albedo. Attention was given to the influence of the aerosol optical thickness in the stratosphere, the single scattering albedo and asymmetry factor, and the sublayer albedo. Calculations were performed of the zonal albedo and the planetary radiation balance, taking into account a stratospheric aerosol layer containing H2SO4 droplets and volcanic ash. The resulting ground temperature disturbance was computed using a Budyko (1969) climate model. Local decreases in the albedo in the summer were observed in high latitudes, implying a heating effect of the aerosol. An accompanying energy loss of 23-27 W/sq m was projected, which translates to surface temperature decreases of either 1.1 and 0.45 C, respectively, for background and volcanic aerosols.

  5. Observations of the Earth's Radiation Budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world's oceans

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.

    1994-01-01

    This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.

  6. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance

  7. Evaluating the strength of the land$-$atmosphere moisture feedback in Earth system models using satellite observations

    DOE PAGES

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; ...

    2016-12-09

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation,more » solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. Lastly, we describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.« less

  8. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  9. Cosmic Rays in the Earth's Atmosphere and Underground

    NASA Astrophysics Data System (ADS)

    Dorman, Lev I.

    2004-08-01

    This book consists of four parts. In the first part (Chapters 1-4) a full overview is given of the theoretical and experimental basis of Cosmic Ray (CR) research in the atmosphere and underground for Geophysics and Space Physics; the development of CR research and a short history of many fundamental discoveries, main properties of primary and secondary CR, methods of transformation of CR observation data in the atmosphere and underground to space, and the experimental basis of CR research underground and on the ground, on balloons and on satellites and space probes. The second part (Chapters 5-9) is devoted to the influence of atmospheric properties on CR, so called CR meteorological effects; pressure, temperature, humidity, snow, wind, gravitation, and atmospheric electric field effects. The inverse problem - the influence of CR properties on the atmosphere and atmospheric processes is considered in the third part (Chapters 10-14); influence on atmospheric, nuclear and chemical compositions, ionization and radio-wave propagation, formation of thunderstorms and lightning, clouds and climate change. The fourth part (Chapters 15-18) describes many realized and potential applications of CR research in different branches of Science and Technology; Meteorology and Aerodrome Service, Geology and Geophysical Prospecting, Hydrology and Agricultural Applications, Archaeology and Medicine, Seismology and Big Earthquakes Forecasting, Space Weather and Environment Monitoring/Forecasting. The book ends with a list providing more than 1,500 full references, a discussion on future developments and unsolved problems, as well as object and author indices. This book will be useful for experts in different branches of Science and Technology, and for students to be used as additional literature to text-books.

  10. GRAM Series of Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    The eight destinations in the Solar System with sufficient atmosphere for either aeroentry or aeroassist, including aerocapture, are: Venus, Earth, Mars, Jupiter, Saturn; Uranus. and Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for four of these (Earth, Mars, Titan, and Neptune) have been developed for use in NASA's systems analysis studies of aerocapture applications in potential future missions. Work has recently commenced on development of a similar atmospheric model for Venus. This series of MSFC-sponsored models is identified as the Global Reference Atmosphere Model (GRAM) series. An important capability of all of the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Example applications for Earth aeroentry and Mars aerocapture systems analysis studies are presented and illustrated. Current and planned updates to the Earth and Mars atmospheric models, in support of NASA's new exploration vision, are also presented.

  11. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    NASA Astrophysics Data System (ADS)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    The evolution of metabolic pathways is closely linked to the evolution of the redox state of the terrestrial atmosphere. Nitrogen has been an essential biological element since the emergence of life when reduced nitrogen compounds (e.g. ammonia) were utilized in the prebiotic synthesis of proteins and nucleic acids. The nitrogen isotopic composition of sediments has been used to trace the origin of sedimentary organic matter in the rock record. Nitrogen is therefore suitable as a biosignature to trace the emergence of life on Earth or other planetary bodies as well as to follow the subsequent evolution of the biosphere in response to global redox changes. Evidence is strong that biological nitrogen fixation evolved very early in the history of life. The Last Common Ancestor (LCA) on Earth was most likely capable of nitrogen fixation as seen from the phylogenetic distribution of nitrogen-fixing organisms in both the domains of Bacteria and Archaea. Phylogenetic trees plotted with nitrogen-fixing gene (Nif) sequences from lineages of Bacteria and Archaea suggest that the Nif genes originated in a common ancestor of the two domains. Other phylogenetic analyses have also demonstrated that the paralogous duplication of the nifDK and nifEN operons, central to nitrogen fixation, predated the divergence of Archaea from Bacteria and therefore occurred prior to the emergence of the LCA. Although the same may be true for denitrification, this metabolic pathway probably did not become dominant until atmospheric pO2 increased between ~2.4 to 1.9 Ga during the Great Oxygenation Event (GOE). Recent work has shown a general depletion in 15N content of Archean (pre-2.5 Ga) relative to Phanerozoic (<540 Ma) kerogens. Studies have shown that the distribution of the δ15N values in kerogens shift from negative values in the Early Archean (from -6 to +6‰ with an average near 0‰ ) to approximately contemporary positive values (from +2 to +10‰ with an average at +6‰ ) by the

  12. Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA's systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  13. Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2004-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  14. Earth Observation

    NASA Image and Video Library

    2014-06-02

    ISS040-E-006817 (2 June 2014) --- Intersecting the thin line of Earth's atmosphere, International Space Station solar array wings are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  15. Optical remote sensing of atmospheric compounds

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.

    1996-02-01

    Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.

  16. Atmospheric Circulations of Rocky Planets as Heat Engines

    NASA Astrophysics Data System (ADS)

    Koll, D. D. B.

    2017-12-01

    Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.

  17. On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres.

    PubMed

    Krissansen-Totton, Joshua; Bergsman, David S; Catling, David C

    2016-01-01

    Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in Solar System atmospheres, in which we quantify the available Gibbs energy: the Gibbs free energy of an observed atmosphere minus that of atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere is mostly attributable to O2 and CH4. The available Gibbs energy is not unusual compared to other Solar System atmospheres and smaller than that of Mars. However, Earth's fluid envelope contains an ocean, allowing gases to react with water and requiring a multiphase calculation with aqueous species. The disequilibrium in Earth's atmosphere-ocean system (in joules per mole of atmosphere) ranges from ∼20 to 2 × 10(6) times larger than the disequilibria of other atmospheres in the Solar System, where Mars is second to Earth. Only on Earth is the chemical disequilibrium energy comparable to the thermal energy per mole of atmosphere (excluding comparison to Titan with lakes, where quantification is precluded because the mean lake composition is unknown). Earth's disequilibrium is biogenic, mainly caused by the coexistence of N2, O2, and liquid water instead of more stable nitrate. In comparison, the O2-CH4 disequilibrium is minor, although kinetics requires a large CH4 flux into the atmosphere. We identify abiotic processes that cause disequilibrium in the other atmospheres. Our metric requires minimal assumptions and could potentially be calculated from observations of exoplanet atmospheres. However, further work is needed to establish whether thermodynamic disequilibrium is a practical exoplanet biosignature, requiring an assessment of false positives, noisy

  18. The atmospheric electric global circuit. [thunderstorm activity

    NASA Technical Reports Server (NTRS)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  19. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  20. A new code SORD for simulation of polarized light scattering in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-05-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel Earth atmosphere. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering1, 2). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork3 (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/ or ftp://maiac.gsfc.nasa.gov/pub/SORD.zip

  1. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    PubMed

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  2. Characterization of Properties of Earth Atmosphere from Multi-Angular Polarimetric Observations of Polder/Parasol Using GRASP Algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Fuertes, D.; Huang, X.; Torres, B.; Aspetsberger, M.; Federspiel, C.

    2014-12-01

    The POLDER imager on board of the PARASOL micro-satellite is the only satellite polarimeter provided ~ 9 years extensive record of detailed polarmertic observations of Earth atmosphere from space. POLDER / PARASOL registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. Such observations have very high sensitivity to the variability of the properties of atmosphere and underlying surface and can not be adequately interpreted using look-up-table retrieval algorithms developed for analyzing mono-viewing intensity only observations traditionally used in atmospheric remote sensing. Therefore, a new enhanced retrieval algorithm GRASP (Generalized Retrieval of Aerosol and Surface Properties) has been developed and applied for processing of PARASOL data. GRASP relies on highly optimized statistical fitting of observations and derives large number of unknowns for each observed pixel. The algorithm uses elaborated model of the atmosphere and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are implemented during inversion and no look-up tables are used. The algorithm is very flexible in utilization of various types of a priori constraints on the retrieved characteristics and in parameterization of surface - atmosphere system. It is also optimized for high performance calculations. The results of the PARASOL data processing will be presented with the emphasis on the discussion of transferability and adaptability of the developed retrieval concept for processing polarimetric observations of other planets. For example, flexibility and possible alternative in modeling properties of aerosol polydisperse mixtures, particle composition and shape, reflectance of surface, etc. will be discussed.

  3. New measurements quantify atmospheric greenhouse effect

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.

  4. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth

    NASA Technical Reports Server (NTRS)

    Kuhn, W. R.; Atreya, S. K.

    1979-01-01

    Photochemical calculations indicate that in the prebiotic atmosphere of earth ammonia would have been irreversibly converted to N2 in less than 40 years if the ammonia surface mixing ratio were no more than 0.0001. However, if a continuous outgassing of ammonia were maintained, radiative-equilibrium calculations indicate that a surface mixing ratio of ammonia of 0.0001 or greater would provide a sufficient greenhouse effect to keep the surface temperature above freezing. With a 0.0001 mixing ratio of ammonia, 60% to 70% of the present-day solar luminosity would be adequate to maintain surface temperatures above freezing. A lower limit to the time constant for accumulation of an amount of nitrogen equivalent to the present day value is 10 my if the outgassing were such as to provide a continuous surface mixing ratio of ammonia of at least 0.00001.

  5. Earth’s Earliest Atmospheres

    PubMed Central

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  6. Atmospheric Climate Experiment Plus

    NASA Astrophysics Data System (ADS)

    Lundahl, K.

    ACE+ is an atmospheric sounding mission using radio occultation techniques and is a combination of the two Earth Explorer missions ACE and WATS earlier proposed to ESA. ACE was highly rated by ESA in the Call for Earth Explorer Opportunity Missions in 1999 and was prioritised as number three and selected as a "hot-stand-by". A phase A study was carried out during 2000 and 2001. ACE will observe atmospheric parameters using radio occultations from an array of 6 micro-satellites which track the L- band signal of GPS satellites to map the detailed refractivity and thermal structure of the global atmosphere from surface to space. Water vapour and wind in Atmospheric Troposphere and Stratosphere WATS was the response to ESA's Call for Ideas for the next Earth Explorer Core Missions in 2001. WATS combines ACE GPS atmospheric occultations and LEO-LEO cross-link occultations. Cross-links strongly enhance the capability of measuring humidity relative to the ACE mission. The Earth Science Advisory Committée at ESA noted that the LEO-GNSS occultation technique is already well established through several missions in recent years and could not recommend WATS for a Phase A study as an Earth Explorer Core Mission. The ESAC was, however, deeply impressed by the LEO-LEO component of the WATS proposal and would regard it as regrettable if this science would be lost and encourages the ACE/WATS team to explore other means to achieve its scientific goal. ACE+ is therefore the response to ESA's 2nd Call for Earth Explorer Opportunity Missions in 2001 and will contribute in a significant manner to ESA's Living Planet Programme. ACE+ will considerably advance our knowledge about atmosphere physics and climate change processes. The mission will demonstrate a highly innovative approach using radio occultations for globally measuring profiles of humidity and temperature throughout the atmosphere and stratosphere. A constellation of 4 small satellites, tracking L-band GPS/GALILEO signals and

  7. The Near-Earth Plasma Environment

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  8. Simulating the Earth System Response to Negative Emissions

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  9. Alternative Earths: The Diverse Chapters of Sustained Habitability on a Dynamic Early Earth and Their Astrobiological Significance

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.

    2015-12-01

    The oldest signs of animal life appear in the geologic record 600 to 700 million years ago. For the four billion years prior, our planet experienced dramatic changes that paved the way for this milestone. Beyond the establishment of Earth's earliest oceans 4.3 billion years ago (Ga), the single most important environmental transformation in history may have been the first permanent rise of atmospheric oxygen around 2.3 Ga. Before this Great Oxidation Event (GOE), Earth's atmosphere and oceans were virtually devoid of this gas, which forms the basis for all macroscopic life. Yet full oxygenation was a long, drawn out process. This talk will lay out the state-of-the-art in our understanding of Earth's early oxygenation, with an emphasis on the delay between the first biological oxygen production, tentatively placed at 3 Ga, and the appearance of animals almost 2.5 billion years later. Recent work suggests transient oxygenation episodes occurred prior to the GOE. Once permanently present in the atmosphere, oxygen may have risen to very high levels and then nose-dived. Then, at least a billion years of dominantly oxygen-free conditions in the deep ocean followed, beneath an atmosphere and shallow oceans much leaner in oxygen than previous estimates indicated. Deficiencies in oxygen and associated nutrients may have, in turn, set a challenging course for many of the oceans' inhabitants, explaining persistently low populations and diversities of eukaryotes. The latest data suggest these billion-plus years of intermediate oxygen were followed by increases in both ocean and atmosphere oxygen contents and eukaryotic diversity 750 to 800 million years ago. Novel, rock-bound proxies and complementary numerical models are now steering our views of co-evolving life and marine and atmospheric chemistry, including greenhouse gas controls on climate. New findings are revealing various states of planetary habitability that differ greatly from the Earth we know today. These

  10. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  11. The Evolution of the Atmosphere: The Story and the Evidence

    ERIC Educational Resources Information Center

    Fleming, Alastair

    2012-01-01

    The Earth's primary atmosphere, which was similar to that of the gas giant planets, was soon lost, and a secondary atmosphere was established by outgassing from the early Earth and from colliding debris. The composition of this atmosphere was probably similar to present-day volcanic emissions but with a tiny percentage of photochemically produced…

  12. Earth - South America First Frame of Earth Spin Movie

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA's Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics. A movie is availalble at http://photojournal.jpl.nasa.gov/catalog/PIA00114

  13. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  14. Dangerous Near-Earth Asteroids and Meteorites

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Grigoryan, A. E.

    2015-07-01

    The problem of Near-Earth Objects (NEOs; Astreoids and Meteorites) is discussed. To have an understanding on the probablity of encounters with such objects, one may use two different approaches: 1) historical, based on the statistics of existing large meteorite craters on the Earth, estimation of the source meteorites size and the age of these craters to derive the frequency of encounters with a given size of meteorites and 2) astronomical, based on the study and cataloging of all medium-size and large bodies in the Earth's neighbourhood and their orbits to estimate the probability, angles and other parameters of encounters. Therefore, we discuss both aspects and give our present knowledge on both phenomena. Though dangerous NEOs are one of the main source for cosmic catastrophes, we also focus on other possible dangers, such as even slight changes of Solar irradiance or Earth's orbit, change of Moon's impact on Earth, Solar flares or other manifestations of Solar activity, transit of comets (with impact on Earth's atmosphere), global climate change, dilution of Earth's atmosphere, damage of ozone layer, explosion of nearby Supernovae, and even an attack by extraterrestrial intelligence.

  15. Earth Science

    NASA Image and Video Library

    1994-09-02

    This image depicts a full view of the Earth, taken by the Geostationary Operational Environment Satellite (GOES-8). The red and green charnels represent visible data, while the blue channel represents inverted 11 micron infrared data. The north and south poles were not actually observed by GOES-8. To produce this image, poles were taken from a GOES-7 image. Owned and operated by the National Oceanic and Atmospheric Administration (NOAA), GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. They circle the Earth in a geosynchronous orbit, which means they orbit the equatorial plane of the Earth at a speed matching the Earth's rotation. This allows them to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth, high enough to allow the satellites a full-disc view of the Earth. Because they stay above a fixed spot on the surface, they provide a constant vigil for the atmospheric triggers for severe weather conditions such as tornadoes, flash floods, hail storms, and hurricanes. When these conditions develop, the GOES satellites are able to monitor storm development and track their movements. NASA manages the design and launch of the spacecraft. NASA launched the first GOES for NOAA in 1975 and followed it with another in 1977. Currently, the United States is operating GOES-8, positioned at 75 west longitude and the equator, and GOES-10, which is positioned at 135 west longitude and the equator. (GOES-9, which malfunctioned in 1998, is being stored in orbit as an emergency backup should either GOES-8 or GOES-10 fail. GOES-11 was launched on May 3, 2000 and GOES-12 on July 23, 2001. Both are being stored in orbit as a fully functioning replacement for GOES-8 or GOES-10 on failure.

  16. Atmosphere: Change is in the Air

    Science.gov Websites

    Forces of Change Main Arctic Atmosphere El Niño Current Conditions DIG IT! Share | Smithsonian Atmosphere: Change is in the Air Explore Earth's changing atmosphere. Discover how our ever-changing everything that breathes. This web site incorporates images and information from the Atmosphere: Change is in

  17. 55 Cancri e with Atmosphere (Artist's Concept)

    NASA Image and Video Library

    2017-11-16

    The super-Earth exoplanet 55 Cancri e, depicted with its star in this artist's concept, likely has an atmosphere thicker than Earth's, with ingredients that could be similar to those of Earth's atmosphere, according to a 2017 study using data from NASA's Spitzer Space Telescope. Scientists say the planet may be entirely covered in lava. The planet is so close to its star that one face of the planet consistently faces the star, resulting in a dayside and a nightside. https://photojournal.jpl.nasa.gov/catalog/PIA22069

  18. Cloud Imagers Offer New Details on Earth's Health

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis

  19. Polarisation of the auroral red line in the Earth's upper atmosphere: a review (Invited)

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Lilensten, J.; Bommier, V.; Simon Wedlund, C.

    2013-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Polarimetry of auroral emission lines in the Earth's upper atmosphere has been overlooked for decades. However, the bright red auroral line (6300Å) produced by collisional impact with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated recently with observations obtained by Lilensten et al (2008), Barthélemy et al (2011) and Lilensten et al (2013) with a photopolarimeter. Analysis of the data indicates that the red auroral emission line is polarised at a level of a few percent. The results are compared to theoretical predictions of Bommier et al (2011) that were obtained for a collimated beam. The comparison suggests the existence of depolarization processes whose origin will be discussed. A new dedicated spectropolarimeter currently under development will also be presented. This instrument will cover the optical spectrum from approximately 400 to 700 nm providing simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... The importance of these polarisation measurements in the context of upper atmosphere modelling and geomagnetic activity will be discussed. Lilensten, J. et al, Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 26, 269, 2008 Barthélemy M. et al, Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments, Annales Geophysicae, Volume 29, Issue 6, 2011, 1101-1112, 2011. Bommier V. et al, The Theoretical Impact Polarization of the O I 6300 Å Red Line of Earth Auroræ, Annales Geophysicae, Volume 29, Issue 1, 2011, 71-79, 2011 Lilensten, J. et al, The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis, Journal of Space Weather and Space

  20. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  1. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  2. Titan's Greenhouse Effect And Climate: Lessons From The Earth's Cooler Cousin

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Titan Climate White Paper Proposal Team

    2009-12-01

    We argue that continuing scientific study of Earth's `distant cousin’ Titan can provide a greater understanding and insight into the energy balance of our own planet's atmosphere. Titan's Earth-like properties have been recognized for some time, from the discovery of its atmosphere in 1907, through the Voyager 1 encounter in 1980 that showed Titan's atmosphere is mostly nitrogen gas with a surface pressure within a factor of two of terrestrial. Calculation shows that Titan's atmosphere causes `greenhouse’ warming of the surface, an effect similar to that seen on the Earth, Mars, and Venus. In the 1990s, direct imaging from the Earth by adaptive optics revealed that Titan's ubiquitous haze layer is slowly changing in apparent response to the seasons that occur due to the Saturn system's obliquity. The NASA Cassini mission that arrived in Saturnian orbit in 2004, and the ESA Huygens Titan probe of 2005, have returned a flood of new data regarding this intriguing world. For the first time, we are building a detailed picture of weather in the lower atmosphere, where condensable methane takes on the role played by water in the Earth's atmosphere, leading to methane rainfall, rivers and lakes. We examine parallels between the atmospheres of Earth and of Titan, including the possibilities for dramatic climate change. Extending the duration of the Cassini spacecraft mission during the next decade will provide part of the needed picture, but in addition we urge planning for a future new mission focused on Titan's climate, and other measures.

  3. The Atmosphere and Climate of Venus

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Grinspoon, D. H.

    Venus lies just sunward of the inner edge of the Sun's habitable zone. Liquid water is not stable. Like Earth and Mars, Venus probably accreted at least an ocean's worth of water, although there are alternative scenarios. The loss of this water led to the massive, dry CO2 atmosphere, extensive H2SO4 clouds (at least some of the time), and an intense CO2 greenhouse effect. This chapter describes the current understanding of Venus' atmosphere, established from the data of dozens of spacecraft and atmospheric probe missions since 1962, and by telescopic observations since the nineteenth century. Theoretical work to model the temperature, chemistry, and circulation of Venus' atmosphere is largely based on analogous models developed in the Earth sciences. We discuss the data and modeling used to understand the temperature structure of the atmosphere, as well as its composition, cloud structure, and general circulation. We address what is known and theorized about the origin and early evolution of Venus' atmosphere. It is widely understood that Venus' dense CO2 atmosphere is the ultimate result of the loss of an ocean to space, but the timing of major transitions in Venus' climate is very poorly constrained by the available data. At present, the bright clouds allow only 20% of the sunlight to drive the energy balance and therefore determine conditions at Venus' surface. Like Earth and Mars, differential heating between the equator and poles drives the atmospheric circulation. Condensable species in the atmosphere create clouds and hazes that drive feedbacks that alter radiative forcing. Also in common with Earth and Mars, the loss of light, volatile elements to space produces long-term changes in composition and chemistry. As on Earth, geologic processes are most likely modifying the atmosphere and clouds by injecting gases from volcanos as well as directly through chemical reactions with the surface. The sensitivity of Venus' atmospheric energy balance is quantified in

  4. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  5. HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (RAIDS)

    NASA Technical Reports Server (NTRS)

    Budzien, Scott

    2009-01-01

    The HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (HREP-RAIDS) experiment will provide atmospheric scientists with a complete description of the major constituents of the thermosphere (layer of the Earth's atmosphere) and ionosphere (uppermost layer of the Earth's atmosphere), global electron density profiles at altitudes between 100 - 350 kilometers.

  6. Primitive Earth: So Near to Hell

    ERIC Educational Resources Information Center

    Jastrow, Robert

    1973-01-01

    Discusses the atmospheric characteristics of the earth and their implications for the development of life on earth-like planets. Indicates that the chance of life developing on other planets is not as great as men might have thought. (CC)

  7. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases.

    PubMed

    Schindler, T L; Kasting, J F

    2000-05-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  8. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  9. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    NASA Astrophysics Data System (ADS)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    Jerks are thought to be the result of torques applied at the core-mantle boundary (CMB) caused by either of two possible processes, working together or separately: 1) Electromagnetic Induction and 2) Mechanical Slippage. In the first case, it is thought that electromagnetic energy slowly builds-up at the CMB, reaches some critical level, and is then suddenly released, causing a geomagneticly induced torque at the CMB due to the differential electrical conductivity between the lower mantle and the surface of the outer core. The second case is driven by stress and strain increases that buildup mechanical potential energy, which is released when a critical level is reached, thereby generating a torque at the CMB. Generally, a trigger is required to start the Jerk process in motion. In the electromagnetic case, it is suggested that energy from the Sun may supply the requisite energy buildup that is subsequently released by a magnetic storm trigger, for instance. In the case of mechanical slippage, bari-center motion among the Earth, Moon, and Sun, as well as tidal forces and mass redistributions through Earth's wobbles combine to provide the accumulated stress/strain buildup and subsequent trigger. The resulting fluid flow changes at the CMB result in geomagnetic field changes and Joule heating throughout the solid Earth, its oceans, and atmosphere. It is shown that the Global Temperature Anomaly (GTA), which is measured at Earth's surface, correlates with changes in the geomagnetic non-dipole moment, and thus with core fluid motions. This links Global Warming and weather with core processes, important examples being the 1930's Dust Bowl Era and the 1947 Impulse. The CMB torque also affects Earth's angular momentum. But it appears that magnetic storms can as well. As a consequence, the Jet Stream, atmospheric circulation patterns, and the Global Oscillation System (i.e., El-Nino/Southern-Oscillation, North Atlantic Oscillation, the Pacific Decade Oscillation, etc.) are

  10. What Would It Take for an Atmospheric Neutrino Detector to Constrain the Hydrogen Content of the Earth's Core ?

    NASA Astrophysics Data System (ADS)

    Bourret, S.; Coelho, J. A. B.; Kaminski, E. C.; Van Elewyck, V.

    2017-12-01

    The difference between PREM density and seismic profiles in the Earth's core and the values for pure iron and iron-nickel alloys inferred from high pressure/high temperature experiments and ab initio calculations requires the presence of a few wt% of light elements. The nature and amount of these light elements (O, Si, S, H, C...) remains controversial. Recent studies have renewed the interest in H. It is the most abundant element in the nebula and can be easily dissolved in iron in the early stages of Earth's evolution. 1 to 2 wt% of H could explain the difference between PREM and pure iron. However, current geophysical methods alone cannot settle the debate between H and the other candidate elements. Neutrino oscillation tomography using atmospheric neutrinos opens an avenue to collect independent data on Earth's core composition. This method exploits the quantum phenomenon of neutrino flavour oscillations, which depends on the electron density along the path of the neutrino through the Earth. The combination of a neutrino-based measurement of the electron density with the PREM mass density profile constrains the average proton-to-nucleon ratio of the medium (Z/A). Since this parameter varies among chemical elements, e.g. 0.466 for Fe and 1 for H, this technique has the potential to provide unprecedented insights into the chemical composition of the core, and in particular its hydrogen content. Performing such a measurement requires large-size detectors with good efficiency in the relevant energy range and precise determination of the neutrino energy, arrival direction, and flavour. Considering a generic but realistic model of detector response, we quantify the influence of various detector performance indicators on the sensitivity to the average Z/A in the core. We further evaluate the impact of systematic uncertainties, such as those related to the physical model for neutrino oscillations and the incoming flux of atmospheric neutrinos. We consider specific

  11. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of

  12. Atmospheric Detectives. Atlas 2 Teacher's Guide with Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Affairs Div.

    As part of the National Aeronautics and Space Administration Mission to Planet Earth, ATLAS 2 will help develop a thorough picture of the Sun's output, its interaction with the atmosphere, and the well-being of Earth's middle atmosphere. This middle school level guide probes the connection between the activities of scientists and the observable…

  13. Meteorite constraints on Martian atmospheric loss and paleoclimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassata, William S.

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. Here in this article, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic compositionmore » has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2–4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.« less

  14. Meteorite constraints on Martian atmospheric loss and paleoclimate

    DOE PAGES

    Cassata, William S.

    2017-10-06

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. Here in this article, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic compositionmore » has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2–4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.« less

  15. An Earth Summit in a Large General Education Oceanography Class

    NASA Astrophysics Data System (ADS)

    Dodson, H.; Prothero, W. A.

    2001-12-01

    An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth

  16. Concerning the use of multifunctional photometer - polarimeter for studying the invasion of cosmic bodies into the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Geraimchuk, M. D.; Vidmachenko, A. P.; Nevodovskyi, P. V.; Steklov, O. F.

    2018-05-01

    Main astronomical observatory of the National Academy of Sciences of Ukraine together with the National Technical University of Ukraine "KPI" for many years working on the development of photometers-polarimeters for the study of cosmic bodies and Earth's atmosphere. We proposed an option of the development of a multipurpose panoramic photometer-polarimeter, which takes into account the shortcomings of the previous versions of the instrument and also allows for the registration of tracks of bolides, and study of their tails, and weak meteor phenomena.

  17. Organic haze on Titan and the early Earth

    PubMed Central

    Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2006-01-01

    Recent exploration by the Cassini/Huygens mission has stimulated a great deal of interest in Saturn's moon, Titan. One of Titan's most captivating features is the thick organic haze layer surrounding the moon, believed to be formed from photochemistry high in the CH4/N2 atmosphere. It has been suggested that a similar haze layer may have formed on the early Earth. Here we report laboratory experiments that demonstrate the properties of haze likely to form through photochemistry on Titan and early Earth. We have used a deuterium lamp to initiate particle production in these simulated atmospheres from UV photolysis. Using a unique analysis technique, the aerosol mass spectrometer, we have studied the chemical composition, size, and shape of the particles produced as a function of initial trace gas composition. Our results show that the aerosols produced in the laboratory can serve as analogs for the observed haze in Titan's atmosphere. Experiments performed under possible conditions for early Earth suggest a significant optical depth of haze may have dominated the early Earth's atmosphere. Aerosol size measurements are presented, and implications for the haze layer properties are discussed. We estimate that aerosol production on the early Earth may have been on the order of 1014 g·year−1 and thus could have served as a primary source of organic material to the surface. PMID:17101962

  18. Keeping a Spacecraft on the Sun-Earth Line

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Kay-Bunnell, Linda

    2005-01-01

    Measurements of Earth's atmosphere as it occults sunlight can be obtained advantageously from a spacecraft placed in the proximity of the Sun-Earth Lagrange point L2. Maintaining the condition of continuous solar occultation by all parts of the atmospheric disk requires that the displacement of the spacecraft perpendicular to the Sun-Earth line remains less than 200 km. However, the gravitational force exerted by the Earth s moon must be negated by propulsion in order to meet this rather tight constraint. We provide an estimate of propulsive force needed to keep the spacecraft coincident with L2, as well as estimates of velocity increments needed to maintain various trajectories in the close vicinity of L2.

  19. Co-evolution of atmospheres, life, and climate.

    PubMed

    Grenfell, J Lee; Rauer, Heike; Selsis, Franck; Kaltenegger, Lisa; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO(2). CH(4) was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO(2) plus H(2) to CH(4), may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.

  20. Titan's atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.

    2017-03-01

    Titan is the only moon with a substantial atmosphere, the only other thick N2 atmosphere besides Earth's, the site of extraordinarily complex atmospheric chemistry that far surpasses any other solar system atmosphere, and the only other solar system body with stable liquid currently on its surface. The connection between Titan's surface and atmosphere is also unique in our solar system; atmospheric chemistry produces materials that are deposited on the surface and subsequently altered by surface-atmosphere interactions such as aeolian and fluvial processes resulting in the formation of extensive dune fields and expansive lakes and seas. Titan's atmosphere is favorable for organic haze formation, which combined with the presence of some oxygen-bearing molecules indicates that Titan's atmosphere may produce molecules of prebiotic interest. The combination of organics and liquid, in the form of water in a subsurface ocean and methane/ethane in the surface lakes and seas, means that Titan may be the ideal place in the solar system to test ideas about habitability, prebiotic chemistry, and the ubiquity and diversity of life in the universe. The Cassini-Huygens mission to the Saturn system has provided a wealth of new information allowing for study of Titan as a complex system. Here I review our current understanding of Titan's atmosphere and climate forged from the powerful combination of Earth-based observations, remote sensing and in situ spacecraft measurements, laboratory experiments, and models. I conclude with some of our remaining unanswered questions as the incredible era of exploration with Cassini-Huygens comes to an end.

  1. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  2. Hubble Against Earth Horizon 1997

    NASA Image and Video Library

    1997-10-10

    The Hubble Space Telescope hovers at the boundary of Earth and space in this picture, taken after Hubble second servicing mission in 1997. Hubble drifts 353 miles (569 km) above the Earth's surface, where it can avoid the atmosphere and clearly see objects in space. http://photojournal.jpl.nasa.gov/catalog/PIA18165

  3. Modeling Minor Constituents of Europa's Atmosphere

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Johnson, R. E.

    2007-12-01

    A spacecraft orbiting Jupiter's moon Europa, of the sort considered by both ESA and NASA, would provide an opportunity to determine the composition and morphology of its tenuous atmosphere. Europa's atmosphere, though tenuous, has been detected by Earth-based telescopes. Its O2 atmosphere was detected from Earth orbit and its much thinner alkali atmosphere was detected by ground-based telescopes. Many other species are expected based on surface reflectance spectra, such as H2O, Sn, SO2, CO2, H2O2. I will discuss the issues involved in the modeling of these as-yet-undetected components. Previous theoretical studies and observations of the atmosphere produced important conclusions about the surface and its interaction with the Jovian magnetosphere. The modeling and detection of minor components could reveal much more. Of particular interest is the detectability of these species with an orbiting mass spectrometer or more distant light spectrometer.

  4. Atmospheric Gravitational Torque Variations Based on Various Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)

    2001-01-01

    Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.

  5. Hygroscopicity of Early Earth and Titan Laboratory Aerosol Analogs

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.; Beaver, M. R.; Freedman, M. A.; Toon, O. B.; Tolbert, M. A.

    2009-12-01

    We have explored the ability of organic hazes, known to exist in the atmosphere of Titan and postulated to have existed in the Archean Earth atmosphere, to act as cloud condensation nuclei (CCN). These laboratory aerosol analogs are generated via UV-photolysis of early Earth and Titan analog gas mixtures and are designed to mimic the present day atmospheric conditions on Titan and the early Earth atmosphere before the rise of oxygen. Water uptake is observed to occur on the early Earth and Titan aerosol analogs at relative humidities of 80% - 90% via optical growth measurements using cavity ring-down aerosol extinction spectroscopy. We find the optical growth of these aerosols is similar to known slightly-soluble organic acids, such as phthalic and pyromellitic acids. On average, the optical growth of the early Earth analog is slightly larger than the Titan analog. In order to translate our measurements obtained in a subsaturated regime into the CCN ability of these particles, we rely on the hygroscopicity parameter κ, developed by Petters & Kreidenweis (2007). We retrieve κ = 0.17±0.03 and 0.06±0.01 for the early Earth and Titan analogs, respectively. This early Earth analog hygroscopicity value indicates that the aerosol could activate at reasonable water vapor supersaturations. We use previous aerosol mass spectrometry results to correlate the chemical structure of the two types of analog with their hygroscopicity. The hygroscopicity of the early Earth aerosol analog, coupled with the apparent lack of other good CCN during the Archean, helps explain the role of the organic haze in the indirect effect of clouds on the early Earth and indicates that it may have had a significant impact on the hydrological cycle.

  6. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Taylor, Fredric W.; Svedhem, Håkan; Head, James W.

    2018-02-01

    This is a review of current knowledge about Earth's nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.

  7. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  8. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  9. Planetary Surface-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  10. Photosynthesis in Hydrogen-Dominated Atmospheres

    PubMed Central

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  11. Photosynthesis in hydrogen-dominated atmospheres.

    PubMed

    Bains, William; Seager, Sara; Zsom, Andras

    2014-11-18

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  12. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  13. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  14. Classroom Demonstrations Of Atmosphere-ocean Dynamics: Baroclinic Instability

    NASA Astrophysics Data System (ADS)

    Aurnou, Jonathan; Nadiga, B. T.

    2008-09-01

    Here we will present simple hands-on experimental demonstrations that show how baroclinic instabilities develop in rotating fluid dynamical systems. Such instabilities are found in the Earth's oceans and atmosphere as well as in the atmospheres and oceans of planetary bodies throughout the solar system and beyond. Our inexpensive experimental apparatus consists of a vinyl-record player, a wide shallow pan, and a weighted, dyed block of ice. Most directly, these demonstrations can be used to explain winter-time atmospheric weather patterns observed in Earth's mid-latitudes.

  15. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    NASA Astrophysics Data System (ADS)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  16. Physics of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Caballero, Rodrigo

    2014-11-01

    With the increasing attention paid to climate change, there is ever-growing interest in atmospheric physics and the processes by which the atmosphere affects Earth's energy balance. This self-contained text, written for advanced undergraduate and graduate students in physics or meteorology, assumes no prior knowledge apart from basic mechanics and calculus and contains material for a complete course. Augmented with worked examples, the text considers all aspects of atmospheric physics except dynamics, including moist thermodynamics, cloud microphysics, atmospheric radiation and remote sensing, and will be an invaluable resource for students and researchers.

  17. Evolution of the Solar Activity Over Time and Effects on Planetary Atmospheres. II. κ1 Ceti, an Analog of the Sun when Life Arose on Earth

    NASA Astrophysics Data System (ADS)

    Ribas, I.; Porto de Mello, G. F.; Ferreira, L. D.; Hébrard, E.; Selsis, F.; Catalán, S.; Garcés, A.; do Nascimento, J. D., Jr.; de Medeiros, J. R.

    2010-05-01

    The early evolution of Earth's atmosphere and the origin of life took place at a time when physical conditions at the Earth were radically different from its present state. The radiative input from the Sun was much enhanced in the high-energy spectral domain, and in order to model early planetary atmospheres in detail, a knowledge of the solar radiative input is needed. We present an investigation of the atmospheric parameters, state of evolution, and high-energy fluxes of the nearby star κ1 Cet, previously thought to have properties resembling those of the early Sun. Atmospheric parameters were derived from the excitation/ionization equilibrium of Fe I and Fe II, profile fitting of Hα, and the spectral energy distribution. The UV irradiance was derived from Far-Ultraviolet Spectroscopic Explorer and Hubble Space Telescope data, and the absolute chromospheric flux from the Hα line core. From careful spectral analysis and the comparison of different methods, we propose for κ1 Cet the following atmospheric parameters: T eff = 5665 ± 30 K (Hα profile and energy distribution), log g = 4.49 ± 0.05 dex (evolutionary and spectroscopic), and [Fe/H] = +0.10 ± 0.05 (Fe II lines). The UV radiative properties of κ1 Cet indicate that its flux is some 35% lower than the current Sun's between 210 and 300 nm, it matches the Sun's at 170 nm, and increases to at least 2-7 times higher than the Sun's between 110 and 140 nm. The use of several indicators ascribes an age to κ1 Cet in the interval ~0.4-0.8 Gyr and the analysis of the theoretical Hertzsprung-Russell diagram (H-R) suggests a mass ~1.04 M sun. This star is thus a very close analog of the Sun when life arose on Earth and Mars is thought to have lost its surface bodies of liquid water. Photochemical models indicate that the enhanced UV emission leads to a significant increase in photodissociation rates compared with those commonly assumed of the early Earth. Our results show that reliable calculations of the

  18. Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O2 on Haze Formation and Composition

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Ugelow, Melissa S.; Jellinek, A. Mark; Pierrehumbert, Raymond T.; Tolbert, Margaret A.

    2018-05-01

    Previous studies of haze formation in the atmosphere of the early Earth have focused on N2/CO2/CH4 atmospheres. Here, we experimentally investigate the effect of O2 on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (115–400 nm) for a range of initial CO2/CH4/O2 mixing ratios (O2 ranging from 2 ppm to 0.2%). At the lowest O2 concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater), particles are still produced, but the addition of O2 decreases the production rate. Both the particle size and number density decrease with increasing O2, indicating that O2 affects particle nucleation and growth. The particle density increases with increasing O2. The addition of CO2 and O2 not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2 results in the formation of nitrate-bearing molecules. The fact that the presence of oxygen-bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical property measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate.

  19. Topical Conference on the Origin of the Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The abstracts are presented on the topic of the origin of the Earth. The subject of planetary evolution from inner solar system plantesimals through the formation and composition of the Earth's atmosphere and the physical structure of the Earth and the Moon is explored in great variety.

  20. The iodine-plutonium-xenon age of the Moon-Earth system revisited.

    PubMed

    Avice, G; Marty, B

    2014-09-13

    Iodine-plutonium-xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides ((129)I, T1/2=15.6 Ma and (244)Pu, T1/2=80 Ma) have produced radiogenic (129)Xe and fissiogenic (131-136)Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth-atmosphere system is [Formula: see text] Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Evolution of the Earth's Atmosphere.

    PubMed

    Rasool, S I

    1967-09-22

    We living things are a late outgrowth of the metabolism of our Galaxy. The carbon that enters so importantly into our composition was cooked in the remote past in a dying star. From it at lower temperatures nitrogen and oxygen were formed. These, our indispensable elements, were spewed out into space in the exhalations of red giants and such stellar catastrophes as supernovae, there to be mixed with hydrogen, to form eventually the substance of the sun and planets, and ourselves. The waters of ancient seas set the pattern of ions in our blood. The ancient atmospheres molded our metabolism.

  2. The Mission Accessibility of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Abell, Paul A.; Adamo, Daniel R.; Mazanek, Daniel D.; Johnson, Lindley N.; Yeomans, Donald K.; Chodas, Paul W.; Chamberlin, Alan B.; Benner, Lance A. M.; Taylor, Patrick; hide

    2015-01-01

    Astrodynamical Earth departure dates; mission v; mission duration; stay time; etc. Physical I NEO size(?); rotation rate; dust satellites environment; chemistry; etc. Architectural Launch vehicle(s); crew vehicle(s); habitat module(s); budget; etc. Operational Operations experience; abort options profiles; etc. Astrodynamical Accessibility is the starting point for understanding the options and opportunities available to us. Here we shall focus on. Astrodynamical Accessibility.2 Earth departure date between 2015-01-01 and 2040-12-31 Earth departure C3 60 km2s2. Total mission v 12 kms. The total v includes (1) the Earth departure maneuver from a 400 km altitude circular parking orbit, (2) the maneuver to match the NEAs velocity at arrival, (3) the maneuver to depart the NEA and, (4) if necessary, a maneuver to control the atmospheric re-entry speed during Earth return. Total round trip mission duration 450 days. Stay time at the NEA 8 days Earth atmospheric entry speed 12 kms at an altitude of 125 km. A near-Earth asteroid (NEA) that offers at least one trajectory solution meeting those criteria is classified as NHATS-compliant.

  3. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  4. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  5. In the Red Shadow of the Earth

    ERIC Educational Resources Information Center

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  6. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  7. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  8. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    NASA Astrophysics Data System (ADS)

    Felton, R.; Neveu, M.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  9. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    NASA Astrophysics Data System (ADS)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  10. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  11. Atmospheric Effect on Remote Sensing of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)

    1985-01-01

    Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.

  12. A Summary of - An Earth-to-Deep Space Communications System with Adaptive Tilt and Scintillation Correction Using Near-Earth Relay Mirrors

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Yeh, C.; Wilson, K. E.

    1998-01-01

    Optical telecommunication will be the next technology for wide-band Earth/space communication. Uncompensated propagation through the Earth's atmosphere (e.g., scintillation and wavefront tilt) fundamentally degrade communication to distant spcaecraft.

  13. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  14. Atmospheric transmission calculations for optical frequencies

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran

    1989-01-01

    A quantitative study of the transmission loss through the entire atmosphere for optical frequencies likely to be used for an earth-space communication link using existing data bases on scattering and absorption characteristics of the atmospheric constituents is presented.

  15. Evaluation of upwelling infrared radiance from earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1975-01-01

    Basic equations for calculating the upwelling atmospheric radiation are presented which account for various sources of radiation coming out at the top of the atmosphere. The theoretical formulation of the transmittance models (line-by-line and quasi-random band model) and the computational procedures used for the evaluation of the transmittance and radiance are discussed in detail. By employing the Lorentz line-by-line and quasi-random computer programs, model calculations were made to determine the upwelling radiance and signal change in the wave number interval of CO fundamental band. These results are useful in determining the effects of different interfering molecules, water vapor profiles, ground temperatures, and ground emittances on the upwelling radiance and signal change. This information is of vital importance in establishing the feasibility of measuring the concentrations of pollutants in the atmosphere from a gas filter correlation instrument flown on an aircraft or mounted on a satellite.

  16. On the Magnetic Protection of the Atmosphere of Proxima Centauri b

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Glocer, A.; Drake, J. J.; Gronoff, G.; Cohen, O.

    2017-07-01

    The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a “temperate orbit,” I.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth’s early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.

  17. On the Magnetic Protection of the Atmosphere of Proxima Centauri b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Sage, K.; Glocer, A.; Drake, J. J.

    The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a “temperate orbit,” i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is wellmore » known to occur at Earth and may have contributed to the habitability of Earth’s early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.« less

  18. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol.

    PubMed

    Hicks, Raea K; Day, Douglas A; Jimenez, Jose L; Tolbert, Margaret A

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH 4 and CO 2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH 4 as the source of carbon and treat CO 2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH 4 /CO 2 /N 2 atmosphere. UMR results suggest that CH 4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO 2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres. Key Words: Atmosphere-Early Earth-Planetary atmospheres-Carbon dioxide-Methane. Astrobiology 16, 822-830.

  19. Atmospheric humidity

    USDA-ARS?s Scientific Manuscript database

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  20. Acquisition and Early Losses of Rare Gases from the Deep Earth

    NASA Technical Reports Server (NTRS)

    Porcelli, D.; Cassen, P.; Woolum, D.; Wasserburg, G. J.

    1998-01-01

    Direct observations show that the deep Earth contains rare gases of solar composition distinct from those in the atmosphere. We examine the implications of mantle rare gas characteristics on acquisition of rare gases from the solar nebula and subsequent losses due to a large impact. Deep mantle rare gas concentrations and isotopic compositions can be obtained from a model of transport and distribution of mantle rare gases. This model assumes the lower mantle closed early, while the upper mantle is open to subduction from the atmosphere and mass transfer from the lower mantle. Constraints are derived that can be incorporated into models for terrestrial volatile acquisition: (1) Calculated lower-mantle Xe-isotopic ratios indicate that the fraction of radiogenic Xe produced by I-129 and Pu-244 during the first about 10(exp 8) yr was lost, a conclusion also drawn for atmospheric Xe. Thus, either the Earth was made from materials that had lost >99% of rare gases about (0.7-2) x 10(exp 8) yr after the solar system formed, or gases were then lost from the fully formed Earth. (2) Concentrations of 3He and 20Ne in the lower mantle were established after these losses. (3) Neon-isotopic data indicates that mantle Ne has solar composition. The model allows for solar Ar/Ne and Xe/Ne in the lower mantle if a dominant fraction of upper mantle Ar and Xe are subduction-derived. If Earth formed in the presence of the solar nebula, it could have been melted by accretional energy and the blanketing effect of a massive, nebula-derived atmosphere. Gases from this atmosphere would have been sequestered within the molten Earth by dissolution at the surface and downward mixing. It was found that too much Ne would be dissolved in the Earth unless the atmosphere began to escape when the Earth was only partially assembled. Here we consider conditions required to initially dissolve sufficient rare gases to account for the present lower mantle concentrations after subsequent losses at 10(exp 8

  1. The Far Infrared Earth

    NASA Technical Reports Server (NTRS)

    Harries, John; Carli, Bruno; Rizzi, Rolando; Serio, Carmine; Mlynczak, Martin G.; Palchetti, Luca; Maestri, T.; Brindley, H.; Masiello, Guido

    2007-01-01

    The paper presents a review of the far infrared (FIR) properties of the Earth's atmosphere, and the role of these properties in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that, in recent years, we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of 288 K, and is due primarily to strong absorption of outgoing longwave energy by water vapour, carbon dioxide and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example the water vapour and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.

  2. Our Changing Atmosphere.

    ERIC Educational Resources Information Center

    Clearing, 1988

    1988-01-01

    Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)

  3. Comment on the paper 'On the influx of small comets into the earth's upper atmosphere. I - Observations'

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.

    1986-01-01

    The observations of transient decreases or holes in the EUV dayglow reported by Frank et al. (1986) and attributed to an influx of small comets into the earth atmosphere are discussed critically. The techniques used in acquiring and analyzing the observational data are examined, and it is argued that the decreases are probably instrument artifacts. A critique of the geophysical basis of the comet hypothesis is also included. In a reply by Frank et al., the instrument-artifact argument is rejected, in part on the basis of the statistical properties of the holes observed. Additional observational data are presented in graphs and dynamics Explorer 1 images are analyzed in detail.

  4. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  5. Kuiper Prize Lecture - Escape of atmospheres, ancient and modern

    NASA Astrophysics Data System (ADS)

    Hunten, D. M.

    1990-05-01

    A development history is presented for theories concerning planetary atmosphere gas-escape phenomena, which although firmly grounded in the kinetics of gases achieved truly productive results only after spacecraft remote sensing data for both the earth atmosphere and the planets became widely available. The most significant initial advances, encompassing diffusion-limited flow, nonthermal escape mechanisms, bound nonthermal coronas, and mass fractionation during early blowoff, followed from sounding rocket studies of the earth upper atmosphere, Mariner 5 results on hydrogen near Venus, and the nitrogen isotopic composition discovered by Viking in Mars. Attention has more recently been given to the xenon isotopic patterns in various atmospheres, as well as to the puzzling behavior of the Io atmosphere and plasma torus.

  6. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-04-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multi-layered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With the decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  7. What Do We Really Know About the Earth's Early Atmosphere?

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Krissansen-Totton, J.; Zahnle, K. J.

    2016-12-01

    Theory suggests that oceans collapsed from a steam atmosphere and CO2 was lost into the seafloor by 108 yrs after the Moon-forming impact [1]. Afterwards, zircons suggest continents, oceans, and even life, but the Hadean atmosphere remains obscure. Gas proportions in modern outgassing tentatively suggest that Hadean air was probably N2 and CO2 with minor CO, H2 and CH4, but little direct evidence confirms this. In contrast, evidence for oceans, an atmosphere, and land becomes unambiguous by 3.8 Ga [2], with suggestive signs of life [3]. Biological modulation, a faint Sun, and a lack of O2 all circumscribe any model of Archean air. Glacial rocks (3.5, 2.9 and 2.7 Ga) indicate climates below a global mean 20°C. Even with little land, control of CO2 by seafloor weathering should have moderated climate. Probably CO2 was always an important greenhouse gas, as indicated by new paleosol estimates [4]. Estimates of pN2< 0.5 bar at 2.7 Ga [5] would lower pressure broadening of IR absorption, which demands high concentrations of greenhouse gases. Low pN2 could occur in an anoxic N cycle. Today, long-term N sources are outgassing and oxidative weathering of organics. In the Archean, the N source from oxidative weathering was absent, so pN2 was plausibly lower and would have risen at the Great Oxidation Event (GOE) [5]. Archean mass independent fractionation of S isotopes requires >20 ppmv CH4 [6]. But evidence of hydrogen escape to space (lighter ocean D/H [7] and Xe isotopes that become lighter in time [8]), suggest 2H2+CH4 levels 103 ppmv. Polar H escape that drags Xe+ions could explain the Xe isotope trend. The GOE relied upon long-term oxidation of the surface environment by removing reductants. We continue to argue that removal by H escape (the biggest net redox flux over time) pushed towards oxygenation by shifting the balance of oxygen sources and sinks [9]. [1] Zahnle K. et al. (2010) CSH Perspect. Biol. 2, doi: 10.1101/cshperspect.a004895. [2] Nutman A. P. (2006

  8. Spectral fingerprints of Earth-like planets around FGK stars.

    PubMed

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  9. Effects of primitive photosynthesis on Earth's early climate system

    NASA Astrophysics Data System (ADS)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  10. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  11. The NASA program on upper atmospheric research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of the NASA Upper Atmospheric Research Program is to develop a better understanding of the physical and chemical processes that occur in the earth's upper atmosphere with emphasis on the stratosphere.

  12. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, N. Anders; Sjogreen, Bjorn

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  13. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2017-04-18

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  14. Putting Technology to Work in Science - How to Select Unmanned Aerial Vehicles (UAV) and their Instrumentation for Atmospheric and Earth Surface Observations

    NASA Astrophysics Data System (ADS)

    Teller, Amit; Lange, Manfred; Ioannou, Stelios; Keleshis, Christos

    2010-05-01

    The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO platforms will offer the unique potential to determine physical, chemical and radiative atmospheric properties, aerosol and dust concentrations, atmospheric dynamics, surface morphology, vegetation and land use patterns as well as ocean surface properties (biology, waves, currents) and to carry out archaeological site reconnaissance and contaminant detection at high spatial resolution. The first phase of APAESO was dedicated to the preliminary design and the selection of an Unmanned Aerial Vehicle (UAV) as the backbone of the APAESO infrastructure. Selection of a UAV suitable for the many research objectives as outlined above is challenging because the UAV technology is new and rapidly evolving. This notwithstanding, a very large number of systems, mostly utilized for defense purposes, are currently available. The major challenge in the selection process lies in considering the trade-off between different platform characteristics (e.g. payload weight, endurance, max. altitude for operation and price) and in optimizing the potential performance of the UAV. Based on the required characteristics for the UAV platform, a survey of possible UAVs and suitable sensors was prepared based on various data sources. We used an elimination process in order to consider only a few models for the final selection process out of about 1000 commercially available UAV models that were initially investigated. The presentation will discuss the main scientific objectives that determine the specification of the UAV platform, major considerations in selecting best available technology for our needs and will briefly describe the next phases of the project.

  15. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    NASA Technical Reports Server (NTRS)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  16. The Earth's Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  17. An instrument to measure turbulent eddy fluxes in the atmosphere of Mars

    Treesearch

    S. Rafkin; D. Banfield; R. Dissly; J. Silver; A. Stanton; E. Wilkinson; W. Massman; J. Ham

    2012-01-01

    Turbulent eddies in the planetary boundary layer of the terrestrial planet atmospheres are the primary mechanism by which energy, momentum, gasses, and aerosols are exchanged between the surface and the atmosphere [1]. The importance of eddies has long been recognized by the Earth atmospheric science community, and turbulent theory for Earth has a long history with a...

  18. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space: A compilation of ATMOS spectra of the region from 650 to 4800 cm (2.3 to 16 micron). Volume 1: The Sun

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Norton, Robert H.

    1989-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecular Spectroscopy experiment was operated as part of the Spacelab-3 payload of the shuttle Challenger. The instrument, a modified Michelson Interferometer covering the frequency range from 600 to 5000/cm, at a spectral resolution of 0.01/cm, recorded infrared spectra of the Sun and of the Earth's atmosphere at times close to entry into and exit from occultation by the Earth's limb as seen from the shuttle orbit of 360 km. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., solar pure spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas, believed to be the first record of observations of the continuous high resolution infrared spectrum of the Sun and the Earth's atmosphere from space, provides a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes; the data are also available in digital form.

  19. Optical characteristics of the earth's surface and atmosphere from the point of view of the remote sensing of natural resources: Review of the contemporary status of the problem

    NASA Technical Reports Server (NTRS)

    Tarnopolskiy, V. I.

    1978-01-01

    Widely used remote probing methods, and especially the multispectral method, for studying the earth from aerospace platforms necessitate the systematization and accumulation of data on the relationships between remote observations and measured parameters and characteristic properties and conditions of phenomena on the earth's surface. Data were presented on the optical characteristics of natural objects which arise during observations of these objects over a wide spectral interval which encompasses solar radiation reflected by the object as well as the object's inherent thermal radiation. The influence of the earth's atmosphere on remote measurements and several problems in simulation and calculation are discussed.

  20. Condition of the upper atmosphere of the Earth at the final stage of flight manned orbital facility (MOF) "Mir". The modeling description

    NASA Astrophysics Data System (ADS)

    Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.

    At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.

  1. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  2. Atmospheric transformation of multispectral remote sensor data. [Great Lakes

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The effects of earth's atmosphere were accounted for, and a simple algorithm, based upon a radiative transfer model, was developed to determine the radiance at earth's surface free of atmospheric effects. Acutal multispectral remote sensor data for Lake Erie and associated optical thickness data were used to demonstrate the effectiveness of the atmospheric transformation algorithm. The basic transformation was general in nature and could be applied to the large scale processing of multispectral aircraft or satellite remote sensor data.

  3. Distribution of N2O in the atmosphere under global warming - a simulation study with the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf

    2014-05-01

    Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.

  4. Neutron Monitors as a Tool for Specifying Solar Energetic Particle Effects on Earth and in Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Clem, J.; Evenson, P.; Kuwabara, T.; Pyle, R.; Ruffolo, D.; Saiz, A.

    2007-12-01

    Neutron monitors are ground-based instruments that record the byproducts of collisions between cosmic rays and molecules in Earth's atmosphere. When linked together in real-time coordinated arrays, these instruments can make valuable contributions to the specification of major solar energetic particle events. Neutron monitors can provide the earliest alert of elevated radiation levels in Earth's atmosphere caused by the arrival of relativistic solar particles (Ground Level Enhancement or GLE). Early detection of GLE is of interest to the aviation industry because of the associated radiation hazard for pilots and air crews, especially for those flying polar routes. Network observations can also be used to map, in principle in real time, the distribution of radiation in Earth's atmosphere, taking into account the particle anisotropy which can be very large in early phases of the event. Observations from the large GLE of January 20, 2005 and December 13, 2006 will be used to illustrate these applications of neutron monitors. Supported by NSF grant ATM-0527878, the Thailand Research Fund, and the Mahidol University Postdoctoral Fellowship Program.

  5. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspi, Yohai; Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relativemore » humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.« less

  6. THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER 'SUPER-EARTHS'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Alex R.; Burrows, Adam S., E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu

    2012-09-10

    We present new calculations of transit spectra of super-Earths that allow for atmospheres with arbitrary proportions of common molecular species and haze. We test this method with generic spectra, reproducing the expected systematics and absorption features, then apply it to the nearby super-Earth GJ 1214b, which has produced conflicting observational data, leaving the questions of a hydrogen-rich versus hydrogen-poor atmosphere and the water content of the atmosphere ambiguous. We present representative transit spectra for a range of classes of atmosphere models for GJ 1214b. Our analysis supports a hydrogen-rich atmosphere with a cloud or haze layer, although a hydrogen-poor modelmore » with {approx}<10% water is not ruled out. Several classes of models are ruled out, however, including hydrogen-rich atmospheres with no haze, hydrogen-rich atmospheres with a haze of {approx}0.01 {mu}m tholin particles, and hydrogen-poor atmospheres with major sources of absorption other than water. We propose an observational test to distinguish hydrogen-rich from hydrogen-poor atmospheres. Finally, we provide a library of theoretical transit spectra for super-Earths with a broad range of parameters to facilitate future comparison with anticipated data.« less

  7. The Role of Artificial Atmospheric CO2 Removal in Stabilizing Earth's Climate

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna; Zickfeld, Kirsten

    2014-05-01

    Recent research showed that global mean temperature remains approximately constant for several centuries after complete cessation of CO2 emissions, while global mean thermosteric sea level continues to rise. This implies that a net artificial removal of CO2 from the atmosphere may be necessary to decrease the atmospheric CO2 concentrations more rapidly and bring the climate system components to their previous states on human timescales. The purpose of this study is to explore the reversibility of climate responses to a range of realistic CO2 emission scenarios, which follow a gradual transition from fossil-fuel driven economy to a zero-emission energy system with implementation of negative CO2 emissions, using the University of Victoria Earth System Climate Model of intermediate complexity (UVic ESCM 2.9). The CO2 emission pathways were designed to meet constraints related to the implementation of negative emission technologies derived from the integrated assessment literature. Our simulations show that while it is possible, in principle, to revert the global mean temperature after a phase of overshoot, the thermosteric sea level rise is not reversible on human timescales for the range of emission scenarios considered. During the negative emission phase, CO2 is released form the natural (terrestrial and marine) carbon sinks, which diminishes the efficiency of negative emissions implemented. In addition, spatial changes of vegetation distribution patterns are not entirely reversible on human timescales. We suggest that while negative emissions could potentially stabilize the global mean temperature at a desired level, such technology does not supersede reductions in fossil fuel emissions, as the artificial CO2 capture at large scale has many limitations and is unable to stabilize other climate system components (e.g. sea level) at desired levels.

  8. Spectroscopy and chemistry of the atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Gautier, Daniel; Owen, Tobias; Prinn, Ronald G.

    1991-01-01

    A comprehensive review of the chemistry and spectroscopy of the Uranian atmosphere is presented by means of earth-based, earth-orbital, and Voyager 2 observations covering the UV, visible, infrared, and radio wavelength regions. It is inferred from these observations, in concert with the average density of about 1.3 g/cu cm, that the Uranian atmosphere is enriched in heavy elements relative to solar composition. Pre-Voyager earth-based observations of CH4 bands in the visible region and Voyager radio occultation data imply a CH4/H2 volume mixing ratio of about 2 percent corresponding to an enrichment of approximately 24 times the solar value of 0.000835. In contrast to CH4, microwave observations indicate an apparent depletion of NH3 in the 155-to-200-K region of the atmosphere by 100 to 200 times relative to the solar NH3/H2 mixing ratio of -0.000174. It is suggested that the temporal and latitudinal variations deduced for the NH3/H2 mixing ratio in this region of the Uranian atmosphere are due to atmospheric circulation effects.

  9. Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2017-12-01

    The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso

  10. Searching for Water Earths in the Near-infrared

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Kasting, J. F.; Williams, D. M.; Kane, T. J.; Philbrick, C. R.

    2011-09-01

    Over 500 extrasolar planets (exoplanets) have now been discovered, but only a handful are small enough that they might be rocky terrestrial planets like Venus, Earth, and Mars. Recently, it has been proposed that observations of variability in scattered light (both polarized and total flux) from such terrestrial-sized exoplanets could be used to determine if they possess large surface oceans, an important indicator of potential habitability. Observing such oceans at visible wavelengths would be difficult, however, in part because of obscuration by atmospheric scattering. Here, we investigate whether observations performed in the near-infrared (NIR), where Rayleigh scattering is reduced, could improve the detectability of exoplanet oceans. We model two wavebands of the NIR which are "window regions" for an Earth-like atmosphere: 1.55-1.75 μm and 2.1-2.3 μm. Our model confirms that obscuration in these bands from Rayleigh scattering is very low, but aerosols are generally the limiting factor throughout the wavelength range for Earth-like atmospheres. As a result, observations at NIR wavelengths are significantly better at detecting oceans than those at visible wavelengths only when aerosols are very thin by Earth standards. Clouds further dilute the ocean reflection signature. Hence, other techniques, e.g., time-resolved color photometry, may be more effective in the search for liquid water on exoplanet surfaces. Observing an exo-Earth at NIR wavelengths does open the possibility of detecting water vapor or other absorbers in the atmosphere, by comparing scattered light in window regions to that in absorption bands.

  11. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  12. Enhancement of the Natural Earth Satellite Population Through Meteoroid Aerocapture

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.

    2014-01-01

    The vast majority of meteoroids either fall to the ground as meteorites or ablate completely in the atmosphere. However, large meteoroids have been observed to pass through the atmosphere and reenter space in a few instances. These atmosphere-grazing meteoroids have been characterized using ground-based observation and satellite-based infrared detection. As these methods become more sensitive, smaller atmospheregrazing meteoroids will likely be detected. In anticipation of this increased detection rate, we compute the frequency with which centimeter-sized meteoroids graze and exit Earth's atmosphere. We characterize the post-atmosphere orbital characteristics of these bodies and conduct numerical simulations of their orbital evolution under the perturbing influence of the Sun and Moon. We find that a small subset of aerocaptured meteoroids are perturbed away from immediate atmospheric reentry and become temporary natural Earth satellites.

  13. Lunar eclipses: Probing the atmosphere of an inhabited planet

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  14. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  15. The young age of Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    1998-09-01

    Patterson (1956) established that the age of Earth is close to that of meteorites. Over the last 20 years, workers argued for younger age for core differentiation based on Pb-Pb model ages and tungsten isotopic data and for gas retention based on I-Xe modeling. However, disagreement is abundant, and the young age of Earth has not been widely accepted. In this work, I examine all radiogenic noble gases in the atmosphere and use a model-independent approach and total inversion to show that (1) the Xe-closure age of Earth is 109 ± 23 million years younger than the formation of meteorite Bjurbole (˜4560 Ma) and (2) all radiogenic components of noble gases in the atmosphere can be quantitatively accounted for by production and degassing ˜60% of the bulk silicate earth. The agreement between the 129I- 129Xe clock and 244Pu- 238U- 136Xe- 134Xe- 132Xe- 131Xe clock suggests that the volatility of iodine does not affect the 129I- 129Xe clock. Earth's Xe-closure age is 4.45 ± 0.02 Ga, consistent with the model age of Pb and the 146Sm- 142Nd, 147Sm- 143Nd and 182Hf- 182W systematics. On the basis of the consistency of these ages, 4.45 ± 0.02 Ga probably represents the time when the last Martian-sized planetesimal hit Earth and reinitialized the global clocks.

  16. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  17. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  18. Detection of an oxygen atmosphere on Jupiter's moon Europa.

    PubMed

    Hall, D T; Strobel, D F; Feldman, P D; McGrath, M A; Weaver, H A

    1995-02-23

    Europa, the second large satellite out from Jupiter, is roughly the size of Earth's Moon, but unlike the Moon, it has water ice on its surface. There have been suggestions that an oxygen atmosphere should accumulate around such a body, through reactions which break up the water molecules and form molecular hydrogen and oxygen. The lighter H2 molecules would escape from Europa relatively easily, leaving behind an atmosphere rich in oxygen. Here we report the detection of atomic oxygen emission from Europa, which we interpret as being produced by the simultaneous dissociation and excitation of atmospheric O2 by electrons from Jupiter's magnetosphere. Europa's molecular oxygen atmosphere is very tenuous, with a surface pressure about 10(-11) that of the Earth's atmosphere at sea level.

  19. Earth Observation

    NASA Image and Video Library

    2011-07-15

    ISS028-E-017123 (16 July 2011) --- Separate atmospheric optical phenomena were captured in this electronic still photograph from the Inernational Space Station. The thin greenish band stretching along the Earth's horizon is airglow; light emitted by the atmosphere from a layer about 30 kilometers thick and about 100 kilometers in altitude. The predominant emission in airglow is the green 5577 Angstrom wavelength light from atomic oxygen atoms. Airglow is always and everywhere present in the atmosphere; it results from the recombination of molecules that have been broken apart by solar radiation during the day. But airglow is so faint that it can only be seen at night by looking "edge on" at the emission layer, such as the view astronauts and cosmonauts have in orbit. The second phenomenon is the appearnce of Aurora Australis.

  20. Chemical Composition of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Grewe, Volker; Roiger, Anke

    Atmospheric trace gases have an important impact on Earth's radiative budget, the oxidative or cleansing ability of the atmosphere, the formation, growth and properties of aerosols, air quality, and human health. During recent years, the coupling between atmospheric chemistry and climate has received particular attention. Therefore, research is now focused on the composition and processes in the upper troposphere and lower stratosphere, a key region in this respect. In this chapter the chemical composition of the atmosphere is addressed and selected examples of significant advances in this field are presented.