Science.gov

Sample records for earth body tide

  1. Constraints on Energy Dissipation in the Earth's Body Tide From Satellite Tracking and Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.

    1992-01-01

    The phase lag by which the earth's body tide follows the tidal potential is estimated for the principal lunar semidiurnal tide M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-tide Q of 280 and body-tide energy dissipation of 110 +/- 25 gigawatts.

  2. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  3. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    NASA Astrophysics Data System (ADS)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate

  4. Propagation Velocity of Solid Earth Tides

    NASA Astrophysics Data System (ADS)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  5. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  6. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard; Egbert, Gary

    2012-01-01

    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  7. Nonlinearity in rock - Evidence from earth tides

    NASA Technical Reports Server (NTRS)

    Agnew, D. C.

    1981-01-01

    The earth is sinusoidally stressed by tidal forces; if the stress-strain relation for rock is nonlinear, energy should appear in an earth tide record at frequencies which are multiples of those of the larger tidal lines. An examination of the signals to be expected for different nonlinear deformation laws shows that for a nonlinear response without dissipation, the largest anomalous signal should occur at twice the forcing frequency, whereas for nonlinear laws involving dissipation (cusped hysteresis loops) the anomalous signal will be greatest at three times this frequency. The size of the signal in the dissipative case depends on the amount by which dissipation affects the particular response being measured. For measurements of strain tides this depends on whether dissipation is assumed to be present throughout the earth or localized around the point of measurement. An analysis of 5.7 years of strain tide records from Pinon Flat, California, shows a small signal at twice the frequency of the largest (M2) tide.

  8. The inverse problem: Ocean tides derived from earth tide observations

    NASA Technical Reports Server (NTRS)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  9. What can earth tide measurements tell us about ocean tides or earth structure?

    NASA Technical Reports Server (NTRS)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  10. Ocean tide models for satellite geodesy and Earth rotation

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  11. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  12. Effects of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  13. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  14. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  15. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  16. Tides on Self-gravitating, Compressible Bodies

    NASA Astrophysics Data System (ADS)

    Hurford, T. A.; Greenberg, R.

    2001-11-01

    Most modern derivations of tidal amplitude follow the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We have solved the more general case of arbitrary compressibility, which allows for a more straightforward derivation [2,3]. We find the h2 love number of a body of radius R, density ρ , by solving the deformation equation [4], μ ∇ 2 u = ρ ∇U - (λ + μ ) ∇ (∇ ṡ u) where μ is the rigidity of the body and λ the Lamé constant. The potential U is the sum of (a) the tide raising potential, (b) the potential of surface mass shifted above or below the spherical surface, (c) potential due to the internal density changes and (d) the change in potential of each bit of volume due to its displacement u. A self-consistent solution can be obtained with U = \\sum_{q=0}^{\\infty} b_{(2+2q)} r^{(2+2q)} ( {3}/{2} \\cos2 \\theta - {1}/{2} ). In [1] and [3] only the r2 term was considered, which was valid only if compressibility is small or elasticity governs deformation (i.e. ρ g R << (λ + 2 μ )). The solution with only the r2 term reduces to Love's [1] solution in the limit of zero compressibility (λ = ∞ ). However, for rock μ ~ λ [4], in which case h2 is enhanced by ~ 3 %, and solutions for greater compressibility give up to 8 % enhancement of tidal amplitude. If ρ g R is significant, higher order r(2q+2) terms are important and even greater corrections are required to the classical tidal amplitude. [1] Love, A.E.H., New York Dover Publications, 1944 [2] Hurford, T.A. and R. Greenberg, Lunar Plan. Sci. XXXII 1741, 2001 [3] Hurford, T.A. and R. Greenberg, 2001 DDA meeting, Bull. Amer. Astron. Soc. in press [4] Kaula, W.M., John Wiley & Sons, Inc., 1968

  17. Earth tides, volcanos and climatic change

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Harrington, R. S.; Giles, J.; Browning, I.

    1976-01-01

    The effect of variations in tidal stresses on the earth caused by the sun and moon on volcanic activity and climate is investigated. A statistically significant correlation is found between the derivatives of the envelopes of peak tidal stresses at high northern latitudes and the mean temperature of the Northern Hemisphere as reflected in oxygen isotope ratios in the Greenland ice cap. It is suggested that variations in tidal stresses cause changes in the amount of stratospheric dust produced by volcanic activity, which affects the thickness of the stratospheric dust veil and the atmospheric radiation balance. For a simple model, periodic variations in tidal stress account for 13% of the variance in the ice-core temperature record.

  18. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii

    SciT

    Dzurisin, D.

    1980-11-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic andmore » tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.« less

  19. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  20. Measurement of the Earth tides with a MEMS gravimeter.

    PubMed

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  1. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  2. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  3. Response of well aquifer systems to Earth tides: Problem revisited

    Hsieh, Paul A.; Bredehoeft, John D.; Rojstaczer, Stuart

    1988-01-01

    Two recent works cause us to reexamine Bredehoeft's (1967) analysis of earthtide response of water wells. Narasimhan et al. (1984) raise several questions regarding Bredehoeft's (1967) analysis and suggest that the analysis is internally inconsistent. They argue that one cannot directly estimate the specific storage, which characterizes the drained behavior of a porous medium, from earth tide response, which is an undrained phenomenon. We resolve the questions raised by Narasimhan et al. (1984) and show that Bredehoeft's analysis is internally consistent. In addition, we show that it is possible to determine the specific storage from undrained loading. While Bredehoeft's analysis is somewhat heuristic and neglects grain compressibility, Van der Kamp and Gale (1983) present a more rigorous analysis that is based on Biot's (1941) constitutive relationships and accounts for grain compressibility. However, their results reduce to Bredehoeft's results when grains are assumed incompressible. This suggests that Bredehoeft's analysis has incorporated all the essential features of Biot's relationships except for grain compressibility. Upon reexamining Bredehoeft's analysis we find that this is indeed the case.

  4. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  5. Effects of dynamic long-period ocean tides on changes in Earth's rotation rate

    SciT

    Nam, Y.S.; Dickman, S.R.

    1990-05-10

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less

  6. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    NASA Technical Reports Server (NTRS)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  7. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  8. Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction

    NASA Astrophysics Data System (ADS)

    Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques

    2015-04-01

    Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.

  9. Numerical study of the effect of earth tides on recurring short-term slow slip events

    NASA Astrophysics Data System (ADS)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2017-12-01

    Short-term slow slip events (SSEs) in the Nankai region are affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The effect of tidal stress on the SSEs is also examined numerically (e.g., Hawthorne and Rubin, 2013). In our previous study (Matsuzawa et al., 2017, JpGU-AGU), we numerically simulated SSEs in the Shikoku region, and reported that tidal stress makes the variance of recurrence intervals of SSEs smaller in relatively isolated SSE regions. However, the reason of such stable recurrence was not clear. In this study, we examine the tidal effect on short-term SSEs based on a flat plate and a realistic plate model (e.g., Matsuzawa et al., 2013, GRL). We adopt a rate- and state-dependent friction law (RS-law) with cutoff velocities as in our previous studies (Matsuzawa et al., 2013). We assume that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. In a flat plate model, the short-term SSE region is a circular patch with the radius of 6 km. In a realistic plate model, the short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we examine the stress perturbation by two different earth tides with the period of semidiurnal (M2) and fortnight (Mf) tide in this study. In the result of a flat plate case, amplitude of SSEs becomes smaller just after the slip at whole simulated area. Recurring SSEs become clear again within one year in the case with tides (M2 or Mf), while the recurrence becomes clear after seven years in the case without tides. Interestingly, the effect of the Mf tide is similar to the case with the M2 tide, even though the amplitude of the Mf tide (0.01 kPa) is two-order smaller than that of the M2 tide. In the realistic plate model of Shikoku, clear recurrence of short-term SSEs is found earlier than the

  10. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    NASA Technical Reports Server (NTRS)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  11. Ocean tides

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  12. Kingdom of the Tides.

    ERIC Educational Resources Information Center

    Carter, Samuel, III

    Areas of discussion are the history of tides, the forces which exert an influence upon the earth's tides, the behavior of tides as modified by terrestrial features, "freak" behavior of tides, the marine life which inhabits tidal areas, the manner in which tides have helped to shape the course of history, how tides affect our lives on a…

  13. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  14. Interferometric Water Level Tilt Meter Development in Finland and Comparison with Combined Earth Tide and Ocean Loading Models

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Hannu

    2018-05-01

    A modern third-generation interferometric water level tilt meter was developed at the Finnish Geodetic Institute in 2000. The tilt meter has absolute scale and can do high-precision tilt measurements on earth tides, ocean tide loading and atmospheric loading. Additionally, it can be applied in various kinds of geodynamic and geophysical research. The principles and results of the historical 100-year-old Michelson-Gale tilt meter, as well as the development of interferometric water tube tilt meters of the Finnish Geodetic Institute, Finland, are reviewed. Modern Earth tide model tilt combined with Schwiderski ocean tide loading model explains the uncertainty in historical tilt observations by Michelson and Gale. Earth tide tilt observations in Lohja2 geodynamic station, southern Finland, are compared with the combined model earth tide and four ocean tide loading models. The observed diurnal and semidiurnal harmonic constituents do not fit well with combined models. The reason could be a result of the improper harmonic modelling of the Baltic Sea tides in those models.

  15. High-frequency Earth rotation variations deduced from altimetry-based ocean tides

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Schindelegger, Michael; Böhm, Johannes; Bosch, Wolfgang; Hagedoorn, Jan

    2016-11-01

    A model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean tide solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major tides in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5° grid with a heavily weighted continuity constraint. The influence of 19 minor tides is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (Δ UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal Δ UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1, Q_1, and K_2 tides in individual ERP components, but large residuals of more than 15 μ as remain at the principal lunar frequencies of O_1 and M_2. We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean tide solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy.

  16. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  17. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  18. Lunisolar Tides Influence on Electrical Conductivity of the Earth's Crust in the Territory of Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Korotkova, T. G.

    2018-05-01

    The results of studying the influence of lunisolar tides on the electrical conductivity of the Earth's crust in the territory of the Kola Peninsula are presented. Along with the results obtained by the authors, the data of other researchers are also considered. All the studies are based on the analysis of the field produced by the Zevs facility transmitting extremely low frequency (ELF) signals at 82-83 Hz. The measurements were carried out in different years at the Avva-Guba (1998), Lovozero (2009), and Imandra-Varzuga polygon (IVP) monitoring sites (2013) located 180, 90, and 160 km from the transmitter, respectively. The negative correlation between the tides and crustal electrical resistivity is revealed at all the points. This means that tidal rises of the Earth's surface are accompanied by a decrease in resistivity and vice versa. The overview shows that the higher the resistivity of separate Earth's crustal blocks the higher the relative amplitudes of the corresponding tidal responses that are observed.

  19. An objective frequency domain method for subsurface characterisation using Earth and atmospheric tides

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Acworth, I. R.; Halloran, L. J. S.; Rau, G. C.; Bernadi, T. L.

    2017-12-01

    It has long been recognised that hydraulic properties can be derived from the response of piezometric heads to tidal loadings. However, there is a degree of subjectivity in existing graphical approaches most commonly used to calculate barometric efficiency leading to uncertainties in derived values of compressible storage. Here we demonstrate a novel approach to remove these uncertainties by objectively deriving the barometric efficiency from groundwater hydraulic head responses using a frequency domain method. We take advantage of the presence of worldwide and ubiquitous atmospheric tide fluctuations which occur at 2 cycles per day (cpd). First we use a Fourier transform to calculate the amplitudes of the 2 cpd signals from co-located atmospheric pressure and hydraulic head time series measurements. Next we show how the Earth tide response at the same frequency can be quantified and removed so that this effect does not interfere with the calculation of the barometric efficiency. Finally, the ratio of the amplitude of the response at 2 cpd of hydraulic head to atmospheric pressure is used to quantify the barometric efficiency. This new method allows an objective quantification using `passive' in situ monitoring rather than resorting to aquifer pumping or laboratory tests. The minimum data requirements are 15 days duration of 6-hourly hydraulic head and atmospheric pressure measurements, and modelled Earth tide records which are readily conducted using freely available software. The new approach allows for a rapid and cost-effective alternative to traditional methods of estimating aquifer compressible storage properties without the subjectivity of existing approaches, and will be of importance to improving the spatial coverage of subsurface characterisation for groundwater resource evaluation and land subsidence assessment.

  20. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate

    Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.

    1998-01-01

    Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of earthquakes would be expected if the final hours of loading of the fault were at the tectonic rate and if rupture began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the fault planes and at the times of 13,042 earthquakes which are so close to the San Andreas and Calaveras faults in California that we may take the fault plane to be known. We find that the stresses and stress rates from Earth tides at the times of earthquakes are distributed in the same way as tidal stresses and stress rates at random times. While the rate of earthquakes when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of earthquakes are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.

  1. Verifying the body tide at the Canary Islands using tidal gravimetry observations

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.; Vieira, R.

    2011-05-01

    Gravity tide records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body tide model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean tide loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O 1, K 1, M 2, S 2. We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body tide models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.

  2. The Data Base of the International Geodynamics and Earth Tide Service (IGETS)

    NASA Astrophysics Data System (ADS)

    Voigt, Christian; Förste, Christoph; Wziontek, Hartmut; Crossley, David; Meurers, Bruno; Pálinkáš, Vojtech; Hinderer, Jacques; Boy, Jean-Paul; Barriot, Jean-Pierre; Sun, Heping

    2017-04-01

    The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter data within the context of an international network. The primary objective of IGETS is to provide a service for continuous ground based measurements to monitor temporal variations of the Earth's gravity field and deformation of the Earth's surface by long term records from ground gravimeters, tiltmeters, strainmeters and other geodynamic sensors. IGETS also continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of the various geodynamic sensors. This presentation introduces the IGETS data base hosted by GFZ and accessible via http://igets.gfz-potsdam.de to the geodetic and geodynamics community as well as to all other interested data producers and users. At present, records from superconducting gravimeters at 34 stations worldwide are available. Level 1 products are raw gravity and local pressure records decimated at 1 minute samples. As a new feature, records with 1 or 2 seconds samples are already provided for a few stations. Level 2 products consist of gravity and pressure data corrected for instrumental perturbations and ready for tidal analysis, which are derived from Level 1 datasets and computed by the University of French Polynesia (Tahiti, French Polynesia). Gravity residuals after particular geophysical corrections (including solid Earth tides, polar motion, tidal and non-tidal loading effects) considered as Level 3 products are derived from Level 2 datasets and computed by EOST (Ecole et Observatoire des Sciences de la Terre, Strasbourg, France). The IGETS data sets are stored by GFZ on a FTP server and are freely available after

  3. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  4. A model of oscillatory transport in granular soils, with application to barometric pumping and earth tides.

    PubMed

    Neeper, D A

    2001-04-01

    A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.

  5. What Causes Tides?

    ERIC Educational Resources Information Center

    Donovan, Deborah

    2004-01-01

    The phenomenon of tides has a faraway source. This rise and fall of the water level over a period of several hours is a result of the gravitational pull of the Moon and the Sun on Earth's oceans. Tides exhibit predictable cycles on daily, monthly, and yearly scales. The magnitude of the tides is dependent on the position of the Earth and Moon in…

  6. Matrix Pseudospectral Method for (Visco)Elastic Tides Modeling of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Zabranova, Eliska; Hanyk, Ladidslav; Matyska, Ctirad

    2010-05-01

    We deal with the equations and boundary conditions describing deformation and gravitational potential of prestressed spherically symmetric elastic bodies by decomposing governing equations into a series of boundary value problems (BVP) for ordinary differential equations (ODE) of the second order. In contrast to traditional Runge-Kutta integration techniques, highly accurate pseudospectral schemes are employed to directly discretize the BVP on Chebyshev grids and a set of linear algebraic equations with an almost block diagonal matrix is derived. As a consequence of keeping the governing ODEs of the second order instead of the usual first-order equations, the resulting algebraic system is half-sized but derivatives of the model parameters are required. Moreover, they can be easily evaluated for models, where structural parametres are piecewise polynomially dependent. Both accuracy and efficiency of the method are tested by evaluating the tidal Love numbers for the Earth's model PREM. Finally, we also derive complex Love numbers for models with the Maxwell viscoelastic rheology, where viscosity is a depth-dependent function. The method is applied to evaluation of the tidal Love numbers for models of Mars and Venus. The Love numbers of the two Martian models - the former optimized to cosmochemical data and the latter to the moment of inertia (Sohl and Spohn, 1997) - are h2=0.172 (0.212) and k2=0.093 (0.113). For Venus, the value of k2=0.295 (Konopliv and Yoder, 1996), obtained from the gravity-field analysis, is consistent with the results for our model with the liquid-core radius of 3110 km (Zábranová et al., 2009). Together with rapid evaluation of free oscillation periods by an analogous method, this combined matrix approach could by employed as an efficient numerical tool in structural studies of planetary bodies. REFERENCES Konopliv, A. S. and Yoder, C. F., 1996. Venusian k2 tidal Love number from Magellan and PVO tracking data, Geophys. Res. Lett., 23, 1857

  7. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station, Slovakia

    NASA Astrophysics Data System (ADS)

    Brimich, Ladislav; Bednárik, Martin; Bezák, Vladimír; Kohút, Igor; Bán, Dóra; Eper-Pápai, Ildikó; Mentes, Gyula

    2016-06-01

    The Vyhne Tidal Station of the Earth Science Institute of the Slovak Academy of Sciences is located in the former mining gallery of St. Anthony of Padua in the Vyhne valley, Štiavnické vrchy Mts., Central Slovakia. It is equipped with a 20.5 metre long quartz-tube extensometer measuring Earth's tides, and long-term tectonic deformations of the Earth's crust. Data between 2001 and 2015 with some diverse gaps were digitally collected, processed and analysed. The effects of the local conditions, such as structure of the observatory, cavity effect, topography and geological features of the surrounding rocks, were investigated in detail and these effects were taken into consideration during the interpretation of the results of the data analysis. Tidal analysis of the extensometric data between 2005 and 2015 revealed that the measured tidal amplitudes are close to the theoretical values. The tidal transfer of the observatory was also investigated by coherence analysis between the theoretical and the measured extensometric data. The coherence is better than 0.9 both in the diurnal and semidiurnal band. The effect of the free core nutation resonance was also investigated in the case of the K1 and P1 tidal components. Since the K1/O1 ratio was about the theoretical value 0.8, than the P1/O1 was between 1.0 and 1.15 instead of the theoretical value of 0.9. The rate of the long-term strain rate was also investigated and the obtained -0.05 μstr/y shows a good agreement with the strain rate inferred from GPS measurements in the Central European GPS Reference Network.

  8. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    NASA Astrophysics Data System (ADS)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  9. The harmonic development of the Earth tide generating potential due to the direct effect of the planets

    NASA Astrophysics Data System (ADS)

    Hartmann, Torsten; Wenzel, Hans-Georg

    1994-09-01

    The time-harmonic development of the Earth tide generating potential due to the direct effect of the planets Venus, Jupiter, Mars, Mercury and Saturn has been computed. The catalog of the fully normalized potential coefficients contains 1483 waves. It is based on the DE102 numerical ephemeris of the planets between years 1900 and 2200. Gravity tides due to the planets computed from the catalog at the surface of the Earth have an accuracy of about 0.027 pm/sq s (1 pm/sq s = 10(exp -12) m/sq s = 0.1 ngal) rms and 0.160 / 0.008 pm/sq s at maximum in time / frequency domain using the new benchmark tidal gravity series (Wenzel 1994).

  10. Earthing the Human Body Influences Physiologic Processes

    PubMed Central

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  11. Earthing the human body influences physiologic processes.

    PubMed

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  12. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    PubMed

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  13. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter

    PubMed Central

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-01-01

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Key Points Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise PMID:26074646

  14. Influence of tides in viscoelastic bodies of planet and satellite on the satellite's orbital motion

    NASA Astrophysics Data System (ADS)

    Emelyanov, N. V.

    2018-06-01

    The problem of influence of tidal friction in both planetary and satellite bodies upon satellite's orbital motion is considered. Using the differential equations in satellite's rectangular planetocentric coordinates, the differential equations describing the changes in semimajor axis and eccentricity are derived. The equations in rectangular coordinates were taken from earlier works on the problem. The calcultations carried out for a number of test examples prove that the averaged solutions of equations in coordinates and precise solutions of averaged equations in the Keplerian elements are identical. For the problem of tides raised on planet's body, it was found that, if satellite's mean motion n is equal to 11/18 Ω, where Ω is the planet's angular rotation rate, the orbital eccentricity does not change. This conclusion is in agreement with the results of other authors. It was also found that there is essential discrepancy between the equations in the elements obtained in this paper and analogous equations published by earlier researchers.

  15. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied.An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem.A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the time

  16. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the

  17. Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Medvedev, Alexander S.

    2017-04-01

    Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.

  18. The study of using earth tide response of groundwater level and rainfall recharge to identify groundwater aquifer

    NASA Astrophysics Data System (ADS)

    Huang, W. J.; Hsu, C. H.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.; Lu, W. C.

    2017-12-01

    Hydrogeological framework is the most important basis for groundwater analysis and simulation. Conventionally, the core drill is a most commonly adopted skill to acquire the core's data with the help of other research methods to artificially determine the result. Now, with the established groundwater station network, there are a lot of groundwater level information available. Groundwater level is an integrated presentation of the hydrogeological framework and the external pumping and recharge system. Therefore, how to identify the hydrogeological framework from a large number of groundwater level data is an important subject. In this study, the frequency analysis method and rainfall recharge mechanism were used to identify the aquifer where the groundwater level's response frequency and amplitude react to the earth tide. As the earth tide change originates from the gravity caused by the paths of sun and moon, it leads to soil stress and strain changes, which further affects the groundwater level. The scale of groundwater level's change varies with the influence of aquifer pressure systems such as confined or unconfined aquifers. This method has been applied to the identification of aquifers in the Cho-Shui River Alluvial Fan. The results of the identification are compared to the records of core drill and they both are quite consistent. It is shown that the identification methods developed in this study can considerably contribute to the identification of hydrogeological framework.

  19. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  20. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    PubMed

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-06

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  1. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  2. Tides in a body librating about a spin-orbit resonance: generalisation of the Darwin-Kaula theory

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2017-09-01

    The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin-Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.

  3. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  4. Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence

    Beeler, N.M.; Lockner, D.A.

    2003-01-01

    We provide an explanation why earthquake occurrence does not correlate well with the daily solid Earth tides. The explanation is derived from analysis of laboratory experiments in which faults are loaded to quasiperiodic failure by the combined action of a constant stressing rate, intended to simulate tectonic loading, and a small sinusoidal stress, analogous to the Earth tides. Event populations whose failure times correlate with the oscillating stress show two modes of response; the response mode depends on the stressing frequency. Correlation that is consistent with stress threshold failure models, e.g., Coulomb failure, results when the period of stress oscillation exceeds a characteristic time tn; the degree of correlation between failure time and the phase of the driving stress depends on the amplitude and frequency of the stress oscillation and on the stressing rate. When the period of the oscillating stress is less than tn, the correlation is not consistent with threshold failure models, and much higher stress amplitudes are required to induce detectable correlation with the oscillating stress. The physical interpretation of tn is the duration of failure nucleation. Behavior at the higher frequencies is consistent with a second-order dependence of the fault strength on sliding rate which determines the duration of nucleation and damps the response to stress change at frequencies greater than 1/tn. Simple extrapolation of these results to the Earth suggests a very weak correlation of earthquakes with the daily Earth tides, one that would require >13,000 earthquakes to detect. On the basis of our experiments and analysis, the absence of definitive daily triggering of earthquakes by the Earth tides requires that for earthquakes, tn exceeds the daily tidal period. The experiments suggest that the minimum typical duration of earthquake nucleation on the San Andreas fault system is ???1 year.

  5. Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth

    Sonett, C.P.; Kvale, E.P.; Zakharian, A.; Chan, M.A.; Demko, T.M.

    1996-01-01

    The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d??/dt k2 sin(2??) (where ?? is the Earth-moon radius vector, k2 is the tidal Love number, and ?? is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was -18 hours.

  6. Numerical modeling of short-term slow slip events in the Shikoku region considering the effect of earth tides and plate configuration

    NASA Astrophysics Data System (ADS)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2016-12-01

    Several studies reported that occurrence of slow slip events (SSEs) in the Nankai region is affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The tidal effect on the SSEs is also examined by numerical studies (e.g., Hawthorne and Rubin, 2013). In our previous study, repeating SSEs in the Shikoku region are numerically reproduced, incorporating the actual plate configuration (Matsuzawa et al., 2013). In this study, we examined the behavior of SSEs in the Shikoku region, considering stress perturbation by earth tides. Our numerical model is similar to our previous study (Matsuzawa et al., 2013). A plate interface is expressed by small triangular elements. A rate- and state-dependent friction law (RS-law) with cutoff velocities is adopted as the friction law on each element. We assumed that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. The short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of short-term SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we assume that the stress change is represented by periods of 10 major tides. Incorporating this stress perturbation, we calculate the evolution of slip on the plate interface. In the numerical result, repeating short-term SSEs are reproduced in the short-term SSE region. Recurrent intervals of SSEs at an isolated patch (e.g., northeastern Shikoku) have small fluctuation. Introducing tidal effect, peak velocity becomes faster than that in the case without tidal effect. On the other hand, the difference of peak velocities is not clear between the cases with and without tidal effect at widely connected SSE region (e.g., western Shikoku), as the intervals and peak velocities of SSEs are largely fluctuated in both cases. Hirahara (2016) suggested that the recurrence interval of events is synchronized to the period of

  7. Monthly and Fortnightly Tidal Variations of the Earth's Rotation Rate Predicted by a TOPEX/POSEIDON Empirical Ocean Tide Model

    NASA Technical Reports Server (NTRS)

    Desai, S.; Wahr, J.

    1998-01-01

    Empirical models of the two largest constituents of the long-period ocean tides, the monthly and the fortnightly constituents, are estimated from repeat cycles 10 to 210 of the TOPEX/POSEIDON (T/P) mission.

  8. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Oschman, James L.; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance. PMID:22291721

  9. Earthing: health implications of reconnecting the human body to the Earth's surface electrons.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits-including better sleep and reduced pain-from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  10. Normal mode study of the earth's rigid body motions

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1983-01-01

    In this paper it is shown that the earth's rigid body (rb) motions can be represented by an analytical set of eigensolutions to the equation of motion for elastic-gravitational free oscillations. Thus each degree of freedom in the rb motion is associated with a rb normal mode. Cases of both nonrotating and rotating earth models are studied, and it is shown that the rb modes do incorporate neatly into the earth's system of normal modes of free oscillation. The excitation formula for the rb modes are also obtained, based on normal mode theory. Physical implications of the results are summarized and the fundamental differences between rb modes and seismic modes are emphasized. In particular, it is ascertained that the Chandler wobble, being one of the rb modes belonging to the rotating earth, can be studied using the established theory of normal modes.

  11. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small

  12. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  13. Perigean Spring Tides and Apogean Neap Tides in History

    NASA Astrophysics Data System (ADS)

    Olson, Donald W.

    2012-01-01

    On January 4, 1912 - almost exactly 100 years ago - both a full Moon and a lunar perigee occurred, with these two events separated by only a few minutes of time and with the Earth near perihelion. The resulting lunar distance (356,375 km) on that date stands as the closest approach of the Moon to the Earth in an interval of more than 1400 years. The centennial of this extreme lunar perigee is an appropriate time to consider the effect of lunar distance on the range of ocean tides. At most ocean ports, spring tides of increased range occur near new and full Moon. If a lunar perigee falls near new or full Moon, then perigean spring tides of even greater range are possible. Conversely, if a lunar apogee falls near first quarter or last quarter Moon, then apogean neap tides of unusually reduced range can occur. Examples of perigean spring tides include a near-coincidence of lunar perigee and new Moon in December 1340 that may be related to a plot device in Chaucer's "The Franklin's Tale,” a Canterbury tale that describes an extreme high tide covering the rocks on the coast of Brittany in "the cold and frosty season of December.” Another example, the disaster known as the Bristol Channel Flood, occurred shortly after a lunar perigee and new Moon in January 1607. A German U-boat employed an exceptionally high perigean spring tide shortly after the new Moon of October 1939 to enter Scapa Flow by an unexpected route and sink the HMS Royal Oak. An apogean neap tide prevailed during the amphibious assault of the U. S. Marines at Tarawa in November 1943, making the eventual victory more costly because the landing craft were unable to reach the island and instead grounded on the surrounding reef.

  14. Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth

    NASA Astrophysics Data System (ADS)

    Stock, J. M.; Smrekar, S. E.

    2016-12-01

    We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge

  15. O1, P1, N2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M2, S2, and K1

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1982-01-01

    The models of M2, S2, and K1 presented in Parke and Hendershott (1980) are supplemented with models of O1, P1, and N2. The models satisfy specified elevation boundary conditions and are generated by fighting a small number of test functions to island data. Maps are presented of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each new component. Maps of the tidal potential seen by an observer fixed to the surface of the solid earth are also presented for all six constituents. Spherical harmonic coefficients up to order four and the rms magnitude of the coefficients to order fifteen are presented for each constituent. The rms magnitudes of the P1 and K1 coefficients normalized by their respective equilibrium amplitudes are compared to determine the effect of the diurnal core resonance.

  16. Imaging spectrometry of the Earth and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1993-01-01

    Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may

  17. Internal Tide Generation by Tall Ocean Ridges

    DTIC Science & Technology

    2009-09-01

    Earth - sun and the Earth -moon orbits . As the earth and the moon rotate, so does the alignment of the tidal forces, such...tidal periods. It has since become recognized that internal tides are part of important global energy systems: the orbits of the moon around the Earth ...and the Earth around the sun , and the energy budget of the ocean. For instance, the energy in the moon- Earth system is decreasing, such that every

  18. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  19. Experimental evidence of body centered cubic iron in Earth's core

    NASA Astrophysics Data System (ADS)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  20. Scaling of plasma-body interactions in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Capon, C. J.; Brown, M.; Boyce, R. R.

    2017-04-01

    This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.

  1. TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS

    SciT

    Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil

    2012-02-20

    While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, makingmore » tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does

  2. Europa Tide Movie

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for Europa Tide Movie

    In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa's orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter's position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa's rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa's ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist.

  3. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  4. Galalctic Tides & the Sinusoidal Potential

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2011-05-01

    The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr < 400 pc. The rapid alternation of attraction and repulsion within the groove gives very strong Galactic radial tides. The epicyclic period is only 7 Myr . The Keplerian period for comets in the middle of the Oort cloud is also 7 Myr. The 1:1 resonance between material in the groove and the cloud provides a new mechanism for filling the Oort cloud. The Oort cloud is emptied by the same strong radial tides. Evidence is found in the 499 comets with calculated 1/aoriginal in the latest Catalogue of Cometary Orbits (Marsden & Williams 2008). . I separate the comets into 12 classes on the basis of Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.

  5. The magnetic tides of Honolulu

    Love, Jeffrey J.; Rigler, Erin Joshua

    2013-01-01

    We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.

  6. The IERS Special Bureau for Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, B. F.; Desai, S. D.

    2002-01-01

    The Global Geophysical Fluids Center of the International Earth Rotation Service (IERS) comprises 8 special bureaus, one of which is the Special Bureau for Tides. Its purpose is to facilitate studies related to tidal effects in earth rotation. To that end it collects various relevant datasets and distributes them, primarily through its website at bowie.gsfc.nasa.gov/ggfc/tides. Example datasets include tabulations of tidal variations in angular momentum and in earth rotation as estimated from numerical ocean tide models and from meteorological reanalysis products. The web site also features an interactive tidal prediction "machine" which generates tidal predictions (e.g., of UT1) from lists of harmonic constants. The Special Bureau relies on the tidal and earth-rotation communities to build and enlarge its datasets; further contributions from this community are most welcome.

  7. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore

  8. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  9. A rapid method of estimating the collision frequencies between the earth and the earth-crossing bodies

    NASA Technical Reports Server (NTRS)

    Su, Shin-Yi; Kessler, Donald J.

    1991-01-01

    The present study examines a very fast method of calculating the collision frequency between two low-eccentricity orbiting bodies for evaluating the evolution of earth-orbiting objects such as space debris. The results are very accurate and the required computer time is negligible. The method is now applied without modification to calculate the collision frequencies for moderately and highly eccentric orbits.

  10. Dose in critical body organs in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F.

    1984-01-01

    Human exposure to trapped radiations in low Earth orbit (LEO) are evaluated on the basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. A sample impact assessment is discussed.

  11. Performance of the cometary experiment MUPUS on the body Earth

    NASA Astrophysics Data System (ADS)

    Marczewski, W.; Usowicz, B.; Schröer, K.; Seiferlin, K.; Spohn, T.

    2003-04-01

    Thermal experiment MUPUS for the Rosetta mission was extensively experience in field and laboratory conditions to predict its performance under physical processes available on the Earth. The goal was not guessing a cometary material in the ground but available behavior of thermal sensor responses monitoring mass and energy transfer. The processes expected on a comet are different in composition and environmental from those met on the Earth but basically similar in physics. Nature of energy powering the processes is also essentially the same - solar radiation. Several simple laboratory experiments with freezing and thawing with water ice, with mixture of water and oil and water layers strongly diverged by salinity revealed capability of recognition layered structure of the medium under test. More over effects of slow convection and latent heat related to the layers are also observed well. Cometary environment without atmosphere makes process of sublimation dominant. Open air conditions on the Earth may also offer a change of state in matter but between different phases. Learning temperature gradient in snow layers under thawing show that effects stimulated by a cause of daily cycling may be detected thermally. Results from investigations in snow made on Spitzbergen are good proofs on capability of the method. Relevance of thermal effects to heat powered processes of mass transport in the matter of ground is meaningful for the cometary experiment of MUPUS and for Earth sciences much concerned on water, gas and solid matter transport in the terrestrial ground. Results leading to energy balance studied on the Earth surface may be interesting also for the experiment on the comet and are to be discussed.

  12. Improvement of Europa's Gravity and Body Tides and Shape with a Laser Altimeter during a Flyby Tour

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Laser altimeters have been primarily utilized with orbiter spacecraft. Recently, the Mercury Laser Altimeter on MESSENGER successfully operated at Mercury during two flybys and thousands of highly-elliptical orbits, and contributed greatly towards improved understanding of the innermost planet. We show that a laser altimeter instrument on a flyby tour mission such as the planned NASA Europa Clipper can constrain key geophysical parameters when supported by variable-frequency altimetric measurements over repeated ~145°-long arcs across the surface. Previous work by Park et al. (2011, GRL) showed through covariance analysis that a similar trajectory could yield the gravity tidal Love number k2 to good accuracy (0.05). Here, we conduct a full simulation of a 45-flyby trajectory in the Jupiter system with Europa as primary target. We consider reasonable tracking coverage and noise level (dominated by plasma noise), as well as gravity (degree 50) and topography (200m resolution supplemented by realistic fractal noise at shorter wavelengths), informed by relevant existing data (Galileo, Cassini). The simulation is initialized at pessimistic values, with C20, C22, k2, and h2 in error of 90%, 90%, 50%, and 50%, respectively. All other gravity coefficients up to degree 3 have zero a priori values. Assumed altimetric data sampling and noise are derived from the tour trajectory and the instrument performance described by Smith et al. (this meeting). This variable-frequency laser altimeter can greatly improve the surface coverage (for shape recovery) and the number of altimetric crossovers, the best measurement type to constrain the tidal surface deformation. We find from our simulation that the addition of altimetry data significantly improves the determination of the gravity tidal Love number k2 and enables the recovery of the body tidal Love number h2. Low-degree gravity and topography are most important to constrain the interior structure of Europa. Scientific objectives

  13. Tides and Modern Geodesy

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    In modem high-precision geodesy, and especially in modem space geodesy, every measurement that one makes contains tidal signals. Generally these signals are considered noise and must somehow be eliminated. The stringent requirements of the latest space geodetic missions place severe demands on tidal models. On the other hand, these missions provide the strongest data for improving tidal models. In particular, TOPEX/POSEIDON altimetry and LAGEOS laser ranging have improved models to such an extent that new geophysical information about the ocean and the solid Earth are coming to light. Presumably GRACE intersatellite ranging data will also add to this information. This paper discusses several of these new geophysical results, with special emphasis given to the dissipation of tidal energy. Strong constraints have recently been placed on the partitioning of energy dissipation among the ocean, atmosphere, and solid earth and between the deep and shallow ocean. The dissipation in deep water is associated with internal tides and has potentially important implications for understanding the ocean's thermohaline circulation.

  14. Tidal Dissipation Compared To Seismic Dissipation: In Small Bodies, Earths, And Super-Earths

    DTIC Science & Technology

    2012-02-20

    The Astrophysical Journal, 746:150 (20pp), 2012 February 20 doi:10.1088/0004-637X/746/2/150 C© 2012. The American Astronomical Society. All rights...becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it...damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic

  15. Occurrence of earth-like bodies in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1991-01-01

    Present theories of terrestrial planet formation predict the rapid 'runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then emerge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to 'Jupiter' does not form, an earth-sized planet is almost always found near earth's heliocentric distance. These results suggest that occurrence of earthlike planets may be a common feature of planetary systems.

  16. Life in Solid Ice on Earth and Other Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Price, P. Buford

    2004-06-01

    Theory and direct observation indicate that micro-organisms exist in liquid veins in ice and permafrost, provided the temperature is above the eutectic for H_2O and soluble impurities present. Microbes can exist and metabolize in glacial ice and permafrost on Earth, Mars, and Europa. One can search directly (with fluorescence microscopy at liquid veins in Vostok ice core samples) or with a biologging instrument (for microbial fluorescence in a borehole in terrestrial or martian permafrost or ice). The viability lifetime against DNA destruction of bacterial spores can be measured with analytical techniques that identify calcium dipicolinate, which is unique to spores.

  17. Relationship between seismic status of Earth and relative position of bodies in sun-earth-moon system

    NASA Astrophysics Data System (ADS)

    Kulanin, N. V.

    1985-03-01

    The time spectrum of variations in seismicity is quite broad. There are seismic seasons, as well as multiannual variations. The range of characteristic times of variation from days to about one year is studied. Seismic activity as a function of the position of the moon relative to the Earth and the direction toward the Sun is studied. The moments of strong earthquakes, over 5.8 on the Richter scale, between 1968 and June 1980 are plotted in time coordinates relating them to the relative positions of the three bodies in the sun-earth-moon system. Methods of mathematical statistics are applied to the points produced, indicating at least 99% probability that the distribution was not random. a periodicity of the earth's seismic state of 413 days is observed.

  18. Accuracy comparison in mapping water bodies using Landsat images and Google Earth Images

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Zhou, X.

    2016-12-01

    A lot of research has been done for the extraction of water bodies with multiple satellite images. The Water Indexes with the use of multi-spectral images are the mostly used methods for the water bodies' extraction. In order to extract area of water bodies from satellite images, accuracy may depend on the spatial resolution of images and relative size of the water bodies. To quantify the impact of spatial resolution and size (major and minor lengths) of the water bodies on the accuracy of water area extraction, we use Georgetown Lake, Montana and coalbed methane (CBM) water retention ponds in the Montana Powder River Basin as test sites to evaluate the impact of spatial resolution and the size of water bodies on water area extraction. Data sources used include Landsat images and Google Earth images covering both large water bodies and small ponds. Firstly we used water indices to extract water coverage from Landsat images for both large lake and small ponds. Secondly we used a newly developed visible-index method to extract water coverage from Google Earth images covering both large lake and small ponds. Thirdly, we used the image fusion method in which the Google Earth Images are fused with multi-spectral Landsat images to obtain multi-spectral images of the same high spatial resolution as the Google earth images. The actual area of the lake and ponds are measured using GPS surveys. Results will be compared and the optimal method will be selected for water body extraction.

  19. Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015

    NASA Astrophysics Data System (ADS)

    Dinger, Florian; Bobrowski, Nicole; Warnach, Simon; Bredemeyer, Stefan; Hidalgo, Silvana; Arellano, Santiago; Galle, Bo; Platt, Ulrich; Wagner, Thomas

    2018-03-01

    We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. The BrO/SO2 molar ratios were very small prior to the phreatomagmatic explosions in August 2015, significantly higher after the explosions, and continuously increasing until the end of the unrest period in December 2015. These observations together with similar findings in previous studies at other volcanoes (Mt. Etna, Nevado del Ruiz, Tungurahua) suggest a possible link between a drop in BrO/SO2 and a future explosion. In addition, the observed relatively high BrO/SO2 molar ratios after December 2015 imply that bromine degassed predominately after sulfur from the magmatic melt. Furthermore, statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about 2 weeks in a 3-month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around 2 weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Our central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the north-south and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local

  20. Two-Body Convection in the Mantle of the Earth: E/W Asymmetry, Under Astronomically Determined Tilt in g

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    2002-12-01

    Under purely geocentric gravity, over time displacement under mantle convection is globally symmetrical, resulting in zero net lithosphere rotation. The effect is here explored of substituting the asymmetric Earth-Moon field, gconv, prevalent in actuality. The gravity responsible for mantle convection is defined as the vector sum of a vertical component and the day-averaged attraction of masses lagging tidal equilibrium. The increasingly accurately measured lunar recession may then be used to delimit the internal field in terms of the secular luni-tidal interval of the Earth as a whole, some 600 seconds [1], without having to identify tidal components i.e. separate marine from body tides. In context the astronomic phase-lag may be viewed as a global isostatic anomaly, in which the longitude circles marking Earth's gravimetric figure are located east of those describing its perpetually unattained equilibrium figure by some 89 km at the Equator. Reference the hydrostatic ellipsoid gconv is tilted by the astronomically delimited amount, albeit that the phase lag is attributable in part to the convection itself. As with the convection, the tectonic significance of its asymmetry is determinable geodetically. Using present art-state a strategically located GPS grid [2] would provide continuously more precise separation of the asymmetric component of surface displacement. In developing plate-motion models including members of the Nuvel series, it would be logical to follow up rather than discard the set permitting minor asymmetrical convection sans net torque, such as an element of net-lithosphere-rotation relative to plumes. To conserve system angular-momentum, this may be the only valid set. Characteristics of the convection to be expected accord with 'paradoxical' features of plate tectonics under purely radial gravity, including: difficulty in closing plate-motion circuits; net-lithosphere-rotation refce. hot-spots, sans net torque; geotectonic maps ranging from

  1. Tube dynamics and low energy Earth-Moon transfers in the 4-body system

    NASA Astrophysics Data System (ADS)

    Onozaki, Kaori; Yoshimura, Hiroaki; Ross, Shane D.

    2017-11-01

    In this paper, we show a low energy Earth-Moon transfer in the context of the Sun-Earth-Moon-spacecraft 4-body system. We consider the 4-body system as the coupled system of the Sun-Earth-spacecraft 3-body system perturbed by the Moon (which we call the Moon-perturbed system) and the Earth-Moon-spacecraft 3-body system perturbed by the Sun (which we call the Sun-perturbed system). In both perturbed systems, analogs of the stable and unstable manifolds are computed numerically by using the notion of Lagrangian coherent structures, wherein the stable and unstable manifolds play the role of separating orbits into transit and non-transit orbits. We obtain a family of non-transit orbits departing from a low Earth orbit in the Moon-perturbed system, and a family of transit orbits arriving into a low lunar orbit in the Sun-perturbed system. Finally, we show that we can construct a low energy transfer from the Earth to the Moon by choosing appropriate trajectories from both families and patching these trajectories with a maneuver.

  2. Tides and Decadal Variability

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2003-01-01

    This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."

  3. Range of earth structure nonuniqueness implied by body wave observations.

    NASA Technical Reports Server (NTRS)

    Wiggins, R. A.; Mcmechan, G. A.; Toksoz, M. N.

    1973-01-01

    The Herglotz-Wiechert integral for the direct inversion of ray parameter versus distance curves can be manipulated to find the envelope of all possible models consistent with geometrical body wave observations (travel time and ray parameter versus distance). Such an extremal inversion approach has been used to find the uncertainty bounds for the velocity structure in the mantle and core. It is found, for example, that there is an uncertainty of plus or minus 40 km in the radius of the inner core boundary, plus or minus 18 km at the core-mantle boundary, and plus or minus 35 km at the 435-km transition zone. The velocity uncertainty is about plus or minus 0.08 km/sec for P and S waves in the lower mantle and about plus or minus 0.20 km/sec in the core. Experiments with various combinations of ray types in the core indicate that rather crude observations of SKKS-SKS travel times confine the range of possible models far more dramatically than do the most precise estimates of PmKP travel times. Comparisons of results from extremal inversion and linearized perturbation inversions indicate that body wave behavior is too strongly nonlinear for linearized schemes to be effective for predicting uncertainty.

  4. High precision tide spectroscopy. [using the superconducting gravimeter

    NASA Technical Reports Server (NTRS)

    Goodkind, J. M.

    1978-01-01

    Diurnal and long period earth tides were measured to high accuracy and precision with the superconducting gravimeter. The results provide new evidence on the geophysical questions which have been attacked through earth tide measurements in the past. In addition, they raise new questions of potential interest. Slow fluctuations in gravity of order 10 micron gal over periods of 3 to 5 months were observed and are discussed.

  5. Analyze satellite-tracking laser data in order to study satellite ephemerides, solid-Earth and ocean tides and laser system performance

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1981-01-01

    The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.

  6. On population of hazardous celestial bodies in the near-Earth space

    NASA Astrophysics Data System (ADS)

    Shustov, B. M.; Naroenkov, S. A.; Efremova, E. V.

    2017-01-01

    In recent years, following the Chelyabinsk event of February 15, 2013, the lower size limit for presumably dangerous near-Earth objects has been decreased manyfold (essentially, from 140 m to 10 m). This has drawn an increased attention to the properties of the population of decameter-sized bodies, in particular, the bodies that approach the Earth from the sunward side (daytime sky). The current paper is concerned with various properties of this population. The properties of the ensemble are analyzed using both observational data from other authors and theoretical estimates obtained by cloning virtual bodies. This question is of great practical importance, as the means for detecting such bodies (for example, the SODA project) need to be developed with consideration for the requirements imposed by the population properties. We have shown that the average rate of entering near-Earth space (NES), i.e., at distances less than 1 million km from the Earth, for decameter-sized and larger bodies from the daytime sky (elongation values of entry points less than 90°) is approximately 620 objects per year for elongation angles of the detection point <90° and approximately 220 objects per year for elongation angles of the detection point <45°.

  7. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.

    2012-09-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  8. Tides and tsunamis

    NASA Technical Reports Server (NTRS)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  9. Body fluid regulation in micro-gravity differs from that on Earth: an overview.

    PubMed

    Drummer, C; Gerzer, R; Baisch, F; Heer, M

    2000-01-01

    Similar to the response to central hypervolemic conditions on Earth, the shift of blood volume from the legs to the upper part of the body in astronauts entering micro-gravity should, in accordance with the Henry-Gauer mechanism, mediate diuresis and natriuresis. However, fluid balance and kidney function experiments during various space missions resulted in the surprising observation that the responses qualitatively differ from those observed during simulations of hypervolemia on Earth. There is some evidence that the attenuated responses of the kidney while entering weightlessness, and also later during space flight, may be caused by augmented fluid distribution to extravascular compartments compared to conditions on Earth. A functional decoupling of the kidney may also contribute to the observation that renal responses during exposure to micro-gravity are consistently weaker than those during simulation experiments before space flight. Deficits in body mass after landing have always been interpreted as an indication of absolute fluid loss early during space missions. However, recent data suggest that body mass changes during space flight are rather the consequences of hypocaloric nutrition and can be overcome by improved nutrition schemes. Finally, sodium-retaining humoral systems are activated during space flight and may contribute to a new steady-state of metabolic balances with a pronounced increase in body sodium compared to respective conditions on Earth. A revision of the classical "micro-gravity fluid shift" scheme is required.

  10. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    NASA Astrophysics Data System (ADS)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth

  11. Precise comparisons of bottom-pressure and altimetric ocean tides

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2013-09-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  12. Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2013-01-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  13. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  14. Probing Core Processes in the Earth and Small Bodies Using Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Weiss, B. P.; Lima, E. A.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.

    2015-12-01

    Convective motion in the cores of differentiated metal-silicate bodies may sustain a global dynamo magnetic field. Progressive crystallization in a dynamo-generating core is expected to play a central role in determining the observable properties of the hosted magnetic field. Importantly, the release of light elements and latent heat during core crystallization is a key source of entropy for sustaining core convection. Therefore, the persistence and intensity of a dynamo magnetic field depend directly on the extent and style of core crystallization. We present and discuss paleomagnetic data from the Earth and asteroid-sized bodies to characterize internally generated magnetic fields during the early histories of these objects. In the case of the Earth, recent and ongoing paleomagnetic experiments of zircons from the Jack Hills of Australia can potentially constrain the existence and intensity of the geodynamo before 3.5 Ga. If robust, such measurements hold strong implications for the energy budget of the Earth's early core and the dynamics of the early mantle. We will discuss both recently published and preliminary results and assess carefully the challenges and uncertainties of paleomagnetic experimentation on ancient zircon samples. In the case of small bodies, several classes of meteorites record ancient magnetic fields likely produced by core dynamos on their parent bodies. Data from the CV carbonaceous chondrites and pallasites indicate that dynamos in planetesimal-sized bodies persisted for a broad range of timescales between ~10 My and >100 My. Meanwhile, measurements of the angrite group of achondrites show that their earliest-forming members crystallized in an almost non-magnetic environment, suggesting a delayed onset of the planetesimal dynamo until several My after initial differentiation. We will discuss the possible causes for this observed diversity of small body dynamo properties, including the role of core crystallization and the distribution of

  15. Integration of the Rotation of an Earth-like Body as a Perturbed Spherical Rotor

    NASA Astrophysics Data System (ADS)

    Ferrer, Sebastián; Lara, Martin

    2010-05-01

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  16. Ocean science. Enhanced: internal tides and ocean mixing.

    PubMed

    Garrett, Chris

    2003-09-26

    Recent satellite and in situ observations have shown that at ocean ridges and other seafloor topographic features, a substantial amount of energy is transferred from the main ocean tides into "internal tides." In his Perspective, Garrett explains how these internal waves with tidal periods propagate through the density-stratified deep ocean and eventually break down into turbulence. The resulting mixing affects ocean stratification and ocean circulation. It thus influences climate as well as biological production. The energy for the internal tides is derived from the rotational energy of the Earth-Moon system changes of the length of the day and the distance to the Moon.

  17. Ocean Tide Loading Computation

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  18. [Study of red tide spectral characteristics and its mechanism].

    PubMed

    Cui, Ting-Wei; Zhang, Jie; Ma, Yi; Sun, Ling

    2006-05-01

    In situ spectral data of different red tide, whose dominant species are leptocylindrus danicus, chattonella marina, skeletonema costatum, and mesodinium rubrum, were acquired by above water method utilizing spectrometer manufactured by FieldSpec Dual VNIR (USA). It is emphasized that the characteristic reflectance peak lying between 687 and 728 nm can be used to distinguish between red tide and normal sea water. Also the spectral discrepancy between different dominant species of red tide is pointed out, which could be utilized to identify certain red tide species by remote sensing technique. Mechanisms of phytoplankton red tide spectra peaks and vales are given. Spectral characteristics of mesodinium rubrum, a kind of protozoan, may be related to its symbiotic alga in its body and phytoplankton pigment crumb. So, research on ingestion preference, symbiotic property with algae, and fluorescence emission character of such symbiotic algae under normal temperature may be helpful for the deep understanding of mechanism of mesodinium rubrum spectra.

  19. Detecting the red tide based on remote sensing data in optically complex East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Pan, Delu; Mao, Zhihua; Tao, Bangyi; Liu, Qiong

    2012-09-01

    Red tide not only destroys marine fishery production, deteriorates the marine environment, affects coastal tourist industry, but also causes human poison, even death by eating toxic seafood contaminated by red tide organisms. Remote sensing technology has the characteristics of large-scale, synchronized, rapid monitoring, so it is one of the most important and most effective means of red tide monitoring. This paper selects the high frequency red tides areas of the East China Sea as study area, MODIS/Aqua L2 data as the data source, analysis and compares the spectral differences in the red tide water bodies and non-red tide water bodies of many historical events. Based on the spectral differences, this paper develops the algorithm of Rrs555/Rrs488> 1.5 to extract the red tide information. Apply the algorithm on red tide event happened in the East China Sea on May 28, 2009 to extract the information of red tide, and found that the method can determine effectively the location of the occurrence of red tide; there is a good corresponding relationship between red tide extraction result and chlorophyll a concentration extracted by remote sensing, shows that these algorithm can determine effectively the location and extract the red tide information.

  20. Tides and deltaic morphodynamics

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, Piret

    2016-04-01

    Tide-dominated and tide-influenced deltas are not widely recognized in the ancient record, despite the numerous modern and Holocene examples, including eight of the twelve modern largest deltas in the world, like the Ganges-Brahmaputra, Amazon, Chang Jiang, and Irrawadi. Furthermore, tide-dominated or tide-influenced deltas are suggested to be more common in inner-shelf or embayment settings rather than close to or at a shelf edge, primarily because wave energy is expected to be higher and tidal energy lower in outer shelf and shelf-edge areas. Thus, most shelf-edge deltas are suggested to be fluvial or wave dominated. However, there are ancient examples of tide-influenced shelf-edge deltas, indicating that the controls on tidal morphodynamics in deltas are not yet well understood. This paper asks the following questions: (1) How do tides influence delta deposition, beyond creating recognizable tidal facies? (2) Does tidal reworking create specific geometries in delta clinoforms? (3) Does tidal reworking change progradation rates of deltas? (4) Is significant tidal reworking of deltas restricted to inner-shelf deltas only? (5) What are the conditions at which deltas may be tidally influenced or tide-dominated in outer-shelf areas or at the shelf edge? (6) What are the main morphodynamic controls on the degree of tidal reworking of deltas? The paper utilizes a dataset of multiple ancient and modern deltas, situated both on the shelf and shelf edge. We show that beyond the commonly recognized shore-perpendicular morphological features and the recognizable tidal facies, the main effects of tidal reworking of deltas are associated with delta clinoform morphology, morphodynamics of delta lobe switching, delta front progradation rates, and the nature of the delta plain. Strong tidal influence is here documented to promote subaqueous, rapid progradation of deltas, by efficiently removing sediment from river mouth and thus reducing mouth bar aggradation and fluvial delta

  1. Earthing (grounding) the human body reduces blood viscosity-a major factor in cardiovascular disease.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Delany, Richard M

    2013-02-01

    Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. SUBJECTS were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Ten (10) healthy adult subjects were recruited by word-of-mouth. Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events.

  2. Earthing (Grounding) the Human Body Reduces Blood Viscosity—a Major Factor in Cardiovascular Disease

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Delany, Richard M.

    2013-01-01

    Abstract Objectives Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. Design/interventions Subjects were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Settings/location Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Subjects Ten (10) healthy adult subjects were recruited by word-of-mouth. Results Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Conclusions Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events. PMID:22757749

  3. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1977-01-01

    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  4. Tidal tomography constrains Earth's deep-mantle buoyancy.

    PubMed

    Lau, Harriet C P; Mitrovica, Jerry X; Davis, James L; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David

    2017-11-15

    Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.

  5. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    -level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas

  6. Element Abundances in Meteorites and the Earth: Implication for the Accretion of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Mezger, K.; Vollstaedt, H.; Maltese, A.

    2017-12-01

    Essentially all known inner solar system materials show near chondritic relative abundances of refractory elements and depletion in volatile elements. To a first approximation volatile element depletion correlates with the respective condensation temperature (TC) of the elements. Possible mechanisms for this depletion are incomplete condensation and partial loss by evaporation caused by heating prior to or during the planetesimal accretion. The stable isotope compositions of almost all moderately volatile elements in different meteorite classes show only minor, or no evidence for a Rayleigh-type fractionation that could be attributed to partial condensation or evaporation. The different classes of meteorites also show that the degree of depletion in their parent bodies (i.e. mostly planetesimals) is quite variable, but nevertheless systematic. For primitive and least disturbed carbonaceous chondrites the element depletion pattern is a smooth function of TC. The accessible silicate Earth also shows this general depletion pattern, but in detail it is highly complex and requires differentiation processes that are not solely controlled by TC. If only highly lithophile elements are considered the depletion pattern of the silicate Earth reveals a step function that shows that moderately volatile lithophile elements have abundances that are ca. 0.1 times the chondritic value, irrespective of their TC. This element pattern observed for bulk silicate Earth can be modelled as a mixture of two distinct components: ca. 90% of a strongly reduced planetary body that is depleted in highly volatile elements and ca. 10% of a more volatile element rich and oxidized component. This mixture can account for the apparent Pb- paradox observed in melts derived from the silicate Earth and provides a time constraint for the mixing event, which is ca. 70 My after the beginning of the solar system. This event corresponds to the giant impact that also formed the Moon.

  7. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  8. Body-Earth Mover's Distance: A Matching-Based Approach for Sleep Posture Recognition.

    PubMed

    Xu, Xiaowei; Lin, Feng; Wang, Aosen; Hu, Yu; Huang, Ming-Chun; Xu, Wenyao

    2016-10-01

    Sleep posture is a key component in sleep quality assessment and pressure ulcer prevention. Currently, body pressure analysis has been a popular method for sleep posture recognition. In this paper, a matching-based approach, Body-Earth Mover's Distance (BEMD), for sleep posture recognition is proposed. BEMD treats pressure images as weighted 2D shapes, and combines EMD and Euclidean distance for similarity measure. Compared with existing work, sleep posture recognition is achieved with posture similarity rather than multiple features for specific postures. A pilot study is performed with 14 persons for six different postures. The experimental results show that the proposed BEMD can achieve 91.21% accuracy, which outperforms the previous method with an improvement of 8.01%.

  9. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  10. Earth tides, global heat flow, and tectonics

    Shaw, H.R.

    1970-01-01

    The power of a heat engine ignited by tidal energy can account for geologically reasonable rates of average magma production and sea floor spreading. These rates control similarity of heat flux over continents and oceans because of an inverse relationship between respective depth intervals for mass transfer and consequent distributions of radiogenic heat production.

  11. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    NASA Astrophysics Data System (ADS)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  12. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  13. Exposure to whole-body vibration and seat transmissibility in a large sample of earth scrapers.

    PubMed

    Salmoni, Alan; Cann, Adam; Gillin, Kent

    2010-01-01

    It is often difficult to access a large sample of vehicles in various work environments to evaluate worker exposure to vibration such as in construction and mining. Thus the main purpose of the present research was to test vibration exposure in a relatively large number of earth scrapers. The second aim was to assess vibration exposure values on seat transmissibility. 33earth scrapers were assessed for both exposure to whole-body vibration and seat transmissibility. Two triaxial accelerometers, one placed on the seat and one on the floor directly below the seat, were used to gather whole-body vibration values (a(w)). Each machine was tested for a minimum of three complete work cycles: idling, scraping, travelling full, dumping, travelling empty back to the scrape site. Results showed that idling and scraping produced low levels of vibration when compared to travelling and dumping. Second, when the a(w) values were compared to the EU safety standards for an eight hour work day, the data (z axis) exceeded the exposure action value (0.5 m/s2) in all machines, and the exposure limit value (1.15 m/s2) in some. Implications; Operators of the scrapers were being exposed to unsafe levels of whole-body vibration. When the seats were assessed to see whether they were attenuating operator exposure to vibration, many of the seat effective amplitude transmissibility (SEAT) values exceeded 1.0. This meant that some of the seats were actually amplifying the vibration present at the floor, particularly in the y axis. Travelways should be kept smooth, operating speeds reduced, and new seats, effective in all three axes, designed.

  14. The self-consistent dynamic pole tide in non-global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1988-01-01

    The dynamic pole tide is determined by solving Laplace tide equations which take into account the presence of continents in oceans, oceanic self-gravitation and loading, and mantle elasticity. Dynamical effects are found to be only mild. It is shown that the dynamical pole tide contributes about one day more to the Chandler period than a static pole tide would, and dissipates wobble energy at a very weak rate. It is noted that, depending on the wobble period predicted for an oceanless elastic earth, mantle anelasticity at low frequencies may nevertheless contribute negligibly to the Chandler period.

  15. Migration of Small Bodies and Dust to Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distance Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). The fraction of asteroids migrated from the 3:1 resonance with Jupiter that collided with the Earth was greater by a factor of several than that for the 5:2 resonance. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates

  16. Supersonic aerodynamic characteristics of a circular body Earth-to-Orbit vehicle

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Engelund, Walter C.; Macconochie, Ian O.

    1994-01-01

    The circular body configuration is a generic single- or multi-stage reusable Earth-to-orbit transport. A thick clipped-delta wing is the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center fin, wingtip fins, and a nose-mounted fin. The tests were conducted in the Langley Unitary Plan Wind Tunnel. The configuration is longitudinally stable about the estimated center of gravity of 0.72 body length up to a Mach number of about 3.0. Above Mach 3.0, the model is longitudinally unstable at low angles of attack but has a stable secondary trim point at angles of attack above 30 deg. The model has sufficient pitch control authority with elevator and body flap to produce stable trim over the test range. The model with the center fin is directionally stable at low angles of attack up to a Mach number of 3.90. The rudder-like surfaces on the tip fins and the all-movable nose fin are designed as active controls to produce artificial directional stability and are effective in producing yawing moment. The wing trailing-edge aileron surfaces are effective in producing rolling moment, but they also produce large adverse yawing moment.

  17. The breakup of a meteorite parent body and the delivery of meteorites to earth

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, D. W. G.

    1992-01-01

    Whether many of the 10,000 meteorites collected in the Antarctic are unlike those falling elsewhere is contentious. The Antarctic H chondrites, one of the major classes of stony meteorites, include a number of individuals with higher induced thermoluminescence peak temperatures than observed among non-Antarctic H chondrites. The proportion of such individuals decreases with the mean terrestrial age of the meteorites at the various ice fields. These H chondrites have cosmic-ray exposure ages of about 8 million years, experienced little cosmic-ray shielding, and suffered rapid postmetamorphic cooling. Breakup of the H chondrite parent body, 8 million years ago, may have produced two types of material with different size distributions and thermal histories. The smaller objects reached earth more rapidly through more rapid orbital evolution.

  18. Core formation in the shergottite parent body and comparison with the earth

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Jones, John H.; Drake, Michael J.

    1987-01-01

    Abundances of elements in shergottite, nakhlite, and Chassigny meteorites which originated on a single planet, the shergottite parent body (SPB), were examined with the aim of elucidating the chemical conditions of metal separation and core formation in the SPB and of testing present models of planetary core formation. Using partition coefficients and the SPB mantle composition determined in earlier studies, the abundances of Ag, Au, Co, Ga, Mo, Ni, P, Re, S, and W were modeled, with free parameters being oxygen fugacity, proportion of solid metal formed, proportion of metallic liquid formed, and proportion of silicate that is molten. It is shown that the abundances of all elements (except Mo) could be reproduced using models with these four free parameters. In contrast to the SPB, an equivalent model used to predict element abundances in the earth's mantle was shown by Jones and Drake (1986) to be inadequate; there is at present no hypothesis capable of quantitatively reproducing the elemental abundances of the earth's mantle. The contrast suggests that these two terrestrial planets (assuming that the SPB is Mars) may have accreted or differentiated differently.

  19. Stability of the body-centred-cubic phase of iron in the Earth's inner core.

    PubMed

    Belonoshko, Anatoly B; Ahuja, Rajeev; Johansson, Börje

    2003-08-28

    Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.

  20. Geodynamic Effects of Ocean Tides: Progress and Problems

    NASA Technical Reports Server (NTRS)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  1. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  2. King Tides and Climate Change

    EPA Pesticide Factsheets

    The highest predicted high tide of the year at a coastal location can bring unusually high water levels and can cause flooding. Learn about these tides including what they are, when they occur, and what they can mean for the future.

  3. Earth

    2012-01-30

    Behold one of the more detailed images of the Earth yet created. This Blue Marble Earth montage shown above -- created from photographs taken by the Visible/Infrared Imager Radiometer Suite (VIIRS) instrument on board the new Suomi NPP satellite -- shows many stunning details of our home planet. The Suomi NPP satellite was launched last October and renamed last week after Verner Suomi, commonly deemed the father of satellite meteorology. The composite was created from the data collected during four orbits of the robotic satellite taken earlier this month and digitally projected onto the globe. Many features of North America and the Western Hemisphere are particularly visible on a high resolution version of the image. http://photojournal.jpl.nasa.gov/catalog/PIA18033

  4. Density of the Human Body in Gravity Contrasting Tectonic Blocks of Earth

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    Short duration cosmic experiments with humans in reduced gravity might be compared with results of practically time unlimited (many thousand of years!) existence of man in conditions of planetary tectonic blocks with rather small gravity gradient. These blocks with differing planetary radii are formed in the terrestrial globe (as well as in other celestial bodies) as a result of its movement in an elliptical orbit inevitably causing inertia-gravity warping waves. Depending on the wavelengths, Earth is tectonically dichotomic (wave1, 2π R-structure), sectoral (wave2, π R-structure) and granular (wave4, π R/2-structure) [1]. Alternations of uplifts (+) and subsidences (-) in rotating Earth requires an equilibration of angular momenta of different levels blocks by differing densities of composing them objects. ``Objects'' are geological as well as biological ones. Oceans (-) are filled with dense basaltic rocks, continents (+) are built by less dense granites (andesites, on average). Homo sapiens, widely spread over Earth, equally accommodates himself to conditions of tectonic blocks with differing radii (densities). The most pronounced (amplitudinal) tectonic dichotomy is an opposition of the subsided (-) western pacific hemisphere to the uplifted (+) eastern continental hemisphere. Recently populated (12 to 3 thousand years ago) America and Pacific made migrating mongoloids denser (higher the Rohrer's index* of Indians and Polynesians) than inhabitants of native Asia. Asia itself is a sector of the planetary sectoral π R-structure of the eastern hemisphere with the center at the Pamirs-Hindukush. Around this center converge 2 uplifted sectors (Africa-Mediterranean ++, Asian +) separated by 2 subsided ones (Eurasian -, Indoceanic - -). The 4 great races developed on these sectors have their own ``body density'' characteristics. The uplifted Africa bears ``light'' negroids, subsided Eurasia ``heavy'' europeoids. In the former USSR population of the Asian sector

  5. Revisiting the pole tide for and from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen; Wahr, John; Beckley, Brian

    2015-12-01

    Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.

  6. Ocean tides for satellite geodesy

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  7. Subsonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Ware, George M.; MacConochie, Ian O.

    1996-01-01

    A test of a generic reusable earth-to-orbit transport was conducted in the 7- by 10-Foot high-speed tunnel at the Langley Research Center at Mach number 0.3. The model had a body with a circular cross section and a thick clipped delta wing as the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center vertical fin, wingtip fins, and a nose-mounted vertical fin. The configuration was longitudinally stable about the estimated center-of-gravity position of 0.72 body length and had sufficient pitch-control authority for stable trim over a wide range of angle of attack, regardless of fin arrangement. The maximum trimmed lift/drag ratio for the aft center-fin configuration was less than 5, whereas the other configurations had values of above 6. The aft center-fin configuration was directionally stable for all angles of attack tested. The wingtip and nose fins were not intended to produce directional stability but to be active controllers for artificial stabilization. Small rolling-moment values resulted from yaw control of the nose fin. Large adverse rolling-moment increments resulted from tip-fin controller deflection above 13 deg angle of attack. Flow visualization indicated that the adverse rolling-moment increments were probably caused by the influence of the deflected tip-fin controller on wing flow separation.

  8. Heating Rate Distributions at Mach 10 on a Circular Body Earth-to-Orbit Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Wells, William L.; MacConochie, Ian O.; Helms, Vernon T., III; Raney, David

    1985-01-01

    Among the concepts being considered for future Earth-to-orbit transport vehicles are fully reusable single-stage systems which take off vertically and land horizontally. Because these vehicles carry their own propellant internally, they are much larger than the present Space Shuttle Orbiter. One such single-stage vehicle under study is the circular body configuration which has the advantages of simple structural design and large volume-to-weight ratio. As part of an overall evaluation of this configuration, a series of heat transfer and surface flow tests were conducted. The phase-change paint and oil-flow tests were performed in the Langley 31-Inch Mach-10 Tunnel at angles of attack from 20 through 40 degrees in 5-degree increments. Heat-transfer coefficient data are presented for all angles of attack and detailed oil-flow photographs are shown for windward and leeward surfaces at 25 and 40 degrees angle of attack. In many ways, heating was similar to that previously determined for the Shuttle Orbiter so that, in a cursory sense, existing thermal protection systems would appear to be adequate for the proposed circular-body configurations.

  9. Brouwer Award Lecture: Anelastic tides of close-in satellites and exoplanets

    NASA Astrophysics Data System (ADS)

    Ferraz-Mello, Sylvio

    2016-05-01

    This lecture reviews a new theory of the anelastic tides of celestial bodies in which the deformation of the body is the result of a Newtonian creep inversely proportional to the viscosity of the body and, along each radius, directly proportional to the distance from the actual surface of the body to the equilibrium. The first version of the theory (AAS/DDA 2012; CeMDA 2013), was restricted to homogeneous bodies. It was applied to many different bodies as the Moon, Mercury, super-Earths and hot Jupiters. An improved version (AAS/DDA 2014) included also the loss of angular momentum due to stellar winds and was applied to the study of the rotational evolution of active stars hosting massive companions. One more recent version (Folonier et al. AAS/DDA 2013; DPS 2015) allowed for the consideration of layered structures and was applied to Titan and Mercury. The resulting anelastic tides depend on the nature of the considered body. In the case of low-viscosity bodies (high relaxation factor), as gaseous planets and stars, the results are nearly the same of Darwin's theory. For instance, in these cases the dissipation grows proportionally to the tidal frequency. In the case of high-viscosity rocky satellites and planets (low relaxation factor), the results are structurally different: the dissipation varies with the tidal frequency following an inverse power law and the rotation may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the orbital mean-motion, even when no permanent triaxiality exists.

  10. Shocks and Tides Quantified in the “Sausage” Cluster, CIZA J2242.8+5301 Using N-body/Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Molnar, S. M.; Broadhurst, T.

    2017-05-01

    The colliding cluster, CIZA J2242.8+5301, displays a spectacular, almost 2 Mpc long shock front with a radio based Mach number M≃ 5, that is puzzlingly large compared to the X-ray estimate of M≃ 2.5. The extent to which the X-ray temperature jump is diluted by cooler unshocked gas projected through the cluster currently lacks quantification. Here we apply our self-consistent N-body/hydrodynamical code (based on FLASH) to model this binary cluster encounter. We can account for the location of the shock front and also the elongated X-ray emission by tidal stretching of the gas and dark matter between the two cluster centers. The required total mass is 8.9× {10}14 {M}⊙ with a 1.3:1 mass ratio favoring the southern cluster component. The relative velocity we derive is ≃ 2500 {km} {{{s}}}-1 initially between the two main cluster components, with an impact parameter of 120 kpc. This solution implies that the shock temperature jump derived from the low angular resolution X-ray satellite Suzaku is underestimated by a factor of two, due to cool gas in projection, bringing the observed X-ray and radio estimates into agreement. Finally, we use our model to generate Compton-y maps to estimate the thermal Sunyaev-Zel’dovich (SZ) effect. At 30 GHz, this amounts to {{Δ }}{S}n=-0.072 mJy/arcmin2 and {{Δ }}{S}s=-0.075 mJy/arcmin2 at the locations of the northern and southern shock fronts respectively. Our model estimate agrees with previous empirical estimates that have inferred the measured radio spectra of the radio relics can be significantly affected by the SZ effect, with implications for charged particle acceleration models.

  11. Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks

    NASA Astrophysics Data System (ADS)

    de Wit, Ralph W. L.; Valentine, Andrew P.; Trampert, Jeannot

    2013-10-01

    How do body-wave traveltimes constrain the Earth's radial (1-D) seismic structure? Existing 1-D seismological models underpin 3-D seismic tomography and earthquake location algorithms. It is therefore crucial to assess the quality of such 1-D models, yet quantifying uncertainties in seismological models is challenging and thus often ignored. Ideally, quality assessment should be an integral part of the inverse method. Our aim in this study is twofold: (i) we show how to solve a general Bayesian non-linear inverse problem and quantify model uncertainties, and (ii) we investigate the constraint on spherically symmetric P-wave velocity (VP) structure provided by body-wave traveltimes from the EHB bulletin (phases Pn, P, PP and PKP). Our approach is based on artificial neural networks, which are very common in pattern recognition problems and can be used to approximate an arbitrary function. We use a Mixture Density Network to obtain 1-D marginal posterior probability density functions (pdfs), which provide a quantitative description of our knowledge on the individual Earth parameters. No linearization or model damping is required, which allows us to infer a model which is constrained purely by the data. We present 1-D marginal posterior pdfs for the 22 VP parameters and seven discontinuity depths in our model. P-wave velocities in the inner core, outer core and lower mantle are resolved well, with standard deviations of ˜0.2 to 1 per cent with respect to the mean of the posterior pdfs. The maximum likelihoods of VP are in general similar to the corresponding ak135 values, which lie within one or two standard deviations from the posterior means, thus providing an independent validation of ak135 in this part of the radial model. Conversely, the data contain little or no information on P-wave velocity in the D'' layer, the upper mantle and the homogeneous crustal layers. Further, the data do not constrain the depth of the discontinuities in our model. Using additional

  12. Whole body vibration exposure in heavy earth moving machinery operators of metalliferrous mines.

    PubMed

    Vanerkar, A P; Kulkarni, N P; Zade, P D; Kamavisdar, A S

    2008-08-01

    As mining operations get mechanized, the rate of profit generation increases and so do the rate of occupational hazards. This study deals with one such hazard - occupational vibration. The present study was carried out to determine the whole body vibration (WBV) exposure of the heavy earth moving machinery (HEMM) operators in two types of metalliferous mines in India, when they were engaged in the mining activity. Cross-comparison was done of the vibration dose value (VDV) for HEMM operators as well as each type of mine. The VDV for the shovel operator in bauxite mine was observed to be 13.53 +/- 5.63 m/s(7/4) with 25% of the readings higher than the prescribed limit whereas in iron ore mine VDV for dumper operator was 10.81 +/- 3.44 m/s(7/4) with 14.62% readings on the higher side. Cross-comparison of the VDV values for bauxite and iron ore mines revealed that it was 9.57 +/- 4.93 and 8.21 +/- 5.12 m/s(7/4) with 21.28 and 14.95% of the readings on the higher side respectively. The Student's t test level was found to be insignificant for both type of mines, indicating that the WBV exposure is not dependent on the type of mine but is dependent on the working condition and type of HEMM in operation.

  13. Thermal Protection System Mass Estimating Relationships for Blunt-Body, Earth Entry Spacecraft

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Samareh, Jamshid A.

    2015-01-01

    System analysis and design of any entry system must balance the level fidelity for each discipline against the project timeline. One way to inject high fidelity analysis earlier in the design effort is to develop surrogate models for the high-fidelity disciplines. Surrogate models for the Thermal Protection System (TPS) are formulated as Mass Estimating Relationships (MERs). The TPS MERs are presented that predict the amount of TPS necessary for safe Earth entry for blunt-body spacecraft using simple correlations that closely match estimates from NASA's high-fidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA-561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER under predicts FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.

  14. Thermal Protection System Mass Estimating Relationships For Blunt-Body, Earth Entry Spacecraft

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Samareh, Jamshid A.

    2015-01-01

    Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.

  15. Numerical estimates of seismic effects after collisions of small bodies with the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Svetsov, Vladimir; Shuvalov, Valery

    Small bodies - meteoroids, asteroids or cometary objects of moderate size (10 - 100 m) every so often do not survive the entry through the planetary atmosphere and release their energy at some altitudes. Then the aerial blast waves reach the ground and generate Rayleigh seismic surface waves. The magnitude of the following earthquake can be significant as in the cases of the Tunguska event of 30 June 1908 or the Chelyabinsk airburst of 15 February 2013. If the pressure on the ground is known as a function of coordinates and time, the energy of seismic waves can be calculated using a solution of Lamb’s problem of the response to vertical load acting on the surface of an elastic half-space. The numerical procedure includes calculations of pressure spectra and integrals which are proportional to the energy of seismic waves. The final formula for the calculation of earthquake magnitudes was calibrated using published results of measurements made during nuclear tests on Novaya Zemlya in 1961 - 1962. We carried out numerical simulations of the aerial shock waves in Chelyabinsk event of 15 February 2013, using hydrodynamic codes. The energy input along the atmospheric trajectory inclined at 19° to the Earth surface was assumed to be proportional to the radiation intensity derived from numerous video records. The calculated magnitude of the seismic source proved to be 3.85 on the assumption that the initial kinetic energy of the asteroid was 300 kt TNT. For the energy of 500 kt TNT the magnitude was 4.0. These values are in agreement with the results of magnitude records within the measurement errors. We also calculated the magnitudes of earthquakes caused by spherical explosions with the energies from 30 kt to 30 Mt TNT (bodies from ~7 to 70 m in size) at altitudes from 5 to 45 km. The earthquake magnitude of the Chelyabinsk event corresponds to a spherical explosion at an altitude of about 35 km. For the Tunguska event of 1908, we obtained the earthquake magnitudes

  16. Tide, Ocean and Climate on Exoplanets

    NASA Astrophysics Data System (ADS)

    Si, Y.; Yang, J.

    2017-12-01

    On Earth, tide is a main part of the driving force for the deep ocean overturning circulation. For habitable planets around low-mass stars, the tidal force is expected to be much stronger than that on Earth, due to the fact that the habitable zone is very close to the host stars and that tide force is inversely proportional to the orbital distance cubed. The deep ocean overturning circulation on this type of planets is therefore expected to be much stronger than that on Earth, if all else being equal. We test this hypothesis using a fully coupled atmosphere-ocean model, the Community Climate System Model version 3 (CCSM3). Our results show that the intensity of oceanic meridional overturning circulation (MOC) is approximately proportional to κ1/3, where κ is the mixing coefficient across density interfaces and it is mainly determined by the strength of the tidal force. As a result of the enhanced MOC, more heat is transported to dark regions and sea ice melts completely there, and meanwhile more heat is mixed from the surface to the deep ocean and thereby the entire ocean becomes much warmer (Fig. 1). A positive cloud feedback further warms the global ocean and atmosphere. These results imply that one planet with a stronger tidal force will likely enter a globally ice-covered snowball state at a lower stellar flux and enter a moist greenhouse or runaway greenhouse state at also a lower stellar flux, meaning that the tidal force acts to push the habitable zone outward. This study significantly improves our understanding of the possible coupling between planetary orbit, ocean, climate, and habitability on exoplanets.

  17. M2, S2, K1 models of the global ocean tide

    NASA Technical Reports Server (NTRS)

    Parke, M. E.; Hendershott, M. C.

    1979-01-01

    Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean tides, it is difficult for numerical models to correctly represent the actual open ocean tide. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global tide are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each contituent are presented.

  18. A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-07-01

    Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earth's co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. These objects are not primordial and may have originated within the Venus-Earth-Mars region or in the main-belt, then transition to Amor-class asteroid before entering Earth's co-orbital region. Objects in this group could be responsible for the production of Earth's transient irregular natural satellites.

  19. Red Tide off Texas Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Red tides (algae) bloomed late this summer along a 300-mile stretch of Texas' Gulf Coast, killing millions of fish and shellfish as well as making some people sick. State officials are calling this the worst red tide bloom in 14 years. The algae produces a poison that paralyzes fish and prevents them from breathing. There is concern that the deadly algae could impact or even wipe out this year's oyster harvest in Texas, which usually peaks during the Thanksgiving and Christmas holidays. The red tides were first observed off the Texas coast in mid-August and have been growing steadily in size ever since. Red tides tend to bloom and subside rapidly, depending upon changes in wind speed and direction, water temperature, salinity, and rainfall patterns (as the algae doesn't do as well in fresher water). This true-color image of the Texas Gulf Coast was acquired on September 29, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The red tide can be seen as the dark reddish discoloration in the ocean running southwest to northeast along the coast. In this scene, the bloom appears to be concentrated north and east of Corpus Christi, just off Matagorda Island. The image was made at 500-meter resolution using a combination of MODIS' visible bands 1 (red), 4 (green), and 3 (blue). The city of Houston can be seen clearly as the large, greyish cluster of pixels to the north and west of Galveston Bay, which is about mid-way up the coastline in this image. Also visible in this image are plumes of smoke, perhaps wildfires, both to the north and northeast of Houston. For more information about red tides, refer to the Texas Red Tide Web site. Image courtesy Andrey Savtchenko, MODIS Data Support Team, and the MODIS Ocean Team, NASA's Goddard Space Flight Center

  20. Europa Tide Movie

    2007-12-13

    In this image, Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Animation available at the Photo

  1. A Rising Tide

    ERIC Educational Resources Information Center

    Nation, Molly Trendell; Feldman, Allan; Wang, Ping

    2015-01-01

    Global climate change and its effects are real and immediate. Students must gain an understanding of climate science so they can participate in public debate about how to reduce the emission of heat-trapping gases and how their communities can mitigate the effects of global warming. In this activity, students model these effects on Earth's oceans…

  2. Estimating Tides from a Planetary Flyby Mission

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Genova, Antonio; Smith, David; Zuber, Maria; Sun, Xiaoli

    2014-05-01

    Previous and current laser altimeter instruments (e.g. MOLA, NLR, LOLA, MLA) acquired measurements in orbit to provide global topography and study the surface and sub-surface properties of planetary bodies. We show that altimetric data from multiple flybys can make significant contributions to the geophysical understanding of the target body. In particular, the detection of the body tide (e.g. surface deformation due to the tides raised by the Sun or the parent body) and the estimation of its amplitude can yield critical information about the interior structure. We conduct a full simulation of a planetary flyby mission around Europa. We use the GEODYN II program developed and maintained at NASA GSFC to process altimetric and radiometric tracking data created using truth models. The data are processed in short two-day segments (arcs) centered on each closest approach. The initial trajectory is integrated using a priori (truth) models of the planetary ephemeris, the gravity field, the tidal Love numbers k2 and h2 (which describe the amplitudes of the time-variable tidal potential and the time-variable radial deformation respectively). The gravity field is constructed using a Kaula-like power law and scaling considerations from other planetary bodies. The global-scale static topography is also chosen to follow a power law, and higher-resolution local maps consistent with recent stereo-topography work are used to assess the expected variations along altimetric profiles. We assume realistic spacecraft orientation to drive a spacecraft macro-model and model the solar radiation pressure acceleration. Radiometric tracking data are generated from the truth trajectory accounting for geometry (occultations by Europa or Jupiter or the Sun), DSN visibility and scheduling (8h per day) and measurement noise (Ka-band quality, plasma noise). Doppler data have a 10-second integration step while Range data occur every 5 minutes. The altimetric data are generated using realistic

  3. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  4. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide.

    The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine.

    The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington

  5. New Jersey Tide Telemetry System

    Hoppe, Heidi L.

    2007-01-01

    Each summer the population of the barrier-island communities of New Jersey increases by tens of thousands. When a coastal storm threatens these communities, the limited number of bridges and causeways that connect the islands with the mainland become overcrowded, making evacuations from the barrier islands to the mainland difficult. Timely evacuation depends on well-defined emergency evacuation plans used in conjunction with accurate flood forecasting and up to the minute (real-time) tide-level information. The 'Great Nor'easter' storm that struck the coastal areas of New Jersey on December 11, 1992, caused about $270 million in insured damages to public and private property (Dorr and others, 1995). Most of the damage was due to tidal flooding and storm surge, which were especially severe along the back bay areas. Comprehensive and reliable tide-level and meteorological data for the back bays was needed to make accurate flood forecasts. Collection of tidal data for the ocean and large bays was adequately covered by the National Oceanic and Atmospheric Administration's National Ocean Service (NOAA's NOS), but in New Jersey little to no data are available for the back-bay areas. The back bays behave quite differently than the ocean as a result of the complex interaction between the winds and the geometry of the inlets and bays. A slow moving Nor'easter can keep tide levels in back bays several feet higher than the ocean tide by not allowing tides to recede, resulting in flooding of bridges and causeways that link the barrier islands to the mainland. The U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Transportation (NJDOT), designed and installed the New Jersey Tide Telemetry System (NJTTS) with assistance from NOAA's NOS in 1997. This system is part of a statewide network of tide gages, weather stations, and stream gages that collect data in real time. The NJTTS supplies comprehensive, reliable real-time tide-level and meteorological

  6. Barometric Tides from ECMWF Operational Analyses

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Ponte, R. M.

    2003-01-01

    The solar diurnal and semidiurnal tidal oscillations in surface pressure are extracted from the the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF). For the semidiurnal tide this involves a special temporal interpolation, following Van den Dool and colleagues. The resulting tides are compared with a ground truth tide dataset, a compilation of well-determined tide estimates deduced from long time series of station barometer measurements. These comparisons show that the ECMWF tides are significantly more accurate than the tides deduced from two other widely available reanalysis products. Spectral analysis of ECMWF pressure series shows that the tides consist of sharp central peaks with modulating sidelines at integer multiples of 1 cycle/year, superimposed on a broad cusp of stochastic energy. The integrated energy in the cusp dominates that of the sidelines. This complicates development of a simple model that can characterize the full temporal variability of the tides.

  7. Analysis of the charge exchange between the human body and ground: evaluation of "earthing" from an electrical perspective.

    PubMed

    Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul

    2014-12-01

    The purpose of this study was to investigate "earthing" from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion.

  8. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  9. Utilization of multi-body trajectories in the Sun-Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.

    1980-01-01

    An overview of three uncommon trajectory concepts for space missions in the Sun-Earth-Moon System is presented. One concept uses a special class of libration-point orbits called 'halo orbits.' It is shown that members of this orbit family are advantageous for monitoring the solar wind input to the Earth's magnetosphere, and could also be used to establish a continuous communications link between the Earth and the far side of the Moon. The second concept employs pretzel-like trajectories to explore the Earth's geomagnetic tail. These trajectories are formed by using the Moon to carry out a prescribed sequence of gravity-assist maneuvers. Finally, there is the 'boomerang' trajectory technique for multiple-encounter missions to comets and asteroids. In this plan, Earth-swingby maneuvers are used to retarget the original spacecraft trajectory. The boomerang method could be used to produce a triple-encounter sequence which includes flybys of comets Halley and Tempel-2 as well as the asteroid Geographos.

  10. Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Wünnemann, K.; Collins, G. S.; Weiss, R.

    2010-12-01

    The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.

  11. Biomolecule-Mineral Interactions in the Geochemical Environment on Early Earth and in the Human Body

    NASA Astrophysics Data System (ADS)

    Sahai, N.

    2011-12-01

    We worked on four projects consistent with the broad goals of the grant to investigate (i) the potential impacts of mineral surface chemistry and particle size on the stability and viability of cell membranes, bacteria and human cells and (ii) the influence of biomolecules on mineral nucleation and growth. The projects are of relevance to the origin and early evolution of life, biomineralization, medical mineralogy, and environmental biogeochemistry. The freedom enabled by the five-year grant to explore high-risk scientific areas, and the resulting high impact outcomes, cannot be overstated. We developed an almost entirely new field of Medical Mineralogyy and extended our concepts and knowledge-base to the potential roles of mineral surfaces in the evolution of protocells and the earliest cells. These exciting connections to medical mineralogy, and to the origin and evolution of life on early Earth are fascinating topics to the general public and even to other scientists, especially when the links to mineralogy and geochemistry are highlighted. In brief, we examined the stability of lipid bilayers representing model protocell membranes comprised of phospholipid bilayers with mineral surfaces. We found that the stability of lipid bilayers depends on mineral surface charge and increases as silica glass ~ quartz < rutile ~ mica < corundum. In a second project, we investigated whether the evolution of bacterial extra-cellular polymeric substances (EPS) may have been driven by nanomineral toxicity. Results showed that EPS does protect against mineral toxicity, and toxicity increases as amorphous SiO2 < β-TiO2 (anatase) < γ-Al2O3. A commonly accepted mechanism for Biomineralization is protein-templated nucleation. We used Molecular Dynamics and Bioinformatics computational chemistry approaches and showed that the random coil structure of a specific peptide promotes formation of an amorphous Ca-PO4 cluster, but not direct templation of hydroxyapatite. The consistency

  12. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  13. A general theory of impacts and mass extinctions, and the consequences of large-body impact on the Earth

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1994-01-01

    The theory that large-body impacts are the primary cause of mass extinctions of life on the Earth now has a sound theoretical and observational foundation. A convergence of evidence suggests that the biosphere may be a sensitive detector of large impact events, which result in the recorded global mass extinction pulses. The astronomically observed flux of asteroids and comets in the neighborhood of the Earth, and the threshold impact size calculated to produce a global environment catastrophe, can be used to predict a time history of large impact events and related mass extinctions of life that agrees well with the record of approx. 24 extinction events in the last 540 m.y.

  14. Concerning the use of multifunctional photometer - polarimeter for studying the invasion of cosmic bodies into the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Geraimchuk, M. D.; Vidmachenko, A. P.; Nevodovskyi, P. V.; Steklov, O. F.

    2018-05-01

    Main astronomical observatory of the National Academy of Sciences of Ukraine together with the National Technical University of Ukraine "KPI" for many years working on the development of photometers-polarimeters for the study of cosmic bodies and Earth's atmosphere. We proposed an option of the development of a multipurpose panoramic photometer-polarimeter, which takes into account the shortcomings of the previous versions of the instrument and also allows for the registration of tracks of bolides, and study of their tails, and weak meteor phenomena.

  15. Wakes and differential charging of large bodies in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1985-01-01

    Highlights of earlier results using the Inside-Out WAKE code on wake structures of LEO spacecraft are reviewed. For conducting bodies of radius large compared with the Debye length, a high Mach number wake develops a negative potential well. Quasineutrality is violated in the very near wake region, and the wake is relatively empty for a distance downstream of about one half of a Mach number of radii. There is also a suggestion of a core of high density along the axis. A comparison of rigorous numerical solutions with in situ wake data from the AE-C satellite suggests that the so called neutral approximation for ions (straight line trajectories, independent of fields) may be a reasonable approximation except near the center of the near wake. This approximation is adopted for very large bodies. Work concerned with the wake point potential of very large nonconducting bodies such as the shuttle orbiter is described. Using a cylindrical model for bodies of this size or larger in LEO (body radius up to 10 to the 5th power Debye lengths), approximate solutions are presented based on the neutral approximation (but with rigorous trajectory calculations for surface current balance). There is a negative potential well if the body is conducting, and no well if the body is nonconducting. In the latter case the wake surface itself becomes highly negative. The wake point potential is governed by the ion drift energy.

  16. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    NASA Astrophysics Data System (ADS)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  17. Tides at the east coast of Lanzarote Island

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Vélez, E. J.

    2012-04-01

    The main goal of this work is the study of the ocean tides at the east coast of Lanzarote (Canary Islands). We have analyzed time series of tide gauge and bottom pressure observations available in the region and we have made a further comparative validation with recent global and local ocean tide models. Lanzarote island shows singular features, with regard its volcanic structure and geomorphological properties and, also, concerning the characteristics of the ocean tides in the surrounding waters. For this reason, this region experiences a great interest in Geodesy and Geodynamics. Particularly, an accurate modelization of the ocean tides is of great importance to correct with high accuracy the effect of the ocean over the multiple geodetic measurements that are being carried out in the Geodynamic Laboratory of Lanzarote, LGL (Vieira et al., 1991; 2006). Furthermore, the analysis of tide gauge and bottom pressure records in this area is of great importance to investigate sea level variations, to evaluate and quantify the causes of these changes and the possible correlation with vertical movements of the Earth's crust. The time series of sea level and bottom pressure data considered in this work are obtained at two different locations of the island and, in each of them, using several sensors at different periods of time. First location is Jameos del Agua (JA) station, which belongs to the LGL. This station is placed in the open ocean, 200 meters distant from the northeastern coast of the island and at 8 meters depth. The observations have been carried out using 3 bottom pressure sensors (Aanderaa WLR7, SAIV TD301A and Aqualogger 210PT) at different periods of time (spanning a total of six years). Second location is Arrecife (AR) station, which is 23 km south of JA station. In this case, the sea level data come from a float tide gauge belonging to the Instituto Español de Oceanografía, installed at the beginning of the loading bay, and a radar tide gauge from the

  18. Motor imagery of body movements that can't be executed on Earth.

    PubMed

    Kalicinski, Michael; Bock, Otmar; Schott, Nadja

    2017-01-01

    Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. A quick, simple and inexpensive alternative could be training by motor imagery (MI). An important prerequisite for this training approach is that humans are able to imagine movements which are unfamiliar, since they can't be performed in the presence of gravity. Our study addresses this prerequisite. 68 young subjects completed a modified version of the CMI test (Schott, 2013). With eyes closed, subjects were asked to imagine moving their body according to six consecutive verbal instructions. After the sixth instruction, subjects opened their eyes and arranged the segments of a manikin into the assumed final body configuration. In a first condition, subjects received instructions only for moving individual body segments (CMIground). In a second condition, subjects received instructions for moving body segments or their full body (CMIfloat). After each condition, subjects were asked to rate their subjective visual and kinesthetic vividness of MI. Condition differences emerged for the CMI scores and for the duration of correct trials with better performance in the CMIground condition. Condition differences were also represented for the subjective MI performance. Motor imagery is possible but degraded when subjects are asked to imagine body movements while floating. This confirms that preflight training of MI while floating might be beneficial for astronauts' mission performance.

  19. Near-Earth-Object identification over apparitions using n-body ranging

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Muinonen, Karri

    2007-05-01

    Earth-based telescopes can observe Near-Earth objects (NEOs) continuously for a few weeks or months during each apparition. Due to the usually complicated dynamics of the Sun-Earth-NEO triplet, the time interval between consecutive apparitions typically ranges from months to several years. On these timescales single-apparition sets of observations (SASs) having reasonably small observational time-intervals lead to substantial orbital uncertainties. The linking of SASs over apparitions thus becomes a nontrivial task. Of a total of roughly 4,100 NEO observation sets, or orbits, currently known, some 500 are SASs for which the observational time interval is less than 7 days. Either these SASs have not been observed at an apparition following the discovery apparition (some 40% of the above NEO SASs have been obtained in 2005 or later), or the linkage of SASs has failed, an option which should preferably be eliminated. As a continuation to our work on the short-arc linking problem at the discovery moment (Granvik and Muinonen, 2005, Icarus 179, p. 109), we have investigated the possibility of using a similar method for the linking of SASs over apparitions. Assuming that the observational time-interval for SASs of NEOs is typically at least one day (minimum requirement set by the Minor Planet Center), the orbital-element probability density function is constrained as compared to the typical short-arc case with an observational time interval of only a few tens of minutes. Because of the smaller orbital-element uncertainty, we can use the short-arc method (comparison in ephemeris space) for longer time spans, or even do the comparison directly in orbital-element space (Keplerian, equinoctial, etc.), thus allowing us to assess the problem of linking SASs of NEOs. We will present linking results by using both simulated and real NEO SASs.

  20. Equatorial sandhoppers use body scans to detect the earth's magnetic field.

    PubMed

    Ugolini, A

    2006-01-01

    Adults of Talorchestia martensii were individually released in a confined environment, with and without the natural magnetic field, under the sun and in a dark room. The sandhoppers scanned the horizontal component of the magnetic field by left and right oscillations of the entire major body axis. The frequency of this behaviour increased in a zeroed magnetic field, as did the frequencies of other behavioural indicators that reflect the difficulty in identifying the ecologically efficient orientation direction (sea-land axis). Therefore, like head scans in birds, body scans seem to be used by equatorial sandhoppers to detect the magnetic symmetry plane.

  1. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  2. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (approx about 5 million km or 37 lunar distances). Human Exploration Considerations: These missions would be the first human expeditions to inter-planetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the

  3. A high-fidelity N-body ephemeris generator for satellites in Earth orbit

    NASA Astrophysics Data System (ADS)

    Simmons, David R.

    1991-10-01

    A program is currently used for mission planning called the Analytic Satellite Ephemeris Program (ASEP), which produces projected data for orbits that remain fairly close to Earth. Lunar and solar perturbations are taken into account in another program called GRAVE. This project is a revision of GRAVE which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structured programming techniques to make the program more understandable and reliable. The computer program ORBIT was tested against tracking data for the first 313 days of operation of the CRRES satellite. A sample graph is given comparing the semi-major axis calculated by the program with the values supplied by NORAD. When calculated for points at which CRRES passes through the ascending node, the argument of perigee, the right ascension of the ascending node, and the mean anomaly all stay within about a degree of the corresponding values from NORAD; the inclination of the orbital plane is much closer. The program value of the eccentricity is in error by no more than 0.0002.

  4. Possible forcing of global temperature by the oceanic tides

    PubMed Central

    Keeling, Charles D.; Whorf, Timothy P.

    1997-01-01

    An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740

  5. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  6. Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Folgueira, M.; Souchay, J.

    2005-03-01

    The purpose of this paper is to show how to solve in Hamiltonian formalism the equations of the polar motion of any arbitrarily shaped elastic celestial body, i.e. the motion of its rotation axis (or angular momentum) with respect to its figure axis. With this aim, we deduce from canonical equations related to the rotational Hamiltonian of the body, the analytical solution for its free polar motion which depends both on the elasticity and on its moments of inertia. In particular, we study the influence of the phase angle δ, responsible for the dissipation, on the damping of the polar motion. In order to validate our analytical equations, we show that, to first order, they are in complete agreement with those obtained from the classical Liouville equations. Then we adapt our calculations to the real data obtained from the polar motion of the Earth (polhody). For that purpose, we characterize precisely the differences in radius J-χ and in angle l-θ between the polar coordinates (χ,θ) and (J,l) representing respectively the motion of the axis of rotation of the Earth and the motion of its angular momentum axis, with respect to an Earth-fixed reference frame, after showing the influence of the choice of the origin on these coordinates, and on the determination of the Chandler period as well. Then we show that the phase lag δ responsible for the damping for the selected time interval, between Feb. 1982 and Apr. 1990, might be of the order of δ ≈ 6 °, according to a numerical integration starting from our analytical equations. Moreover, we emphasize the presence in our calculations for both χ and θ, of an oscillation with a period TChandler/2, due to the triaxial shape of our planet, and generally not taken into account. In a last step, we apply our analytical formulation to the polar motion of Mars, thus showing the high dependence of its damping on the poorly known value of its Love number k. Moreover we emphasize the large oscillations of Mars' polar

  7. Comparison of Organ Dosimetry for Astronaut Phantoms: Earth-Based vs. Microgravity-Based Anthropometry and Body Positioning

    NASA Technical Reports Server (NTRS)

    VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward

    2011-01-01

    The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models

  8. Numerical Modelling of Tertiary Tides

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen

    2018-06-01

    Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary tides" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary tides are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.

  9. Migrating diurnal tide variability induced by propagating planetary waves

    NASA Astrophysics Data System (ADS)

    Chang, Loren C.

    The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on

  10. Public perceptions of Florida red tide risks.

    PubMed

    Kuhar, Sara E; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A

    2009-07-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals' responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides.

  11. Public Perceptions of Florida Red Tide Risks

    PubMed Central

    Kuhar, Sara E.; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A.

    2009-01-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals’ responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides. PMID:19392675

  12. Tides and Trends in Higher Education.

    ERIC Educational Resources Information Center

    Fincher, Cameron

    This paper examines changes in American higher education, using the metaphor of ocean tides. The tides of change in the 1980s included public demands for assessment and accountability; fairness and credibility in advantages and benefits; improved quality of education; effectiveness and efficiency; assurance that college graduates were personally…

  13. Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress

    NASA Astrophysics Data System (ADS)

    Minami, Takuto

    2017-09-01

    Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean tides. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean tides attracted interest when the Swarm satellite constellation enabled researchers to monitor tide-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean tides have proved useful for sounding Earth's deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean tides during the last decade.

  14. A unified model of bedforms in water, Earth and other planetary bodies

    NASA Astrophysics Data System (ADS)

    Duran Vinent, O.; Claudin, P.; Winter, C.; Andreotti, B.

    2017-12-01

    The emergence of bedforms as result of the coupling between a fluid flow and sediment transport is a remarkable example of self-organized natural patterns. Subaqueous bedforms generated by unidirectional water flows, like ripples, dunes or compound bedforms, have been shown to depend on grain size, water depth and flow velocity. However, this variety of morphologies, empirically classified according to their size, is still not understood in terms of mechanical and hydrodynamical mechanisms. We present a process-based model that simultaneously explain the scaling of bedforms for Water, Air, Mars and Venus, and can be potentially applied to other planetary bodies such as Titan or Pluto. The model couples hydrodynamics over a modulated bed to sediment transport and relaxation laws, and resolves pattern coarsening from initial to mature bedforms. We find two fundamental types of bedforms, called `laminar' and `turbulent' and analogous to water ripples and dunes, and the conditions leading to their formation. By relating morphology to hydrodynamic and sediment transport details, our model opens the way to extract hydrodynamic information from the stratigraphy record and shed a light to past and current planetary conditions.

  15. Core formation in the shergottite parent body and comparison with the earth

    SciT

    Treiman, A.H.; Jones, J.H.; Drake, M.J.

    1987-03-30

    The mantle of the shergottite parent body (SPB) is depleted relative to the bulk SPB in siderophile and chalcophile elements; these elements are inferred to reside in the SPB's core. Our chemical model of these depletions rests on a physically plausible process of segregation of partially molten metal form partially molten silicates as the SPB grows and is heated above silicate and metallic solidi during accretion. Metallic and silicate phases equilibrate at low pressures as new material is accreted to the SPB surface. Later movement of the metallic phases to the planet's center is so rapid that high-pressure equilibration ismore » insignificant. Partitioning of siderophile and chalcophile elements among solid and liquid metal and silicate determines their abundances in the SPB mantle. Using partition coefficients and the SPB mantle composition determined in earlier studies, we model the abundances of Ag, Au, Co, Ga, Mo, Ni, P, Re, S, and W with free parameters being oxygen fugacity, proportion of solid metal formed, proportion of metallic liquid formed, and proportion of silicate that is molten.« less

  16. Future Change to Tide-Influenced Deltas

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Hoitink, A. J. F. (Ton); Törnqvist, Torbjörn E.

    2018-04-01

    Tides tend to widen deltaic channels and shape delta morphology. Here we present a predictive approach to assess a priori the effect of fluvial discharge and tides on deltaic channels. We show that downstream channel widening can be quantified by the ratio of the tide-driven discharge and the fluvial discharge, along with a second metric representing flow velocities. A test of our new theory on a selection of 72 deltas globally shows good correspondence to a wide range of environments, including wave-dominated deltas, river-dominated deltas, and alluvial estuaries. By quantitatively relating tides and fluvial discharge to delta morphology, we offer a first-order prediction of deltaic change that may be expected from altered delta hydrology. For example, we expect that reduced fluvial discharge in response to dam construction will lead to increased tidal intrusion followed by enhanced tide-driven sediment import into deltas, with implications for navigation and other human needs.

  17. The Art of Red Tide Science

    PubMed Central

    Hall, Emily R.; Nierenberg, Kate; Boyes, Anamari J.; Heil, Cynthia A.; Flewelling, Leanne J.; Kirkpatrick, Barbara

    2012-01-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined “The Art of Red Tide Science,” consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues. PMID:22712002

  18. The Art of Red Tide Science.

    PubMed

    Hall, Emily R; Nierenberg, Kate; Boyes, Anamari J; Heil, Cynthia A; Flewelling, Leanne J; Kirkpatrick, Barbara

    2012-05-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined "The Art of Red Tide Science," consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues.

  19. Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return

    NASA Astrophysics Data System (ADS)

    Johnson, Joshua E.

    A differential evolutionary algorithm has been executed to optimize the hypersonic aerodynamic and stagnation-point heat transfer performance of Earth entry heat shields for Lunar and Mars return manned missions with entry velocities of 11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield geometry is composed of an axial profile tailored to fit a base cross section. Axial profiles consist of spherical segments, spherically blunted cones, and power laws. Heat shield cross sections include oblate and prolate ellipses, rounded-edge parallelograms, and blendings of the two. Aerothermodynamic models are based on modified Newtonian impact theory with semi-empirical correlations for convection and radiation. Multi-objective function optimization is performed to determine optimal trade-offs between performance parameters. Objective functions consist of minimizing heat load and heat flux and maximizing down range and cross range. Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross range increases by ˜20% with an increase in entry velocity from 11 to 12.5 km/s. Optimal configurations for all three lift-to-drag ratios produce down ranges up to approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass and L/D = 0.27, the current Orion configuration is projected to experience a heat load of approximately 68 kJ/cm2 for Mars return flight conditions. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate cross section with an

  20. Pole tide triggering of seismicity

    NASA Astrophysics Data System (ADS)

    Gorshkov, V.

    2015-08-01

    The influence of the pole tide (PT) on intensity of seismic process is searched on base of Harvard Centroid-moment tensors catalogue (CMT). The normal and shear stresses excited by PT were calculated for each earthquake (EQ) from CMT (32.3 thousands of EQ events after for- and aftershock declustering). There was revealed that there are two maxima of PT influence on weak (less 5.5 magnitudes) thrust-slip EQ near the both extrema (min and max) of shear stress. This influence has 95 % level of statistical significance by Schuster and χ^2 criteria and could explain the 0.6-year periodicity in seismic intensity spectrum. The PT influence on seismicity becomes negligible when PT variations decrease up to 100~mas. This could explain 6-7 years periodicity in seismic intensity spectrum.

  1. Thermal tides in the dusty martian atmosphere: a verification of theory.

    PubMed

    Zurek, R W; Leovy, C B

    1981-07-24

    Major features of the daily surface pressure oscillations observed by the Viking landers during the two great dust storms on Mars in 1977 can be explained in terms of the classical atmospheric tidal theory developed for the earth's atmosphere. The most dramatic exception is the virtual disappearance of only the diurnal tide at Viking Lander 1 just before the second storm. This disappearance is attributed to destructive interference between the usually westward-traveling tide and an eastward-traveling diurnal Kelvin mode generated by orographically induced differential heating. The continuing Viking Lander 1 pressure measurements can be used with the model to monitor future great dust storms.

  2. Florida Red Tide Perception: Residents versus Tourists

    PubMed Central

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Tanga, Elvira; Dalpra, Dana R.; Kirkpatrick, Barbara

    2010-01-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide. PMID:20824108

  3. Florida Red Tide Perception: Residents versus Tourists.

    PubMed

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Tanga, Elvira; Dalpra, Dana R; Kirkpatrick, Barbara

    2010-09-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.

  4. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tracking of LAGEOS for polar motion and Earth rotation studies and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination continues. The BE-C and Starlette satellites were tracked for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics.

  5. Ocean tides from Seasat-A

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.; Munk, W. H.; Zetler, B. D.

    1974-01-01

    Two procedures for the evaluation of global tides from SEASAT-A altimetry data are elaborated: an empirical method leading to the response functions for a grid of about 500 points from which the tide can be predicted for any point in the oceans, and a dynamic method which consists of iteratively modifying the parameters in a numerical solution to Laplace tide equations. It is assumed that the shape of the received altimeter signal can be interpreted for sea state and that orbit calculations are available so that absolute sea levels can be obtained.

  6. Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data

    NASA Technical Reports Server (NTRS)

    Zaron, Edward D.; Ray, Richard D.

    2017-01-01

    Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.

  7. Polar Motion Constraints on Models of the Fortnightly Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2002-01-01

    Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by

  8. Galileo and Descartes on Copernicanism and the cause of the tides.

    PubMed

    Schmaltz, Tad M

    2015-06-01

    Galileo and Descartes were on the front lines of the defense of Copernicanism against theological objections that took on special importance during the seventeenth century. Galileo attempted to overcome opposition to Copernicanism within the Catholic Church by offering a demonstration of this theory that appeals to the fact that the double motion of the earth is necessary as a cause of the tides. It turns out, however, that the details of Galileo's tidal theory compromise his demonstration. Far from attempting to provide a demonstration of the earth's motion, Descartes ultimately argued that his system is compatible with the determination of the Church that the earth is at rest. Nonetheless, Descartes's account of the cause of the tides creates difficulty for this argument. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Tides--A Neglected Topic.

    ERIC Educational Resources Information Center

    Hartel, Hermann

    2000-01-01

    Finds that computer simulations can be used to visualize the processes involved with lunar tides. Technology adds value, thus opening new paths for a more distinct analysis and increased learning results. (Author/CCM)

  10. Using smartphones for monitoring atmospheric tides

    NASA Astrophysics Data System (ADS)

    Price, Colin; Maor, Ron; Shachaf, Hofit

    2018-09-01

    By 2020 there will be more than 6 billion smartphones around the globe, carried by the public. These smartphones are equipped with sensitive sensors that can be used to monitor our environment (temperature, pressure, humidity, magnetic field, etc.) In this paper we use the pressure sensor (barometer) within smartphones to study atmospheric tides. These tides are produced by the absorption of solar radiation by water vapor in the troposphere, and by ozone in the stratosphere. The strongest tides are the semi-diurnal tides (period of 12 h) with maximum pressure at 9am/9pm and minimum pressure at 3am/3pm. Given the proliferation of smartphones around the globe, this source of environmental data may become extremely useful for scientific research in the near future.

  11. Investigations in Marine Chemistry: Tide Pool Ecology.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Students investigated the salinity of tide pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)

  12. Eddy Resolving Global Ocean Prediction including Tides

    DTIC Science & Technology

    2013-09-30

    atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that

  13. Internal Tide Generation by Steep Topography

    DTIC Science & Technology

    2007-09-01

    acting on the barotropic tide ( Foda and Hill 1998) was incomplete. Kunze will put this work in the context of recent internal tide research and...Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320-327. Foda , M.A., and D.F. Hill, 1998: Nonlinear energy...Bispectral analysis of energy transfer within the two-dimensional ocean internal wave field. . Phys. Oceanogr., 35, 2104-2109. Garrett, C., and E

  14. Mapping hurricane rita inland storm tide

    Berenbrock, C.; Mason, R.R.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  15. Mapping Hurricane Rita inland storm tide

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  16. Simultaneous generation and scattering of internal tides by ocean floor topography

    NASA Astrophysics Data System (ADS)

    Mathur, Manikandan

    2015-11-01

    Internal waves play a significant role in the global energy budget of the ocean, with internal tides potentially contributing to the conversion of a large amount of mechanical energy into heat in the deep ocean. Several studies in the past decade have investigated internal tide generation and internal tide scattering by ocean floor topography, but by treating them as two separate, independent processes. In this talk, we use the recently developed Green function model (Mathur et al., J. Geophys. Res. Oceans, 119, 2165-2182, 2014), sans the WKB approximation, to quantify the extent to which internal tide generation (scattering) that results from barotropic (baroclinic) forcing on small- and large-scale topography in uniform and nonuniform stratifications is modified by the presence of a background baroclinic (barotropic) tide. Results on idealized topography, stratification and forcing will first be presented, followed by a discussion on the relevance of our studies in the real ocean scenario. The author thanks the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.

  17. A study of the influence of the sun on optimal two-impulse Earth-to-Moon trajectories with moderate time of flight in the three-body and four-body models

    NASA Astrophysics Data System (ADS)

    Filho, Luiz Arthur Gagg; da Silva Fernandes, Sandro

    2017-05-01

    In this work, a study about the influence of the Sun on optimal two-impulse Earth-to-Moon trajectories for interior transfers with moderate time of flight is presented considering the three-body and the four-body models. The optimization criterion is the total characteristic velocity which represents the fuel consumption of an infinite thrust propulsion system. The optimization problem has been formulated using the classic planar circular restricted three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP), and, it consists of transferring a spacecraft from a circular low Earth orbit (LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption. The Sequential Gradient Restoration Algorithm (SGRA) is applied to determine the optimal solutions. Numerical results are presented for several final altitudes of a clockwise or a counterclockwise circular low Moon orbit considering a specified altitude of a counterclockwise circular low Earth orbit. Two types of analysis are performed: in the first one, the initial position of the Sun is taken as a parameter and the major parameters describing the optimal trajectories are obtained by solving an optimization problem of one degree of freedom. In the second analysis, an optimization problem with two degrees of freedom is considered and the initial position of the Sun is taken as an additional unknown.

  18. Excitation mechanism of non-migrating tides

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki

    2017-04-01

    Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.

  19. Tides and tidal stress: Applications to Europa

    NASA Astrophysics Data System (ADS)

    Hurford, Terry Anthony, Jr.

    A review of analytical techniques and documentation of previously inaccessible mathematical formulations is applied to study of Jupiter's satellite Europa. Compared with numerical codes that are commonly used to model global tidal effects, analytical models of tidal deformation give deeper insight into the mechanics of tides, and can better reveal the nature of the dependence of observable effects on key parameters. I develop analytical models for tidal deformation of multi-layered bodies. Previous studies of Europa, based on numerical computation, only to show isolated examples from parameter space. My results show a systematic dependence of tidal response on the thicknesses and material parameters of Europa's core, rocky mantle, liquid water ocean, and outer layer of ice. As in the earlier work, I restrict these studies to incompressible materials. Any set of Love numbers h 2 and k 2 which describe a planet's tidal deformation, could be fit by a range of ice thickness values, by adjusting other parameters such as mantle rigidity or core size, an important result for mission planning. Inclusion of compression into multilayer models has been addressed analytically, uncovering several issues that are not explicit in the literature. Full evaluation with compression is here restricted to a uniform sphere. A set of singularities in the classical solution, which correspond to instabilities due to self-gravity has been identified and mapped in parameter space. The analytical models of tidal response yield the stresses anywhere within the body, including on its surface. Crack patterns (such as cycloids) on Europa are probably controlled by these stresses. However, in contrast to previous studies which used a thin shell approximation of the tidal stress, I consider how other tidal models compare with the observed tectonic features. In this way the relationship between Europa's surface tectonics and the global tidal distortion can be constrained. While large-scale tidal

  20. Landslide movement in southwest Colorado triggered by atmospheric tides

    Schulz, W.H.; Kean, J.W.; Wang, G.

    2009-01-01

    Landslides are among the most hazardous of geological processes, causing thousands of casualties and damage on the order of billions of dollars annually. The movement of most landslides occurs along a discrete shear surface, and is triggered by a reduction in the frictional strength of the surface. Infiltration of water into the landslide from rainfall and snowmelt and ground motion from earthquakes are generally implicated in lowering the frictional strength of this surface. However, solid-Earth and ocean tides have recently been shown to trigger shear sliding in other processes, such as earthquakes and glacial motion. Here we use observations and numerical modelling to show that a similar processatmospheric tidescan trigger movement in an ongoing landslide. The Slumgullion landslide, located in the SanJuan Mountains of Colorado, shows daily movement, primarily during diurnal low tides of the atmosphere. According to our model, the tidal changes in air pressure cause air and water in the sediment pores to flow vertically, altering the frictional stress of the shear surface; upward fluid flow during periods of atmospheric low pressure is most conducive to sliding. We suggest that tidally modulated changes in shear strength may also affect the stability of other landslides, and that the rapid pressure variations associated with some fast-moving storm systems could trigger a similar response. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  1. The Global S$_1$ Ocean Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.

    2003-01-01

    The small S$_1$ ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide. The global character of $S-1$ is here determined by numerical modeling and by analysis of Topex/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results, and large ( $ greater than $l\\cm) amplitudes in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S$-1$ and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S$-1$ Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. While gravitational diurnal tidal forces excite primarily a 28-hour Antarctic-Pacific mode, the S$_1$ air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

  2. Internal tides in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Lionel, Tchilibou Michel; Gourdeau, Lionel; Djath, Bugshin; Lyard, Florent; Allain, Damien; Koch Larrouy, Ariane; Yoga Nogroho, Dwi; Morrow, Rosemary

    2017-04-01

    In the south west Pacific, the Solomon Sea lies on the pathway of the Low Latitudes Western Boundary Currents (LLWBCs) that connect the subtropics to the equator. The Solomon Sea have a particular interest in a climatic context, since they are a critical pathway for ENSO and its low frequency modulation. The western Pacific is a place of energetic internal tides generated over its complex bottom topographic features. In the Indonesian Archipelago, they are particularly active in defining the properties of the waters that move from the Pacific to the Indian Ocean. The salinity maximum at the thermocline level, which is characteristic of the South Pacific Tropical Waters (SPTW) flowing within the LLWBCs and feeding the Equatorial UnderCurrent, is largely eroded within the Solomon Sea. Different mechanisms could explain such salt erosion including current/bathymetry interactions, internal tides, and eddy activity. The motivation of this study is to investigate the potential role of internal tides for such water mass transformation. Results from a 1/36° resolution regional model including explicit tides are presented. As a first step, the generation and propagation of internal tides in the Solomon Sea are determined, and the conversion rate from barotropic to baroclinic energy is estimated.

  3. Quantifying the Influence of Waves and Tides in Shaping Delta Morphologies with the Use of Numerical Modelling.

    NASA Astrophysics Data System (ADS)

    Adam, A.; Avdis, A.; Allison, P. A.

    2016-12-01

    Deltas form at river mouths with a geomorphology that is controlled by the energy level of the river and the water body into which it is flowing and sedimentation rate. Modern deltas are often areas of high productivity and thus important fisheries and diversity hotspots and also home to millions of people. Geologically ancient deltas are important hydrocarbon prospects that can include both source rocks and reservoirs. Deltas around the world show considerable variability in their geomorphology,but can be geomorphologically classified based on the dominant physical processes controlling sedimentation (wave, fluvial and tidal). There is clear value in being able to determine the relative importance of these processes on geologically ancient deltas, as this information can inform hydrocarbon exploitation strategies. The interaction of these processes, however, is complex and/or temporal and spatially variable. One approach is the use of numerical modelling. Earth system models are now used to study the Earth's climate, either to reconstruct the past and understand the forces that shaped Earth, or to predict the future. Atmospheric and oceanic models are used in conjunction to calculate the propagation and evolution of winds, waves and tides over long periods of time. Using this information to study the coastal geophysical processes can be very useful, since both the temporal variabilities and temporal ranges of the dominant forces can be accounted for.Herein we outline a research strategy and initial results that quantify the wave and tidal influences on some of the largest deltas and study their relative impact on delta morphologies. First an ocean circulation model (Fluidity) and a spectral wave model (SWAN) are used to simulate the waves and tides in modern Earth, globally. The results are then validated against measurements and the tidal- and wave- induced bed shear stresses are calculated for a wide range of deltas. The utility of numerical modelling as a

  4. A survey of the theory of the Earth's rotation

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1981-01-01

    The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.

  5. Earth and ocean physics. [results of ERTS-1 imagery for determining earth gravity and tectonic conditions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for obtaining a parameterization of the marine geoid for suitable orthogonality properties in altimetry data is discussed. The application of the technique to the Puerto Rico trench is explained and a map of the data is developed. The Goddard Earth Model (GEM-6) is described to show the method for determining the earth gravity field using data obtained from satellite tracking stations. The derivation of a global ocean tide model from satellite data is explained. The influence of solid earth and ocean tides on the inclination of GEOS-1 is plotted. The delineation of the geographical fracture pattern and boundary system of the tectonic plates using ERTS satellite is shown.

  6. Palaeoclimate: ocean tides and Heinrich events.

    PubMed

    Arbic, Brian K; Macayeal, Douglas R; Mitrovica, Jerry X; Milne, Glenn A

    2004-11-25

    Climate varied enormously over the most recent ice age--for example, large pulses of ice-rafted debris, originating mainly from the Labrador Sea, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.

  7. COST Action ES1401 TIDES: a European network on TIme DEpendent Seismology

    NASA Astrophysics Data System (ADS)

    Morelli, Andrea

    2016-04-01

    Using the full-length records of seismic events and background ambient noise, today seismology is going beyond still-life snapshots of the interior of the Earth, and look into time-dependent changes of its properties. Data availability has grown dramatically with the expansion of seismographic networks and data centers, so as to enable much more detailed and accurate analyses. COST Action ES1401 TIDES (TIme DEpendent Seismology; http://tides-cost.eu) aims at structuring the EU seismological community to enable development of data-intensive, time-dependent techniques for monitoring Earth active processes (e.g., earthquakes, volcanic eruptions, landslides, glacial earthquakes) as well as oil/gas reservoirs. The main structure of TIDES is organised around working groups on: Workflow integration of data and computing resources; Seismic interferometry and ambient noise; Forward problems and High-performance computing applications; Seismic tomography, full waveform inversion and uncertainties; Applications in the natural environment and industry. TIDES is an open network of European laboratories with complementary skills, and is organising a series of events - workshops and advanced training schools - as well as supporting short-duration scientific stays. The first advanced training school was held in Bertinoro (Italy) on June 2015, with attendance of about 100 participants from 20 European countries, was devoted to how to manage and model seismic data with modern tools. The next school, devoted to ambient noise, will be held in 2016 Portugal: the program will be announced at the time of this conference. TIDES will strengthen Europe's role in a critical field for natural hazards and natural resource management.

  8. A Model for Teaching the Dynamical Theory of Tides.

    ERIC Educational Resources Information Center

    Railsback, L. Bruce

    1991-01-01

    The dynamical theory of tides is often neglected in teaching oceanography because students have difficulty in visualizing the movements of the tides across the glove. A schematic diagram portraying amphidromic systems as mechanical gears helps overcome these problems. (Author)

  9. Time variations in the Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Eanes, R. J.

    1992-01-01

    At the present time, the causes and consequences of changes in the Earth's gravity field due to geophysical and meteorological phenomena are not well understood. The Earth's gravity field represents the complicated distribution of all of the matter that makes up our planet. Its variations are caused by the motions of the solid Earth interacting with the gravitational attraction of the Sun and the Moon (tides) and with the Earth's atmosphere, oceans, polar ice caps and groundwater due to changing weather patterns. These variations influence the rotation of the Earth, alter the orbits of Earth satellites, cause sea level fluctuations, and indirectly affect the global climate pattern.

  10. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  11. Human Expeditions to Near-Earth Asteroids: An Update on NASA's Status and Proposed Activities for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Reeves, David; Drake, Bret; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth- Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a NEA using NASA s proposed exploration systems a compelling endeavor.

  12. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  13. New Miscellaneous Results in Tides from Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G.; Cartwright, D.; Smith, David E. (Technical Monitor)

    2000-01-01

    This paper describes a variety of new results concerning ocean tides that have been derived from Topex/Poseidon satellite altimeter data. Most of these results are based on new tidal solutions employing nearly 8 years of data. The topics covered include internal tides and long-period tides.

  14. Using Tide Data in Introductory Classes

    ERIC Educational Resources Information Center

    De Jong, Marvin L.

    2006-01-01

    Oceantides are not typically high in our consciousness here in Missouri, but in teaching astronomy and physical science the subject always comes up, and teachers of physical science and astronomy are all quite familiar with the textbook explanations. Our goal here is not to explain tides but to make some suggestions about how, on their own,…

  15. In Brief: Red tide Web site

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    The U.S. National Oceanic and Atmospheric Administration has established the NOAA New England Red Tide Information Center to help people understand the significant red tides that are predicted to form there later this spring. The site (http://www.oceanservice.noaa.gov/redtide) will provide a summary of the current red tide situation and its potential harmful impacts on humans and animals and will serve as a central repository of information. The site also will have direct links to news releases, changes to relevant federal fishing regulations, links to closures of shellfish waters, and links to state agency Web sites with localized information. In addition, the site will have information about NOAA's scientific response effort as well as information from several other sources including NOAA's major response partner, the Woods Hole Oceanographic Institution (WHOI). On 24 April, WHOI scientists, using forecast models developed with NOAA funding support, predicted ``that excess winter precipitation has set the stage for a harmful algal bloom similar to the historic red tide of 2005.'' That bloom shut down shellfish beds from the Bay of Fundy to Martha's Vineyard for several months.

  16. Semidiurnal thermal tides in asynchronously rotating hot Jupiters

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Leconte, J.

    2018-05-01

    Context. Thermal tides can torque the atmosphere of hot Jupiters into asynchronous rotation, while these planets are usually assumed to be locked into spin-orbit synchronization with their host star. Aims: In this work, our goal is to characterize the tidal response of a rotating hot Jupiter to the tidal semidiurnal thermal forcing of its host star by identifying the structure of tidal waves responsible for variation of mass distribution, their dependence on the tidal frequency, and their ability to generate strong zonal flows. Methods: We develop an ab initio global modelling that generalizes the early approach of Arras & Socrates (2010, ApJ, 714, 1) to rotating and non-adiabatic planets. We analytically derive the torque exerted on the body and the associated timescales of evolution, as well as the equilibrium tidal response of the atmosphere in the zero-frequency limit. Finally, we numerically integrate the equations of thermal tides for three cases, including dissipation and rotation step by step. Results: The resonances associated with tidally generated gravito-inertial waves significantly amplify the resulting tidal torque in the range 1-30 days. This torque can globally drive the atmosphere into asynchronous rotation, as its sign depends on the tidal frequency. The resonant behaviour of the tidal response is enhanced by rotation, which couples the forcing to several Hough modes in the general case, while the radiative cooling tends to regularize it and diminish its amplitude.

  17. What Are the Earth and the Heavenly Bodies Like? A Study of Objectual Conceptions among Norwegian Deaf and Hearing Pupils.

    ERIC Educational Resources Information Center

    Roald, Ingvild; Mikalsen, Oyvind

    2000-01-01

    Addresses deaf pupils' conceptions of directly-observed phenomena of the earth and sky. Studies 7-, 9-, 11-, and 17-year-old deaf pupils and uses 9-year-old Norwegian pupils with normal hearing as the control group. Reports that the children's conceptions are scientifically accepted. Indicates that the shape of the sign representing an object may…

  18. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  19. New insights into ocean tide loading corrections on tidal gravity data in Canary Islands

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.

    2009-04-01

    The Canary Islands are an interesting area to investigate ocean tides loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean tide loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity tide measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and tide gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity tide observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity tide observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean tide loading corrections, based on the five global ocean tide models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body tide model (Dehant et al., 1999). The lowest values are found for inelastic model in the

  20. A tide prediction and tide height control system for laboratory mesocosms

    PubMed Central

    Long, Jeremy D.

    2015-01-01

    Experimental mesocosm studies of rocky shore and estuarine intertidal systems may benefit from the application of natural tide cycles to better replicate variation in immersion time, water depth, and attendant fluctuations in abiotic and edaphic conditions. Here we describe a stand-alone microcontroller tide prediction open-source software program, coupled with a mechanical tidal elevation control system, which allows continuous adjustment of aquarium water depths in synchrony with local tide cycles. We used this system to monitor the growth of Spartina foliosa marsh cordgrass and scale insect herbivores at three simulated shore elevations in laboratory mesocosms. Plant growth decreased with increasing shore elevation, while scale insect population growth on the plants was not strongly affected by immersion time. This system shows promise for a range of laboratory mesocosm studies where natural tide cycling could impact organism performance or behavior, while the tide prediction system could additionally be utilized in field experiments where treatments need to be applied at certain stages of the tide cycle. PMID:26623195

  1. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  2. Tides in the Black Sea: Observations and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Medvedev, Igor P.

    2018-05-01

    Longterm hourly data from 28 tide gauges were used to examine the main features of tides in the Black Sea. The tides in this basin are directly caused by tide-generating forces and the semidiurnal tides prevail over diurnal tides. Based on the Princeton Ocean Model (POM), a numerical model of tides in the Black Sea and adjacent Sea of Azov was developed and found to be in good agreement with tide gauge observations. Detailed tidal charts for amplitudes and phase lags of the major tidal harmonics in these two seas were constructed. The results of the numerical modelling and observations reveal for the semidiurnal tides the presence of an amphidromy with clockwise rotation and another one with counterclockwise rotation for the diurnal tides, both located in the central part of the sea near the Crimean Peninsula. Therefore, for this part of the sea the amplitudes of harmonics M 2 and K 1 are less than 0.1 cm. Relatively larger M 2 amplitudes are observed on the east and west coasts of the sea (2-3 cm). The maximum amplitude of the harmonic M 2 was found at Karkinit Bay—up to 4.5 cm—while the maximum tidal range varies from 1 cm near the Crimean Peninsula to 18-19 cm in the Dnieper-Bug Estuary and Karkinit Bay. Radiational tides, initiated mainly by sea breezes, make an important contribution to the formation of tidal oscillations in the Dnieper-Bug Estuary.

  3. Real-time control of optimal low-thrust transfer to the Sun-Earth L 1 halo orbit in the bicircular four-body problem

    NASA Astrophysics Data System (ADS)

    Salmani, Majid; Büskens, Christof

    2011-11-01

    In this article, after describing a procedure to construct trajectories for a spacecraft in the four-body model, a method to correct the trajectory violations is presented. To construct the trajectories, periodic orbits as the solutions of the three-body problem are used. On the other hand, the bicircular model based on the Sun-Earth rotating frame governs the dynamics of the spacecraft and other bodies. A periodic orbit around the first libration-point L1 is the destination of the mission which is one of the equilibrium points in the Sun-Earth/Moon three-body problem. In the way to reach such a far destination, there are a lot of disturbances such as solar radiation and winds that make the plans untrustworthy. However, the solar radiation pressure is considered in the system dynamics. To prevail over these difficulties, considering the whole transfer problem as an optimal control problem makes the designer to be able to correct the unavoidable violations from the pre-designed trajectory and strategies. The optimal control problem is solved by a direct method, transcribing it into a nonlinear programming problem. This transcription gives an unperturbed optimal trajectory and its sensitivities with respect perturbations. Modeling these perturbations as parameters embedded in a parametric optimal control problem, one can take advantage of the parametric sensitivity analysis of nonlinear programming problem to recalculate the optimal trajectory with a very smaller amount of computation costs. This is obtained by evaluating a first-order Taylor expansion of the perturbed solution in an iterative process which is aimed to achieve an admissible solution. At the end, the numerical results show the applicability of the presented method.

  4. Experimental investigation of the partitioning of phosphorus between metal and silicate phases - Implications for the earth, moon and eucrite parent body

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Drake, M. J.

    1983-01-01

    An experimental study is reported of the partitioning of Phosphorus between solid metal and basaltic silicate liquid as a function of temperature and oxygen fugacity and of the implications for the earth, moon and eucrite parent body (EPB). The relationship established between the partition coefficient and the fugacity is given at 1190 C by log D(P) = -1.12 log fO2 - 15.95 and by log D(P) = -1.53 log fO2 17.73 at 1300 C. The partition coefficient D(P) was determined, and it is found to be consistent with a valence state of 5 for P in the molten silicate. Using the determined coefficient the low P/La ratios of the earth, moon, and eucrites relative to C1 chondrites can be explained. The lowering of the P/La ratio in the eucrites relative to Cl chondrite by a factor of 40 can be explained by partitioning P into 20-25 wt% sulfur-bearing metallic liquid corresponding to 5-25% of the total metal plus silicate system. The low P/La and W/La ratios in the moon may be explained by the partitioning of P and W into metal during formation of a small core by separation of liquid metal from silicate at low degrees of partial melting of the silicates. These observations are consistent with independent formation of the moon and the earth.

  5. Using inquiry-based instruction with Web-based data archives to facilitate conceptual change about tides among preservice teachers

    NASA Astrophysics Data System (ADS)

    Ucar, Sedat

    The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual

  6. Tide-related seismic velocity changes across the English Channel

    NASA Astrophysics Data System (ADS)

    de Ridder, S.; Valova, V.; Curtis, A.

    2016-12-01

    Temporal changes in the seismic velocities in the Earth's subsurface are known to occur due to a range of phenomena including seasonal variations, magmatic activity, nonlinear healing after strong ground motion, and glacial loading and unloading. Our goal is to extend observations of small velocity changes towards shorter timescales. Earth tides caused by the gravitational attraction between the Earth and the Moon might affect seismic properties. If tidal velocity variations can be recovered from long range cross-correlations, and can also be coupled to stress-strain induced variations in the elastic properties, that would pave the way for systematic imaging of rheological properties of the upper crust. With this long-term goal, we studied data recorded between January 2010 and December 2015 by four broad-band instruments from the British Geological Survey network. One station is located in Cornwall, two in Devon, and one across the English Channel on the island of Jersey. Continuous seismic recordings of the vertical components of particle velocity were divided into one hour intervals, bandpass filtered between 0.02 and 0.11 Hz, spectrally whitened, and cross-correlated between station pairs. The resulting cross-correlations were stacked into bins corresponding to the average water levels observed at nearby ports resulting in cross-correlation traces as a function of water level, for each station pair. To detect temporal changes, a multi-window time-shift analysis is applied to these inter-station traces. We find a stretch factor that best translates one trace into another: this stretch is indicative of changes in average seismic velocities between the pair of tidal phases. We detected systematic seismic velocity variations as a function of water level. We find that increasing water level coincided with decreasing seismic velocities. Separating the data according to up- and down-going tidal tracts reveals that the observed velocity changes exhibit a time

  7. POET: Planetary Orbital Evolution due to Tides

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  8. Intraseasonal variability and tides in Makassar Strait

    NASA Astrophysics Data System (ADS)

    Susanto, R. Dwi; Gordon, Arnold L.; Sprintall, Janet; Herunadi, Bambang

    2000-05-01

    Intraseasonal variability and tides along the Makassar Strait, the major route of Indonesian throughflow, are investigated using spectral and time-frequency analyses which are applied to sea level, wind and mooring data. Semidiurnal and diurnal tides are dominant features, with higher (lower) semidiurnal (diurnal) energy in the north compared to the south. Sea levels and mooring data display intraseasonal variability which are probably a response to remotely forced Kelvin waves from the Indian Ocean through Lombok Strait and to Rossby waves from the Pacific Ocean. Sea levels in Tarakan and Balikpapan and Makassar mooring velocities reveal intraseasonal features with periods of 48-62 days associated with Rossby waves from the Sulawesi Sea. Kelvin wave features with periods of 67-100 days are seen in Bali (Lombok Strait), at the mooring sites and in Balikpapan, however, they are not seen in Tarakan, which implies that these waves diminish after passing through the Makassar Strait.

  9. Population dynamics of red tide dinoflagellates

    NASA Astrophysics Data System (ADS)

    Wyatt, Timothy; Zingone, Adriana

    2014-03-01

    Sea-surface discolorations due to high concentrations of phytoplankton are called red tides. Their ecological significance is a long standing puzzle, and they are sometimes considered pathological. Here we propose that many red tides, particularly but not exclusively those composed of certain autotrophic dinoflagellates, are presexual/sexual swarms, essential links in their complex life cycles. This view provides a rationale for the appearance of these organisms in thin surface layers, and helps explain their ephemeral nature. We suggest that further understanding of this phenomenon, and of phytoplankton ecology in general, would benefit from attention to the 'net reproductive value‧ (r) over the whole life cycle as well as to the division rate (μ) of the vegetative phase. It is argued that r is strategically adapted to seasonal cycles and long term environmental variability, while μ reflects tactical needs (timing) and constraints (grazers, parasites) on vegetative growth.

  10. Arctic Ocean Tides from GRACE Satellite Accelerations

    NASA Astrophysics Data System (ADS)

    Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.

    2010-12-01

    Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these tides directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar tides in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.

  11. Redistribution of Sr and rare earth elements in the matrices of CV3 carbonaceous chondrites during aqueous alteration in their parent body

    NASA Astrophysics Data System (ADS)

    Jogo, Kaori; Ito, Motoo; Nakamura, Tomoki; Kobayashi, Sachio; Lee, Jong Ik

    2018-03-01

    We measured the abundances of Sr and rare earth elements (REEs) in the matrices of five CV3 carbonaceous chondrites: Meteorite Hills (MET) 00430, MET 01070, La Paz ice field (LAP) 02206, Asuka (A) 881317 and Roberts Massif (RBT) 04143. In the MET 00430 and MET 01074 matrices, the Sr/CI and light REE (LREE, La-Nd)/CI ratios positively correlate with the amounts of Ca-rich secondary minerals, which formed during aqueous alteration in the CV3 chondrite parent body. In contrast, in the LAP 02206 and RBT 04143 matrices, although the Sr/CI ratios correlate with the amounts of Ca-rich secondary minerals, the LREE/CI ratios vary independently from the amounts of any secondary minerals. This suggests that the LREE/CI ratios in these matrices were produced prior to the parent body alteration, probably in the solar nebula. The LREE/CI ratios of the LAP 02206 and RBT 04143 matrices reveal the mixing process of matrix minerals prior to the accretion of the CV3 chondrite parent body. The mixing degrees of matrix minerals might be different between these two matrices. Because solid materials would be mixed over time according to the radial diffusion model of a turbulent disk, the matrix minerals consisting of LAP 02206 and RBT 04143 matrices might be incorporated into their parent body with different timing.

  12. Impact: an Integrated Approach (Space and Ground) for Monitoring the Threat of Earth Orbit Corssing Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Bussolino, L.; Somma, R.

    The threat of possible collision of asteroids and comets with our planet has reached an international stage since 1990 when U.S.A. Congress set up a dedicated committee for the analysis and the assessment of this problem.The U.N. organized a congress later on to summarize the current knowledge on this subject as well as the Europea Council recommended its member states to conduct studies to further deepen the understanding in terms of tackling and solving this kind of problem interesting the entire world. IMPACT is the acronym for " International Monitoring Program for Asteroids and Comets Threats " coming out as proposal from a study funded by the italian region PIEMONTE throughout the Civil Protection Bureau and performed by the Planetology Group of the Astronomical Observatory of Torino ( Italy ) and Alenia Spazio for the engineering part. They have carried out a series of analyses aimed at contributing in subsequent steps to the solution of the two fundamental problems associated to the potential impact threat : the assessment of the numbers of killers/terminators and the impact rates from one side and the development of the idea of considering space segments for supporting activities of discovery as well as the physical and mineralogical characterization using satellites in orbit around the Earth. other additional studies also funded by the European Space Agency where the space technology appears to offer a great contribution if conveniently integrated with the Earth networks for Potentially Hazardous Asteroids ( PHA ) detection. An international approach for monitoring this threat for the Earth is then proposed.

  13. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    PubMed

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  14. Deep sea tides determination from GEOS-3

    NASA Technical Reports Server (NTRS)

    Maul, G. A.; Yanaway, A.

    1978-01-01

    GEOS 3 altimeter data in a 5 degree X 5 degree square centered at 30 deg N, 70 deg W were analyzed to evaluate deep sea tide determination from a spacecraft. The signal to noise ratio of known tidal variability to altimeter measurement of sea level above the ellipsoid was 0.1. A sample was obtained in a 5 deg x 5 deg area approximately once every four days. The randomly spaced time series was analyzed using two independent least squares techniques.

  15. Viscoelastic tides: models for use in Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Ragazzo, C.; Ruiz, L. S.

    2017-05-01

    This paper contains equations for the motion of linear viscoelastic bodies interacting under gravity. The equations are fully three dimensional and allow for the integration of the spin, the orbit, and the deformation of each body. The goal is to present good models for the tidal forces that take into account the possibly different rheology of each body. The equations are obtained within a finite dimension Lagrangian framework with dissipation function. The main contribution is a procedure to associate to each spring-dashpot model, which defines the rheology of a body, a potential and a dissipation function for the body deformation variables. The theory is applied to the Earth (solid part plus oceans) and a comparison between model and observation of the following quantities is made: norm of the Love numbers, rate of tidal energy dissipation, Chandler period, and Earth-Moon distance increase.

  16. Manuel Johnson's Tide Record at St. Helena

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Woodworth, Philip L.; Ray, Richard D.

    2017-01-01

    The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean tides with his own instrument at St. Helena in 1826-1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnsons tide gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day tide gauge measurements from the same site.Johnsons method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnsons data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computerfiles as part of this study for the benefit of future researchers.

  17. Tides and the evolution of planetary habitability.

    PubMed

    Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard

    2008-06-01

    Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.

  18. Manuel Johnson's tide record at St. Helena

    NASA Astrophysics Data System (ADS)

    Cartwright, David E.; Woodworth, Philip L.; Ray, Richard D.

    2017-03-01

    The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean tides with his own instrument at St. Helena in 1826-1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnson's tide gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day tide gauge measurements from the same site. Johnson's method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnson's data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computer files as part of this study for the benefit of future researchers.

  19. Anticipated Observation of Waves and Tides by the GOLD Mission Using a GCM and GLOW model

    NASA Astrophysics Data System (ADS)

    Greer, K.; Solomon, S. C.; Rusch, D. W.

    2017-12-01

    One of the major scientific objectives of the GOLD mission is to address the significance of atmospheric waves and tides propagating from below on the thermospheric temperature structure. Here we examine the modes of tides and spectrum of waves that will be observed by GOLD in geostationary orbit. The GOLD instrument is an imaging spectrograph that will measure the Earth's emissions from 132 to 162 nm. These measurements will be used to image thermospheric temperature and composition near 160 km on the dayside disk at half-hour time scales. TIE-GCM is used to produce a realistic model atmosphere, where different wave and tidal components can be easily extracted, and GLobal AirglOW (GLOW) model produces the emissions in the spectral bands observed by GOLD.

  20. A search for evidence of large body Earth impacts associated with biological crisis zones in the fossil record

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Gilmore, J. S.; Knight, J. D.

    1985-01-01

    The natural history of the Earth, how the present plant and animal species developed, how others completely died out, etc., was studied. The rock strata sampled and studied were at the time of deposition at sea bottom. It was found that, exactly at the stratigraphic level corresponding to the extinction, a thin clay layer was greatly enriched in the the rare element iridium. It was hypothesized that the excess irridium at the boundary came from a large steroid like object that hit the earth, and that the impact of this object threw up a dust cloud dense enough and long lasting enough to bring about the extinction of a wide variety of plants and animals, producing the unique break in in the fossil record, the cretaceous-tertiary boundary. The same iridium and platinum metals enrichement are found in a thin clay layer that corresponds with the boundary as difined by sudden radical changes in plant populations. The irridium enrichement is confirmed at other fresh water origin rites in the Raton Basin.

  1. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  2. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  3. Nonlinear Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the

  4. Urban forms, physical activity and body mass index: a cross-city examination using ISS Earth Observation photographs

    NASA Technical Reports Server (NTRS)

    Lin, Ge

    2005-01-01

    Johnson Space Center has archived thousands of astronauts acquired Earth images. Some spectacular images have been widely used in news media and in k-12 class room, but their potential utilizations in health promotion and disease prevention have relatively untapped. The project uses daytime ISS photographs to define city forms and links them to city or metropolitan level health data in a multicity context. Road connectivity, landuse mix and Shannon's information indices were used in the classification of photographs. In contrast to previous remote-sensing studies, which tend to focus on a single city or a portion of a city, this project utilized photographs of 39 U.S. cities. And in contrast to previous health-promotion studies on the built environment, which tend to rely on survey respondents' responses to evaluate road connectivity or mixed land use for a single study site, the project examined the built environments of multiple cities based on ISS photos. It was found that road connectivity and landuse mix were not statistically significant by themselves, but the composite measure of the Shannon index was significantly associated with physical activity, but not BMI. Consequently, leisure-time physical activity seems to be positively associated with the urban complexity scale. It was also concluded that unless they are planned or designed in advance, photographs taken by astronauts generally are not appropriate for a study of a single-site built environment nor are they appropriate for a study of infectious diseases at a local scale. To link urban built environment with city-wide health indicators, both the traditional nadir view and oblique views should be emphasized in future astronauts' earth observation photographs.

  5. Albedos and spectral signatures determination and it connection to geological processes: Simile between Earth and other solar system bodies

    NASA Astrophysics Data System (ADS)

    Suarez, J.; Ochoa, L.; Saavedra, F.

    2017-07-01

    Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.

  6. Orbital and Landing Operations at Near-Earth

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  7. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  8. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  9. Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, D. E.; Ray, R. D.; Sanchez, B. V.

    1991-01-01

    Maps and tables for the global ocean tides, 69 degree N to 68 degree S, derived from two years of Geosat altimetry are presented. Global maps of local and Greenwich admittance of the (altimetric) ocean tide, and maps of amplitude and Greenwich phase lag of the ocean tide are shown for M(sub 2), S(sub 2), N(sub 2), O(sub 1), and K(sub 1). Larger scale maps of amplitude and phases are also shown for regional areas of special interest. Spherical harmonic coefficients of the ocean tide through degree and order 8 are tabulated for the six major constituents.

  10. The Role of Gravity Waves in Modulating Atmospheric Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.

    1999-01-01

    We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.

  11. Earth Science

    1994-03-08

    Workers at the Astrotech processing facility in Titusville prepared for a news media showing of the Geostationary Operational Environmental Satellite-1 (GOES-1). GOES-1 was the first in a new generation of weather satellites deployed above Earth. It was the first 3-axis, body-stabilized meteorological satellite to be used by the National Oceanic Atmospheric Administration (NOAA) and NASA. These features allowed GOES-1 to continuously monitor the Earth, rather than viewing it just five percent of the time as was the case with spin-stabilized meteorological satellites. GOES-1 also has independent imaging and sounding instruments which can operate simultaneously yet independently. As a result, observations provided by each instrument will not be interrupted. The imager produces visual and infrared images of the Earth's surface, oceans, cloud cover and severe storm development, while the prime sounding products include vertical temperature and moisture profiles, and layer mean moisture.

  12. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (4) Gravity tide observation

    NASA Astrophysics Data System (ADS)

    Sato, T.; Miura, S.; Sun, W.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Heavner, M.

    2006-12-01

    The southeastern Alaska shows a large uplift rate as 30 mm/yr at most, which is considered to be closely related to the glacial isostatic adjustment (GIA) including two effects of the past and present-day ice melting (Larsen et al., 2004). So, this area is important to improve our knowledge of the viscoelastic property of the earth and to consider the global changes. Combing the displacement and gravity observations is useful to constrain the model computation results for GIA (Sato et al., 2006). In order to progress the previous work by the group of Univ. Alaska, Fairbanks (UAF), an observation project by Japan and USA groups was started in 2005 (Miura et al., this meeting). Under this project, June 2006, the continuous GPS measurements started (M. Kufman et al., this meeting) and the absolute gravity (AG) measurements were conducted (W. Sun et al., this meeting). Precise correction for the effect of ocean tide loading is one of the key to increase the observation accuracy of the GPS and gravity observations, especially for the AG measurement. Thanks for the satellite sea surface altimeters such as TOPEX/Poseidon and Jason-1, the accuracy of global ocean tide models based on these data has been much improved, and its accuracy is estimated at a level better than 1.3 cm as a RMS error of the vector differences of the 8 main tidal waves (Matsumoto et al., 2006). However, on the other hand, it is known that the southeastern Alaska is a place that shows a large discrepancy among the proposed global ocean tide models mainly due to a complex topography and bathymetry of the fjord area. In order to improve the accuracy of the ocean tide correction, we started the gravity tide observation at Juneau from June 2006. Two kinds of gravimeters are used for the observation. Sampling interval of the data is at every 1 min. We analyzed the 1 month data from the beginning of the observation and compared the tidal analysis results with the model tide including both effects of the

  13. COCONet enhancements to circum-Caribbean tsunami warning, tidal, and sea-level monitoring: update on tide gauge installations

    NASA Astrophysics Data System (ADS)

    Dausz, K.; Dittmann, S. T.; Feaux, K.; von Hillebrandt-Andrade, C.; Mattioli, G. S.; Normandeau, J.

    2014-12-01

    The Continually Operating Caribbean GPS Observational Network (COCONet) is a National Science Foundation (NSF) funded multi-hazard geodetic and meteorological network distributed throughout the Caribbean, which provides infrastructure and capacity building for a broad range of earth science questions. The network is a multi-national collaboration consisting of 46 newly constructed continuous Global Positioning Systems (cGPS) and 21 refurbished existing GPS stations, all co-located with meteorological sensors. One recommendation of the COCONet working group was to improve the vertical reference frame for long-term sea level monitoring. A COCONet supplement was awarded by the NSF to further address this particular objective through the co-location of GPS and tide gauges. This COCOnet infrastructure, along with the new tide gauges, will have broad scientific implications for hazards mitigation, solid earth, and atmospheric science research. UNAVCO engineers have meet with members of the Caribbean tide gauge community to establish target locations and design station layout. Allocated NSF funds allow for the construction of two complete new tide gauge systems each with two complimentary cGPS. Following the recommendations of NOAA and the sea level monitoring community, the two "new" locales will be Port Royal, Jamaica and Puerto Morelos, Mexico. Both locations had previously existing, but currently non-operational tide gauges. UNAVCO engineers will install a Sutron Radar Level Recorder and a backup pressure sensor tide gauge with GOES satellite telemetry. Tide data will be freely available by the Intergovernmental Oceanographic Commission (www.ioc-sealevelmonitoring.org). The NSF supplement also provided funds for adding cGPS to two additional locations where currently functioning tide gauge systems exist. Proposed locations for this additional infrastructure are Barahona, Dominican Republic and Bocas del Toro, Panama. All four locations will feature two standard

  14. Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS

    NASA Technical Reports Server (NTRS)

    Norman, M.; McCulloch, M.; ONeill, H.; Brandon, A.

    2004-01-01

    Magnesium isotopes potentially offer new insights into a diverse range of processes including evaporation and condensation in the solar nebula, melting and metasomatism in planetary interiors, and hydrothermal alteration [1,2,3,4]. Volatility-related Mg isotopic variations of up to 10 per mil/amu relative to a terrestrial standard have been found in early nebular phases interpreted as evaporation residues [1], and relatively large variations (up to 3 per mil/amu) in the terrestrial mantle have been reported recently [4]. In order to investigate possible differences in the nebular history of material contributing to the terrestrial planets, and to search for evidence of a high-temperature origin of the Moon, we have measured the magnesium isotopic composition of primitive olivines from the Earth, Moon, Mars, and pallasite parent body using laser-ablation multicollector ICPMS.

  15. The equilibrium tide in stars and giant planets. I. The coplanar case

    NASA Astrophysics Data System (ADS)

    Remus, F.; Mathis, S.; Zahn, J.-P.

    2012-08-01

    Context. Since 1995, more than 500 extrasolar planets have been discovered orbiting very close to their parent star, where they experience strong tidal interactions. Their orbital evolution depends on the physical mechanisms that cause tidal dissipation, which remain poorly understood. Aims: We refine the theory of the equilibrium tide in fluid bodies that are partly or entirely convective, to predict the dynamical evolution of the systems. In particular, we examine the validity of modeling the tidal dissipation using the quality factor Q, which is commonly done. We consider here the simplest case where the considered star or planet rotates uniformly, all spins are aligned, and the companion is reduced to a point mass. Methods: We expand the tidal potential as a Fourier series, and express the hydrodynamical equations in the reference frame, which rotates with the corresponding Fourier component. The results are cast in the form of a complex disturbing function, which may be implemented directly in the equations governing the dynamical evolution of the system. Results: The first manifestation of the tide is to distort the shape of the star or planet adiabatically along the line of centers. This generates the divergence-free velocity field of the adiabatic equilibrium tide, which is stationary in the frame rotating with the considered Fourier component of the tidal potential; this large-scale velocity field is decoupled from the dynamical tide. The tidal kinetic energy is dissipated into heat by means of turbulent friction, which is modeled here as an eddy-viscosity acting on the adiabatic tidal flow. This dissipation induces a second velocity field, the dissipative equilibrium tide, which is in quadrature with the exciting potential; this field is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which one derives the characteristic evolutionary times. Conclusions: The rate at which the

  16. Numerical simulation of tides in Ontario Lacus

    NASA Astrophysics Data System (ADS)

    Vincent, David; Karatekin, Ozgür

    2015-04-01

    Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of tides. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The tide generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun tide generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.

  17. Bilateral mastoiditis from red tide exposure.

    PubMed

    Honner, Samantha; Kudela, Raphael M; Handler, Ethan

    2012-10-01

    Bilateral mastoiditis in adults has previously been reported only in association with diabetes mellitus or immunocompromised patients. To describe a case of bilateral mastoiditis in a healthy adult and to investigate the etiology. A 53-year-old woman presented to the Emergency Department with bilateral otitis externa and mastoiditis after scuba diving during a harmful algal bloom, commonly known as a "red tide." The levels of coliform bacteria recorded at the time and location of her dive exceeded health regulatory limits and correlate with her atypical culture results. Elevated bacterial counts that result from harmful algal blooms may account for this rare infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Tides Stabilize Deltas until Humans Interfere

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Zheng Bing, W.; Vermeulen, B.; Huismans, Y.; Kastner, K.

    2017-12-01

    Despite global concerns about river delta degradation caused by extraction of natural resources, sediment retention by reservoirs and sea-level rise, human activity in the world's largest deltas intensifies. In this review, we argue that tides tend to stabilize deltas until humans interfere. Under natural circumstances, delta channels subject to tides are more stable than their fluvial-dominated counterparts. The oscillatory tidal flow counteracts the processes responsible for bank erosion, which explains why unprotected tidal channels migrate only slowly. Peak river discharges attenuate the tides, which creates storage space to accommodate the extra river discharge during extreme events and as a consequence, reduce flood risk. With stronger tides, the river discharge is being distributed more evenly over the various branches in a delta, preventing silting up of smaller channels. Human interference in deltas is massive. Storm surge barriers are constructed, new land is being reclaimed and large-scale sand excavation takes place, to collect building material. Evidence from deltas around the globe shows that in human-controlled deltas the tidal motion often plays a destabilizing role. In channels of the Rhine-Meuse Delta, some 100 scour holes are identified, which relates to the altered tidal motion after completion of a storm surge barrier. Sand mining has led to widespread river bank failures in the tidally-influenced Mekong Delta. The catastrophic flood event in the Gauges-Brahmaputra Delta by Cyclone Aila, which caused the inundation of an embanked polder area for over two years, was preceded by river bank erosion at the mouths of formal tidal channels that were blocked by the embankment. Efforts to predict the developments of degrading deltas are few. Existing delta models are capable of reproducing expanding deltas, which is essentially a matter of simulating the transport of sediment from source in a catchment to the sink in a delta. Processes of soil

  19. Earth Observations

    2011-05-28

    ISS028-E-006059 (28 May 2011) --- One of the Expedition 28 crew members, photographing Earth images onboard the International Space Station while docked with the space shuttle Endeavour and flying at an altitude of just under 220 miles, captured this frame of the Salton Sea. The body of water, easily identifiable from low orbit spacecraft, is a saline, endorheic rift lake located directly on the San Andreas Fault. The agricultural area is within the Coachella Valley.

  20. Photochemical studies in low Earth orbit for organic compounds related to small bodies, Titan and Mars. Current and future facilities.

    NASA Astrophysics Data System (ADS)

    Cottin, H.; Saiagh, K.; Nguyen, D.; Grand, N.; Bénilan, Y.; Cloix, M.; Coll, P.; Gazaux, M.-C.; Fray, N.; Khalaf, D.; Raulin, F.; Stalort, F.; Carrasco, N.; Szopa, C.; Chaput, D.; Bertrand, M.; Westall, F.; Mattioda, A.; Quinn, R.; Ricco, A.; Santos, O.; Baratta, G. A.; Strazzulla, G.; Palumbo, M. E.; Le Postollec, A.; Dobrijevic, M.; Coussot, G.; Vigier, F.; Vandenabeele-Trambouze, O.; Incerti, S.; Berger, T.

    2015-01-01

    The study of the evolution of organic matter subjected to space conditions, and more specifically to solar photons in the vacuum ultraviolet range (120-200 nm) has been undertaken in low Earth Orbit since the 90's, and implemented on various space platforms. The most recent exposure facilities are BIOPAN outside the Russian automatic capsules FOTON, and EXPOSE-E & -R (1&2) outside the International Space Station. They allow the photolysis of many different samples simultaneously, and provide us with valuable data about the formation and evolution of organic matter in the Solar System (meteorites, comets, Titan's atmosphere, the Martian surface...) and in the Interstellar Medium. They have been used by European teams in the recent past(ORGANIC on BIOPAN V-FOTON M2 and UVolution on BIOPAN VI-FOTON M3, PROCESS on EXPOSE-E, AMINO and ORGANICS on EXPOSE-R), and a new EXPOSE set is currently exposed outside the ISS (PSS on EXPOSE-R2). These existing tools are very valuable; however, they have significant limitations that limit their capabilities and scientific return. One of the most critical issues for current studies is the lack of any in-situ analysis of the evolution of the samples as a function of time. Only two measurements are available for the experiment: one before and one after the exposure. A significant step forward has been achieved with the O/OREOS NASA nanosatellite and the OREOcube ESA project with onboard UV-visible measurements. However, for organic samples, following the evolution of the samples would be more informative and provide greater insight with infrared measurements, which display specific patterns characteristic of major organic functionalities in the mid-infrared range (4000-1000 cm-1).

  1. Body burden of toxic metals and rare earth elements in non-smokers, cigarette smokers and electronic cigarette users.

    PubMed

    Badea, Mihaela; Luzardo, Octavio P; González-Antuña, Ana; Zumbado, Manuel; Rogozea, Liliana; Floroian, Laura; Alexandrescu, Dana; Moga, Marius; Gaman, Laura; Radoi, Mariana; Boada, Luis D; Henríquez-Hernández, Luis Alberto

    2018-06-13

    Smoking is considered an important source for inorganic elements, most of them toxic for human health. During the last years, there has been a significant increase in the use of e-cigarettes, although the role of them as source of inorganic elements has not been well established. A cross-sectional study including a total of 150 subjects from Brasov (Romania), divided into three groups (non-smokers, cigarette smokers and electronic cigarettes smokers) were recruited to disclose the role of smoking on the human exposure to inorganic elements. Concentration of 42 elements, including trace elements, elements in the ATSDR's priority pollutant list and rare earth elements (REE) were measured by ICP-MS in the blood serum of participants. Cigarette smokers showed the highest levels of copper, molybdenum, zinc, antimony, and strontium. Electronic cigarette (e-cigarette) users presented the highest concentrations of selenium, silver, and vanadium. Beryllium, europium and lanthanides were detected more frequently among e-cigarette users (20.6%, 23.5%, and 14.7%) than in cigarette smokers (1.7%, 19.0%, and 12.1%, respectively); and the number of detected REE was also higher among e-cigarette users (11.8% of them showed more than 10 different elements). Serum levels of cerium and erbium increased as the duration of the use of e-cigarettes was longer. We have found that smoking is mainly a source of heavy metals while the use of e-cigarettes is a potential source of REE. However, these elements were detected at low concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. First Numerical Simulations of Turbulent Dynamos Driven by Libration, Precession and Tides in Triaxial Ellipsoids - An Alternative Route for Planetary Magnetism

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Kanuganti, S. R.; Favier, B.

    2017-12-01

    Most of the time, planetary dynamos are - tacitly or not - associated with thermo-solutal convection. The convective dynamo model has indeed proven successful to explain the current Earth's magnetic field. However, its results are sometimes difficult to reconcile with observational data and its validity can be questioned for several celestial bodies. For instance, the small size of the Moon and Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their past and present magnetic fields, respectively. The same caveat applies to the growing number of planetesimals shown to have generated magnetic fields in their early history. Finally, the energy budget of the early Earth is difficult to reconcile with a convective dynamo before the onset of inner core growth. Significant effort has thus been put into finding new routes for planetary dynamo. In particular, the rotational dynamics of planets, moons and small bodies, where their average spinning motion is periodically perturbed by the small mechanical forcings of libration, precession and/or tides, is now widely accepted as an efficient source of core turbulence. The underlying mechanism relies on a parametric instability where the inertial waves of the rotating fluid core are resonantly excited by the small forcing, leading to exponential growth and bulk filling intense motions, pumping their energy from the orbital dynamics. Dynamos driven by mechanical forcing have been suggested for the Moon, Mars, Io, the early Earth, etc. However, the real dynamo capacity of the corresponding flows has up-to-now been studied only in very limited cases, with simplified spherical/spheroidal geometries and/or overly viscous fluids. We will present here the first numerical simulations of dynamos driven by libration, precession and tides, in the triaxial ellipsoidal geometry and in the turbulent regime relevant for planetary cores. We will describe the numerical techniques

  3. From Science Reserves to Sustainable Multiple Uses beyond Earth orbit: Evaluating Issues on the Path towards Balanced Environmental Management on Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular

  4. M2 ocean tide parameters and the deceleration of the moon's mean longitude from satellite orbit data

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.; Marsh, J. G.; Williamson, R. G.

    1979-01-01

    An estimation is made of the principal long-period spherical harmonic parameters in the representation of the M2 ocean tide from the orbital histories of the three satellites 1967-92A, Starlette, and GEOS 3. The data used are primarily the evolution of the orbital inclinations of the satellites in conjunction with the longitude of the ascending node from GEOS 3. Analysis procedure and analytic formulation, as well as ocean tidal parameter estimation and deceleration of the lunar mean longitude are outlined. The credibility of the M2 ocean tide solution is further enhanced by the close accord between the computed value for the deceleration of the lunar mean longitude and other recently reported estimates. It is evident from the results presented that studies of close earth satellite orbits are able to provide important information about the tidal forces acting on the earth.

  5. A finite element model for tides and resonance along the north coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Foreman, M. G. G.; Henry, R. F.; Walters, R. A.; Ballantyne, V. A.

    1993-02-01

    A finite element, barotropic, tidal model is developed for the north coast of British Columbia. The model is run with eight tidal constituents and the results are compared with the Flather (1987) finite difference model, and with extensive tide gauge and current meter observations. Although the tidal potential, Earth tide, and loading tide are included in the forcing, their inclusion is shown to change the largest M2 amplitudes by only 2.5% and the largest K1 amplitudes by less than 1%. Root mean square differences between observed and calculated sea level amplitudes and phases are within 1.9 cm and 2.9° for all but one constituent, but the model currents do not in general, compare as favourably. The barotropic currents observed in Hecate Strait are reproduced well, but elsewhere evidence is shown that model inaccuracies are due to baroclinic effects. Tidal residual currents calculated by the model suggest the existence of eddies off the tip of Cape St. James, Cape Chacon, and around Goose Island and Learmonth Banks. The shallow water constituents in Hecate Strait are shown to have significant contributions from the constructive interference of signals propagating into Dixon Entrance and Queen Charlotte Sound. Using the model, the longest resonant period of the system is estimated to be 7.6 hours with an energy dissipation parameter, Q, of 9.5.

  6. Angular momentum budget of the radiational S1 ocean tide

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk; Poropat, Lea; Salstein, David; Böhm, Johannes

    2016-04-01

    The balance of diurnal S1 oceanic angular momentum (OAM) variations through torques at the sea surface and the bottom topography is validated using both a barotropic and a baroclinic numerical tide model. This analysis discloses the extent to which atmosphere-driven S1 forward simulations are reliable for use in studies of high-frequency polar motion and changes in length-of-day. Viscous and dissipative torques associated with wind stress, bottom friction, as well as internal tidal energy conversion are shown to be small, and they are overshadowed by gravitational and pressure-related interaction forces. In particular, the zonal OAM variability of S1 is almost completely balanced by the water pressure torque on the local bathymetry, whereas in the prograde equatorial case also the air pressure torque on the seafloor as well as ellipsoidal contributions from the non-spherical atmosphere and solid Earth must be taken into account. Overall, the OAM budget is well closed in both the axial and the equatorial directions, thus allowing for an identification of the main diurnal angular momentum sinks in the ocean. The physical interaction forces are found to be largest at shelf breaks and continental slopes in low latitudes, with the most dominant contribution coming from the Indonesian archipelago.

  7. On the hypothesis of hyperimpact-induced ejection of asteroid-size bodies from Earth-type planets.

    NASA Astrophysics Data System (ADS)

    Drobyshevski, E. M.

    During the last two decades a number of facts have brought to life a seemingly fantastic idea of ejection of large rocky fragments from planets into space, like for example SNC meteorites or many-km-size fragments of Vesta. The theoretical description of impact processes of this ejection lags behind. Considerable efforts have been spent to show the possibility of ejection of bodies several meters in size from large impact craters on Mars. In general, the possibility of impact self-destruction of inner planets may drastically alter traditional models of the origin of the Solar System. However, non-destructive gasdynamic ejection of large fragments from planets requires a mechanism for fast conversion of shock-wave energy into heat. The extrapolation of data from laboratory impact experiments (≡10 kJ) and nuclear explosions (<1 Mt TNT) in order to describe hyperimpact processes with 105 - 106 Mt TNT energies can hardly be justified, that is why these calculations give relatively small gas production and, consequently, small velocities of fragment ejection from impact craters. It is predicted that at such energies some instabilities may lead to formation of new dissipation channels, that would increase the part of the overheated gas fraction in the hyperimpact ejection products. This would eliminate numerous contradictions in the impact history of planets, asteroids, meteorites etc.

  8. Impact of sea level rise on tide gate function.

    PubMed

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  9. Energetics of global ocean tides from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  10. Proceedings of the Geodesy/Solid Earth and Ocean Physics (GEOP) Research Conferences

    NASA Technical Reports Server (NTRS)

    Mueller, I. I. (Editor)

    1975-01-01

    Papers are presented dealing with interdisciplinary research in the fields of geodesy, solid earth and ocean physics. Topics discussed include: solid earth and ocean tides; the rotation of the earth and polar motion; vertical crustal motions; the geoid and ocean surface; earthquake mechanism; sea level changes; and lunar dynamics.

  11. The moon-Earth system...As a vacuum gravity energy machine? A Hint about the Nature of Universal Gravity that May Have Been Overlooked

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2011-10-01

    We revisit the theories describing the moon raising the tides by virtue of pull gravity combined with the moon's centripetal angular momentum. We show that if gravity is considered as the attractive interaction between individual bodies, then a laboring moon doing work would have fallen to earth eons ago. Isaac Newton's laws of motion cannot work with pull gravity, but they do with Einstein's gravity as a property of the universe, which produces a continuous infusion of energy. In other words, the moon-Earth system becomes the first observable vacuum gravity energy machine. In other words the dynamics of what appears to be a closed system has been producing energy that continues raising the tides into perpetuity along with the force needed for the moon to escape the Earth's gravitational pull 4cm per year. All this is in defiance of Newton's first law which says ``If no force is added to a body it cannot accelerate.'' In this theory, a flowing space-time curves with three dimensions of force. A (flowing) spatial fabric bends around mass and displaces the inverse square field vanishing point property of matter with the appearance of a push-force square of the distance. In other words, the immeasurable universal gravity field appears as measurable local gravitation, concentrating universal gravitational pressure with the square of the distance from the very point was supposed to have disappeared. Needless to say such ``gravity'' necessitates a different beginning.

  12. Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement

    NASA Astrophysics Data System (ADS)

    King, Matt A.; Keshin, Maxim; Whitehouse, Pippa L.; Thomas, Ian D.; Milne, Glenn; Riva, Riccardo E. M.

    2012-07-01

    The only vertical land movement signal routinely corrected for when estimating absolute sea-level change from tide gauge data is that due to glacial isostatic adjustment (GIA). We compare modeled GIA uplift (ICE-5G + VM2) with vertical land movement at ˜300 GPS stations located near to a global set of tide gauges, and find regionally coherent differences of commonly ±0.5-2 mm/yr. Reference frame differences and signal due to present-day mass trends cannot reconcile these differences. We examine sensitivity to the GIA Earth model by fitting to a subset of the GPS velocities and find substantial regional sensitivity, but no single Earth model is able to reduce the disagreement in all regions. We suggest errors in ice history and neglected lateral Earth structure dominate model-data differences, and urge caution in the use of modeled GIA uplift alone when interpreting regional- and global- scale absolute (geocentric) sea level from tide gauge data.

  13. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  14. Global estimation of ocean tides in deep and shallow waters from TOPEX/POSEIDON and numerical models with applications to geophysics, oceanography, and precision altimetry

    NASA Astrophysics Data System (ADS)

    Tierney, Craig Cristy

    Presented here are several investigations of ocean tides derived from TOPEX/POSEIDON (T/P) altimetry and numerical models. The purpose of these investigations is to study the short wavelength features in the T/P data and to preserve these wavelengths in global ocean tide models that are accurate in shallow and deep waters. With these new estimates, effects of the tides on loading, Earth's rotation, and tidal energetics are studied. To preserve tidal structure, tides have been estimated along the ground track of T/P by the harmonic and response methods using 4.5 years of data. Results show the two along-track (AT) estimates agree with each other and with other tide models for those components with minimal aliasing problems. Comparisons to global models show that there is tidal structure in the T/P data that is not preserved with current gridding methods. Error estimates suggest there is accurate information in the T/P data from shallow waters that can be used to improve tidal models. It has been shown by Ray and Mitchum (1996) that the first mode baroclinic tide can be separated from AT tide estimates by filtering. This method has been used to estimate the first mode semidiurnal baroclinic tides globally. Estimates for M2 show good correlation with known regions of baroclinic tide generation. Using gridded, filtered AT estimates, a lower bound on the energy contained in the M2 baroclinic tide is 50 PJ. Inspired by the structure found in the AT estimates, a gridding method is presented that preserves tidal structure in the T/P data. These estimates are assimilated into a nonlinear, finite difference, global barotropic tidal model. Results from the 8 major tidal constituents show the model performs equivalently to other models in the deep waters, and is significantly better in the shallow waters. Crossover variance is reduced from 14 cm to 10 cm in the shallow waters. Comparisons to Earth rotation show good agreement to results from VLBI data. Tidal energetics

  15. Tidal Friction in the Earth and Ocean

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  16. TIGA Tide Gauge Data Reprocessing at GFZ

    NASA Astrophysics Data System (ADS)

    Deng, Zhiguo; Schöne, Tilo; Gendt, Gerd

    2014-05-01

    To analyse the tide gauge measurements for the purpose of global long-term sea level change research a well-defined absolute reference frame is required by oceanographic community. To create such frame the data from a global GNSS network located at or near tide gauges are processed. For analyzing the GNSS data on a preferably continuous basis the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring Working Group (TIGA-WG) is responsible. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign. The solutions of the TIGA Reprocessing Campaign will also contribute to 2nd IGS Data Reprocessing Campaign with GFZ IGS reprocessing solution. After the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GPS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the TIGA reprocessing. To handle such large network a new processing strategy is developed and described in detail. In the TIGA reprocessing the GPS@TIGA data are processed in precise point positioning (PPP) mode to clean data using the IGS reprocessing orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GPS@TIGA station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of LaRochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/yr. The error bars of PPP rates are significant larger than those of ULR5, which indicates large time correlated noise in

  17. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  18. Mapping the nonstationary internal tide with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  19. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.

    PubMed

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2010-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

  20. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms

    PubMed Central

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2009-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  1. Anisotropic dissipation of the global internal tide from a higher-order multiscale barotropic tidal simulation

    NASA Astrophysics Data System (ADS)

    Salehipour, Hesam; Peltier, W. Richard

    2013-04-01

    will present maps of energy dissipation for different tidal constituents using grids with resolutions up to 1/18° in coastal regions as well as in areas with high gradients in the bottom topography. The discontinuous Galerkin formulation provides important energy conservation properties as well as enabling the accurate representation of sharp topographic gradients without smoothing, a feature well matched to the multi-scale problem of the dissipation of the internal tide. We will describe the detailed energy budgets delivered by this model under both modern and Last Glacial Maximum oceanographic conditions, including relative sea level and internal density stratification effects. The results of the simulations will be illustrated with global maps with enhanced resolution for the internal tidal dissipation which may be exploited in the parameterization of vertical mixing. We will use the reconstructed paleotopography of the ICE-5G model of Peltier [Annu. Rev. Earth Planet Sci. 2004] as well as the more recent refinement (ICE-6G) to compute the characteristics of the LGM tidal regime and will compare these characteristics to those of the modern ocean.

  2. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  3. Love numbers for the long-period tides estimated by VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Haas, Rüdiger; Schuh, Harald

    2013-04-01

    Love and Shida numbers are proportionality factors characterizing the deformation of the anelastic Earth which arises as a response to external forces from the Moon and Sun. The increasing precision and quality of the Very Long Baseline Interferometry (VLBI) measurements allow determining those parameters. In particular, the long history of the VLBI data enables the estimation of Love and Shida numbers at the low frequencies of the tidal waves including the periods from 14 days to 18.6 years. In this study we analyse 27 years of VLBI measurements (1984.0 - 2011.0) following the recent IERS Conventions 2010. In several global solutions, we estimate the complex Love and Shida numbers of the solid Earth tides for the main long-period tidal waves. Furthermore, we determine the Love and Shida numbers of the rotational deformation due to polar motion, the so-called pole tide. We also focus on station displacement where still some deficiencies in the long-period signal modelling can be seen.

  4. The double high tide at Port Ellen: Doodson's criterion revisited

    NASA Astrophysics Data System (ADS)

    Byrne, Hannah A. M.; Mattias Green, J. A.; Bowers, David G.

    2017-07-01

    Doodson proposed a minimum criterion to predict the occurrence of double high (or double low) waters when a higher-frequency tidal harmonic is added to the semi-diurnal tide. If the phasing of the harmonic is optimal, the condition for a double high water can be written bn2/a > 1 where b is the amplitude of the higher harmonic, a is the amplitude of the semi-diurnal tide, and n is the ratio of their frequencies. Here we expand this criterion to allow for (i) a phase difference ϕ between the semi-diurnal tide and the harmonic and (ii) the fact that the double high water will disappear in the event that b/a becomes large enough for the higher harmonic to be the dominant component of the tide. This can happen, for example, at places or times where the semi-diurnal tide is very small. The revised parameter is br2/a, where r is a number generally less than n, although equal to n when ϕ = 0. The theory predicts that a double high tide will form when this parameter exceeds 1 and then disappear when it exceeds a value of order n2 and the higher harmonic becomes dominant. We test these predictions against observations at Port Ellen in the Inner Hebrides of Scotland. For most of the data set, the largest harmonic of the semi-diurnal tide is the sixth diurnal component, for which n = 3. The principal lunar and solar semi-diurnal tides are about equal at Port Ellen and so the semi-diurnal tide becomes very small twice a month at neap tides (here defined as the smallest fortnightly tidal range). A double high water forms when br2/a first exceeds a minimum value of about 1.5 as neap tides are approached and then disappears as br2/a then exceeds a second limiting value of about 10 at neap tides in agreement with the revised criterion.

  5. The self-consistent dynamic pole tide in global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  6. Mapping ocean tides with satellites - A computer simulation

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  7. The importance of weightlessness and tides in teaching gravitation

    NASA Astrophysics Data System (ADS)

    Galili, I.; Lehavi, Y.

    2003-11-01

    We examine the presentation of the weight, weightlessness, and tides in university-level physics textbooks. Introductory textbooks often do not discuss tidal forces even though their understanding would be useful for understanding weightlessness. The explanations of tides often miss the free gravitational motion of both interacting objects, which is essential for the symmetry of tidal deformation. The shortcomings in the explanations of weightlessness and tides as provided by students and teachers are compared to textbook discussions. We suggest that an explicit discussion of the different definitions of weight and a synergetic presentation of weightlessness and tides might lead to a better understanding of gravitation. Our approach is illustrated by examples of tidal effects appropriate for introductory courses.

  8. Future Nuisance Flooding at Boston Caused by Astronomical Tides Alone

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Foster, Grant

    2016-01-01

    Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.

  9. Catching the Tide: A Review of Tidal Energy Systems

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    Harnessing energy from the tides is a much-promoted but rarely realised way of generating electricity. This article examines some of the systems that are currently in use or under development, and outlines their economic, environmental and technical implications.

  10. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  11. Overview of aerosolized Florida red tide toxins: exposures and effects.

    PubMed

    Fleming, Lora E; Backer, Lorraine C; Baden, Daniel G

    2005-05-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins.

  12. Spatio-temporal environmental data tide corrections for reconnaissance operations

    NASA Astrophysics Data System (ADS)

    Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn

    2005-06-01

    Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local tide variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of tide corrections provided for the area and time of interest by the Naval Research Laboratory tide prediction code PCTides. For each geographic position of the AQS-20 sonar, a tide height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.

  13. [Algorithms of multiband remote sensing for coastal red tide waters].

    PubMed

    Mao, Xianmou; Huang, Weigen

    2003-07-01

    The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red tide detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red tide events.

  14. Another look at North Sea pole tide dynamics

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.; Preisig, J. R.

    1986-01-01

    The mechanism proposed by Wunsch (1974) to explain pole tide observations in the North Sea is evaluated. Wunsch's equations governing pole tide in the North Sea are presented, and solutions for correcting the depth, stream function, and deviation of the tidal height from the equilibrium values are described. The similarity between the Stokes paradox and the tidal equations of the North Sea, and the need for inclusion of inertial terms in the tidal equations are discussed.

  15. Evolution of Tides and Tidal Dissipation Over the Past 26,000 Years Using a Multi-Scale Model of Global Barotropic Tides

    NASA Astrophysics Data System (ADS)

    Salehipour, H.; Peltier, W. R.

    2014-12-01

    In this paper we will describe the results obtained through integration of a further refined version of the truly global barotropic tidal model of Salehipour et al. (Ocean Modell., 69, 2013) using the most recent reconstruction of ice-age bathymetric conditions as embodied in the recently constructed ICE-6G_C (VM5a) model of Peltier et al. (JGR-Solid Earth, in press, 2014). Our interest is in the spatial and temporal evolution of tidal amplitude, phase and dissipation from the Last Glacial Maximum (LGM) 26,000 years ago until the present. The state-of-the-art higher order nonlinear tidal model of Salehipour et al. (2013) includes a highly parallelized multi-scale framework in which an unstructured tessellation of the global ocean enables extensive local refinement around regions of interest such as the Hawaiian Ridge, the Brazil Basin and the Southern Ocean. At LGM, features such as the Patagonian Shelf were fully exposed land which during the deglaciation process would have been flooded leading to significant changes of tidal range along the evolving coastline. In the further development of this model we have included the fully iterated treatment of the influence of gravitational self-attraction and loading as in, e.g. Egbert et al. (JGR-Oceans, 109, 2004). The treatment of the dissipation of the barotropic tide through dissipation of the internal tide has also been significantly improved. Our paleobathymetry and coastline data sets extend from LGM to present at 500 year intervals and constitute a significant refinement of the widely employed ICE-5G (VM2) model of Peltier (Annu. Rev. Earth Planet. Sci., 32, 2004). Our results will be compared with those recently published by Green & Nycander (JPO, 43, 2013) and Wilmes & Green (JGR-Oceans, 119, 2014) as well as with the earlier results of Griffiths & Peltier (GRL, 35, 2008; J. Clim., 22, 2009).

  16. Refine of Regional Ocean Tide Model Using GPS Data

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhang, P.; Sun, Z.; Jiang, Z.; Zhang, Q.

    2018-04-01

    Due to lack of regional data constraints, all global ocean tide models are not accuracy enough in offshore areas around China, also the displacements predicted by different models are not consistency. The ocean tide loading effects have become a major source of error in the high precision GPS positioning. It is important for high precision GPS applications to build an appropriate regional ocean tide model. We first process the four offshore GPS tracking station's observation data which located in Guangdong province of China by using PPP aproach to get the time series. Then use the spectral inversion method to acquire eigenvalues of the Ocean Tidal Loading. We get the estimated value of not only 12hour period tide wave (M2, S2, N2, K2) but also 24hour period tide wave (O1, K1, P1, Q1) which has not been got in presious studies. The contrast test shows that GPS estimation value of M2, K1 is consistent with the result of five famous glocal ocean load tide models, but S2, N2, K2, O1, P1, Q1 is obviously larger.

  17. Differences between mean tide level and mean sea level

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.

    2017-01-01

    This paper discusses the differences between mean tide level (MTL) and mean sea level (MSL) as demonstrated using information from a global tide gauge data set. The roles of the two main contributors to differences between MTL and MSL (the M4 harmonic of the M2 semidiurnal tide, and the combination of the diurnal tides K1 and O1) are described, with a particular focus on the spatial scales of variation in MTL-MSL due to each contributor. Findings from the tide gauge data set are contrasted with those from a state-of-the-art global tide model. The study is of interest within tidal science, but also has practical importance regarding the type of mean level used to define land survey datums. In addition, an appreciation of MTL-MSL difference is important in the use of the historical sea level data used in climate change research, with implications for some of the data stored in international databanks. Particular studies are made of how MTL and MSL might differ through the year, and if MTL is measured in daylight hours only, as has been the practice of some national geodetic agencies on occasions in the past.

  18. North Adriatic Tides: Observations, Variational Data Assimilation Modeling, and Linear Tide Dynamics

    DTIC Science & Technology

    2009-12-01

    of the North Adriatic ( Lee et al., 2005). In addition to the ADCP measurements of currents through- out the water column, bottom pressure (by ADCP or...of the year with low levels of stratification (Figure 2, Jeffries and Lee , 2007). Actual generation of internal tides in the North Adriatic would...Thompson, K.R., Teague, W. J., Jacobs, G.A., Suk, M.-S., Chang, K.-I., Lee , J.-C. and Choi, B.H. (2004): Data assimilation modeling of the barotropic

  19. Atmospheric tides and other relationships: ``Interpreting the Phenomena'' at the time of the Seeberg conference

    NASA Astrophysics Data System (ADS)

    Kokott, Wolfgang

    Lalande's account of his experiences at Gotha and on his journey back to France [AGE 2 (1798), 381-382] contains an interesting attempt to explain the extremely rainy September weather (``at a time of the year when it is raining more rarely in our countries'') by means of the Moon's southern declination. Actually, there are several other documents on the same subject; Lagrange was trying to prove his version of lunar influence against Lamarck who claimed exactly the opposite correlation to be true. In the light of Lalande's own work on oceanic tides, his interest in this meteorological problem is readily understood. While stringent limits for tidal variations of air pressure had already been established by d'Alembert (1747) and Toaldo (1779), no consistent theory of tidal mechanics was yet available. Theoretical and empirical investigations of alleged lunar influences on our weather did remain on the agenda well into the 19th century - the names of Olbers and Arago stand for many contemporaries. Moreover, the Earth's atmosphere was an object of fundamental interest to astronomers not only because of its influence on observational results, but also because it was the only accessible planetary atmosphere. Not only were sizeable gaseous envelopes of planetary bodies (with the apparent exception of only the Moon) considered as commonplace (Herschel, Schröter, etc.); the quest for understanding them was also an importent issue. As early as 1780, J.E. Bode tried (following Euler) to explain the blue colour of the sky by means of blue (scattering?) particles in the upper atmosphere; consequently, he raised the question of whether the red colour of Mars was due to this planet's surface materials or rather to a different atmospheric composition. In our time and age, a new and very successful branch of science called Comparative Planetology did emerge from apparently very modern roots; two centuries ago, its basic objectives were an undisputed part of everyday astronomical

  20. Diurnal tides in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Kowalik, Z.; Proshutinsky, A. Y.

    1993-01-01

    A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.

  1. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  2. Mixotrophy in red tide algae raphidophytes.

    PubMed

    Jeong, Hae Jin

    2011-01-01

    Marine raphidophytes are common red tide organisms that are distributed worldwide. They are known to be harmful to other plankton and fish and have often caused large-scale fish mortality in many countries. Thus, the population dynamics of raphidophytes is a critical concern for scientists, the aquaculture industry, and government officers from many countries. Raphidophyte growth and mortality should be investigated to understand bloom dynamics. Raphidophytes were thought to be exclusively autotrophic organisms. However, several recent studies have revealed that raphidophytes are able to feed on heterotrophic and autotrophic bacteria, i.e. raphidophytes are mixotrophic algae. Further, high-resolution video microscopy has revealed the mechanism by which raphidophytes feed on bacteria, which involves capturing prey cells in the mucus excreted by mucocysts and engulfing the cells through mucocysts. These discoveries may influence the conventional view on both raphidophyte bloom dynamics and plankton energy flow and carbon cycling. In the present study, I review prey, feeding mechanisms, and ingestion rates of mixotrophic marine raphidophytes. In addition, I examine the ecological significance of raphidophyte mixotrophy. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  3. The black tide model of QSOs

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Shields, G. A.; Wheeler, J. C.

    1977-01-01

    The paper develops certain aspects of a model wherein a QSO is a massive black hole located in a dense galactic nucleus, with its growth and luminosity fueled by tidal disruption of passing stars. Cross sections for tidal disruptions are calculated, taking into account the thermal energy of stars, relativistic effects, and partial disruption removing only the outer layers of a star. Accretion rates are computed for a realistic distribution of stellar masses and evolutionary phases, the effect of the black hole on the cluster distribution is examined, and the red-giant disruption rate is evaluated for hole mass of at least 300 million solar masses, the cutoff of disruption of main-sequence stars. The results show that this black-tide model can explain QSO luminosities of at least 1 trillion suns if the black hole remains almost maximally Kerr as it grows above 100 million solar masses and if 'loss-cone' depletion of the number of stars in disruptive orbits is unimportant.

  4. Earth Observation

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  5. Organizational Analysis of the TIDES Project and the STAR-TIDES Network Using the 7-S Framework

    DTIC Science & Technology

    2013-04-01

    data, provided some useful rec- ommendations.8 Since that time, TIDES has continued to grow and change. The present study was undertaken to update the...information across platforms and within the secure NDU network. For ex- ample, many contacts made by the Director are preserved within his Blackberry ...the active participation of STAR-TIDES network members, and to grow the network. 5. Skills Skills refers to the talents and abilities of the

  6. Earth Tidal Controls on Basal Dynamics and Hydrology

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.

    2001-12-01

    We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of

  7. Mapping Hurricane Inland-Storm Tides

    NASA Astrophysics Data System (ADS)

    Turco, M.; East, J. W.; Dorsey, M. E.; McGee, B. D.; McCallum, B. E.; Pearman, J. L.; Sallenger, A. H.; Holmes, R. R.; Berembrock, C. E.; Turnipseed, D. P.; Mason, R. R.

    2008-12-01

    Historically, hurricane-induced storm-tides were documented through analysis of structural or vegetative damage and high-water marks. However, these sources rarely provided quantitative information about the timing of the flooding, the sequencing of multiple paths by which the storm-surge waters arrived, or the magnitude of waves and wave run-up comprising floodwaters. In response to these deficiencies, the U.S. Geological Survey (USGS) developed and deployed an experimental mobile storm-surge network to provide detailed time-series data for selected hurricane landfalls. The USGS first deployed the network in September 2005 as Hurricane Rita approached the Texas and Louisiana coasts. The network for Rita consisted of 32 water-level and 14 barometric-pressure monitoring sites. Sensors were located at distances ranging from a few hundred feet to approximately 30 miles inland and sampled 4,000 square miles. Deployments have also occurred for Hurricanes Wilma, Gustav, and Ike. For Hurricane Gustav, more than 100 water level sensors were deployed. Analysis of the water-level data enable construction of maps depicting surge topography through time and space, essentially rendering elements of a 3-dimensional view of the storm-surge dome as it moves on- shore, as well as a map of maximum water-level elevations. The USGS also acquired LIDAR topographic data from coasts impacted by hurricanes. These data reveal extreme changes to the beaches and barrier islands that arise from hurricane storm surge and waves. By better understanding where extreme changes occur along our coasts, we will be able to position coastal structures away from hazards.

  8. The Global Mode-1 S2 Internal Tide

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2017-11-01

    The global mode-1 S2 internal tide is observed using sea surface height (SSH) measurements from four satellite altimeters: TOPEX/Poseidon, Jason-1, Jason-2, and Geosat Follow-On. Plane wave analysis is employed to extract three mode-1 S2 internal tidal waves in any given 250 km by 250 km window, which are temporally coherent over a 20 year period from 1992 to 2012. Depth-integrated energy and flux of the S2 internal tide are calculated from the SSH amplitude and a conversion function built from climatological hydrographic profiles in the World Ocean Atlas 2013. The results show that the S2 and M2 internal tides have similar spatial patterns. Both S2 and M2 internal tides originate at major topographic features and propagate over long distances. The S2 internal tidal beams are generally shorter, likely because the relatively weaker S2 internal tide is easily overwhelmed by nontidal noise. The northbound S2 and M2 internal tides from the Hawaiian Ridge are observed to travel over 3500 km across the Northeast Pacific. The globally integrated energy of the mode-1 S2 internal tide is 7.8 PJ (1 PJ = 1015 J), about 20% that of M2 (36.4 PJ). The histogram of S2 to M2 SSH ratios peaks at 0.4, consistent with the square root of their energy ratio. In terms of SSH, S2 is greater than M2 in ≈10% of the global ocean and ≥50% of M2 in about half of the global ocean.

  9. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  10. Tide-surge Interaction Intensified by the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  11. Development of a new model for short period ocean tidal variations of Earth rotation

    NASA Astrophysics Data System (ADS)

    Schuh, Harald

    2015-08-01

    Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.

  12. GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz

    2016-04-01

    Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.

  13. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The major focus for operations during this period was the preliminary MERIT Campaign and its intensive tracking of LAGEOS for polar motion and Earth rotation studies. The data acquired from LAGEOS were used for other geophysical investigations, including studies of crustal dynamics, and Earth and ocean tides, and for the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and Earth's gravity field and for studies of solid Earth dynamics.

  14. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and

  15. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  16. Aerosolized red-tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M; Baden, Daniel G

    2007-01-01

    With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.

  17. Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M.; Baden, Daniel G.

    2009-01-01

    Background With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Methods Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons ≥ 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Results Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV1, midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). Conclusions This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins. PMID:17218574

  18. Tide Corrections for Coastal Altimetry: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2008-01-01

    Knowledge of global oceanic tides has markedly advanced over the last two decades, in no small part because of the near-global measurements provided by satellite altimeters, and especially the long and precise Topex/Poseidon time series e.g. [2]. Satellite altimetry in turn places very severe demands on the accuracy of tidal models. The reason is clear: tides are by far the largest contributor to the variance of sea-surface elevation, so any study of non-tidal ocean signals requires removal of this dominant tidal component. Efforts toward improving models for altimetric tide corrections have understandably focused on deep-water, open-ocean regions. These efforts have produced models thought to be generally accurate to about 2 cm rms. Corresponding tide predictions in shelf and near-coastal regions, however, are far less accurate. This paper discusses the status of our current abilities to provide near-global tidal predictions in shelf and near-coastal waters, highlights some of the difficulties that must be overcome, and attempts to divine a path toward some degree of progress. There are, of course, many groups worldwide who model tides over fairly localized shallow-water regions, and such work is extremely valuable for any altimeter study limited to those regions, but this paper considers the more global models necessary for the general user. There have indeed been efforts to patch local and global models together, but such work is difficult to maintain over many updates and can often encounter problems of proprietary or political nature. Such a path, however, might yet prove the most fruitful, and there are now new plans afoot to try again. As is well known, tides in shallow waters tend to be large, possibly nonlinear, and high wavenumber. The short spatial scales mean that current mapping capabilities with (multiple) nadir-oriented altimeters often yield inadequate coverage. This necessitates added reliance on numerical hydrodynamic models and data assimilation

  19. Observations of the Mf ocean tide from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1990-01-01

    Zonal averages of the 13.66-day Mf tide are derived from one year of Geosat altimetry records. The orbit errors are reduced by 1/revolution corrections taken over long (several day) arcs. The short-period tides are removed using a model previously derived from the same data. The Mf zonal averages indicate definite nonequilibrium character at nearly all latitudes. The imaginary admittances indicate a Q of at least 8; such a value is consistent with a simplified theory of coupled gravitational and vorticity modes and suggests a value for Proudman's 'friction period' about 123 days.

  20. Storm surge and tide interaction: a complete paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, Kevin; Williams, Jane; Proctor, Robert

    2014-05-01

    Globally, 200 million people live on coastal floodplains and about 1 trillion worth of assets lie within 1 metre of mean sea level. Any change in the statistics of flood frequency or severity would impact on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. This has been shown previously by analytical models but not as yet confirmed by fully non-linear models of the continental shelf. We present results from an operational model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are generally greater when tidal range is low. Our results contradict the absence of any such correlation observed in the complete record of UK tide gauge data. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that operational models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge

  1. Storm Surge and Tide Interaction: A Complete Paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  2. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  3. Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System (B) Past, Present and Future of Small Body Science and Exploration (B0.4)

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Mazanek, Dan; Reeves, Dan; Chodas, Paul; Gates, Michele; Johnson, Lindley; Ticker, Ronald

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human space flight missions. Today, human flight experience extends only to Low- Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human space flight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM).

  4. Numbers, Neurons and Tides, Oh My!

    ERIC Educational Resources Information Center

    Ortiz, Mary Theresa

    2006-01-01

    Mathematical applications to biology are presented in Anatomy & Physiology, General and Marine Biology. Body measurements and anatomical terminology are integrated, and problems involving neuron conduction speed, red blood cells, hemoglobin and glomerular filtration presented. General Biology applications include trans-membrane potential and…

  5. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  6. Tides. Marine Science Curriculum Aid No. 5. Sea Grant Report 80-2.

    ERIC Educational Resources Information Center

    McDonald, Judy

    This manual, developed for use in Alaskan secondary schools, is one of a continuing series designed to provide basic information about the marine environment and Alaskan marine resources. The first part of the manual presents information about tides, focusing on: the nature of tides; cause of tides; factors related to tidal movement; types of…

  7. Satellite tracking and earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The SAO laser site in Arequipa continued routine operations throughout the reporting period except for the months of March and April when upgrading was underway. The laser in Orroral Valley was operational through March. Together with the cooperating stations in Wettzell, Grasse, Kootwikj, San Fernando, Helwan, and Metsahove the laser stations obtained a total of 37,099 quick-look observations on 978 passes of BE-C, Starlette, and LAGEOS. The Network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The Network performed regular tracking of BE-C and Starlette for refined determinations of station coordinate and the Earth's gravity field and for studies of solid earth dynamics. Monthly statistics of the passes and points are given by station and by satellite.

  8. How Tidal Forces Cause Ocean Tides in the Equilibrium Theory

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2015-01-01

    We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.

  9. Oceanography for Divers: Waves, Tides, and Currents. Diver Education Series.

    ERIC Educational Resources Information Center

    Somers, Lee H.

    To dive safely, it is suggested that the diver have a working knowledge of waves, tides, currents, and water quality. Lack of understanding and respect for ocean currents and surf can be of serious consequence to the diver. This paper on the diving environment is designed to provide the diver with a general understanding of the physical…

  10. Subsurface Ocean Tides in Enceladus and Other Icy Moons

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  11. On Measurements of the Tide at Churchill, Hudson Bay

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2016-01-01

    Since the late 1990s the semi-diurnal tide at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M(sub 2) amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning tide gauge, the fact that there are no other measurements in the region and the possibility that the tide is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the tide in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M(sub 2) that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.

  12. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    NASA Astrophysics Data System (ADS)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  13. [Mechanisms of removing red tide organisms by organo-clays].

    PubMed

    Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui

    2006-08-01

    We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.

  14. Illness associated with red tide--Nassau County, Florida, 2007.

    PubMed

    2008-07-04

    A "red tide" is a harmful algal bloom that occurs when toxic, microscopic algae in seawater proliferate to a higher-than-normal concentration (i.e., bloom), often discoloring the water red, brown, green, or yellow. Red tides can kill fish, birds, and marine mammals and cause illness in humans. Florida red tide is caused by the dinoflagellate Karenia brevis, which produces toxins called brevetoxins and is most commonly found in the Gulf of Mexico; however, K. brevis blooms also can occur along the Atlantic coast. On September 25, 2007, a cluster of respiratory illnesses was reported to the Nassau County Health Department (NCHD) in northeastern Florida. All of the ill persons were employed at a beach restoration worksite by a dredging company operating at Fernandina Beach; they reported symptoms of eye or respiratory irritation (e.g., coughing, sneezing, sniffling, and throat irritation). NCHD and the Florida Department of Health promptly conducted epidemiologic and environmental investigations and determined the illnesses likely were associated with exposure to a red tide along the Atlantic coast. These actions highlight the importance of rapid investigation of health concerns with potential environmental causes to enable timely notification of the public and prevent further illness.

  15. Wind Stress Forcing of the North Sea "Pole Tide"

    NASA Technical Reports Server (NTRS)

    OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.

    1998-01-01

    We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.

  16. Exploring Marine Science through the University of Delaware's TIDE camp

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  17. Librations and tides of icy satellites: model comparison for Enceladus

    NASA Astrophysics Data System (ADS)

    Trinh, A.; Van Hoolst, T.; Baland, R. M.; Beuthe, M.; Rivoldini, A.; Dehant, V. M. A.

    2015-12-01

    The latest measurements of the librations of Enceladus suggest that it could have a global subsurface ocean or a non-hydrostatic core (Thomas et al. 2014). Further observations should constrain the properties of the ice shell, and similar insights are expected from future investigation of Europa and Ganymede.Detailed models of the librations and tides are therefore required to properly interpret these measurements in terms of interior structure. Here we compare the `classical', separate tide and libration models (where spherical symmetry is assumed to compute the tides, Van Hoolst et al. 2013) with our combined tide+libration model (Trinh et al. 2013), both extended to account for non-hydrostatic structure.Even with a global ocean, different mechanisms act to prevent Enceladus's shell from moving independently from the rest. Among those, pressure coupling across the flattened boundaries of the ocean requires special care if the shape is not fully relaxed. We discuss how it should be modelled in the classical approach to be consistent with the combined model.

  18. Environmental Chemistry and Chemical Ecology of "Green Tide" Seaweed Blooms.

    PubMed

    Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L

    2015-09-01

    Green tides are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green tides consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green tides have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green tides take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-tide blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved

  19. Internal tide generation by abyssal hills using analytical theory

    NASA Astrophysics Data System (ADS)

    Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.

    2013-11-01

    Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.

  20. Personal exposure to aerosolized red tide toxins (brevetoxins).

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G

    2010-06-01

    Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.

  1. Dynamical significance of tides over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun

    2018-06-01

    Tides play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of tides over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without tides. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to tides leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that tides have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.

  2. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  3. Earth Observation

    2014-06-01

    ISS040-E-006327 (1 June 2014) --- A portion of International Space Station solar array panels and Earth?s horizon are featured in this image photographed by an Expedition 40 crew member on the space station.

  4. Global ocean tide models on the eve of Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1993-01-01

    Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best.

  5. Contributions to the Earth's Obliquity Rate, Precession, and Nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub 2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024 sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The effects have generally been allowed for in past nutation theories and some precession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta(psi) plus out-of-phase contributions of 0.14 mas in Delta(psi) and -0.03 mas in Delta(sub epsilon). The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C =0.003 273 763 4 which, in combination with a satellite-derived J(sub 2), gives a normalized polar moment of inertia C/MR(exp 2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from

  6. Contributions to the Earth's obliquity rate, precession, and nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The J(sub2) effects have generally been allowed for in past nutation theories and some procession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta phi plus out-of-phase contributions of 0.14 mas in Delta phi and -0.03 mas in Delta epsilon. The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C = 0.003 273 763 4 which, in combination with a satellite-derived J(sub2), gives a normalized polar moment of inertia C/MR(exp2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from tides

  7. The recognition of ocean red tide with hyper-spectral-image based on EMD

    NASA Astrophysics Data System (ADS)

    Zhao, Wencang; Wei, Hongli; Shi, Changjiang; Ji, Guangrong

    2008-05-01

    A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general picture data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.

  8. Some dinophycean red tide plankton species generate a superoxide scavenging substance.

    PubMed

    Sato, Emiko; Niwano, Yoshimi; Matsuyama, Yukihiko; Kim, Daekyung; Nakashima, Takuji; Oda, Tatsuya; Kohno, Masahiro

    2007-03-01

    Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.

  9. Simulation and video animation of canal flushing created by a tide gate

    Schoellhamer, David H.

    1988-01-01

    A tide-gate algorithm was added to a one-dimensional unsteady flow model that was calibrated, verified, and used to determine the locations of as many as five tide gates that would maximize flushing in two canal systems. Results from the flow model were used to run a branched Lagrangian transport model to simulate the flushing of a conservative constituent from the canal systems both with and without tide gates. A tide gate produces a part-time riverine flow through the canal system that improves flushing along the flow path created by the tide gate. Flushing with no tide gates and with a single optimally located tide gate are shown with a video animation.

  10. The Dynamics of Tide and Resonances in Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.

    2015-05-01

    In recent years, the planet formation theory and planetary system dynamics have become an important area of astronomy. With more details of exoplanets being found, many characteristics quite different from the solar system have been found in the exoplanetary systems. A large number of planets are found to be very close to their host star, and their periods are only a few days, which brings strong tidal dissipation with the star. Many period ratios of adjacent planets in multi-planetary systems are close to the simple integer ratios, which indicates that the planets are likely in the mean motion resonances (MMRs). The range of the angles between the orbital plane of the planets and the equatorial plane of their hosts expands from ≤sssim 7(°) for the planets in the solar system to 0(°) ˜ 180(°) , and some retrograde hot Jupiters exist. These new phenomena are testing out the traditional planetary formation theory and planetary system dynamics, but also provide an unprecedented opportunity for their further improvement and development. Based on these latest observational data and statistical features, the thesis investigates some special configurations combining the resonances and tidal dissipation by the way of planetary system dynamics. The thesis first reviews the primary applications and the latest progress in the tide as well as various resonances of exoplanets. Then it gives some tidal model derivations, including the classic one and most popular one, in order to understand the assumptions of the equilibrium tide. Meanwhile, the average rates of change of orbital elements under tidal dissipation are exhibited. By both numerical simulation and theoretical analysis, the following three questions are investigated: the evolution of the eccentricity of planets in the non-synchronous spin-orbit resonances, the characteristics of nearly 2:1 MMR and Laplace resonance under tidal dissipation, and the promoting role of the gravity of outer gas disk for exciting the

  11. Earth Observation

    2014-08-08

    ISS040-E-089959 (8 Aug. 2014) --- King Sound on the northwest coast of Australia is featured in this image photographed by an Expedition 40 crew member on the International Space Station. The Fitzroy River, one of Australia's largest, empties into the Sound, a large gulf in Western Australia (approximately 120 kilometers long). King Sound has the highest tides in Australia, in the range of 11-12 meters, the second highest in the world after the Bay of Fundy on the east coast of North America. The strong brown smudge at the head of the Sound contrasts with the clearer blue water along the rest of the coast. This is mud stirred up by the tides and also supplied by the Fitzroy River. The bright reflection point of the sun obscures the blue water of the Indian Ocean (top left). Just to the west of the Sound, thick plumes of wildfire smoke, driven by northeast winds, obscure the coastline. A wide field of “popcorn cumulus” clouds (right) is a common effect of daily heating of the ground surface.

  12. Curiosity Mars Rover First Image of Earth and Earth Moon

    2014-02-06

    The two bodies in this portion of an evening-sky view by NASA Mars rover Curiosity are Earth and Earth moon. The rover Mast Camera Mastcam imaged them in the twilight sky of Curiosity 529th Martian day, or sol Jan. 31, 2014.

  13. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    NASA Astrophysics Data System (ADS)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  14. TIDE: an intelligent home-based healthcare information & diagnostic environment.

    PubMed

    Abidi, S S

    1999-01-01

    The 21st century promises to usher in an era of Internet based healthcare services--Tele-Healthcare. Such services augur well with the on-going paradigm shift in healthcare delivery patterns, i.e. patient centred services as opposed to provider centred services and wellness maintenance as opposed to illness management. This paper presents a Tele-Healthcare info-structure TIDE--an 'intelligent' wellness-oriented healthcare delivery environment. TIDE incorporates two WWW-based healthcare systems: (1) AIMS (Automated Health Monitoring System) for wellness maintenance and (2) IDEAS (Illness Diagnostic & Advisory System) for illness management. Our proposal comes from an attempt to rethink the sources of possible leverage in improving healthcare; vis-à-vis the provision of a continuum of personalised home-based healthcare services that emphasise the role of the individual in self health maintenance.

  15. Evidence for infragravity wave-tide resonance in deep oceans.

    PubMed

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  16. A Tsunami-Focused Tide Station Data Sharing Framework

    NASA Astrophysics Data System (ADS)

    Kari, U. S.; Marra, J. J.; Weinstein, S. A.

    2006-12-01

    The Indian Ocean Tsunami of 26 December 2004 made it clear that information about tide stations that could be used to support detection and warning (such as location, collection and transmission capabilities, operator identification) are insufficiently known or not readily accessible. Parties interested in addressing this problem united under the Pacific Region Data Integrated Data Enterprise (PRIDE), and in 2005 began a multiyear effort to develop a distributed metadata system describing tide stations starting with pilot activities in a regional framework and focusing on tsunami detection and warning systems being developed by various agencies. First, a plain semantic description of the tsunami-focused tide station metadata was developed. The semantic metadata description was, in turn, developed into a formal metadata schema championed by International Tsunami Information Centre (ITIC) as part of a larger effort to develop a prototype web service under the PRIDE program in 2005. Under the 2006 PRIDE program the formal metadata schema was then expanded to corral input parameters for the TideTool application used by Pacific Tsunami Warning Center (PTWC) to drill down into wave activity at a tide station that is located using a web service developed on this metadata schema. This effort contributed to formalization of web service dissemination of PTWC watch and warning tsunami bulletins. During this time, the data content and sharing issues embodied in this schema have been discussed at various forums. The result is that the various stakeholders have different data provider and user perspectives (semantic content) and also exchange formats (not limited to just XML). The challenge then, is not only to capture all data requirements, but also to have formal representation that is easily transformed into any specified format. The latest revision of the tide gauge schema (Version 0.3), begins to address this challenge. It encompasses a broader range of provider and user

  17. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  18. Structure and Variability of Internal Tides in Luzon Strait

    DTIC Science & Technology

    2016-09-14

    suggestions of outside individuals or concerns which have been communicated to the Laboratory in confidence. This paper (does ) (does not X ) contain...generated where the barotropic tides force stratified water over underwater bathymetry, are thought to provide a significant fraction of the 2 TW of energy...required to maintain abyssal stratification and the meridional overturning circulation (Munk and Wunsch 1998). They contribute to oceanmixing through a

  19. Time-Frequency Analyses of Tide-Gauge Sensor Data

    PubMed Central

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors’ data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829

  20. Bottom friction optimization for a better barotropic tide modelling

    NASA Astrophysics Data System (ADS)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  1. Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.

  2. Time-frequency analyses of tide-gauge sensor data.

    PubMed

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.

  3. The enhanced nodal equilibrium ocean tide and polar motion

    NASA Technical Reports Server (NTRS)

    Sanchez, B. V.

    1979-01-01

    The tidal response of the ocean to long period forcing functions was investigated. The results indicate the possibility of excitation of a wobble component with the amplitude and frequency indicated by the data. An enhancement function for the equilibrium tide was postulated in the form of an expansion in zonal harmonics and the coefficients of such an expansion were estimated so as to obtain polar motion components of the required magnitude.

  4. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Withers, P.

    2017-12-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the

  5. Occultation of Epsilon Geminorum by Mars - Evidence for atmospheric tides

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Dunham, E.; Gierasch, P. J.; Veverka, J.; Church, C.; Sagan, C.

    1977-01-01

    Epsilon Geminorum occultation data obtained on April 8, 1976, with the aid of a 91-cm telescope aboard the NASA Kuiper Airborne Observatory have provided a basis for the determination of temperature, pressure, and number density profiles of the Martian atmosphere. The results concerning the temperature profiles are compared with those of Viking 1 reported by Nier et al. (1976) and with theoretical predictions of thermally driven tides in the Martian atmosphere made by Zurek (1976).

  6. Determination of Tide Heights from Airborne Bathymetric Data

    DTIC Science & Technology

    1989-12-01

    MEASUREMENT ERROR, A FORTRAN FUNCTION ............................. 60 v D. THE MEASUREMENT ERROR .......................... 61 E. THE REFERENCE PLANE ...soundings made to a chart datum. The chart datum is a "tide based" plane which usually corresponds to some mean of the low waters for the local tidal...regime. A low water plane is used so depths published on a nautical chart are shown in their least favorable aspect. If the chart datum is very

  7. Hydrodynamical simulations of strong tides in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Guillochon, James

    2013-07-01

    At the simplest level, gravitational sources are considered to be point-like and in solitude, with a radial force that falls off as r -2. In reality, all astrophysical objects aside from black holes are extended in space, and can be deformed by the tidal forces arising from the proximity of companion objects with large average densities. When these forces are weak, the response of an object to a tide can be through a decomposition into basis functions, but this approach fails when the tide is strong enough to deform an object by a distance equal to its own size. Under these circumstances, a hydrodynamical representation of the object is required to understand the true tidal response. In this thesis, we present a number of examples of physical systems in which tides dominate the dynamics. First, we consider the case of a star that encounters a supermassive black hole (SMBH) in a deeply penetrating encounter, resulting in a dramatic compression that produces shocks that would be observable in the X-ray. Second, we present the results of hydrodynamical simulations that demonstrate a new mechanism for igniting Type Ia supernovae from binary systems composed of two white dwarfs undergoing Roche-lobe overflow. Third, we investigate the survival prospects of giant planets that have been scattered into highly eccentricity orbits and are exposed to a strong tide applied by their parent star. Fourth, we systematically map the fallback rate resulting from the tidal disruptions of stars by SMBHs. Finally, we use what we have learned about the feeding rate to model determine the highest-likelihood model for an observed prototypical tidal disruption event.

  8. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  9. Acoustic Tomography in the Canary Basin: Meddies and Tides

    NASA Astrophysics Data System (ADS)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  10. Nordic Sea Level - Analysis of PSMSL RLR Tide Gauge data

    NASA Astrophysics Data System (ADS)

    Knudsen, Per; Andersen, Ole

    2015-04-01

    Tide gauge data from the Nordic region covering a period of time from 1920 to 2000 are evaluated. 63 stations having RLR data for at least 40 years have been used. Each tide gauge data record was averaged to annual averages after the monthly average seasonal anomalies were removed. Some stations lack data, especially before around 1950. Hence, to compute representative sea level trends for the 1920-2000 period a procedure for filling in estimated sea level values in the voids, is needed. To fill in voids in the tide gauge data records a reconstruction method was applied that utilizes EOF.s in an iterative manner. Subsequently the trends were computed. The estimated trends range from about -8 mm/year to 2 mm/year reflecting both post-glacial uplift and sea level rise. An evaluation of the first EOFs show that the first EOF clearly describes the trends in the time series. EOF #2 and #3 describe differences in the inter-annual sea level variability with-in the Baltic Sea and differences between the Baltic and the North Atlantic / Norwegian seas, respectively.

  11. Hurricanes, submarine groundwater discharge, and Florida's red tides

    Hu, C.; Muller-Karger, F. E.; Swarzenski, P.W.

    2006-01-01

    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ???1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29??N, 82-83??W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ???35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico. Copyright 2006 by the American Geophysical Union.

  12. Accuracy Assessment of Recent Global Ocean Tide Models around Antarctica

    NASA Astrophysics Data System (ADS)

    Lei, J.; Li, F.; Zhang, S.; Ke, H.; Zhang, Q.; Li, W.

    2017-09-01

    Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean tide models around Antarctica is poorer than those in deep oceans. Using tidal measurements from tide gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean tide models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8) is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region) are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.

  13. Review of Florida Red Tide and Human Health Effects

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  14. Modeling the tides of Massachusetts and Cape Cod Bays

    Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,

    1993-01-01

    A time-dependent, three-dimensional numerical modeling study of the tides of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. Tides in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 tide, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.

  15. Review of Florida Red Tide and Human Health Effects.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Walsh, Cathy J; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G

    2011-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

  16. Frontiers in Outreach and Education: The Florida Red Tide Experience.

    PubMed

    Nierenberg, Kate; Hollenbeck, Julie; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Currier, Robert; Kirkpatrick, Barbara

    2011-05-01

    To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project.

  17. Frontiers in Outreach and Education: The Florida Red Tide Experience

    PubMed Central

    Nierenberg, Kate; Hollenbeck, Julie; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Currier, Robert; Kirkpatrick, Barbara

    2011-01-01

    To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project. PMID:21532966

  18. Errors in Tsunami Source Estimation from Tide Gauges

    NASA Astrophysics Data System (ADS)

    Arcas, D.

    2012-12-01

    Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of tide gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the tide gauge site. This study demonstrates the inaccuracies incurred in source estimation using tide gauge data in conjunction with a linear combination procedure for tsunami source estimation.

  19. Hurricanes, submarine groundwater discharge, and Florida's red tides

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Muller-Karger, Frank E.; Swarzenski, Peter W.

    2006-06-01

    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ~1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29°N, 82-83°W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ~35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico.

  20. Internal tides in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Filonov, Anatoliy E.; LavíN, M. F.

    2003-05-01

    The characteristics of the internal tide in the Northern Gulf of California are described using data from two moored arrays of temperature and current sensors, one for summer and one for winter, located between Angel de la Guarda Island and the mainland. From the summer six-sensor mooring it was found that: (1) the current fluctuations are dominated by the semidiurnal frequency band, while the quarterdiurnal frequency dominated the temperature fluctuations. (2) The baroclinic semidiurnal horizontal current fluctuations are aligned with the gulf axis, and have amplitudes of 10-15 cm s-1; the vertical displacements reached 4 m in this frequency band. (3) The vertical modal structure for the temperature and velocity oscillations was dominated by the first and third modes. (4) The energy of the semidiurnal internal tide is 45% of that of the barotropic tide. (5) Vertical wave number spectra showed slightly asymmetric peaks in the high wave number components, indicating that their downflowing energy is larger than that flowing upward. From the winter two-sensor mooring, it was found that the vertical oscillations were mainly semidiurnal, with root mean square amplitudes of 7 m.

  1. Modelling the influence of tides on ice-shelf melt rates in the Amundsen Sea, Antarctica.

    NASA Astrophysics Data System (ADS)

    Jourdain, Nicolas C.; Molines, Jean-Marc; Le Sommer, Julien; Mathiot, Pierre; Chanut, Jérome; Madec, Gurvan

    2017-04-01

    Variations in melt beneath ice- shelves may trigger ice-sheet instabilities, in particular in West Antarctica. Therefore, improving the understanding and modelling of ice-shelf basal melt rates has been a major focus over the last decades. In this presentation, we provide further insight into the role of tides on basal melt rates, and we assess several methods to account for tides in models that do not include an explicit representation of tides. First, we use an explicit representation of tides in a regional configuration of the NEMO-3.6 model deployed over the Amundsen Sea. We show that most of the tidal influence on ice-shelf melt is explained by four tidal constituents. Tides enhance melt by more than 30% in some cavities like Abbot, Cosgrove and Dotson, but by less than 10% in others like Thwaites and Pine Island. Over the entire Amundsen Sea sector, tides enhance melt by 92 Gt/yr, which is mostly induced by tidal velocities along ice drafts (+148 Gt/yr), partly compensated by tide-induced change in thermal forcing (-31 Gt/yr) and co-variations between tidal velocities and thermal forcing (-26 Gt/yr). In the second part of this presentation, we show that using uniform tidal velocities to account for tides effects in ocean models with no explicit tides produces large biases in melt rates. By contrast, prescribing non-uniform tidal velocities allows an accurate representation of the dynamical effects of tides on melt rates.

  2. The gravitational self-interaction of the Earth's tidal bulge

    NASA Astrophysics Data System (ADS)

    Norsen, Travis; Dreese, Mackenzie; West, Christopher

    2017-09-01

    According to a standard, idealized analysis, the Moon would produce a 54 cm equilibrium tidal bulge in the Earth's oceans. This analysis omits many factors (beyond the scope of the simple idealized model) that dramatically influence the actual height and timing of the tides at different locations, but it is nevertheless an important foundation for more detailed studies. Here, we show that the standard analysis also omits another factor—the gravitational interaction of the tidal bulge with itself—which is entirely compatible with the simple, idealized equilibrium model and which produces a surprisingly non-trivial correction to the predicted size of the tidal bulge. Our analysis uses ideas and techniques that are familiar from electrostatics, and should thus be of interest to teachers and students of undergraduate E&M, Classical Mechanics (and/or other courses that cover the tides), and geophysics courses that cover the closely related topic of Earth's equatorial bulge.

  3. Analyses of the solid earth and ocean tidal perturbations on the orbits of the Geos 1 and Geos 2 satellites

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.; Marsh, J. G.; Agreen, R. W.

    1976-01-01

    Perturbations in the inclination of the Geos 1 and Geos 2 satellite orbits have been analyzed for the solid earth and ocean tide contributions. Precision reduced camera and Tranet Doppler observations spanning periods of over 600 days for each satellite were used to derive mean orbital elements. Perturbations due to the earth's gravity field, solar radiation pressure, and atmospheric drag were modeled, and the resulting inclination residuals were analyzed for tidal effects. The amplitudes of the observed total tidal effects were about 1.2 arc sec (36 m) in the inclination of Geos 1 and 4.5 arc sec (135 m) for Geos 2. The solid earth tides were then modeled by using the Love number 0.30. The resulting inclination residuals were then analyzed for ocean tide spherical harmonic parameters.

  4. Analysis of earth rotation solution from Starlette

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Cheng, M. K.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.

    1989-01-01

    Earth rotation parameter (ERP) solutions were derived from the Starlette orbit analysis during the Main MERIT Campaign, using a technique of a consider-covariance analysis to assess the effects of errors on the polar motion solutions. The polar motion solution was then improved through the simultaneous adjustment of some dynamical parameters representing identified dominant perturbing sources (such as the geopotential and ocean-tide coefficients) on the polar motion solutions. Finally, an improved ERP solution was derived using the gravity field model, PTCF1, described by Tapley et al. (1986). The accuracy of the Starlette ERP solution was assessed by a comparison with the LAGEOS-derived ERP solutions.

  5. Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Mitchell, N. J.; Stockwell, R. G.; Fuller, B.; Vandepeer, B.; Hormaechea, J.; Brunini, C.; Levato, H.

    2010-09-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ˜24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ˜20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ˜30 days.

  6. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    One hundred sets of mean elements of GEOS-3 computed at 2-day intervals yielded observation equations for the M sub 2 ocean tide from the long periodic variations of the inclination and node of the orbit. The 2nd degree Love number was given the value k sub 2 = 0.30 and the solid tide phase angle was taken to be zero. Combining obtained equations with results for the satellite 1967-92A gives the M sub 2 ocean tide parameter values. Under the same assumption of zero solid tide phase lag, the lunar tidal acceleration was found mostly due to the C sub 22 term in the expansion of the M sub 2 tide with additional small contributions from the 0 sub 1 and N sub 2 tides. Using Lambeck's (1975) estimates for the latter, the obtained acceleration in lunar longitudal in excellent agreement with the most recent determinations from ancient and modern astronomical data.

  7. [Retrieve of red tide distributions from MODIS data based on the characteristics of water spectrum].

    PubMed

    Qiu, Zhong-Feng; Cui, Ting-Wei; He, Yi-Jun

    2011-08-01

    After comparing the spectral differences between red tide water and normal water, we developed a method to retrieve red tide distributions from MODIS data based on the characteristics of red tide water spectrum. The authors used the 119 series of in situ observations to validate the method and found that only one observation has not been detected correctly. The authors then applied this method to MODIS data on April 4, 2005. In the research areas three locations of red tide water were apparently detected with the total areas about 2 000 km2. The retrieved red tide distributions are in good agreement with the distributions of high chlorophyll a concentrations. The research suggests that the method is available to eliminating the influence of suspended sediments and can be used to retrieve the locations and areas of red tide water.

  8. Earth Wisdom.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    1985-01-01

    In our human-centered ignorance and arrogance we are rapidly destroying the earth. We must start helping people understand the big picture of ecological concepts. What these concepts mean for our own lives and how we must begin to change our lifestyles in order to live more harmoniously with the earth. (JHZ)

  9. Earth Science

    1976-01-01

    The LAGEOS I (Laser Geodynamics Satellite) was developed and launched by the Marshall Space Flight Center on May 4, 1976 from Vandenberg Air Force Base, California . The two-foot diameter satellite orbited the Earth from pole to pole and measured the movements of the Earth's surface.

  10. Variation in sulfur dioxide emissions related to earth tides, Halemaumau crater, Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Connor, Charles B.; Stoiber, Richard E.; Malinconico, Lawrence L., Jr.

    1988-01-01

    Variation in SO2 emissions from Halemaumau crater, Kilauea volcano, Hawaii is analyzed using a set of techniques known as exploratory data analysis. SO2 flux was monitored using a correlation spectrometer. A total of 302 measurements were made on 73 days over a 90-day period. The mean flux was 171 t/d with a standard deviation of 52 t/d. A significant increase in flux occurs during increased seismic activity beneath the caldera. SO2 flux prior to this change varies in a systematic way and may be related to variation in the tidal modulation envelope.

  11. Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruit-bodies content of Pleurotus ostreatus and Cyclocybe cylindracea.

    PubMed

    Koutrotsios, Georgios; Danezis, Georgios P; Georgiou, Constantinos A; Zervakis, Georgios I

    2018-04-20

    Concentrations of 16 rare earth elements (REEs) and two actinides were determined for the first time both in cultivated mushrooms and in their production substrates by inductively coupled plasma mass spectroscopy. Moreover, the effect of REEs on cultivation parameters and composition of the final product was assessed, together with their potential use for authentication purposes. The concentrations of REEs varied greatly among seven cultivation substrates and correlated with measurements in Cyclocybe cylindracea mushrooms; no such correlation was established in Pleurotus ostreatus. Reduction of hemicellulose, cellulose, and lignin in substrates during P. ostreatus cultivation was positively correlated with REE concentrations, which also affected the production performance depending on the species examined. In all cases, a negative correlation was established between bioconcentration factors (BCF) in mushrooms and REE content in substrates, while the effect of substrate composition on BCF values varied according to the element studied. The estimated daily intake values of REEs through mushroom consumption was at much lower levels than those reported as potentially harmful for human health. The content of REEs in cultivation substrates and in mushrooms revealed that the bioaccumulation of elements differed in each fungus. The nature/origin of substrates seemed to affect the concentration of REEs in mushrooms to a considerable extent. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. How Stationary Are the Internal Tides in a High-Resolution Global Ocean Circulation Model?

    DTIC Science & Technology

    2014-05-12

    Egbert et al., 1994] and that the model global internal tide amplitudes compare well with an altimetric-based tidal analysis [Ray and Byrne, 2010]. The... analysis [Foreman, 1977] applied to the HYCOM total SSH. We will follow Shriver et al. [2012], analyzing the tides along satellite altimeter tracks...spots,’’ the comparison between the model and altimetric analysis is not as good due, in part, to two prob- lems, errors in the model barotropic tides and

  13. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters.

  14. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    NASA Astrophysics Data System (ADS)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  15. Assessing the importance of internal tide scattering in the deep ocean

    NASA Astrophysics Data System (ADS)

    Haji, Maha; Peacock, Thomas; Carter, Glenn; Johnston, T. M. Shaun

    2014-11-01

    Tides are one of the main sources of energy input to the deep ocean, and the pathways of energy transfer from barotropic tides to turbulent mixing scales via internal tides are not well understood. Large-scale (low-mode) internal tides account for the bulk of energy extracted from barotropic tides and have been observed to propagate over 1000 km from their generation sites. We seek to examine the fate of these large-scale internal tides and the processes by which their energy is transferred, or ``scattered,'' to small-scale (high-mode) internal tides, which dissipate locally and are responsible for internal tide driven mixing. The EXperiment on Internal Tide Scattering (EXITS) field study conducted in 2010-2011 sought to examine the role of topographic scattering at the Line Islands Ridge. The scattering process was examined via data from three moorings equipped with moored profilers, spanning total depths of 3000--5000 m. The results of our field data analysis are rationalized via comparison to data from two- and three-dimensional numerical models and a two-dimensional analytical model based on Green function theory.

  16. Estimates of Internal Tide Energy Fluxes from Topex/Poseidon Altimetry: Central North Pacific

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Cartwright, David E.; Smith, David E. (Technical Monitor)

    2000-01-01

    Energy fluxes for first-mode M(sub 2) internal tides are deduced throughout the central North Pacific Ocean from Topex/Poseidon satellite altimeter data. Temporally coherent internal tide signals in the altimetry, combined with climatological hydrographic data, determine the tidal displacements, pressures, and currents at depth, which yield power transmission rates. For a variety of reasons the deduced rates should be considered lower bounds. Internal tides were found to emanate from several large bathymetric structures, especially the Hawaiian Ridge, where the integrated flux amounts to about six gigawatts. Internal tides are generated at the Aleutian Trench near 172 deg west and propagate southwards nearly 2000 km.

  17. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  18. Risk in daily newspaper coverage of red tide blooms in Southwest Florida

    PubMed Central

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter

    2016-01-01

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red tide itself in terms of environmental risk, tourism risk, and public health risk. The study found that red tide news coverage is most often framed as an environmental story. PMID:27087790

  19. The influence of tide on sea surface temperature in the marginal sea of northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Jen; Tsai, Yun-Chan; Ho, Chung-Ru; Lo, Yao-Tsai; Kuo, Nan-Jung

    2017-10-01

    Tide gauge data provided by the University of Hawaii Sea Level Center and daily sea surface temperature (SST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) product are used in this study to analyze the influence of tide on the SST in the seas of Northwestern Pacific. In the marginal region, the climatology SST is lower in the northwestern area than that in the southeastern area. In the coastal region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In the adjacent waters of East China Sea and Yellow Sea, the SST at spring tide is higher than that at neap tide in winter and summer but it is lower in spring and autumn. In the open ocean region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In conclusion, not only the river discharge and topography, but also tides could influence the SST variations, especially in the open ocean region.

  20. Risk in daily newspaper coverage of red tide blooms in Southwest Florida.

    PubMed

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G; Kirkpatrick, Barbara; Fleming, Lora E; Hoagland, Porter

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red tide itself in terms of environmental risk, tourism risk, and public health risk. The study found that red tide news coverage is most often framed as an environmental story.

  1. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  2. Long term evolution of distant retrograde orbits in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bezrouk, Collin; Parker, Jeffrey S.

    2017-09-01

    This work studies the evolution of several Distant Retrograde Orbits (DROs) of varying size in the Earth-Moon system over durations up to tens of millennia. This analysis is relevant for missions requiring a completely hands off, long duration quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. Four DROs are selected from four stable size regions and are propagated for up to 30,000 years with an integrator that uses extended precision arithmetic techniques and a high fidelity dynamical model. The evolution of the orbit's size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are tracked. It has been found that small DROs, with minor axis amplitudes of approximately 45,000 km or less decay in size and period largely due to the Moon's solid tides. Larger DROs (62,000 km and up) are more influenced by the gravity of bodies external to the Earth-Moon system, and remain bound to the Moon for significantly less time.

  3. Ancient Earth, Alien Earths Event

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  4. "No former travellers having attained such a height on the Earth's surface": Instruments, inscriptions, and bodies in the Himalaya, 1800-1830.

    PubMed

    Fleetwood, Lachlan

    2018-03-01

    East India Company surveyors began gaining access to the high Himalaya in the 1810s, at a time when the mountains were taking on increasing political significance as the northern borderlands of British India. Though never as idiosyncratic as surveyors insisted, these were spaces in which instruments, fieldbook inscriptions, and bodies were all highly prone to failure. The ways surveyors managed these failures (both rhetorically and in practice) demonstrate the social performances required to establish credible knowledge in a world in which the senses were scrambled. The resulting tensions reveal an ongoing disconnect in understanding between those displaced not only from London, but also from Calcutta, something insufficiently emphasized in previous histories of colonial science. By focusing on the early nineteenth century, often overlooked in favor of the later period, this article shows the extent to which the scientific, imaginative, and political constitution of the Himalaya was haphazard and contested.

  5. Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick

    2017-12-01

    The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.

  6. Using omeprazole to link the components of the post-prandial alkaline tide in the spiny dogfish, Squalus acanthias.

    PubMed

    Wood, Chris M; Schultz, Aaron G; Munger, R Stephen; Walsh, Patrick J

    2009-03-01

    After a meal, dogfish exhibit a metabolic alkalosis in the bloodstream and a marked excretion of basic equivalents across the gills to the external seawater. We used the H(+), K(+)-ATPase pump inhibitor omeprazole to determine whether these post-prandial alkaline tide events were linked to secretion of H(+) (accompanied by Cl(-)) in the stomach. Sharks were fitted with indwelling stomach tubes for pretreatment with omeprazole (five doses of 5 mg omeprazole per kilogram over 48 h) or comparable volumes of vehicle (saline containing 2% DMSO) and for sampling of gastric chyme. Fish were then fed an involuntary meal by means of the stomach tube consisting of minced flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Omeprazole pre-treatment delayed the post-prandial acidification of the gastric chyme, slowed the rise in Cl(-) concentration of the chyme and altered the patterns of other ions, indicating inhibition of H(+) and accompanying Cl(-) secretion. Omeprazole also greatly attenuated the rise in arterial pH and bicarbonate concentrations and reduced the net excretion of basic equivalents to the water by 56% over 48 h. Arterial blood CO(2) pressure (Pa(CO(2))) and plasma ions were not substantially altered. These results indicate that elevated gastric H(+) secretion (as HCl) in the digestive process is the major cause of the systemic metabolic alkalosis and the accompanying rise in base excretion across the gills that constitute the alkaline tide in the dogfish.

  7. The alkaline tide goes out and the nitrogen stays in after feeding in the dogfish shark, Squalus acanthias.

    PubMed

    Wood, Chris M; Bucking, Carol; Fitzpatrick, John; Nadella, Sunita

    2007-11-15

    In light of previous work showing a marked metabolic alkalosis ("alkaline tide") in the bloodstream after feeding in the dogfish shark (Squalus acanthias), we evaluated whether there was a corresponding net base excretion to the water at this time. In the 48 h after a natural voluntary meal (teleost tissue, averaging 5.5% of body weight), dogfish excreted 10,470 micromol kg(-1) more base (i.e. HCO3- equivalents) than the fasted control animals (which exhibited a negative base excretion of -2160 micromol kg(-1)). This large activation of branchial base excretion after feeding thereby prevented a potentially fatal alkalinization of the body fluids by the alkaline tide. The rate peaked at 330 micromol kg(-1) h(-1) at 12.5-24 h after the meal. Despite a prolonged 1.7-fold elevation in MO2 after feeding ("specific dynamic action"), urea-N excretion decreased by 39% in the same 48 h period relative to fasted controls. In contrast, ammonia-N excretion did not change appreciably. The N/O2 ratio declined from 0.51 in fasted animals to 0.19 in fed sharks, indicating a stimulation of N-anabolic processes at this time. These results, which differ greatly from those in teleost fish, are interpreted in terms of the fundamentally different ureotelic osmoregulatory strategy of elasmobranchs, and recent discoveries on base excretion and urea-retention mechanisms in elasmobranch gills.

  8. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2017-10-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides.Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography.In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time.2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from “appropriately quiet” Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the

  9. The San Juan Delta, Colombia: tides, circulations, and salt dispersion

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Kjerfve, Björn

    2002-05-01

    The San Juan River delta (Colombia) with an area of 800 km 2 is the largest delta environment on the Pacific coast of South America. It consists of active distributaries maintained by an average discharge of 2500 m 3 s -1, is tide dominated, and has relatively narrow estuarine mixing zones <17 km wide and typically ˜7 km wide. Water level and current time series in two distributary mouths indicate that the tide is semidiurnal with a form number 0.1-0.2 and a mean range of 3 m. Processes at tidal frequencies explain 75-95% of the water level variability with the remaining low-frequency variability attributed to meteorological forcing and river processes. The tidal phase for the main diurnal and semidiurnal constituents progress from north to south along the coast. Only the southernmost distributary experiences significant tidal asymmetry as a result of strong river discharge and shallow depths. In the northernmost distributary, shallow water constituents are insignificant. Tidal currents were more semidiurnal than the water level, with form number 0.09-0.13. Tidal ellipses indicated that currents were aligned with the channels and mean amplitudes <1 m s -1. In the delta distributaries, circulation modes varied from seaward flow at all depths during intermediate runoff conditions to gravitational circulation during rising and high discharge periods. In San Juan and Chavica distributaries, the currents were ebb-directed, while in Charambirá they were flood-directed. The circulation appears to be controlled by the morphology of the distributaries, which were weakly stratified and only sometimes moderately stratified. The net salt transport was directed seaward in San Juan and Charambirá, and landward at Chavica, indicating an imbalance in the salt budget, and signifying non-steady state behavior. The net longitudinal salt flux in the San Juan delta is largely a balance between ebb-directed advective flux, and flood-directed tidal sloshing. Along the distributary

  10. TOPEX/POSEIDON tides estimated using a global inverse model

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.

    1994-01-01

    Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better

  11. Investigations of Tides from the Antiquity to Laplace

    NASA Astrophysics Data System (ADS)

    Deparis, Vincent; Legros, Hilaire; Souchay, Jean

    Tidal phenomena along the coasts were known since the prehistoric era, but a long journey of investigations through the centuries was necessary from the Greco-Roman Antiquity to the modern era to unravel in a quasi-definitive way many secrets of the ebb and flow. These investigations occupied the great scholars from Aristotle to Galileo, Newton, Euler, d'Alembert, Laplace, and the list could go on. We will review the historical steps which contributed to an increasing understanding of the tides.

  12. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-07-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein, we propose a scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semimajor axis of 4Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the PKDGRAV package with a soft-sphere discrete element method to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best matching to the shape of Toutatis at an approaching distance rp = 1.4-1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  13. Earth Observation

    2013-08-20

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Looking southwest over northern Africa. Libya, Algeria, Niger.

  14. Earth Observation

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. On crewmember's Flickr page - Look straight down into an aurora.

  15. Earth Observation

    2014-06-07

    ISS040-E-008174 (7 June 2014) --- Layers of Earth's atmosphere, brightly colored as the sun rises, are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  16. Earth Observation

    2014-06-02

    ISS040-E-006817 (2 June 2014) --- Intersecting the thin line of Earth's atmosphere, International Space Station solar array wings are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  17. Earth Science

    1992-07-18

    Workers at Launch Complex 17 Pad A, Kennedy Space Center (KSC) encapsulate the Geomagnetic Tail (GEOTAIL) spacecraft (upper) and attached payload Assist Module-D upper stage (lower) in the protective payload fairing. GEOTAIL project was designed to study the effects of Earth's magnetic field. The solar wind draws the Earth's magnetic field into a long tail on the night side of the Earth and stores energy in the stretched field lines of the magnetotail. During active periods, the tail couples with the near-Earth magnetosphere, sometimes releasing energy stored in the tail and activating auroras in the polar ionosphere. GEOTAIL measures the flow of energy and its transformation in the magnetotail and will help clarify the mechanisms that control the imput, transport, storage, release, and conversion of mass, momentum, and energy in the magnetotail.

  18. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  19. Earth Observation

    2014-05-31

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: CEO - Arena de Sao Paolo. View used for Twitter message: Cloudy skies over São Paulo Brazil

  20. Earth Observation

    2013-07-26

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Never tire of finding shapes in the clouds! These look very botanical to me. Simply perfect.

  1. Earth Observation

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of a solar array is also visible.

  2. Earth Science

    1990-10-24

    Solar Vector Magnetograph is used to predict solar flares, and other activities associated with sun spots. This research provides new understanding about weather on the Earth, and solar-related conditions in orbit.

  3. Earth Observation

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Perhaps a dandelion losing its seeds in the wind? Love clouds!

  4. Earth Observation

    2014-06-27

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Part of Space Station Remote Manipulator System (SSRMS) is visible. Folder lists this as: the Middle East, Israel.

  5. Earth Observations

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  6. A stacking method and its applications to Lanzarote tide gauge records

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta

    2009-12-01

    A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.

  7. Three-Dimensional Dynamics of Baroclinic Tides Over a Seamount

    NASA Astrophysics Data System (ADS)

    Vlasenko, Vasiliy; Stashchuk, Nataliya; Nimmo-Smith, W. Alex M.

    2018-02-01

    The Massachusetts Institute of Technology general circulation model is used for the analysis of baroclinic tides over Anton Dohrn Seamount (ADS), in the North Atlantic. The model output is validated against in situ data collected during the 136th cruise of the RRS "James Cook" in May-June 2016. The observational data set includes velocity time series recorded at two moorings as well as temperature, salinity, and velocity profiles collected at 22 hydrological stations. Synthesis of observational and model data enabled the reconstruction of the details of baroclinic tidal dynamics over ADS. It was found that the baroclinic tidal waves are generated in the form of tidal beams radiating from the ADS periphery to its center, focusing tidal energy in a surface layer over the seamount's summit. This energy focusing enhances subsurface water mixing and the local generation of internal waves. The tidal beams interacting with the seasonal pycnocline generate short-scale internal waves radiating from the ADS center. An important ecological outcome from this study concerns the pattern of residual currents generated by tides. The rectified flows over ADS have the form of a pair of dipoles, cyclonic and anticyclonic eddies located at the seamount's periphery. These eddies are potentially an important factor in local larvae dispersion and their escape from ADS.

  8. Global ocean tide mapping using TOPEX/Poseidon altimetry

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Cartwright, D. E.; Estes, R. H.; Williamson, R. G.; Colombo, O. L.

    1991-01-01

    The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.

  9. Inland Transport of Aerosolized Florida Red Tide Toxins.

    PubMed

    Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A; Fleming, Lora E; Reich, Andrew; Naar, Jerome; Kirkpatrick, Gary; Backer, Lorraine C; Baden, Daniel

    2010-02-01

    Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

  10. [Spectrum simulation based on data derived from red tide].

    PubMed

    Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi

    2011-11-01

    The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.

  11. DEM, tide and velocity over sulzberger ice shelf, West Antarctica

    Baek, S.; Shum, C.K.; Lee, H.; Yi, Y.; Kwoun, Oh-Ig; Lu, Z.; Braun, Andreas

    2005-01-01

    Arctic and Antarctic ice sheets preserve more than 77% of the global fresh water and could raise global sea level by several meters if completely melted. Ocean tides near and under ice shelves shifts the grounding line position significantly and are one of current limitations to study glacier dynamics and mass balance. The Sulzberger ice shelf is an area of ice mass flux change in West Antarctica and has not yet been well studied. In this study, we use repeat-pass synthetic aperture radar (SAR) interferometry data from the ERS-1 and ERS-2 tandem missions for generation of a high-resolution (60-m) Digital Elevation Model (DEM) including tidal deformation detection and ice stream velocity of the Sulzberger Ice Shelf. Other satellite data such as laser altimeter measurements with fine foot-prints (70-m) from NASA's ICESat are used for validation and analyses. The resulting DEM has an accuracy of-0.57??5.88 m and is demonstrated to be useful for grounding line detection and ice mass balance studies. The deformation observed by InSAR is found to be primarily due to ocean tides and atmospheric pressure. The 2-D ice stream velocities computed agree qualitatively with previous methods on part of the Ice Shelf from passive microwave remote-sensing data (i.e., LANDSAT). ?? 2005 IEEE.

  12. Internal tides and vertical mixing over the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.

    2008-03-01

    Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.

  13. Florida Red Tides, Manatee Brevetoxicosis, and Lung Models

    PubMed Central

    Kirkpatrick, Barbara; Colbert, Debborah E.; Dalpra, Dana; Newton, Elizabeth A. C.; Gaspard, Joseph; Littlefield, Brandi; Manire, Charles

    2010-01-01

    In 1996, 149 Florida manatees, Trichechus manatus latirostris, died along the southwest coast of Florida. Necropsy pathology results of these animals indicated that brevetoxin from the Florida red tide, Karenia brevis, caused their death. A red tide bloom had been previously documented in the area where these animals stranded. The necropsy data suggested the mortality occurred from chronic inhalation and/or ingestion. Inhalation theories include high doses of brevetoxin deposited/stored in the manatee lung or significant manatee sensitivity to the brevetoxin. Laboratory models of the manatee lungs can be constructed from casts of necropsied animals for further studies; however, it is necessary to define the breathing pattern in the manatee, specifically the volumes and flow rates per breath to estimate toxin deposition in the lung. To obtain this information, two captive-born Florida manatees, previously trained for husbandry and research behaviors, were trained to breathe into a plastic mask placed over their nares. The mask was connected to a spirometer that measured volumes and flows in situ. Results reveal high volumes, short inspiratory and expiratory times and high flow rates, all consistent with observed breathing patterns. PMID:26448968

  14. Research on red tide occurrences using enclosed experimental ecosystems in west Xiamen Harbor, China—Relationship between various factors and red tide occurrences

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Harrison, P. J.

    2000-06-01

    A series of enclosed ecosystem experiments were conducted in a land-based tank near the seaside of West Xiamen Harbor. The results of experiments conducted in different seasons and years showed a repeatable phytoplankton succession. In this relatively stable ecosystem with added nutrients and trace metals, diatoms dominated initially, dinoflagellates dominated in the later stage, and dinoflagellate red tides eventually occurred. Vitamin B12 enrichment may speed up this succession process. Stirring the water column could stop this process. Soluble Mn at a level of 3 4 μg/L in seawater, which also is the existing concentration of soluble Mn in Xiamen Harbor seawater, is sufficient for the multiplication of algae and occurrence of red tide. The present study showed that excessive soluble Mn in Xiamen Harbor cannot cause red tide, and that Fe was one of the important factors causing diatiom red tide in this present study.

  15. Earth - Moon Conjunction

    NASA Technical Reports Server (NTRS)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  16. Crescent Earth and Moon

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  17. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  18. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  19. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  20. The Miocene Sommières basin, SE France: Bioclastic carbonates in a tide-dominated depositional system

    NASA Astrophysics Data System (ADS)

    Reynaud, Jean-Yves; James, Noël P.

    2012-12-01

    The Miocene Sommières Basin in SE France is a semi-enclosed depression that was connected to the Mediterranean Sea by a flooded paleo-incised valley and then filled by a suite of sediments comprising carbonate grains coming from temperate factories that were largely deposited in tidal-dominated paleoenvironments. The strata are partitioned into two sequences that reflect repeated flooding of the incised valley system, one of several similar situations in this region of France. The carbonate grains are mostly bioclasts, namely from barnacles, bryozoans, coralline algae (encrusting, branching, and rhodoliths), echinoids, and benthic foraminifers (large and small) with ostracods, sponge spicules and planktic foraminifers prominent in muddy facies. Particles were produced by shallow water carbonate factories on hard substrates (valley walls in particular), associated with subaqueous dunes, and in deeper water basinal settings. Each depositional sequence is underlain by an eroded and bored hard surface that is progressively overlain by TST subaqueous tidal dunes or storm deposits that grade up, in one case, into HST marls (the HST of the upper sequence has been removed by erosion). The lower sequence is ebb tide dominated whereas the upper sequence is flood tide dominated. The succession is interpreted to represent a TST whose tidal currents were focused by the narrow valley and a HST that reflected flooding of the overbanks. This stratigraphic and depositional motif is comparable to that in other spatially separated Neogene paleovalleys that are filled with tide-dominated clastic carbonates in the region. Together with other recently documented similar systems, these limestones constitute an important new group of carbonate sand bodies in the carbonate depositional realm.

  1. Pacific Northwest tide channel utilization by fish as an ecosystem service - August 2013

    EPA Science Inventory

    Background/Question/Methods: Saltwater marsh tide channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of tide channels in Pacific Northwest estuaries has r...

  2. Pacific Northwest tide channel utilization by fish as an ecosystem service

    EPA Science Inventory

    Background/Question/Methods: Saltwater marsh tide channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of tide channels in Pacific Northwest estuaries has ...

  3. Risk in Daily Newspaper Coverage of Red Tide Blooms in Southwest Florida

    ERIC Educational Resources Information Center

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter

    2015-01-01

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an…

  4. Tidal distortion caused by the resonance of sexta-diurnal tides in a micromesotidal embayment

    NASA Astrophysics Data System (ADS)

    Song, Dehai; Yan, Yuhan; Wu, Wen; Diao, Xiliang; Ding, Yang; Bao, Xianwen

    2016-10-01

    Double high water and double-peak flood current were observed in Daya Bay (DYB), China, which is a shallow, mixed, mainly semidiurnal-tide dominated bay with a micro to mesotidal range. Harmonic analysis reveals that the quarter and especially the sexta-diurnal constituents are getting much stronger as tides propagating into the bay. The astronomical tides-induced tidal asymmetry is yet dominant at the bay entrance but overtaken by the sexta-diurnal tides at the end of the bay. Both the M4 and M6 tide meet the requirement proposed in previous studies but still unable to produce a double high water alone. Therefore, the conditions to produce a double high water between a fundamental tide and its higher harmonics need to be revisited. Analytical solutions were obtained in this paper, which fit the numerical solutions very well. Modeling result indicates M6 alone with M2 can produce the double high water in DYB but limited in some regions, while the combination of M2, M4, and M6 tides would enhance the capability. The amplification of sexta-diurnal tides in DYB is dominated by resonance and followed by shoaling effect. Bottom friction damped M6 a lot and largely confined its amplification. However, the quadratic friction and other nonlinear processes are just responsible for about 10% of the total M6 increase.

  5. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M; Studts, Jamie

    2014-02-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis , occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and 'snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods.

  6. HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong.

    PubMed

    Wong, C Kwan; Wong, C Kim

    2003-09-01

    A red tide was detected in the inner parts of Tolo Harbour, Hong Kong, in November 2000. Water samples were collected from a fixed station at the centre of the red tide patch for microscopic analysis of phytoplankton community composition and high performance liquid chromatography (HPLC) analysis of phytoplankton pigments. At the peak of the red tide on 24 November 2000, phytoplankton was dominated by the dinoflagellate Scrippsiella trochoidea. The red tide began to decline at the end of November and, by 1 December 2000, the phytoplankton was dominated by diatoms. Chlorophylls and carotenoids in water samples were analysed using HPLC pigment separation technique. Dinoflagellates were indicated by the signature pigment peridinin. Significant correlation (r=0.999) was found between the peridinin concentration and dinoflagellate density. A decrease in peridinin and an increase in fucoxanthin, a major carotenoid in diatoms, marked the shift in phytoplankton composition at the end of the red tide. HPLC analysis also revealed the occurrence of minor phytoplankton groups that are difficult to identify by light microscopy. Red tide monitoring and study of red tide dynamics in Hong Kong have been based on cell counting and spectrophotometric or fluorometric measurement of chlorophyll a. HPLC pigment analysis provides an effective alternative for investigating phytoplankton dynamics during red tide and other algal blooms.

  7. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed Central

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M.; Studts, Jamie

    2013-01-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and ‘snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods. PMID:24563634

  8. The Effect of Barotropic and Baroclinic Tides on Coastal Stratification and Mixing

    NASA Astrophysics Data System (ADS)

    Suanda, S. H.; Feddersen, F.; Kumar, N.

    2017-12-01

    The effects of barotropic and baroclinic tides on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no tides (NT) is compared to two simulations with the addition of predominantly barotropic local tides (LT) and with combined barotropic and remotely generated, baroclinic tides (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic tides (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic tide destroys stratification an order of magnitude faster than barotropic tides. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic tides is comparable to the magnitude of the observed seasonal cycle of stratification.

  9. Tidal asymmetry in a tidal creek with mixed mainly semidiurnal tide, Bushehr Port, Persian Gulf

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Taleb; Chegini, Vahid; Sadrinasab, Masoud; Siadatmousavi, Seyed Mostafa; Yari, Sadegh

    2016-03-01

    This study investigated the tidal asymmetry imposed by both the interaction of principal tides and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal tide in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad tides K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal tides produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap tides respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap tides in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring tide, the water level flooded slowly close to the HW time of the spring tide.

  10. Earth Observation

    2012-07-15

    ISS032-E-008976 (15 July 2012) --- Saharan dust reaching the Americas is featured in this image photographed by an Expedition 32 crew member on the International Space Station. Weather satellites frequently document major dust palls blowing from the Sahara Desert westward from Africa out into the tropical Atlantic Ocean. Space station crew members frequently see these Saharan dust masses as very widespread atmospheric haze. Dust palls blowing from Africa can be transported right across the Atlantic Ocean. It takes about a week to reach either North America (in northern hemisphere summer) or South America (in northern hemisphere winter). This puts the Caribbean basin on the receiving end of many of these events. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The margin of the hazy air in this image reaches as far as Haiti (top center) and the nearby Turks and Caicos Islands (top left) ? but the eastern tip of Cuba in the foreground remains in the clear air.

  11. Ancient Earth, Alien Earths Event

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  12. Ancient Earth, Alien Earths Event

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  13. Ancient Earth, Alien Earths Event

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  14. Environmental exposures to Florida red tides: Effects on emergency room respiratory diagnoses admissions.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Backer, Lorraine C; Bean, Judy A; Tamer, Robert; Kirkpatrick, Gary; Kane, Terrance; Wanner, Adam; Dalpra, Dana; Reich, Andrew; Baden, Daniel G

    2006-10-01

    Human exposure to Florida red tides formed by Karenia brevis, occurs from eating contaminated shellfish and inhaling aerosolized brevetoxins. Recent studies have documented acute symptom changes and pulmonary function responses after inhalation of the toxic aerosols, particularly among asthmatics. These findings suggest that there are increases in medical care facility visits for respiratory complaints and for exacerbations of underlying respiratory diseases associated with the occurrence of Florida red tides.This study examined whether the presence of a Florida red tide affected the rates of admission with a respiratory diagnosis to a hospital emergency room in Sarasota, FL. The rate of respiratory diagnoses admissions were compared for a 3-month time period when there was an onshore red tide in 2001 (red tide period) and during the same 3-month period in 2002 when no red tide bloom occurred (non-red tide period). There was no significant increase in the total number of respiratory admissions between the two time periods. However, there was a 19% increase in the rate of pneumonia cases diagnosed during the red tide period compared with the non-red tide period. We categorized home residence zip codes as coastal (within 1.6 km from the shore) or inland (>1.6 km from shore). Compared with the non-red tide period, the coastal residents had a significantly higher (54%) rate of respiratory diagnoses admissions than during the red tide period. We then divided the diagnoses into subcategories (i.e. pneumonia, bronchitis, asthma, and upper airway disease). When compared with the non-red tide period, the coastal zip codes had increases in the rates of admission of each of the subcategories during the red tide period (i.e. 31, 56, 44, and 64%, respectively). This increase was not observed seen in the inland zip codes.These results suggest that the healthcare community has a significant burden from patients, particularly those who live along the coast, needing emergency

  15. Secular Changes in the Solar Semidiurnal Tide of the Western North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2009-01-01

    An analysis of twentieth century tide gauge records reveals that the solar semidiurnal tide S, has been decreasing in amplitude along the eastern coast of North America and at the mid-ocean site Bermuda. In relative terms the observed rates are unusually large, of order 10% per century. Periods of greatest change, however, are inconsistent among the stations, and roughly half the stations show increasing amplitude since the late 1990s. Excepting the Gulf of Maine, lunar tides are either static or slightly increasing in amplitude; a few stations show decreases. Large changes in solar, but not lunar, tides suggest causes related to variable radiational forcing, but the hypothesis is at present unproven. Citation: Ray, R. D. (2009), Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean

  16. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    Observation equations for the M2 ocean tide are computed from Geos 3 data for the long periodic variations of the inclination and node of the orbit. M2 ocean tide parameter values C22+ = 3.23 + or - 0.25 cm, epsilon 22+ = 331 + or - 6 deg, and epsilon 42+ = 113 + or - 6 deg are determined. With the assumption of zero solid tide phase lag, the lunar tidal acceleration is mostly (85%) due to the C22+ term in the expansion of the M2 tide with additional small contributions from the O1 and N2 tides. The calculated value for the tidal acceleration in lunar longitude is -27.4 + or - 3 arc sec/sq (100 yr) which is similar to values determined from astronomical data. The mean elements of Geos 3 are presented in tabular form.

  17. On the Interaction Between Gravity Waves and Atmospheric Thermal Tides

    NASA Astrophysics Data System (ADS)

    Agner, Ryan Matthew

    Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been

  18. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  19. Earth Science

    1994-09-02

    This image depicts a full view of the Earth, taken by the Geostationary Operational Environment Satellite (GOES-8). The red and green charnels represent visible data, while the blue channel represents inverted 11 micron infrared data. The north and south poles were not actually observed by GOES-8. To produce this image, poles were taken from a GOES-7 image. Owned and operated by the National Oceanic and Atmospheric Administration (NOAA), GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. They circle the Earth in a geosynchronous orbit, which means they orbit the equatorial plane of the Earth at a speed matching the Earth's rotation. This allows them to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth, high enough to allow the satellites a full-disc view of the Earth. Because they stay above a fixed spot on the surface, they provide a constant vigil for the atmospheric triggers for severe weather conditions such as tornadoes, flash floods, hail storms, and hurricanes. When these conditions develop, the GOES satellites are able to monitor storm development and track their movements. NASA manages the design and launch of the spacecraft. NASA launched the first GOES for NOAA in 1975 and followed it with another in 1977. Currently, the United States is operating GOES-8, positioned at 75 west longitude and the equator, and GOES-10, which is positioned at 135 west longitude and the equator. (GOES-9, which malfunctioned in 1998, is being stored in orbit as an emergency backup should either GOES-8 or GOES-10 fail. GOES-11 was launched on May 3, 2000 and GOES-12 on July 23, 2001. Both are being stored in orbit as a fully functioning replacement for GOES-8 or GOES-10 on failure.

  20. Analysis of the most recent data of Cascais Tide Gauge

    NASA Astrophysics Data System (ADS)

    Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.

    2010-05-01

    In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.

  1. Earth Observation

    2010-08-23

    ISS024-E-016042 (23 Aug. 2010) --- This night time view captured by one of the Expedition 24 crew members aboard the International Space Station some 220 miles above Earth is looking southward from central Romania over the Aegean Sea toward Greece and it includes Thessaloniki (near center), the larger bright mass of Athens (left center), and the Macedonian capital of Skopje (lower right). Center point coordinates of the area pictured are 46.4 degrees north latitude and 25.5 degrees east longitude. The picture was taken in August and was physically brought back to Earth on a disk with the return of the Expedition 25 crew in November 2010.

  2. Earth Observation

    2014-07-19

    ISS040-E-070412 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 panorama featuring wildfires which are plaguing the Northwest and causing widespread destruction. (Note: south is at the top of the frame). The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Parts of Oregon and Washington are included in the scene. Mt. Jefferson, Three Sisters and Mt. St. Helens are all snow-capped and visible in the photo, and the Columbia River can also be delineated.

  3. Earth Observation

    2014-07-19

    ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.

  4. Earth observation

    2014-09-04

    ISS040-E-129950 (4 Sept. 2014) --- In this photograph. taken by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, the orange spot located in the very center is the sun, which appears to be sitting on Earth's limb. At far right, a small bright spot is believed to be a reflection from somewhere in the camera system or something on the orbital outpost. When the photographed was exposed, the orbital outpost was flying at an altutude of 226 nautical miles above a point near French Polynesia in the Pacific Ocean.

  5. Earth Science

    2004-08-13

    This panoramic view of Hurricane Charley was photographed by the Expedition 9 crew aboard the International Space Station (ISS) on August 13, 2004, at a vantage point just north of Tampa, Florida. The small eye was not visible in this view, but the raised cloud tops near the center coincide roughly with the time that the storm began to rapidly strengthen. The category 2 hurricane was moving north-northwest at 18 mph packing winds of 105 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  6. Earth Science

    2004-09-11

    This image hosts a look at the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm topped the western Caribbean Sea on Saturday, September 11, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, the category 5 storm sustained winds in the eye of the wall that were reported at about 160 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  7. Earth Science

    2004-09-15

    Except for a small portion of the International Space Station (ISS) in the foreground, Hurricane Ivan, one of the strongest hurricanes on record, fills this image over the northern Gulf of Mexico. As the downgraded category 4 storm approached landfall on the Alabama coast Wednesday afternoon on September 15, 2004, sustained winds in the eye of the wall were reported at about 135 mph. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the ISS at an altitude of approximately 230 miles. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  8. Earth Science

    2004-09-15

    This image hosts a look into the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm approached landfall on the central Gulf coast Wednesday afternoon on September 15, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, sustained winds in the eye of the wall were reported at about 135 mph as the downgraded category 4 storm approached the Alabama coast. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  9. The Near-Earth Plasma Environment

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  10. Dynamical evolution of small bodies in the Solar System

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2012-05-01

    This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded

  11. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  12. Non-stationary internal tides observed with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Ray, R. D.; Zaron, E. D.

    2011-09-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-1 tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 cm2. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  13. The effect of filtering on the determination of lunar tides

    NASA Astrophysics Data System (ADS)

    Palumbo, A.; Mazzarella, A.

    1980-01-01

    The determination of lunar tides obtained by combination of a filtering process and the fixed lunar age technique is proposed. It is shown that such a method allows a reduction of the signal-to-noise ratio without altering the amplitude and the phase angle of the signal. It consequently allows the significant determination of the lunar semidiurnal component M2 from the series of data shorter than those required by other methods and the deduction of other interesting lunisolar components which have not previously been significantly determined in surface pressure and temperature data. The analysis of the data for Gan, Vesuvian Observatory and the Eiffel Tower have provided new determinations of L2(p) and have allowed comparison between the results obtained by the present and other methods.

  14. FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.

    Walters, Roy A.

    1988-01-01

    A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.

  15. Non-Stationary Internal Tides Observed with Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  16. Earth Observation

    2014-08-10

    ISS040-E-091158 (10 Aug. 2014) --- One of the Expedition 40 crew members 225 nautical miles above Earth onboard the International Space Station used a 200mm lens to record this image of Hawke's Bay, New Zealand on Aug. 10, 2014. Napier and the bay area's most populous area are at bottom center of the frame.

  17. Earth Observation

    2013-06-13

    ISS036-E-007619 (13 June 2013) --- To a crew member aboard the International Space Station, the home planet is seen from many different angles and perspectives, as evdenced by this Expedition 36 image of Earth's atmophere partially obscured by one of the orbital outpost's solar panels.

  18. Think Earth.

    ERIC Educational Resources Information Center

    Niedermeyer, Fred; Ice, Kay

    1992-01-01

    Describes a series of environmental education instructional units for grades K-6 developed by the Think Earth Consortium that cover topics such as conservation, pollution control, and waste reduction. Provides testimony from one sixth-grade teacher that field tested the second-grade unit. (MDH)

  19. Earth Observation

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. Docked Soyuz and Progress spacecraft are visible. On crewmember's Flickr page - The Moon, about to dive into a glowing ocean of green᥿9.

  20. Earth Observation

    2013-07-21

    Earth observation taken during night pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message this is labeled as : Tehran, Iran. Lights along the coast of the Caspian Sea visible through clouds. July 21.