Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Energetics and Defect Interactions of Complex Oxides for Energy Applications
NASA Astrophysics Data System (ADS)
Solomon, Jonathan Michael
The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions than for Y. Additionally, calculations performed for different atomic configurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent with related calculations and calorimetric measurements of heats of formation in other trivalent doped fluorite oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. We expand this investigation by considering a series of trivalent rare earth fission product cations, specifically, Y3+ (1.02 A, Shannon radius with eightfold coordination), Dy3+ (1.03 A), Gd 3+ (1.05 A), Eu3+ (1.07 A), Sm3+ (1.08 A), Pm3+ (1.09 A), Nd3+ (1.11 A), Pr3+ (1.13 A), Ce3+ (1.14 A) and La3+ (1.16 A). Compounds with ionic radius of the M3+ species smaller or larger than 1.09 A are found to have energetically preferred defect ordering arrangements. Systems with preferred defect ordering arrangements are suggestive of defect clustering in short range ordered solid solutions, which is expected to limit oxygen ion mobility and therefore the rate of oxidation of spent nuclear fuel. Finally, the energetics of rare earth substituted (M3+= La, Y, and Nd) UO2 solid solutions are investigated by employing a combination of calorimetric measurements and DFT based computations. The calorimetric studies are performed by Lei Zhang and Professor Alexandra Navrotsky at the University of Calfornia, Davis, as part of a joint computational/ experimental collaborative effort supported through the Materials Science of Actinides Energy Frontier Research Center. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides. A consistent trend towards increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of M cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors compositions with higher oxygen-to-metal ratios where charge compensation occurs through the formation of uranium cations with higher oxidation states.
NASA Astrophysics Data System (ADS)
Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.
2017-12-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.
Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3
Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.
1997-01-01
The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.
NASA Astrophysics Data System (ADS)
Shi, Tingting
In this dissertation, a series of earth-abundant photovoltaic materials including lead halide perovskites, copper based compounds, and silicon are investigated via density functional theory (DFT). Firstly, we study the unique optoelectronic properties of perovskite CH3NH3PbI3 and CH3NH3PbBr 3. First-principle calculations show that CH3NH3PbI 3 perovskite solar cells exhibit remarkable optoelectronic properties that account for the high open circuit voltage (Voc) and long electron-hole diffusion lengths. Our results reveal that for intrinsic doping, dominant point defects produce only shallow levels. Therefore lead halide perovskites are expected to exhibit intrinsic low non-radiative recombination rates. The conductivity of perovskites can be tuned from p-type to n-type by controlling the growth conditions. For extrinsic defects, the p-type perovskites can be achieved by doping group-IA, -IB, or -VIA elements, such as Na, K, Rb, Cu, and O at I-rich growth conditions. We further show that despite a large band gap of 2.2 eV, the dominant defects in CH3 NH3PbBr3 also create only shallow levels. The photovoltaic properties of CH3NH3PbBr3 - based perovskite absorbers can be tuned via defect engineering. Highly conductive p-type CH3NH3PbBr3 can be synthesized under Br-rich growth conditions. Such CH3NH3PbBr 3 may be potential low-cost hole transporting materials for lead halide perovskite solar cells. All these unique defect properties of perovskites are largely due to the strong Pb lone-pair s orbital and I p (Br p) orbital antibonding coupling and the high ionicity of CH3NH3PbX3 (X=I, Br). Secondly, we study the optoelectronic properties of Cu-V-VI earth abundant compounds. These low cost thin films may have the good electronic and optical properties. We have studied the structural, electronic and optical properties of Cu3-V-VI4 compounds. After testing four different crystal structures, enargite, wurtzite-PMCA, famatinite and zinc-blend-PMCA, we find that Cu3PS4 and Cu3PSe4 prefer energetically the enargite structure, whereas, other compounds favor the famatinite structure. Among the compounds and structures considered, enargite Cu3PSe4, and famatinite Cu3AsS4, are suitable for single junction solar cell applications due to bandgaps of 1.32 eV and 1.15 eV, respectively. Furthermore, CuSbS2 are also studied by density functional theory and HSE06 hybrid functional. The chalcostibite CuSbS2 has an indirect band gap of 1.85 eV, whereas the chalcogenide Cu3SbS4 has a direct band gap of 0.89 eV. We find that the large difference on band gaps is mainly attributed to the different Sb charge states. We further predict that the Sb charge states will affect the defect physics. Particularly, the Sb lone pair s orbitals in CuSbS 2 have strong influence on the formation energies of Sb-related defects. Lastly, we have studied the atomic structure and electronic properties of aluminum (Al)-related defect complexes in silicon. We find a unique stable complex configuration consisting of an Ali and an oxygen dimer, Ali-2Oi, which introduces deep levels in the band gap of Si. The formation energies of the Ali-2Oi complexes could be lower than that of individual Ali atoms under oxygen-rich conditions. The formation of Ali-2Oi complexes may explain the experimental observation that the coexistence of Al and O results in reduced carrier lifetime in Si wafers.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2003-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
1990-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
Wuestite (Fe/1-x/O) - A review of its defect structure and physical properties
NASA Technical Reports Server (NTRS)
Hazen, R. M.; Jeanloz, R.
1984-01-01
Such complexities of the Wustite structure as nonstoichiometry, ferric iron variable site distribution, long and short range ordering, and exsolution, yield complex physical properties. Magnesiowustite, a phase which has been suggested to occur in the earth's lower mantle, is also expected to exhibit many of these complexities. Geophysical models including the properties of (Mg, Fe)O should accordingly take into account the uncertainties associated with the synthesis and measurement of iron-rich oxides. Given the variability of the Fe(1-x)O structure, it is important that future researchers define the structural state and extent of exsolution of their samples.
NASA Astrophysics Data System (ADS)
Li, Yan; Xu, Xiaoming; Li, Yanzhang; Ding, Cong; Wu, Jing; Lu, Anhuai; Ding, Hongrui; Qin, Shan; Wang, Changqiu
2018-05-01
Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d orbits in the forbidden band. Therefore, excitons can be created under visible light. The conduction band electrons and valence band holes enabled the photoreduction of CO2 to organic molecules (e.g., acetic acid and CH4) and photooxidative generation of oxidants (e.g., radOH, O2 and ClO4-) via rutile photocatalysis, respectively. This study underlies the capability of natural semiconducting minerals in solar energy utilization and the implications of their photocatalysis in both the origin of primitive life on Earth and formation of modern environments on Mars.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2004-01-01
Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.
Peroxy defects in Rocks and H2O2 formation on the early Earth
NASA Astrophysics Data System (ADS)
Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.
2013-12-01
An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock-water interfaces as part of stress-activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life. [1] Balk et al. (2009) Earth and Planetary Science Letters 283, 87-92. [2] Grant, R. A. et al. (2011) Int. J. Environ. Res. Public Health 8, 1936-1956.
Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals
NASA Astrophysics Data System (ADS)
Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.
2016-11-01
Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.
Searching for topological defect dark matter via nongravitational signatures.
Stadnik, Y V; Flambaum, V V
2014-10-10
We propose schemes for the detection of topological defect dark matter using pulsars and other luminous extraterrestrial systems via nongravitational signatures. The dark matter field, which makes up a defect, may interact with standard model particles, including quarks and the photon, resulting in the alteration of their masses. When a topological defect passes through a pulsar, its mass, radius, and internal structure may be altered, resulting in a pulsar "quake." A topological defect may also function as a cosmic dielectric material with a distinctive frequency-dependent index of refraction, which would give rise to the time delay of a periodic extraterrestrial light or radio signal, and the dispersion of a light or radio source in a manner distinct to a gravitational lens. A topological defect passing through Earth may alter Earth's period of rotation and give rise to temporary nonzero electric dipole moments for an electron, proton, neutron, nuclei and atoms.
First-principles study of codoping in lanthanum bromide
NASA Astrophysics Data System (ADS)
Erhart, Paul; Sadigh, Babak; Schleife, André; Åberg, Daniel
2015-04-01
Codoping of Ce-doped LaBr3 with Ba, Ca, or Sr improves the energy resolution that can be achieved by radiation detectors based on these materials. Here, we present a mechanism that rationalizes this enhancement on the basis of first-principles electronic structure calculations and point defect thermodynamics. It is shown that incorporation of Sr creates neutral VBr-SrLa complexes that can temporarily trap electrons. As a result, Auger quenching of free carriers is reduced, allowing for a more linear, albeit slower, scintillation light yield response. Experimental Stokes shifts can be related to different CeLa-SrLa-VBr triple complex configurations. Codoping with other alkaline as well as alkaline-earth metals is considered as well. Alkaline elements are found to have extremely small solubilities on the order of 0.1 ppm and below at 1000 K. Among the alkaline-earth metals the lighter dopant atoms prefer interstitial-like positions and create strong scattering centers, which has a detrimental impact on carrier mobilities. Only the heavier alkaline-earth elements (Ca, Sr, Ba) combine matching ionic radii with sufficiently high solubilities. This provides a rationale for the experimental finding that improved scintillator performance is exclusively achieved using Sr, Ca, or Ba. The present mechanism demonstrates that codoping of wide-gap materials can provide an efficient means for managing charge carrier populations under out-of-equilibrium conditions. In the present case dopants are introduced that manipulate not only the concentrations but also the electronic properties of intrinsic defects without introducing additional gap levels. This leads to the availability of shallow electron traps that can temporarily localize charge carriers, effectively deactivating carrier-carrier recombination channels. The principles of this mechanism are therefore not specific to the material considered here but can be adapted for controlling charge carrier populations and recombination in other wide-gap materials.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Mihelcic, Judith A.
1989-01-01
Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.
Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same
Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.
1981-01-01
This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.
Saha, Surajit; Cao, Bing-Chen; Motapothula, M; Cong, Chun-Xiao; Sarkar, Tarapada; Srivastava, Amar; Sarkar, Soumya; Patra, Abhijeet; Ghosh, Siddhartha; Ariando; Coey, J M D; Yu, Ting; Venkatesan, T
2016-11-15
Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO 3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO 3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO 3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.
Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki
2013-04-01
The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.
Invisible defects in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe
2013-07-15
We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less
NASA Astrophysics Data System (ADS)
Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui
2018-01-01
Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui + CuIn is the main complex defect, while InCu + 2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.
NASA Astrophysics Data System (ADS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.
1992-11-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
2004-01-01
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
2004-04-15
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
Functional reconstruction of complex tendo Achilles defect by free latissimus dorsi muscle flap
Upadhyaya, Divya N.; Khanna, Vaibhav; Kohli, Romesh; Tulsi, Satendar P. S.; Garg, Sandeep
2012-01-01
Managing the complex tendo Achilles defect involves reconstructing the Achilles tendon as well as providing soft tissue cover to the heel area. The advent of microsurgery has revolutionised the reconstruction of this difficult defect providing a number of options to the reconstructive surgeon. We present a case of complex tendo Achilles defect reconstructed by the latissimus dorsi free flap. PMID:23450740
Density functional theory study of defects in unalloyed δ-Pu
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
2017-03-19
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Density functional theory study of defects in unalloyed δ-Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Carbon as a source for yellow luminescence in GaN: Isolated C{sub N} defect or its complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christenson, Sayre G.; Xie, Weiyu; Sun, Y. Y., E-mail: suny4@rpi.edu
2015-10-07
We study three carbon defects in GaN, isolated C{sub N} and its two complexes with donors C{sub N}–O{sub N}, and C{sub N}–Si{sub Ga}, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated C{sub N} defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that ofmore » the C{sub N} defect. The role of the positively charged donors (O{sub N} or Si{sub Ga}) next to C{sub N} is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated C{sub N}. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated C{sub N} defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes.« less
Hidden Oceans? Unraveling the Structure of Hydrous Defects in the Earth's Deep Interior.
Grüninger, Helen; Armstrong, Katherine; Greim, Dominik; Boffa-Ballaran, Tiziana; Frost, Daniel J; Senker, Jürgen
2017-08-02
High-pressure silicates making up the main proportion of the earth's interior can incorporate a significant amount of water in the form of OH defects. Generally, they are charge balanced by removing low-valent cations such as Mg 2+ . By combining high-resolution multidimensional single- and double-quantum 1 H solid-state NMR spectroscopy with density functional theory calculations, we show that, for ringwoodite (γ-Mg 2 SiO 4 ), additionally, Si 4+ vacancies are formed, even at a water content as low as 0.1 wt %. They are charge balanced by either four protons or one Mg 2+ and two protons. Surprisingly, also a significant proportion of coupled Mg and Si vacancies are present. Furthermore, all defect types feature a pronounced orientational disorder of the OH groups, which results in a significant range of OH···O bond distributions. As such, we are able to present unique insight into the defect chemistry of ringwoodite's spinel structure, which not only accounts for a potentially large fraction of the earth's entire water budget, but will also control transport properties in the mantle. We expect that our results will even impact other hydrous spinel-type materials, helping to understand properties such as ion conduction and heterogeneous catalysis.
Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki
2016-10-12
The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically engineered microbial powders revealed unique adsorption behaviors of the rare earth metal ions.
Defect interactions in GaAs single crystals
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1984-01-01
The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.
Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa
2016-02-14
We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.
Gravina, Maria; Pagano, Giovanni; Oral, Rahime; Guida, Marco; Toscanesi, Maria; Siciliano, Antonietta; Di Nunzio, Aldo; Burić, Petra; Lyons, Daniel M; Thomas, Philippe J; Trifuoggi, Marco
2018-05-01
Heavy rare earth elements (HREEs) were tested for adverse effects to early life stages of the sea urchin Sphaerechinus granularis. Embryos were exposed to analytically measured HREE concentrations ranging from 10 -7 to 10 -5 M. No significant developmental defect (DD) increases were observed in embryos exposed to 10 -7 M HREEs, whereas 10 -5 M HREEs resulted in significant DD increase up to 96% for HoCl 3 versus 14% in controls. Embryos exposed to 10 -6 M HREEs showed the highest DD frequency in embryos exposed to 10 -6 M DyCl 3 and HoCl 3 . Cytogenetic analysis of HREE-exposed embryos revealed a significant decrease in mitotic activity, with increased mitotic aberrations. When S. granularis sperm were exposed to HREEs, the offspring of sperm exposed to 10 -5 M GdCl 3 and LuCl 3 showed significant DD increases. The results warrant investigations on HREEs in other test systems, and on REE-containing complex mixtures.
Ordered defects in Fe1-xS generate additional magnetic anisotropy symmetries
NASA Astrophysics Data System (ADS)
Koulialias, D.; Charilaou, M.; Schäublin, R.; Mensing, C.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.
2018-01-01
Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8), a ferrimagnetic monosulfide that has been intensively used as a remanence carrier to infer the magnetization of the Earth's crust and extraterrestrial materials, exhibits a characteristic low-temperature transition accompanied by complex modifications in anisotropy and magnetization. We demonstrate that the magnetic rotational symmetry of the 4C pyrrhotite is critically affected by the order of the defective Fe-sites, and this in turn is a key to decipher the physics behind the low-temperature transition. Our torque experiments and numerical simulations show an emergent four-fold rotational symmetry in the c-plane of the 4C pyrrhotite at T < 30 K. This symmetry breaking associated with the transition is caused by the competitive interaction of two inherently hexagonal systems generated by two groups of Fe-sites with different local anisotropy fields that stem from the vacancy arrangement in the 4C stacking sequence, and it is triggered by changes in the spin orbit coupling due to the overlap of Fe-Fe electron orbitals at low-temperature. This mechanism provides a new explanation for the magnetic transition in 4C pyrrhotite at low temperature and could also cast light on non-trivial magnetic phenomena in defective systems.
Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedraza, D.F.; Mansur, L.K.
1985-01-01
A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less
NASA Technical Reports Server (NTRS)
Jiao, Shunxing; Hilaire, Emmanuel; Paulsen, Avelina Q.; Guikema, James A.
2004-01-01
The photosynthetic apparatus contains several protein complexes, many of which are regulated by environmental conditions. In this study, the influences of microgravity on PSI and PSII in Brassica rapa plants grown aboard the space shuttle were examined. We found that Brassica plants grown in space had a normal level of growth relative to controls under similar conditions on Earth. Upon return to Earth, cotyledons were harvested and thylakoid membranes were isolated. Analysis of chlorophyll contents showed that the Chl a/b ratio (3.5) in flight cotyledons was much higher than a ratio of 2.42 in the ground controls. The flight samples also had a reduction of PSI complexes and a corresponding 30% decrease of PSI photochemical activity. Immunoblotting showed that the reaction centre polypeptides of PSI were more apparently decreased (e.g. by 24-33% for PsaA and PsaB, and 57% for PsaC) than the light-harvesting complexes. In comparison, the accumulation of PSII complex was less affected in microgravity, thus only a slight reduction in D1, D2 and LHCII was observed in protein blots. However, there was a 32% decrease of OEC1 in the flight samples, indicating a defective OEC subcomplex. In addition, an average 54% increase of the 54 kDa CF1-beta isoform was found in the flight samples, suggesting that space-grown plants suffered from certain stresses, consistent with implications of the increased Chl a/b ratio. Taken together, the results demonstrated that Brassica plants can adapt to spaceflight microgravity, but with significant alterations in chloroplast structures and photosynthetic complexes, and especially reduction of PSI and its activity.
Biochemical and genetic analysis of Leigh syndrome patients in Korea.
Chae, Jong-Hee; Lee, Jin Sook; Kim, Ki Joong; Hwang, Yong Seung; Hirano, Michio
2008-06-01
Sixteen Korean patients with Leigh syndrome were identified at the Seoul National University Children's Hospital in 2001-2006. Biochemical or molecular defects were identified in 14 patients (87.5%). Thirteen patients had respiratory chain enzyme defects; 9 had complex I deficiency, and 4 had combined defects of complex I+III+IV. Based on the biochemical defects, targeted genetic studies in 4 patients with complex I deficiency revealed two heteroplasmic mitochondrial DNA mutations in ND genes. One patient had the mitochondrial DNA T8993G point mutation. No mitochondrial DNA defects were identified in 11 (68.7%) of our LS patients, who probably have mutations in nuclear DNA. Although a limited study based in a single tertiary medical center, our findings suggest that isolated complex I deficiency may be the most common cause of Leigh syndrome in Korea.
Computer modelling of BaY2F8: defect structure, rare earth doping and optical behaviour
NASA Astrophysics Data System (ADS)
Amaral, J. B.; Couto Dos Santos, M. A.; Valerio, M. E. G.; Jackson, R. A.
2005-10-01
BaY2F8, when doped with rare earth elements, is a material of interest in the development of solid-state laser systems, especially for use in the infrared region. This paper presents the application of a computational technique, which combines atomistic modelling and crystal field calculations, in a study of rare earth doping of the material. Atomistic modelling is used to calculate the intrinsic defect structure and the symmetry and detailed geometry of the dopant ion-host lattice system, and this information is then used to calculate the crystal field parameters, which are an important indicator in assessing the optical behaviour of the dopant-crystal system. Energy levels are then calculated for the Dy3+-substituted material, and comparisons with the results of recent experimental work are made.
Generation and characterization of point defects in SrTiO3 and Y3Al5O12
NASA Astrophysics Data System (ADS)
Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.
Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.
Defect states of complexes involving a vacancy on the boron site in boronitrene
NASA Astrophysics Data System (ADS)
Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.
2011-12-01
First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.
Bioprosthetics and repair of complex aerodigestive defects
Udelsman, Brooks; Mathisen, Douglas J.
2018-01-01
Aerodigestive defects involving the trachea, bronchi and esophagus are a result of prolonged intubation, operative complications, congenital defects, trauma, radiation and neoplastic disease. The vast majority of these defects may be repaired primarily. Rarely, due the size of the defect, underlying complexity, or unfavorable patient characteristics, primary repair is not possible. One alternative to primary repair is bioprosthetic repair. Materials such as acellular dermal matrix and aortic homograft have been used in a variety of applications, including closure of tracheal, bronchial and esophageal defects. Herein, we review the use of bioprosthetics in the repair of aerodigestive defects, along with the unique advantages and disadvantages of these repairs. PMID:29707507
Influence of impurities on the high temperature conductivity of SrTiO3
NASA Astrophysics Data System (ADS)
Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.
2018-01-01
In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.
Vacancy Defects as Compensating Centers in Mg-Doped GaN
NASA Astrophysics Data System (ADS)
Hautakangas, S.; Oila, J.; Alatalo, M.; Saarinen, K.; Liszkay, L.; Seghier, D.; Gislason, H. P.
2003-04-01
We apply positron annihilation spectroscopy to identify VN-MgGa complexes as native defects in Mg-doped GaN. These defects dissociate in postgrowth annealings at 500 800 °C. We conclude that VN-MgGa complexes contribute to the electrical compensation of Mg as well as the activation of p-type conductivity in the annealing. The observation of VN-MgGa complexes confirms that vacancy defects in either the N or Ga sublattice are abundant in GaN at any position of the Fermi level during growth, as predicted previously by theoretical calculations.
Santamaria, Eric; de la Concha, Erika
2016-10-01
Microsurgical reconstruction of complex midfacial and maxillectomy defects is among the most challenging procedures in plastic surgery, and it often requires composite flaps to improve functional and aesthetic results. Various factors have been identified as having influence in the outcome of microsurgical reconstruction. In this article, the authors present their experience with immediate and delayed reconstruction of complex maxillectomy defects in a tertiary center in Mexico. The authors present a total of 37 patients with microsurgical reconstruction of a complex maxillectomy defect; 13 patients had immediate and 24 had delayed reconstructions. The authors recommend doing immediate reconstruction when feasible. Copyright © 2016 Elsevier Inc. All rights reserved.
PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses
NASA Astrophysics Data System (ADS)
Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.
2016-04-01
Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.
Atomic scale study of vacancies in Earth's inner core: effect of pressure and chemistry
NASA Astrophysics Data System (ADS)
Ritterbex, S.; Tsuchiya, T.
2017-12-01
Seismic observations of the Earth's inner core [1] remain ambiguously related to mineral physics studies of the inner core stable crystalline iron phase [2,3,4,5]. This makes it difficult to clarify the role of plastic deformation as one of the primary candidates responsible for the observed seismic anisotropy of Earth's inner core. Nonetheless, atomic self-diffusion mechanisms provide a direct link between plastic deformation and the mechanical properties of Earth's inner core stable iron phase(s). Using first-principles density functional based calculation techniques, we have studied the conjugate effect of pressure and chemistry on vacancy diffusion in HCP-, BCC- and FCC-iron by taking into account potential light alloying elements as hydrogen, silicon and sulfur. Our results show that inner core pressure highly inhibits the rate of intrinsic self-diffusion by suppressing defect concentration rather than by effecting the mobility of the defects. Moreover, we found light elements to be able to affect metallic bonding which allows for extrinsic diffusion mechanisms in iron under inner core conditions. The latter clearly enables to enhance defect concentration and hence to enhance the rate of plastic deformation. This suggests that inner core chemistry affects the rheological properties (e.g.viscosity) of iron alloys which finally should match with seismic observations. references: [1] Deuss, A., 2014. Heterogeneity and Anisotropy of Earth's inner core. An. Rev. Earth Planet. Sci. 42, 103-126. [2] Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., Morard, G., 2013. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science 340, 464-466. [3] Godwal, B.K., Gonzales-Cataldo, F., Verma, A.K., Stixrude, L., Jeanloz, R., 2015. Stability of iron crystal structures at 0.3-1.5 TPa. [4] Vocadlo, L., 2007. Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core? Earth Planet. Sci. Lett. 254, 227-232. [5] Belonoshko, A.B., Lukinov, T., Fu, J., Zhao, J., Davis, S., Simak, S.I., 2017. Stabilization of body-centered cubic iron under inner-core conditions. Nature Geoscience, doi:10.1038/NGEO2892
Reconstruction of maxillectomy and midfacial defects with free tissue transfer.
Santamaria, Eric; Cordeiro, Peter G
2006-11-01
The maxillary bones are part of the midfacial skeleton and are closely related to the eyeglobe, nasal airway, and oral cavity. Together with the overlying soft tissues, the two maxillae are responsible to a large extent for facial contour. Maxillectomy defects become more complex when critical structures such as the orbit, globe, and cranial base are resected, and reconstruction with distant tissues become essential. In this article, we describe a classification system and algorithm for reconstruction of these complex defects using various pedicled and free flaps. Most defects that involve resection of the maxilla and adjacent soft tissues may be classified into one of the following four types: Type I defects, Limited maxillectomy; Type II defects, Subtotal maxillectomy; Type III defects, Total maxillectomy; and Type IV defects, Orbitomaxillectomy. Using this classification, reconstruction of maxillectomy and midfacial defects may be approached considering the relationship between volume and surface area requirements, that is, addressing the bony defect first, followed by assessment of the associated soft tissue, skin, palate, and cheek-lining deficits. In our experience, most complex maxillectomy defects are best reconstructed using free tissue transfer. The rectus abdominis and radial forearm free flap in combination with immediate bone grafting or as an osteocutaneous flap reliably provide the best aesthetic and functional results. A temporalis muscle pedicled flap is used for reconstruction of maxillectomy defects only in those patients who are not candidates for a microsurgical procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Communication-satellite earth station complex. The term communication-satellite earth station complex includes transmitters, receivers, and communications antennas at the earth station site together with the... communication to terrestrial distribution system(s). (e) Communication-satellite earth station complex functions...
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Communication-satellite earth station complex. The term communication-satellite earth station complex includes transmitters, receivers, and communications antennas at the earth station site together with the... communication to terrestrial distribution system(s). (e) Communication-satellite earth station complex functions...
Intrinsic Studies of Materials.
RELAXATION TIME , CRYSTAL LATTICES), (*RARE EARTH ELEMENTS, *ELECTRON TRANSITIONS), (*CRYSTAL DEFECTS, INTERACTIONS), EXCITATION, DOPING, LANTHANUM COMPOUNDS, PHONONS, ATOMIC ENERGY LEVELS, HOLMIUM, CHLORIDES, PRASEODYMIUM
Zhang, Ling; Yang, Qinghua; Jiang, Haiyue; Liu, Ge; Huang, Wanlu; Dong, Weiwei
2015-09-01
Reconstruction of complex facial defects using cervical expanded flap prefabricated by temporoparietal fascia flap. Complex facial defects are required to restore not only function but also aesthetic appearance, so it is vital challenge for plastic surgeons. Skin grafts and traditional flap transfer cannot meet the reconstructive requirements of color and texture with recipient. The purpose of this sturdy is to create an expanded prefabricated temporoparietal fascia flap to repair complex facial defects. Two patients suffered severe burns on the face underwent complex facial resurfacing with prefabricated cervical flap. The vasculature of prefabricated flap, including the superficial temporal vessel and surrounding fascia, was used as the vascular carrier. The temporoparietal fascia flap was sutured underneath the cervical subcutaneous tissue, and expansion was begun in postoperative 1 week. After 4 to 6 months of expansion, the expander was removed, facial scars were excised, and cervical prefabricated flap was elevated and transferred to repair the complex facial defects. Two complex facial defects were repaired successfully by prefabricated temporoparietal fascia flap, and prefabricated flaps survived completely. On account of donor site's skin was thinner and expanded too fast, 1 expanded skin flap was rupture during expansion, but necrosis was not occurred after the 2nd operation. Venous congestion was observed in 1 patient, but after dressing, flap necrosis was not happened. Donor site was closed primarily. Postoperative follow-up 6 months, the color, texture of prefabricated flap was well-matched with facial skin. This method of expanded prefabricated flap may provide a reliable solution to the complex facial resurfacing.
Creation of high-pinning microstructures in post production YBCO coated conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welp, Ulrich; Miller, Dean J.; Kwok, Wai-Kwong
A method comprising irradiating a polycrystalline rare earth metal-alkaline earth metal-transition metal-oxide superconductor layer with protons having an energy of 1 to 6 MeV. The irradiating process produces an irradiated layer that comprises randomly dispersed defects with an average diameter in the range of 1-10 nm.
Origin of the Low Rigidity of the Earth's Inner Core
NASA Astrophysics Data System (ADS)
Belonoshko, A. B.; Skorodumova, N. V.; Davis, S.; Osiptsov, A. N.; Rosengren, A.; Johansson, B.
2007-12-01
The solid iron Earth's inner core has a low rigidity which manifests itself in the anomalously low velocities of shear waves as compared to those in iron alloys. Normally, when estimating elastic properties of a polycrystal one calculates an average over different orientations of a single crystal. This approach does not take into account the grain boundaries and defects likely to be abundant at high temperatures relevant for the inner core conditions. We show, by molecular dynamics simulations that if defects are considered, the calculated shear modulus and shear wave velocity decrease dramatically compared to the averaged single crystal values. Thus, the low shear wave velocity in the inner core receives its explanation (Science 316, 1603 (2007)).
Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.
1991-01-01
Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.
Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.
Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid
2009-04-01
Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.
Lykoudis, Efstathios G; Dimitrios, Pafilas; Alexandros, Beris E
2010-01-01
Complex midfoot defects represent a reconstructive challenge since midfoot plays a key role in standing and gait. We report the case of a 27-year-old patient with a complex midfoot defect due to a high-energy gun shot injury. The defect included the tarsometatarsal complex, all three arches of the foot, and the overlying dorsal skin of the foot. Reconstruction was achieved in a single stage with a free fibular osteocutaneous flap. The fibula was osteotomized into three segments, which were used to reconstruct the bone defects, while the skin paddle of the flap was used for stable soft tissue coverage of the reconstructed bony skeleton. Early and late postoperative periods were uneventful. Bone incorporation was radiographically evident at 12 weeks, and full weight bearing was possible at 6 months postop. Final follow up, at 2 years postop, showed a very good functional and esthetic outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uedono, Akira; Malinverni, Marco; Martin, Denis
Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less
Reutter, Heiko; Bökenkamp, Arend; Ebert, Anne-Karolin; Rösch, Wolfgang; Boemers, Thomas M; Nöthen, Markus M; Ludwig, Michael
2009-07-01
In the past, several midline defects have been associated with Down syndrome (DS) on a regular basis, e.g. heart defects, cleft lip and palate, neural tube defects, omphalocele and anal atresia. The exstrophy-epispadias complex (EEC) represents a rare midline defect, rarely described in association with DS. Here, we report on the co-occurrence of DS and EEC in two, so far, unreported cases and present a review of the literature. We suggest that EEC represents a rare but inherent part in the spectrum of DS-associated midline defects.
Native defects in Tl 6SI 4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less
Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, K.; Katayama-Yoshida, H.
2014-02-21
Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can bemore » expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.« less
Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng
2018-01-01
Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454
NASA Astrophysics Data System (ADS)
Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.
2012-05-01
Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.
40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23, P...
Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A
2014-09-01
The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.
Fetal anterior abdominal wall defects: prenatal imaging by magnetic resonance imaging.
Victoria, Teresa; Andronikou, Savvas; Bowen, Diana; Laje, Pablo; Weiss, Dana A; Johnson, Ann M; Peranteau, William H; Canning, Douglas A; Adzick, N Scott
2018-04-01
Abdominal wall defects range from the mild umbilical cord hernia to the highly complex limb-body wall syndrome. The most common defects are gastroschisis and omphalocele, and the rarer ones include the exstrophy complex, pentalogy of Cantrell and limb-body wall syndrome. Although all have a common feature of viscera herniation through a defect in the anterior body wall, their imaging features and, more important, postnatal management, differ widely. Correct diagnosis of each entity is imperative in order to achieve appropriate and accurate prenatal counseling and postnatal management. In this paper, we discuss fetal abdominal wall defects and present diagnostic pearls to aid with diagnosis.
Raman Scattering by Crystals of Rare-Earth Hexaborides with Different Isotopes of Boron
NASA Astrophysics Data System (ADS)
Markov, Yu. F.; Gurin, V. N.; Ponkratov, K. V.
2018-04-01
Monocrystals of lanthanum hexaboride LaB6 containing both natural boron and its isotopes 10B and 11B have been produced using the solution-melt method. Polyelement hexaboride rare-earths have been grown and the corresponding ceramics have been synthesized for the first time. All these crystals have been studied by means of various techniques, generally using Raman scattering. The Raman spectra attributed to various spectral lines corresponding to nonanalyzable representations have been obtained and interpreted. Frequencies and half-widths of spectral lines have been obtained, the removal of degeneracy and the development of respective splitting of degenerate oscillations induced by defects, mainly by boron isotope inclusions, have been identified. The influence of defects on the Raman spectra has been determined.
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
NASA Astrophysics Data System (ADS)
Verechagin, V.; Kris, R.; Schwarzband, I.; Milstein, A.; Cohen, B.; Shkalim, A.; Levy, S.; Price, D.; Bal, E.
2018-03-01
Over the years, mask and wafers defects dispositioning has become an increasingly challenging and time consuming task. With design rules getting smaller, OPC getting complex and scanner illumination taking on free-form shapes - the probability of a user to perform accurate and repeatable classification of defects detected by mask inspection tools into pass/fail bins is reducing. The critical challenging of mask defect metrology for small nodes ( < 30 nm) was reviewed in [1]. While Critical Dimension (CD) variation measurement is still the method of choice for determining a mask defect future impact on wafer, the high complexity of OPCs combined with high variability in pattern shapes poses a challenge for any automated CD variation measurement method. In this study, a novel approach for measurement generalization is presented. CD variation assessment performance is evaluated on multiple different complex shape patterns, and is benchmarked against an existing qualified measurement methodology.
Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso
2009-01-01
Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Anh, Le, E-mail: letheanh@jaist.ac.jp; Lam, Pham Tien; Manoharan, Muruganathan
We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs withmore » P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.« less
NASA Astrophysics Data System (ADS)
Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe
2012-05-01
A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.
Zhang, Qin; Bai, Bao-Ling; Liu, Xiao-Zhen; Miao, Chun-Yue; Li, Hui-Li
2014-08-01
To explore the association of polymorphisms in folate metabolism genes, methionine synthase reductase (MTRR) gene and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, with complex congenital abnormalities and to further investigate its association with complex congenital abnormalities derived from three germ layers. A total of 250 cases of birth defects (with complex congenital abnormalities including congenital heart disease, neural tube defects, and craniofacial anomalies) in Shanxi Province, China were included in the study. MTRR single nucleotide polymorphism (SNP) (rs1801394) and MTHFR SNP (rs1801133) were genotyped by the SNaPshot method, and the genotyping results were compared with those of controls (n=420). SNPs rs1801394 and rs1801133 were associated with multiple birth defects. For the recessive model, individuals with GG genotype at rs1801394 and CC genotype at rs1801133 had a relatively low risk of developing birth defects, so the two genotypes were protective factors against birth defects. The homozygous recessive genotype at rs1801133, which served as a protective factor, was associated with ectoderm- or endoderm-derived complex congenital abnormalities, while the homozygous recessive genotype at rs1801394, which served as a protective factor, was associated with ectoderm-, mesoderm- or endoderm-derived complex congenital abnormalities. Among the Chinese population in Shanxi Province, the SNPs in folate metabolism genes (MTRR and MTHFR) are associated with complex congenital abnormalities and related to ectoderm, mesoderm or endoderm development.
NASA Astrophysics Data System (ADS)
Shropshire, Steven Leslie
Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.
Analysis of the defect clusters in congruent lithium tantalate
NASA Astrophysics Data System (ADS)
Vyalikh, Anastasia; Zschornak, Matthias; Köhler, Thomas; Nentwich, Melanie; Weigel, Tina; Hanzig, Juliane; Zaripov, Ruslan; Vavilova, Evgenia; Gemming, Sibylle; Brendler, Erica; Meyer, Dirk C.
2018-01-01
A wide range of technological applications of lithium tantalate (LT) is closely related to the defect chemistry. In literature, several intrinsic defect models have been proposed. Here, using a combinational approach based on DFT and solid-state NMR, we demonstrate that distribution of electric field gradients (EFGs) can be employed as a fingerprint of a specific defect configuration. Analyzing the distribution of 7Li EFGs, the FT-IR and electron spin resonance (ESR) spectra, and the 7Li spin-lattice relaxation behavior, we have found that the congruent LT samples provided by two manufacturers show rather different defect concentrations and distributions although both were grown by the Czochralski method. After thermal treatment hydrogen out-diffusion and homogeneous distribution of other defects have been observed by ESR, NMR, and FT-IR. The defect structure in one of two congruent LT crystals after annealing has been identified and proved by defect formation energy considerations, whereas the more complex defect configuration, including the presence of extrinsic defects, has been suggested for the other LT sample. The approach of searching the EFG fingerprints from DFT calculations in NMR spectra can be applied for identifying the defect clusters in other complex oxides.
Theoretical Study of Defect Signatures in III-V and II-VI Semiconductors
2006-03-01
collaboration with experimentalists at Linköpin University (Sweden), we identified the recently observed EPR signals in diluted GaPN to be Gallium ...the results from USPP calculations to all electron calculations. o Study NO-Zni complexes and other point defects in ZnO using USPP calculations...parameters for point defects in semiconductors. o Results on stability of NO-Zni complexes in ZnO and preliminary results on their electronic
First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-07-01
We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.
Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín
2005-04-01
Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.
NASA Astrophysics Data System (ADS)
Ishii, Masashi; Towlson, Brian; Poolton, Nigel; Harako, Susumu; Zhao, Xinwei; Komuro, Shuji; Hamilton, Bruce
2012-03-01
Anatase titanium dioxide (A-TiO2) with a wide band-gap energy of 3.2 eV can be used as a host semiconductor of rare-earth dopants for optical devices. However, the chemical activity of A-TiO2 strongly affects the luminescence properties of the devices. In this study, we analyzed oxidized and deoxidized samarium (Sm)-doped A-TiO2 (TiO2:Sm) by impedance spectroscopy and microscopic photoluminescence. Charge propagation analyses using dielectric relaxation (DR) revealed that different kinds of charge-trapping centers were formed by the oxidization and deoxidization. For oxidization, Sm-oxygen complexes incorporated in the A-TiO2 formed a trapping level that contributed to Sm excitation, while defective complexes at the A-TiO2 boundary formed other levels that dissipated the charges. For deoxidization using thermal treatment in a hydrogen (H) atmosphere, the number of profitable trapping centers in A-TiO2 was reduced but the remainder maintained the property of Sm excitation. It was also found that H adsorption on the A-TiO2 boundary delocalized the electrons. Photoexcited dielectric relaxation (PEDR) studies confirmed the charge recombination at the profitable traps, and the peak height of the spectra corresponded to the luminescence intensity. Microscopic photoluminescence studies provided results consistent with DR and PEDR measurements and also revealed another quenching factor, i.e., Ti2O3 microcrystal formation on the TiO2:Sm surface.
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
NASA Astrophysics Data System (ADS)
Barrett, Christopher Duncan
Improving the formability and crashworthiness of wrought magnesium alloys are the two biggest challenges in current magnesium technology. Magnesium is the best material candidate for enabling required improvements in fuel economy of combustion engines and increases in ranges of electric vehicles. In hexagonal closed-packed (HCP) structures, effects of grain size/morphology and crystallographic texture are particularly important. Prior research has established a general understanding of the dependences of strength and strain anisotropy on grain morphology and texture. Unfortunately, deformation, recrystallization, and grain growth strategies that control the microstructures and textures of cubic metals and alloys have not generally worked for HCPs. For example, in Magnesium, the deformation texture induced by primary forming operations (rolling, extrusion, etc.) is not randomized by recrystallization and may strengthen during grain growth. A strong texture reduces formability during secondary forming (stamping, bending, hemming etc.) Thus, the inability to randomize texture has impeded the implementation of magnesium alloys in engineering applications. When rare earth solutes are added to magnesium alloys, distinct new textures are derived. However, `rare earth texture' derivation remains insufficiently explained. Currently, it is hypothesized that unknown mechanisms of alloy processing are at work, arising from the effects of grain boundary intrinsic defect structures on microstructural evolution. This dissertation is a comprehensive attempt to identify formal methodologies of analyzing the behavior of grain boundaries in magnesium. We focus particularly on twin boundaries and asymmetric tilt grain boundaries using molecular dynamics. We begin by exploring twin nucleation in magnesium single crystals, elucidating effects of heterogeneities on twin nucleation and their relationships with concurrent slip. These efforts highlighted the necessity of imperfections to nucleate {10-12} twins. Subsequent studies encountered the importance of deformation faceting on the high mobility of {10-12} and stabilization of observed twin mode boundaries. Implementation of interfacial defect theory was necessary to decipher the complex mechanisms observed which govern the development of defects in grain boundaries, disconnection pile-up, facet nucleation, interfacial disclination nucleation, disconnection movements, disconnection transformation across interfacial disclinations, cross-faceting, and byproducts of interactions between lattice dislocations and grain boundaries.
Defect-mediated spatial complexity and chaos in a phase-conjugate resonator
NASA Technical Reports Server (NTRS)
Indebetouw, Guy; Liu, Siuying R.
1992-01-01
We have studied the spatiotemporal dynamics of a phase-conjugate resonator. The cavity Fresnel number is used to vary the degree of transverse confinement of the system. The generation and subsequent motion of the phase defects in the wave front are seen to mediate the system's dynamics. The number of defects and the complexity of their motion increases as the confinement is relaxed, leading the system through a sequence of bifurcations and eventually to chaos.
Irradiation-induced damage evolution in concentrated Ni-based alloys
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...
2017-06-06
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Irradiation-induced damage evolution in concentrated Ni-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Identification of Complex Carbon Nanotube Structures
NASA Technical Reports Server (NTRS)
Han, Jie; Saini, Subhash (Technical Monitor)
1998-01-01
A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.
Protecting the proteome: Eukaryotic cotranslational quality control pathways
2014-01-01
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822
Actinic imaging and evaluation of phase structures on EUV lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin
2010-09-28
The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less
Vacancy-hydrogen complexes in ammonothermal GaN
NASA Astrophysics Data System (ADS)
Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.
2014-10-01
We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.
NASA Astrophysics Data System (ADS)
Gabriel, S. B.; Garner, C.; Kitamura, S.
1983-01-01
An emissive Langmuir probe was used to measure the potentials within the plasma sheath developed around a hole in a simulated solar array at voltages between 50 and 450 V. The hole sizes were larger than actual pinhole defects; the plasma density was in the 10,000 per cu cm range, which is considerably lower than the density of 1,000,000 per cu cm found at low-earth-orbit altitudes. Despite these inadequacies in the simulation, the experiments indicate that this type of probe is a useful diagnostic technique for investigating the plasma sheaths developing around pinhole defects.
Effect of defect state on photon synergistic process in KLu2F7:Yb3+, Er3+ nanoparticles
NASA Astrophysics Data System (ADS)
Bian, Wenjuan; Lu, Wei; Qi, Yushuang; Yu, Xue; Zhou, Dacheng; Yang, Yong; Qiu, Jianbei; Xu, Xuhui
2016-10-01
The synergistic effect appeared due to the cooperative dual-wavelength excitation by near-infrared (NIR) and ultraviolet (UV) light in rare-earth doped nano-particles (NPs) is very important to improve solar cell efficiency. Herein, we studied the synergistic effect combined with the energy levels of Er3+ ions and the defect states in KLu2F7 NPs. The introduction of Ce3+ ions in KLu2F7:16%Yb3+, 2%Er3+ NPs results in significant improvement of synergistic effect by producing more vacancy defects (VK‧) which serves as shallow traps. We verify unambiguously that the control of the defects distribution exerts a facile approach to promote the synergistic effect with the assistance of Ce3+ ions doping.
Growth experiment of narrow band-gap semiconductor PbSnTe single crystals in space (M-1)
NASA Technical Reports Server (NTRS)
Yamada, Tomoaki
1993-01-01
An experiment on crystal growth of Pb(1-x)Sn(x)Te in microgravity is planned. This material is an alloy of the compound semiconductors PbTe and SnTe. It is a promising material for infrared diode lasers and detectors in the wavelength region between 6 and 30 micron. Since the electrical properties of Pb(1-x)Sn(x)Te depend greatly on the Pb/Sn ratio and crystalline defects as well as impurity concentration, homogeneous, defect-free, high-quality crystals are anticipated. Although many growth methods, such as the pulling method, the Bridgman method, the vapor growth method, etc., have been applied to the growth of Pb(1-x)Sn(x)Te, large, homogeneous, low-defect-density crystals have not yet been grown on Earth. The unsuccessful results were caused by buoyancy-driven convection in the fluids induced by the specific gravity difference between heated and cooled fluids on Earth. A crystal is grown by cooling the melt from one end of the ampoule. In crystal growth from the melt, about 30 percent of the SnTe in the melt is rejected at the solid-liquid interface during solidification. On Earth, the rejected SnTe is completely mixed with the remaining melt by convection in the melt. Therefore, SnTe concentration in the melt, and accordingly in the crystal, increases as the crystal grows. In the microgravity environment, buoyancy-driven convection is suppressed because the specific gravity difference is negligible. In that case, the rejected SnTe remains at the solid-liquid interface and its concentration increases only at the interface. If the growth rate is higher than the PbTe-SnTe interdiffusion rate, the amount of SnTe which diffuses from the interface into the melt increases as SnTe piles up at the interface, and finally it balances the amount of rejected SnTe during solidification, resulting in steady-state SnTe transportation at the interface. By using this principle, compositionally homogeneous crystals can be grown. Furthermore, low-defect-density crystals will be grown in microgravity, because convection causes crystalline defects by mising hot and cold fluids and generating temperature fluctuations in them.
Insights into dynamic processes of cations in pyrochlores and other complex oxides
Uberuaga, Blas Pedro; Perriot, Romain
2015-08-26
Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less
Extension of optical lithography by mask-litho integration with computational lithography
NASA Astrophysics Data System (ADS)
Takigawa, T.; Gronlund, K.; Wiley, J.
2010-05-01
Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.
Ruiz-Moya, A; Lagares-Borrego, A; Infante-Cossío, P
2015-04-01
Facial cutaneous oncological pathology often involves more than one esthetic unit due to their close boundaries. The reconstruction of both the nasolabial and perinasal regions may be especially complex and challenging for the surgeon. Traditionally, these defects have been reconstructed with local random flaps based on the vascularization provided by the superficial musculoaponeurotic system. In this article, we present our experience in the reconstruction of the aforementioned defects using the propeller facial artery perforator (FAP) flap. A propeller FAP flap was performed for reconstruction in 12 patients with nasolabial or perinasal complex defects after tumoral resection between the years 2011 and 2013. The flap was designed parallel to the nasolabial fold in all cases for achieving direct closure and an aesthetically pleasing outcome. In one of the cases, a paramedian forehead flap was performed simultaneously. Nine patients healed uneventfully, with good functional and esthetic outcomes. One of the flaps developed partial necrosis of the distal end, and another developed temporary postoperative venous congestion, lymphedema, and, finally, trapdoor deformity. The latter complication also occurred in one more flap. The propeller FAP flap is reliable and versatile, with few complications, and it is especially useful when reconstructing complex defects that involve the nasolabial and perinasal regions; therefore, it should be considered as one of the first reconstructive options for the described defects. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Sarmah, Swapnalee; Marrs, James A.
2014-01-01
BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875
The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings
NASA Astrophysics Data System (ADS)
Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing
Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.
Synthetic Defects for Vibrothermography
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.
2010-02-01
Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.
Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping
2014-11-26
In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.
Kovalevsky, A V; Yaremchenko, A A; Populoh, S; Thiel, P; Fagg, D P; Weidenkaff, A; Frade, J R
2014-12-28
Donor-substituted strontium titanate ceramics demonstrate one of the most promising performances among n-type oxide thermoelectrics. Here we report a marked improvement of the thermoelectric properties in rare-earth substituted titanates Sr0.9R0.1TiO3±δ (R = La, Ce, Pr, Nd, Sm, Gd, Dy, Y) to achieve maximal ZT values of as high as 0.42 at 1190 K < T < 1225 K, prepared via a conventional solid state route followed by sintering under strongly reducing conditions (10%H2-90%N2, 1773 K). As a result of complex defect chemistry, both electrical and thermal properties were found to be dependent on the nature of the rare-earth cation and exhibit an apparent correlation with the unit cell size. High power factors of 1350-1550 μW m(-1) K(-2) at 400-550 K were observed for R = Nd, Sm, Pr and Y, being among the largest reported so far for n-type conducting bulk-ceramic SrTiO3-based materials. Attractive ZT values at high temperatures arise primarily from low thermal conductivity, which, in turn, stem from effective phonon scattering in oxygen-deficient perovskite layers formed upon reduction. The results suggest that highly-reducing conditions are essential and should be employed, whenever possible, in other related micro/nanostructural engineering approaches to suppress the thermal conductivity in target titanate-based ceramics.
Reactive Oxygen Species on the Early Earth and Survival of Bacteria
NASA Technical Reports Server (NTRS)
Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn
2011-01-01
An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.
Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease
Alfadhel, Majid; Nashabat, Marwan; Ali, Qais Abu; Hundallah, Khalid
2017-01-01
Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications. PMID:28064324
ERIC Educational Resources Information Center
Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce
2017-01-01
Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…
A fast button surface defects detection method based on convolutional neural network
NASA Astrophysics Data System (ADS)
Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran
2018-01-01
Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.
Dynamic defect correlations dominate activated electronic transport in SrTiO3
Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503
The capability of lithography simulation based on MVM-SEM® system
NASA Astrophysics Data System (ADS)
Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong
2015-10-01
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
Dynamic defect correlations dominate activated electronic transport in SrTiO 3
Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...
2016-07-22
Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less
Influence of superconductor film composition on adhesion strength of coated conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao
The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCOmore » samples.« less
Impurity-defect complexes in non-implanted aluminum
NASA Astrophysics Data System (ADS)
Pedersen, F. T.; Grann, H.; Weyer, G.
1986-02-01
The formation of impurity-defect complexes in ion-implanted aluminum has been studied in the temperature interval 100 400K. Radioactive119In isotopes have been implanted. Mössbauer spectra have been measured for the 24 keV γ-radiation emitted after the decay to119Sn. The spectra could be analysed satisfactorily with two lines, one of which is known to be due to substitutional Sn. A second line, which has a higher isomer shift and lower Debye temperature, is tentatively assigned to vacancy-associated Sn, formed by trapping of thermally mobile (multi-)vacancies. Comparison to similar DPAC experiments suggests that cubic Sn-V4 complexes are formed. Some indication (˜15%) for an athermal formation of impurity defects below 175K is obtained.
NASA Astrophysics Data System (ADS)
Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde
2018-06-01
A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com
Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic interactions with cluster and spin-glass type growth. - Highlights: • Lattice defects/vacancies attributed high T{sub c} –ferromagnetism. • Transition metal and rare earth ions deform the wurtzite ZnO lattice to induce defects. • Oxygen vacancies are more favorable than Zn with Ni, Cu, Ce into ZnO. • Defects assisted long-range ferromagnetism of doped ZnO include cluster and spin-glass growth.« less
Campbell, Jay M.; Zhang, Nianli; Hickey, William J.
2012-01-01
Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral–water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral–water–cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity—Bacteria—EPS evolution—Biofilms—Cytotoxicity—Silica—Anatase—Alumina. Astrobiology 12, 785–798. PMID:22934560
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin
2018-02-01
A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.
Lui, Y F; Ip, W Y
2016-01-01
Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.
Characterization of oxygen defects in diamond by means of density functional theory calculations
NASA Astrophysics Data System (ADS)
Thiering, Gergő; Gali, Adam
2016-09-01
Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.
NASA Technical Reports Server (NTRS)
Athale, R.; Lee, S. H.
1976-01-01
Various defects in mass-produced pictures transmitted to earth from a satellite are investigated. It is found that the following defects are readily detectable via Fourier spectrum analysis: (1) bit slip, (2) breakup causing loss of image, and (3) disabled track at the top of the imagery. The scratches made on the film during mass production, which are difficult to detect by visual observation, also show themselves readily in Fourier spectrum analysis. A relation is established between the number of scratches, their width and depth and the intensity of their Fourier spectra. Other defects that are found to be equally suitable for Fourier spectrum analysis or visual (image analysis) detection are synchronous loss without blurring of image, and density variation in gray scale. However, the Fourier spectrum analysis is found to be unsuitable for detection of such defects as pin holes, annotation error, synchronous loss with blurring of images, and missing image in the beginning of the work order. The design of an automated, real time system, which will reject defective films, is treated.
Quantum metrology with a single spin-3/2 defect in silicon carbide
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using the novel features of semiconductor high half-spin multiplet defects with easy-to-implement optical detection protocols. To achieve this, we use the spin- 3 / 2 silicon monovacancy deep center in hexagonal silicon carbide based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. Other point defects, i.e. 3d transition metal or rare-earth impurities in semiconductors, may also provide similar opportunities in quantum sensing due to their similar high spin (S >= 3 / 2) configurations. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A.
Ravera, Silvia; Vaccaro, Daniele; Cuccarolo, Paola; Columbaro, Marta; Capanni, Cristina; Bartolucci, Martina; Panfoli, Isabella; Morelli, Alessandro; Dufour, Carlo; Cappelli, Enrico; Degan, Paolo
2013-10-01
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Vacancies in MgO at ultrahigh pressure: About mantle rheology of super-Earths
NASA Astrophysics Data System (ADS)
Ritterbex, Sebastian; Harada, Takafumi; Tsuchiya, Taku
2018-05-01
First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500 GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (∼104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.
NASA Astrophysics Data System (ADS)
Allard, T.; Fourdrin, C.; Calas, G.
2007-05-01
Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U systematics. The corresponding results reveal past accumulation of uranium in the mineralized zone and past leaching in the fissure network of the present barren rock. Geochemical implications for HLNWR will be discussed.
Defect charge states in Si doped hexagonal boron-nitride monolayer
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.
2016-02-01
We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q = -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.
Slow positron beam study of hydrogen ion implanted ZnO thin films
NASA Astrophysics Data System (ADS)
Hu, Yi; Xue, Xudong; Wu, Yichu
2014-08-01
The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.
The Nucleosome Remodeling and Deacetylase (NuRD) Complex in Development and Disease
Basta, Jeannine; Rauchman, Michael
2014-01-01
The Nucleosome Remodeling and Deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis and accelerated ageing. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer. PMID:24880148
Nanoscale interfacial defect shedding in a growing nematic droplet.
Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro
2017-08-01
Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.
Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F
2009-01-01
Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.
Defect phase diagram for doping of Ga2O3
NASA Astrophysics Data System (ADS)
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.
Topological defects in liquid crystals and molecular self-assembly (Conference Presentation)
NASA Astrophysics Data System (ADS)
Abbott, Nicholas L.
2017-02-01
Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerizations, leading to a range of elastomers and gels with complex mechanical and optical properties. However, little is understood about molecular-level assembly processes within defects. This presentation will describe an experimental study that reveals that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, key signatures of molecular self-assembly of amphiphilic molecules in topological defects are observed - including cooperativity, reversibility, and controlled growth of the molecular assemblies. By using polymerizable amphiphiles, we also demonstrate preservation of molecular assemblies templated by defects, including nanoscopic "o-rings" synthesized from "Saturn-ring" disclinations. Our results reveal that topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly in a manner that is strongly analogous to other classes of macromolecular templates (e.g., polymer—surfactant complexes). Opportunities for the design of exquisitely responsive soft materials will be discussed using bacterial endotoxin as an example.
NASA Astrophysics Data System (ADS)
Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.
2009-03-01
A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.
Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.
Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu
2018-05-01
Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.
Copper interstitial recombination centers in Cu3N
NASA Astrophysics Data System (ADS)
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; Hanifi, David; Salleo, Alberto; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.
2018-06-01
We present a comprehensive study of the earth-abundant semiconductor Cu3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies VCu have shallow defect levels while copper interstitials Cui behave as deep potential wells in the conduction band, which mediate Shockley-Read-Hall recombination. The existence of Cui defects has been experimentally verified using photothermal deflection spectroscopy. A Cu3N /ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. The absence of photocurrent can be explained by a large concentration of Cui recombination centers capturing electrons in p -type Cu3N .
Radioluminescence response of germanosilicate optical fibres
NASA Astrophysics Data System (ADS)
Khanlary, M. R.; Townsend, P. D.; Townsend, J. E.
1993-07-01
X-ray irradiation of germanosilicate optical fibres simultaneously produces signals from both the core and substrate and so the radioluminescence spectra record the defect structure of both regions. The data provide evidence for the presence of dopants and trace impurities, as well as intrinsic defects formed by thermal and radiation processing. Examples of the changes in spectra or luminescence sensitivity with radiation dose, the influence of fibre pulling conditions and post irradiation heating are noted. The temperature dependence of the radioluminescence is reported. Whilst most of the intrinsic defects produce broad emission bands, rare earth dopants show line features. However, line features have also been noted for Al doped fibres. Such studies of fibre luminescence offer a sensitive monitor of changes in the structure of the glass network.
Cherubino, Mario; Turri-Zanoni, Mario; Battaglia, Paolo; Giudice, Marco; Pellegatta, Igor; Tamborini, Federico; Maggiulli, Francesca; Guzzetti, Luca; Di Giovanna, Danilo; Bignami, Maurizio; Calati, Carolina; Castelnuovo, Paolo; Valdatta, Luigi
2017-01-01
Complex cranio-orbito-facial defects after skull base cancers resection entail a functional and esthetic reconstruction. The introduction of endoscopic assisted techniques for excision surgery with the advances in reconstructive surgery and anesthesiology allowed to improve the management of such critical patients. We report a series of chimeric anterolateral thigh (ALT) flaps used to reconstruct complex cranio-orbital-facial defects after skull base surgery. A retrospective review of patients that underwent cranio-orbito-facial reconstruction using a chimeric ALT flap from March 2013 to October 2015 at a single tertiary care referral Institute was performed. All patients were affected by locally-advanced malignant tumor and the resulting defects involved the skull base in all cases. The ALT flaps were perforator-based flaps with different components: fascia, skin and muscle. The different flap territories had independent vascular supply and were independent of any physical interconnection except where linked by a common source vessel. Ten patients were included in the study. Three patients underwent adjuvant radiotherapy and to chemotherapy. The mean hospitalization time was 21 days (range, 8-24 days). One failure was observed. After a mean follow-up of 12.4 months, 3 patients died of the disease, 2 are alive with disease, while 5 patients (50%) are currently alive without evidence of disease. Chimeric ALT flap is a reliable and versatile reconstructive option for complex cranio-orbito-facial defects resulting from skull base surgery. The chimeric flap composed of different territories proved to be adequate for a patient-tailored three-dimensional reconstruction of the defects as well as able to resist to the postoperative adjuvant treatments. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
The two gap transitions in Ge1 -xSnx : Effect of non-substitutional complex defects
NASA Astrophysics Data System (ADS)
Querales-Flores, J. D.; Ventura, C. I.; Fuhr, J. D.; Barrio, R. A.
2016-09-01
The existence of non-substitutional β-Sn defects in Ge1 -xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1 -xSnx , including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1 -xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.
High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.
2008-01-01
Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.
Magneto-electronic coupling in modulated defect-structures of natural Fe{sub 1−x}S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charilaou, M., E-mail: charilaou@mat.ethz.ch; Löffler, J. F.; Kind, J.
2015-08-28
We provide compelling experimental evidence that the low-temperature transition in natural non-stoichiometric Fe{sub 7}S{sub 8}, a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials, is a phenomenon caused by magnetic coupling between epitaxially intergrown superstructures. The two superstructures differ in their defect distribution, and consequently in their magnetic anisotropy. At T < 30 K, the magnetic moments of the superstructures become strongly coupled, resulting in a 12-fold anisotropy symmetry, which is reflected in the anisotropic magneto-resistance.
Development of Zinc Tin Nitride for Application as an Earth Abundant Photovoltaic Absorber
NASA Astrophysics Data System (ADS)
Fioretti, Angela N.
In recent years, many new potential absorber materials based on earth-abundant and non-toxic elements have been predicted. These materials, often made in thin film form and known to absorb light 10-1000 times more e ciently than crystalline silicon, could lower module cost and enable broader solar deployment. One such material is zinc tin nitride (ZnSnN 2), a II-IV-nitride analog of the III-nitride materials, which was identified as a suitable solar absorber due to its direct bandgap, large absorption coefficient, and disorder-driven bandgap tunability. Despite these desirable properties, initial attempts at synthesis resulted in degenerate n-type carrier density. Computational work on the point defect formation energies for this material revealed three donor defects were likely the cause; specifically SnZn antisites, VN sites, and ON substitutions. Given this framework, a defect-driven hypothesis was proposed as a starting point for the present work: if each donor defect could be addressed by tuning deposition parameters, n-type degeneracy may be defeated. By using combinatorial co- sputtering to grow compositionally-graded thin film samples, n-type carrier density was reduced by two orders of magnitude compared to state-of-the-art. This reduction in carrier density was observed for zinc-rich samples, which supported the defect-driven hypothesis initially proposed. These results and their implications are the topic of Chapter 2. Further carrier density control in zinc-rich ZTN was achieved via hydrogen incorporation and post-growth annealing. This strategy was hypothesized to operate by passivating acceptor defects to avoid self-compensation, which were then activated by hydrogen drive- out upon annealing. Carrier density was reduced another order of magnitude using this technique, which is presented in Chapter 3. After defeating n-type degeneracy, a deeper understanding of the electronic structure was pursued. Photoluminescence (PL) was used to study electronic structure and recombination pathways in zinc-rich ZTN, and excitonic emission was observed despite its many crystallographic defects. PL results are presented in Chapter 4. Ultimately, this work has advanced the field of ZTN research both technologically and scientifically, by providing strategies for self-doping control and identifying critical defect interactions giving rise to n-type degeneracy and carrier density reduction.
Seismic anisotropy from crust to core: a mineral and rock physics perspective
NASA Astrophysics Data System (ADS)
Mainprice, David
2014-05-01
Since the early work of Hess and co-works for mantle in the 1960s and Poupinet et al. in 1980s for the inner core, we know that seismic anisotropy is a global phenomenon. Progress in seismology has led to a much more complete image of the Earth's interior in terms of heterogeneity and anisotropy. The interpretation of the seismic anisotropy requires a multidisciplinary effort to unravel the geodynamic scenario recorded in today's seismological snapshot. Progress in mineral physics on the experimental measurement of elastic properties at extreme conditions are now completed by ab initio atomic modelling for the full range of temperatures and pressures of the Earth's interior. The new data on the elastic constants of wider range minerals enables more realistic petrology for seismic anisotropy models. Experimental plastic deformation of polycrystalline samples at deep Earth conditions allows the direct study of crystal preferred orientation (CPO) and these studies are completed by ab initio atomic modelling of dislocations and other defects that control plasticity. Finally, polycrystalline plasticity codes allow the simulation of CPO reported by experimentalists and the modelling of more complex strain paths required for geodynamic models. The CPO of crustal and mantle rocks from the Earth's surface or recovered as xenoliths, provides a geological verification of the CPOs present in the Earth. The systematic use of CPO measured by U-stage for field studies all over the world for last 40 years has now been intensified in last 15 years by the use of electron back-scattered diffraction (EBSD) to study of CPO and the associated digital microstructure. It is an appropriate time to analysis CPO databases of olivine and other minerals, which represents the work of our group, both present and former members, as well as collaborating colleagues. It is also interesting to compare the natural record as illustrated by our databases in the light of recent experimental results. Information on CPO together with single crystal elastic constants and the equation of state allow the modelling of seismic anisotropy due to plasticity at any PT condition, and the connection with geodynamic processes related to large-scale flow in the deep Earth.
Faghaninia, Alireza; Yu, Guodong; Aydemir, Umut; ...
2017-02-08
Bournonite (CuPbSbS 3) is an earth-abundant mineral with potential thermoelectric applications. This material has a complex crystal structure (space group Pmn2 1 #31) and has previously been measured to exhibit a very low thermal conductivity (κ < 1 W m -1 K -1 at T ≥ 300 K). In this study, we employ high-throughput density functional theory calculations to investigate how the properties of the bournonite crystal structure change with elemental substitutions. Specifically, we compute the stability and electronic properties of 320 structures generated via substitutions {Na-K-Cu-Ag}{Si-Ge-Sn-Pb}{N-P-As-Sb-Bi}{O-S-Se-Te} in the ABCD 3 formula. We perform two types of transport calculations: themore » BoltzTraP model, which has been extensively tested, and a newer AMSET model that we have developed and which incorporates scattering effects. We discuss the differences in the model results, finding qualitative agreement except in the case of degenerate bands. Based on our calculations, we identify p-type CuPbSbSe 3 , CuSnSbSe 3 and CuPbAsSe 3 as potentially promising materials for further investigation. We additionally calculate the defect properties, finding that n-type behavior in bournonite and the selected materials is highly unlikely, and p-type behavior might be enhanced by employing Sb-poor synthesis conditions to prevent the formation of Sb Pb defects. Finally, we discuss the origins of various trends with chemical substitution, including the possible role of stereochemically active lone pair effects in stabilizing the bournonite structure and the effect of cation and anion selection on the calculated band gap.« less
2018-04-17
During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, Shari Blissett-Clark of the Florida Bat Conservancy displays one of the mammals. The event took place during the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn more about energy awareness, the environment and sustainability.
Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.
Madruga, Santiago; Riecke, Hermann; Pesch, Werner
2006-02-24
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non-Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscillations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
NASA Astrophysics Data System (ADS)
Gao, Baojiao; Zhang, Dandan; Li, Yanbin
2018-03-01
Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robson, M.C.; Zachary, L.S.; Schmidt, D.R.
1989-03-01
Six cases of large defects of the scalp, skull, and dura following tumor ablation and radiation are presented. Each was accompanied by chronic infection in the irradiated defect. Efforts to reconstruct the resulting defects with local flaps were not successful. One-stage reconstruction was then accomplished in each case utilizing a latissimus dorsi musculocutaneous or myo-osteocutaneous free flap transferred by microvascular anastomoses. The versatility of the latissimus dorsi musculocutaneous and/or osseous flap allows single-stage reconstruction of these complex defects.
Drosophila Lin-52 Acts in Opposition to Repressive Components of the Myb-MuvB/dREAM Complex
Lewis, Peter W.; Sahoo, Debashis; Geng, Cuiyun; Bell, Maren
2012-01-01
The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner. PMID:22688510
Acceptor Type Vacancy Complexes In As-Grown ZnO
NASA Astrophysics Data System (ADS)
Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.
2010-11-01
One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
Multiple-digit resurfacing using a thin latissimus dorsi perforator flap.
Kim, Sang Wha; Lee, Ho Jun; Kim, Jeong Tae; Kim, Youn Hwan
2014-01-01
Traumatic digit defects of high complexity and with inadequate local tissue represent challenging surgical problems. Recently, perforator flaps have been proposed for reconstructing large defects of the hand because of their thinness and pliability and minimal donor site morbidity. Here, we illustrate the use of thin latissimus dorsi perforator flaps for resurfacing multiple defects of distal digits. We describe the cases of seven patients with large defects, including digits, circumferential defects and multiple-digit defects, who underwent reconstruction with thin latissimus dorsi perforator flaps between January 2008 and March 2012. Single-digit resurfacing procedures were excluded. The mean age was 56.3 years and the mean flap size was 160.4 cm(2). All the flaps survived completely. Two patients had minor complications including partial flap loss and scar contracture. The mean follow-up period was 11.7 months. The ideal flap for digit resurfacing should be thin and amenable to moulding, have a long pedicle for microanastomosis and have minimal donor site morbidity. Thin flaps can be harvested by excluding the deep adipose layer, and their high pliability enables resurfacing without multiple debulking procedures. The latissimus dorsi perforator flap may be the best flap for reconstructing complex defects of the digits, such as large, multiple-digit or circumferential defects, which require complete wrapping of volar and dorsal surfaces. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Engineering Ceramic Nanophosphors for Optical Applications
2009-06-11
spacing) AMPR : multiphonon relaxation losses (surface defects, traps) AOH : losses from –OH quenching OHMPRETradnon rad lum radnonirad irad AAAA AA A...methacrylate ( PMMA ) and Polystyrene (PS) • Obtained transparent composites of rare-earth doped CeF3 nanoparticles with high solid loading MC Tan, SD Patil
ERIC Educational Resources Information Center
Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.
2017-01-01
Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…
NASA Astrophysics Data System (ADS)
Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.
2015-12-01
The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ1 and τ2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi
2015-12-01
This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.
NASA Astrophysics Data System (ADS)
Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.
2000-03-01
The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.
Hong, Jianquan; Tian, Haiwen; Zhang, Lixin; Zhou, Xigeng; Del Rosal, Iker; Weng, Linhong; Maron, Laurent
2018-01-22
The preferential substitution of oxo ligands over alkyl ones of rare-earth complexes is commonly considered as "impossible" due to the high oxophilicity of metal centers. Now, it has been shown that simply assembling mixed methyl/oxo rare-earth complexes to a rigid trinuclear cluster framework cannot only enhance the activity of the Ln-oxo bond, but also protect the highly reactive Ln-alkyl bond, thus providing a previously unrecognized opportunity to selectively manipulate the oxo ligand in the presence of numerous reactive functionalities. Such trimetallic cluster has proved to be a suitable platform for developing the unprecedented non-redox rare-earth-mediated oxygen atom transfer from ketones to CS 2 and PhNCS. Controlled experiments and computational studies shed light on the driving force for these reactions, emphasizing the importance of the sterical accessibility and multimetallic effect of the cluster framework in promoting reversal of reactivity of rare-earth oxo complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transmission Electron Microscopy of Minerals and Rocks
NASA Astrophysics Data System (ADS)
McLaren, Alex C.
1991-04-01
Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.
Defect phase diagram for doping of Ga 2O 3
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Nitrogen vacancy complexes in nitrogen irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veen, A. van; Westerduin, K.T.; Schut, H.
1996-12-31
Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less
Defect phase diagram for doping of Ga 2O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Carbon, oxygen and intrinsic defect interactions in germanium-doped silicon
NASA Astrophysics Data System (ADS)
Londos, C. A.; Sgourou, E. N.; Chroneos, A.; Emtsev, V. V.
2011-10-01
Production and annealing of oxygen-vacancy (VO) and oxygen-carbon (CiOi, CiOiI) defects in germanium-doped Czochralski-grown silicon (Cz-Si) containing carbon are investigated. All the samples were irradiated with 2 MeV fast electrons. Radiation-produced defects are studied using infrared spectroscopy by monitoring the relevant bands in optical spectra. For the VO defects, it is established that the doping with Ge affects the thermal stability of VO (830 cm-1) defects as well as their fraction converted to VO2 (888 cm-1) defects. In Ge-free samples containing carbon, it was found that carbon impurity atoms do not affect the thermal stability of VO defects, although they affect the fraction of VO defects that is converted to VO2 complexes. Considering the oxygen-carbon complexes, it is established that the annealing of the 862 cm-1 band associated with the CiOi defects is accompanied with the emergence of the 1048 cm-1 band, which has earlier been assigned to the CsO2i center. The evolution of the CiOiI bands is also traced. Ge doping does not seem to affect the thermal stability of the CiOi and CiOiI defects. Density functional theory (DFT) calculations provide insights into the stability of the defect clusters (VO, CiOi, CiOiI) at an atomic level. Both experimental and theoretical results are consistent with the viewpoint that Ge affects the stability of the VO but does not influence the stability of the oxygen-carbon clusters. DFT calculations demonstrate that C attracts both Oi and VO pairs predominately forming next nearest neighbor clusters in contrast to Ge where the interactions with Oi and VO are more energetically favorable at nearest neighbor configurations.
Rare earth element scavenging in seawater
NASA Astrophysics Data System (ADS)
Byrne, Robert H.; Kim, Ki-Hyun
1990-10-01
Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.
Copper interstitial recombination centers in Cu 3 N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam
We present a comprehensive study of the earth-abundant semiconductor Cu 3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies V Cu have shallow defect levels while copper interstitials Cu i behave as deep potential wells in the conduction band which mediate Shockley-Read-Hall recombination. The existence of Cu i defects has been experimentally verified using photothermal deflection spectroscopy. A Cu 3N/ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. Finally, the absencemore » of photocurrent can be explained by a large concentration of Cu i recombination centers capturing electrons in p-type Cu 3N.« less
Copper interstitial recombination centers in Cu 3 N
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; ...
2018-06-04
We present a comprehensive study of the earth-abundant semiconductor Cu 3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies V Cu have shallow defect levels while copper interstitials Cu i behave as deep potential wells in the conduction band which mediate Shockley-Read-Hall recombination. The existence of Cu i defects has been experimentally verified using photothermal deflection spectroscopy. A Cu 3N/ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. Finally, the absencemore » of photocurrent can be explained by a large concentration of Cu i recombination centers capturing electrons in p-type Cu 3N.« less
EPR of radiation defects in lithium-oxyfluoride glass ceramics
NASA Astrophysics Data System (ADS)
Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.
2010-11-01
We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.
Ontology of Earth's nonlinear dynamic complex systems
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2017-04-01
As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.
Dier, Tobias K F; Egele, Kerstin; Fossog, Verlaine; Hempelmann, Rolf; Volmer, Dietrich A
2016-01-19
High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velişa, G.; Wendler, E.; Zhao, S.
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Velişa, G.; Wendler, E.; Zhao, S.; ...
2017-12-17
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow.
Latrache, Noureddine; Abcha, Nizar; Crumeyrolle, Olivier; Mutabazi, Innocent
2016-04-01
Transition to defect-mediated turbulence in the ribbon patterns observed in a viscoelastic Taylor-Couette flow is investigated when the rotation rate of the inner cylinder is increased while the outer cylinder is fixed. In four polymer solutions with different values of the elasticity number, the defects appear just above the onset of the ribbon pattern and trigger the appearance of disordered oscillations when the rotation rate is increased. The flow structure around the defects is determined and the statistical properties of these defects are analyzed in the framework of the complex Ginzburg-Landau equation.
Defect Complex Effect in Nb Doped TiO2 Ceramics with Colossal Permittivity
NASA Astrophysics Data System (ADS)
Li, Fuchao; Shang, Baoqiang; Liang, Pengfei; Wei, Lingling; Yang, Zupei
2016-10-01
Donor-doped Nb x Ti1- x O2 ( x = 1%, 2%, 4%, 6%, and 8%) ceramics with giant permittivity (>104) and a very low dielectric loss (˜0.05) were sintered under flowing N2 at 1400°C for 10 h. By increasing Nb doping concentration, two different dielectric responses were evidenced in the frequency dependence of dielectric properties of Nb doped TiO2 ceramics, which corresponded to the space charge polarization and the electron-pinned defect-dipoles effect, respectively. Especially, combined with the x-ray photoelectron spectroscopy results, the electron-pinned defect-dipoles induced by the 2({Nb}^{5 + } )_{{Ti}}^{ bullet } to 4({Ti}^{3 + } )^'_{{Ti}} leftarrow {V}_{{o}}^{ bullet bullet } defect complex were further confirmed to give rise to both their high ɛr and low tan δ in the high frequency range for the Nb x Ti1- x O2 ceramics with x > 4%.
Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.
Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip
2016-06-08
Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.
Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2
NASA Astrophysics Data System (ADS)
Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip
2016-06-01
Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.
NASA Astrophysics Data System (ADS)
Wang, Wen-Zhen; Geng, Shu-Bo; Liu, Shuang; Zhao, Dan; Jia, Xin-Gang; Wei, Hai-Long; Ismayilov, Rayyat H.; Yeh, Chen-Yu; Lee, Gene-Hsiang; Peng, Shie-Ming
2017-06-01
Through a pyrazine and naphthyridine-containing diamino ligand, N2,N7-di(pyrazin-2-yl)-1,8-naphthyridine-2,7-diamine (H2dpznda), defective extended metal atom chain complexes with one chromium(II) metal absent in centre, [Cr5(μ5-dpznda)4Cl2] (1) and [Cr5(μ5-dpznda)4(NCS)2] (2) were obtained. An electrochemistry research showed that the pentachromium(II) complexes were quite resistant to reduction although accessible to oxidation, with two reversible redox couples at E1/2 = +0.59 and +0.30 V.
Characterisation of Cs ion implanted GaN by DLTS
NASA Astrophysics Data System (ADS)
Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.
2018-04-01
Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.
NASA Astrophysics Data System (ADS)
Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.
2017-07-01
Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.
Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks
NASA Astrophysics Data System (ADS)
Lim, Jaein; Udpa, Satish S.; Udpa, Lalita; Afzal, Muhammad
2001-04-01
The primary objective of multi-sensor data fusion, which offers both quantitative and qualitative benefits, has the ability to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from two sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The two sensors measure the axial and circumferential components of the MFL. Data is fused at the signal level. If the flux is oriented axially, the samples of the axial signal are measured along a direction parallel to the flaw, while the circumferential signal is measured in a direction that is perpendicular to the flaw. The two signals are combined as the real and imaginary components of a complex valued signal. Signals from an array of sensors are arranged in contiguous rows to obtain a complex valued image. A boundary extraction algorithm is used to extract the defect areas in the image. Signals from the defect regions are then processed to minimize noise and the effects of lift-off. Finally, a wavelet basis function (WBF) neural network is employed to map the complex valued image appropriately to obtain the geometrical profile of the defect. The feasibility of the approach was evaluated using the data obtained from the MFL inspection of natural gas transmission pipelines. Results show the effectiveness of the approach.
Ngu, Lock Hock; Nijtmans, Leo G; Distelmaier, Felix; Venselaar, Hanka; van Emst-de Vries, Sjenet E; van den Brand, Mariël A M; Stoltenborg, Berendien J M; Wintjes, Liesbeth T; Willems, Peter H; van den Heuvel, Lambertus P; Smeitink, Jan A; Rodenburg, Richard J T
2012-02-01
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I. Copyright © 2011 Elsevier B.V. All rights reserved.
Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction
Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...
2016-10-17
Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo
1998-01-01
A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.
First-principles simulations of transition metal ions in silicon as potential quantum bits
NASA Astrophysics Data System (ADS)
Ma, He; Seo, Hosung; Galli, Giulia
Optically active spin defects in semiconductors have gained increasing attention in recent years for use as potential solid-state quantum bits (or qubits). Examples include the nitrogen-vacancy center in diamond, transition metal impurities, and rare earth ions. In this talk, we present first-principles theoretical results on group 6 transition metal ion (Chromium, Molybdenum and Tungsten) impurities in silicon, and we investigate their potential use as qubits. We used density functional theory (DFT) to calculate defect formation energies and we found that transition metal ions have lower formation energies at interstitial than substitutional sites. We also computed the electronic structure of the defects with particular attention to the position of the defect energy levels with respect to the silicon band edges. Based on our results, we will discuss the possibility of implementing qubits in silicon using group 6 transition metal ions. This work is supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.
Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia
Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.
2012-01-01
Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150
The CiCs(SiI)n Defect in Silicon from a Density Functional Theory Perspective.
Christopoulos, Stavros-Richard G; Sgourou, Efstratia N; Vovk, Ruslan V; Chroneos, Alexander; Londos, Charalampos A
2018-04-16
Carbon constitutes a significant defect in silicon (Si) as it can interact with intrinsic point defects and affect the operation of devices. In heavily irradiated Si containing carbon the initially produced carbon interstitial-carbon substitutional (C i C s ) defect can associate with self-interstitials (Si I 's) to form, in the course of irradiation, the C i C s (Si I ) defect and further form larger complexes namely, C i C s (Si I ) n defects, by the sequential trapping of self-interstitials defects. In the present study, we use density functional theory to clarify the structure and energetics of the C i C s (Si I ) n defects. We report that the lowest energy C i C s (Si I ) and C i C s (Si I )₂ defects are strongly bound with -2.77 and -5.30 eV, respectively.
Carrier providers or killers: The case of Cu defects in CdTe
Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai
2017-07-24
Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less
Carrier providers or killers: The case of Cu defects in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai
Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less
Limb-body wall defect: experience of a reference service of fetal medicine from Southern Brazil.
Gazolla, Ana C; da Cunha, André C; Telles, Jorge A B; Betat, Rosilene da S; Romano, Mayara A; Marshall, Isabel; Gobatto, Amanda M; de H Bicca, Anna M; Arcolini, Camila P; Dal Pai, Thaís K V; Vieira, Luciane R; Targa, Luciano V; Betineli, Ildo; Zen, Paulo R G; Rosa, Rafael F M
2014-10-01
Limb-body wall defect is a rare condition characterized by a combination of large and complex defects of the ventral thorax and abdominal wall with craniofacial and limb anomalies. The aim of this study was to describe the experience of our fetal medicine service, a reference from Southern Brazil, with prenatally diagnosed patients with a limb-body wall defect in a 3 years period. Only patients who fulfilled the criteria suggested by Hunter et al. (2011) were included in the study. Clinical data and results of radiological and cytogenetic evaluation were collected from their medical records. Our sample was composed of 8 patients. Many of their mothers were younger than 25 years (50%) and in their first pregnancy (62.5%). It is noteworthy that one patient was referred due to suspected anencephaly and another due to a twin pregnancy with an embryonic sac. Craniofacial defects were verified in three patients (37.5%), thoracic/abdominal abnormalities in 6 (75%) and limb defects in eight (100%). Congenital heart defects were observed in five patients (62.5%). One of them presented a previously undescribed complex heart defect. The results disclosed that complementary exams, such as MRI and echocardiography, are important to better define the observed defects. Some of them, such as congenital heart defects, may be more common than previously reported. This definition is essential for the proper management of the pregnancy and genetic counseling of the family. The birth of these children must be planned with caution and for the prognosis a long survival possibility, despite unlikely and rare, must be considered. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Spicer, Patrick
Craniofacial defects resulting from trauma and resection present many challenges to reconstruction due to the complex structure, combinations of tissues, and environment, with exposure to the oral, skin and nasal mucosal pathogens. Tissue engineering seeks to regenerate the tissues lost in these defects; however, the composite nature and proximity to colonizing bacteria remain difficult to overcome. Additionally, many tissue engineering approaches have further hurdles to overcome in the regulatory process to clinical translation. As such these studies investigated a two stage strategy employing an antibiotic-releasing porous polymethylmethacrylate space maintainer fabricated with materials currently part of products approved or cleared by the United States Food and Drug Administration, expediting the translation to the clinic. This porous space maintainer holds the bone defect open allowing soft tissue to heal around the defect. The space maintainer can then be removed and one regenerated in the defect. These studies investigated the individual components of this strategy. The porous space maintainer showed similar soft tissue healing and response to non-porous space maintainers in a rabbit composite tissue defect. The antibiotic-releasing space maintainers showed release of antibiotics from 1-5 weeks, which could be controlled by loading and fabrication parameters. In vivo, space maintainers releasing a high dose of antibiotics for an extended period of time increased soft tissue healing over burst release space maintainers in an infected composite tissue defect model in a rabbit mandible. Finally, stabilization of bone defects and regeneration could be improved through scaffold structures and delivery of a bone forming growth factor. These studies illustrate the possibility of the two stage strategy for repair of composite tissue defects of the craniofacial complex.
Lorestani, Alexander; Sheiner, Lilach; Yang, Kevin; Robertson, Seth D.; Sahoo, Nivedita; Brooks, Carrie F.; Ferguson, David J. P.; Striepen, Boris; Gubbels, Marc-Jan
2010-01-01
The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation. PMID:20808817
Optical activity and defect/dopant evolution in ZnO implanted with Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej
2015-09-28
The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Ermore » atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.« less
Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M
2017-12-13
The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
NASA Astrophysics Data System (ADS)
Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.
2018-01-01
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
Liability for Personal Injury Caused by Defective Medical Computer Programs
Brannigan, Vincent M.
1980-01-01
Defective medical computer programs can cause personal injury. Financial responsibility for the injury under tort law will turn on several factors: whether the program is a product or a service, what types of defect exist in the product, and who produced the program. The factors involved in making these decisions are complex, but knowledge of the relevant issues can assist computer personnel in avoiding liability.
First-principles theory of doping in layered oxide electrode materials
NASA Astrophysics Data System (ADS)
Hoang, Khang
2017-12-01
Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.
Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent; ...
2018-03-06
The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less
Impact of isovalent doping on radiation defects in silicon
NASA Astrophysics Data System (ADS)
Londos, C. A.; Sgourou, E. N.; Timerkaeva, D.; Chroneos, A.; Pochet, P.; Emtsev, V. V.
2013-09-01
Isovalent doping is an important process for the control of point defects in Si. Here, by means of infrared spectroscopy, we investigated the properties of the two main radiation-induced defects in Czochralski-Si (Cz-Si) the oxygen-vacancy (VO) and the carbon-oxygen (CiOi) centres. In particular, we investigated the effect of isovalent doping on the production, the thermal evolution, and the thermal stability of the VO and the CiOi defects. Additionally, we studied the reactions that participate upon annealing and the defects formed as a result of these reactions. Upon annealing VO is converted to VO2 defect although part of the CiOi is converted to CsO2i complexes. Thus, we studied the conversion ratios [VO2]/[VO] and [CsO2i]/[CiOi] with respect to the isovalent dopant. Additionally, the role of carbon in the above processes was discussed. A delay between the temperature characterizing the onset of the VO decay and the temperature characterizing the VO2 growth as well the further growth of VO2 after the complete disappearance of VO indicate that the VO to VO2 conversion is a complex phenomenon with many reaction processes involved. Differences exhibited between the effects of the various dopants on the properties of the two defects were highlighted. The results are discussed in view of density functional theory calculations involving the interaction of isovalent dopants with intrinsic defects, the oxygen and carbon impurities in Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent
The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less
Thermal degradation of InP in open tube processing: deep-level photoluminescence
NASA Astrophysics Data System (ADS)
Banerjee, S.; Srivastava, A. K.; Arora, B. M.
1990-09-01
Thermal processing of InP at temperatures above 500 °C is indispensable in the growth and device fabrication of InGaAsP alloy semiconductors for optoelectronic and microwave applications. Incongruous loss of P at these temperatures creates native defects and their complexes. The presence of such defects modifies the electrical and optical properties of the material resulting in poor device performance. In addition, native defects play a significant role in dopant diffusion which is a topic of current interest. We have measured deep-level photoluminescence (PL) on undoped InP after heat treatments at 500 and 550 °C in an open-tube processing system in different protective environments of powder InP, and Sn-InP melt together with an InP cover. In this paper we shall present the PL results which have bearing on the question of defects. We find that (1) the Sn-InP melt provides better protection in preserving the overall luminescence in InP; (2) the deep-level PL related to defects has at least two components in the virgin samples, viz., MnIn, and band C, which is a native defect complex related to VP; (3) a new defect appears in samples heated in a P-deficient environment; and (4) the enhancement in the deep-level luminescence intensity after heat treatment can be attributed to the excess defect concentrations existing under nonequilibrium conditions of an open-tube processing environment.
NASA Astrophysics Data System (ADS)
Chen, Zhenping; Zhang, Jincang; Su, Yuling; Xue, Yuncai; Cao, Shixun
2006-02-01
The effects of rare-earth ionic size on the local electron structure, lattice parameters and superconductivity have been investigated by positron annihilation technique (PAT) and related experiments for RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The local electron density ne is evaluated as a function of the rare-earth radius. The results show that both the bulk-lifetime τB and the defect lifetime τ2 increase with increasing rare-earth ionic radius, while the local electron density ne decrease with increasing rare-earth ionic radius. These results prove that the changes of ne, the degree of orthorhombic distortion and the coupling between the Cu-O chains and the CuO 2 planes all have an effect on the superconductivity of RBa 2Cu 3O 7- δ systems.
Non-resonant excitation of rare-earth ions via virtual Auger process
NASA Astrophysics Data System (ADS)
Yassievich, I. N.
2011-05-01
The luminescence of rare-earth ions (REI) is often intensified by defects associated with REIs or excitons bound to these defects. In this paper we show that the presence of such a state opens the possibility of non-resonance optical pumping via the process involving virtual Auger transition. It is the second order perturbation process when an electron arrives in an virtual intermediate state due to the optical transition (the first step) and the Auger transition is the second one. We have calculated the cross-section of such an excitation process when the optical transition is accompanied by creation of the exciton bound to the defect associated with REI and obtained a simple analytical expression for the cross-section. The excess energy of the excitation quanta is taken away by multiphonon emission. The electron-phonon interaction with local phonon vibrations of the bound exciton is assumed to determine the multiphonon process. It is shown that the probability of the process under study exceeds considerably the probability of direct optical 4f-4f absorption even in the case when the energy distance between the excitation quantum energy and the exciton energy is about 0.1 of the exciton energy. The excitation mechanism considered leads to the appearance of a broad unsymmetrical band in the excitation spectrum with the red side much wider and flatter than the blue one.
NASA Astrophysics Data System (ADS)
Lee, Donghwa; Mitchell, Brandon; Fujiwara, Y.; Dierolf, V.
2014-05-01
An understanding of the formation and dissociation process of Mg-H defects in GaN is of paramount importance for high efficient GaN-based solid-state lighting. Through a combination of first-principle calculations and experimental observations, we find the existence of three types of Mg related centers forming different Mg-H-VN complexes in Mg:GaN. Our study shows that the three different arrangements, which differ by the relative position of the H, determine the degree of acceptor passivation by changing their charge state from +3 to +1. The energetic study demonstrates that the relative stability of the defect complexes can vary with the location of the Fermi level, as well as thermal annealing and electron beam irradiation. The inclusion of a VN is shown to produce an additional variance in optical spectra associated with Mg acceptor activation, resulting from changes in the defect configurations and charge states. Our study shows that these three Mg-H-VN complexes are key components for understanding the Mg acceptor activation and passivation processes.
Passivating the sulfur vacancy in monolayer MoS2
NASA Astrophysics Data System (ADS)
Lu, Haichang; Kummel, Andrew; Robertson, John
2018-06-01
Various methods to passivate the sulfur vacancy in 2D MoS2 are modeled using density functional theory (DFT) to understand the passivation mechanism at an atomic scale. First, the organic super acid, bis(trifluoromethane)sulfonimide (TFSI) is a strong protonating agent, and it is experimentally found to greatly increase the photoluminescence efficiency. DFT simulations find that the effectiveness of passivation depends critically on the charge state and number of hydrogens donated by TFSI since this determines the symmetry of the defect complex. A symmetrical complex is formed by three hydrogen atoms bonding to the defect in a -1 charge state, and this gives no bandgap states and a Fermi level in the midgap. However, a charge state of +1 gives a lower symmetry complex with one state in the gap. One or two hydrogens also give complexes with gap states. Second, passivation by O2 can provide partial passivation by forming a bridge bond across the S vacancy, but it leaves a defect state in the lower bandgap. On the other hand, substitutional additions do not shift the vacancy states out of the gap.
Reverse radial artery flap for soft tissue defects of hand in pediatric age group.
Cheema, Saeed Ashraf; Talaat, Nabeela
2009-01-01
To highlight the usefulness of reverse radial artery flap in covering various soft tissue defects of hand in paediatric age group. A total of 16 reverse radial artery flaps were utilized in a period of three years to cover various soft tissue defects of hand for paediatric age group patients. The age ranged from 5-18 years. The two common causes of soft tissue defects in this series were mechanical trauma and fireworks trauma with five cases in each group. Three of the cases were burn victims and other two presented with earth quake injuries. One patient had wound because of road traffic accident. Soft tissue defects of palm were covered with this flap in eight cases while in three cases it was wrapped around the thumb. First web space defects were covered with this flap in two cases. Two cases required coverage of amputation stump at transmetacarpal level and yet another required a big flap to cover the soft tissue defects at palm, dorsum and thumb. Donor site was covered with split skin graft in all cases but one, which was closed primarily. We had partial loss of flap in one case. Grafted donor sites healed uneventfully and were quite acceptable to the patients in due course of time. Reverse radial artery flap has a quite long arc of rotation which brings it great ease to cover the soft tissue defects of various areas of hand like palm, dorsum, first web space and thumb.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... substances identified generically as complex strontium aluminum, rare earth doped, which were the subject of... chemical substances identified generically as complex strontium aluminum, rare earth doped, which were the...
Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor
NASA Astrophysics Data System (ADS)
Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie
2018-05-01
A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.
The Dependence of Atomic Oxygen Undercutting of Protected Polyimide Kapton(tm) H upon Defect Size
NASA Technical Reports Server (NTRS)
Snyder, Aaron; deGroh, Kim K.
2001-01-01
Understanding the behavior of polymeric materials when exposed to the low-Earth-orbit (LEO) environment is important in predicting performance characteristics such as in-space durability. Atomic oxygen (AO) present in LEO is known to be the principal agent in causing undercutting erosion of SiO(x) protected polyimide Kapton(R) H film, which serves as a mechanically stable blanket material in solar arrays. The rate of undercutting is dependent on the rate of arrival, directionality and energy of the AO with respect to the film surface. The erosion rate also depends on the distribution of the size of defects existing in the protective coating. This paper presents results of experimental ground testing using low energy, isotropic AO flux together with numerical modeling to determine the dependence of undercutting erosion upon defect size.
Structure and Abundance of Nitrous Oxide Complexes in Earth's Atmosphere.
Salmon, Steven R; de Lange, Katrina M; Lane, Joseph R
2016-04-07
We have investigated the lowest energy structures and binding energies of a series of atmospherically relevant nitrous oxide (N2O) complexes using explicitly correlated coupled cluster theory. Specifically, we have considered complexes with nitrogen (N2-N2O), oxygen (O2-N2O), argon (Ar-N2O), and water (H2O-N2O). We have calculated rotational constants and harmonic vibrational frequencies for the complexes and the constituent monomers. Statistical mechanics was used to determine the thermodynamic parameters for complex formation as a function of temperature and pressure. These results, in combination with relevant atmospheric data, were used to estimate the abundance of N2O complexes in Earth's atmosphere as a function of altitude. We find that the abundance of N2O complexes in Earth's atmosphere is small but non-negligible, and we suggest that N2O complexes may contribute to absorption of terrestrial radiation and be relevant for understanding the atmospheric fate of N2O.
A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn
For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.
Cell and defect behavior in lithium-counterdoped solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Mehta, S.; Swartz, C. K.
1984-01-01
Some n(+)/p cells in which lithium is introduced as a counterdopant, by ion-implantation, into the cell's boron-doped p-region were studied. To determine if the cells radiation resistance could be significantly improved by lithium counterdoping. Defect behavior was related to cell performance using deep level transient spectroscopy. Results indicate a significantly increased radiation resistance for the lithium counterdoped cells when compared to the boron doped 1 ohm-cm control cell. The increased radiation resistance of the lithium counterdoped cells is due to the complexing of lithium with divacancies and boron. It is speculated that complexing with oxygen and single vacancies also contributes to the increased radiation resistance. Counterdoping silicon with lithium results in a different set of defects.
Generic equilibration dynamics of planar defects in trapped atomic superfluids
Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...
2015-03-18
Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less
Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...
2017-09-11
Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less
Origin of reverse annealing in radiation-damaged silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.
1980-01-01
The paper employs relative defect concentrations, energy levels, capture cross sections, and minority carrier diffusion lengths in order to identify the defect responsible for the reverse annealing observed in a radiation damaged n(+)/p silicon solar cell. It is reported that the responsible defect, with the energy level at +0.30 eV, has been tentatively identified as boron-oxygen-vacancy complex. In conclusion, it is shown that removal of this defect could result in significant cell recovery when annealing at temperatures well below the currently required 400 C.
Tight-binding calculation studies of vacancy and adatom defects in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing
2016-02-19
Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less
Safety assessment for In-service Pressure Bending Pipe Containing Incomplete Penetration Defects
NASA Astrophysics Data System (ADS)
Wang, M.; Tang, P.; Xia, J. F.; Ling, Z. W.; Cai, G. Y.
2017-12-01
Incomplete penetration defect is a common defect in the welded joint of pressure pipes. While the safety classification of pressure pipe containing incomplete penetration defects, according to periodical inspection regulations in present, is more conservative. For reducing the repair of incomplete penetration defect, a scientific and applicable safety assessment method for pressure pipe is needed. In this paper, the stress analysis model of the pipe system was established for the in-service pressure bending pipe containing incomplete penetration defects. The local finite element model was set up to analyze the stress distribution of defect location and the stress linearization. And then, the applicability of two assessment methods, simplified assessment and U factor assessment method, to the assessment of incomplete penetration defects located at pressure bending pipe were analyzed. The results can provide some technical supports for the safety assessment of complex pipelines in the future.
NASA Astrophysics Data System (ADS)
Kosevich, Yu. A.; Strelnikov, I. A.
2018-02-01
Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.
NASA Astrophysics Data System (ADS)
Hao, Baohong; Zeng, Qihui; Zhao, Jin
2018-01-01
Under the background that failure resulted in by high temperature once only aluminum oxide is used as the gasoline additive. This paper, with the purpose to solve this problem, is to synthesize AcAl oxide for gasoline additive. In order to get the rare-earth-aluminum oxide, first, a complex model of rare earth oxide based on theories about ion coordination is established. Then, by the complex model, the type of “compound growth unit” when rare earth elements join the hydrothermal conditions and the inclination that “diversification” might probably happen are deduced. Depending on the results got by complex model, this paper introduces the type of compound and its existence conditions of “Compound growth unit” owned by stable rare-earth-aluminum oxide. By adjusting the compositions of modifier, compound materials of rare earth-aluminum oxide used for gasoline additive is made. By XRD test, aperture test, adsorption test and desorption test, the theoretical deduction is proved to be right. From the experiment, it is concluded that: a dense environment is the pre-condition to form rare-earth-aluminum polymer, which is also an essential condition for the polymer to update to a favorable growth unit and produce mesoporous rare-earth-aluminum oxide with high activity.
Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System
Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye
2016-01-01
In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642
f-electron dependence of the physical properties of REAlB4; an AlB2-type analogous "tiling" compound
NASA Astrophysics Data System (ADS)
Mori, T.; Kudou, K.; Shishido, T.; Okada, S.
2011-04-01
α-HoAlB4 and α-ErAlB4 were synthesized, and their magnetic properties and specific heat investigated in comparison with other known rare-earth analogs. Recent developments in rare-earth aluminoboride compounds with two-dimensional boron layers have attracted interest due to the heavy fermion superconductivity in β-YbAlB4, multiple anomalies manifesting below the Néel temperatures in α-TmAlB4 attributed to intrinsic building defects, and field stable state in Tm2 AlB6. Strikingly, α-HoAlB4 and α-ErAlB4 were discovered to exhibit superparamagnetic or spin glass behavior in contrast to the magnetic ordering or nonordering observed for the other rare-earth element compounds. The magnetic field dependence of the irreversibility was consistent with the de Almeida Thouless (AT) line versus the quadratic suppression typically observed for antiferromagnetic systems. The specific heat exhibited behavior indicative of a multilevel Schottky anomaly and four states of the 5 I8 Hund's rule multiplet of Ho3+ are indicated to lie below 20 K. While building defects are not evident, it is indicated that disorder is strong in α-HoAlB4 and α-ErAlB4 and possible ferromagnetic interactions can be giving rise to frustration.
Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors.
Benourdja, S; Kaynar, Ümit H; Ayvacikli, M; Karabulut, Y; Guinea, J Garcia; Canimoglu, A; Chahed, L; Can, N
2018-04-18
Undoped and Pr, Sm and Tb activated BaAl 2 O 4 phosphors have been synthesized by solid state reaction method and combustion method. The structure and morphological observation of the phosphor samples were monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF♯17-306). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). Undoped BaAl 2 O 4 sample exhibits a broad defect emission from 300 to 500 nm from the aluminate defect centres. CL spectra recorded at room temperature display that the as-prepared BaAl 2 O 4 :Ln (Ln=Pr, Sm and Tb) phosphors exhibit different luminescence colors coming from different rare earth activator ions. The transition 4 G 5/2 → 6 H 7/2 located at 606 and 610 nm for Sm 3+ can occur as hypersensitive transition having the selection rule ΔJ = ± 1. For the Tb 3+ doped samples, they exhibit D45 green line emissions. The proposed luminescent mechanisms of all doped rare earth ions are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
Scintillation of rare earth doped fluoride nanoparticles
NASA Astrophysics Data System (ADS)
Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Yukihara, E. G.; DeVol, T. A.; Ballato, J.
2011-09-01
The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.
Superresolution Microscopy of Single Rare-Earth Emitters in YAG and H 3 Centers in Diamond
NASA Astrophysics Data System (ADS)
Kolesov, R.; Lasse, S.; Rothfuchs, C.; Wieck, A. D.; Xia, K.; Kornher, T.; Wrachtrup, J.
2018-01-01
We demonstrate superresolution imaging of single rare-earth emitting centers, namely, trivalent cerium, in yttrium aluminum garnet crystals by means of stimulated emission depletion (STED) microscopy. The achieved all-optical resolution is ≈50 nm . Similar results were obtained on H 3 color centers in diamond. In both cases, STED resolution is improving slower than the conventional inverse square-root dependence on the depletion beam intensity. In the proposed model of this effect, the anomalous behavior is caused by excited state absorption and the interaction of the emitter with nonfluorescing crystal defects in its local surrounding.
Kander, M; Pasławska, U; Staszczyk, M; Cepiel, A; Pasławski, R; Mazur, G; Noszczyk-Nowak, A
2015-01-01
The study has focused on the retrospective analysis of cases of coexisting congenital aortic stenosis (AS) and pulmonary artery stenosis (PS) in dogs. The research included 5463 dogs which were referred for cardiological examination (including clinical examination, ECG and echocardiography) between 2004 and 2014. Aortic stenosis and PS stenosis were detected in 31 dogs. This complex defect was the most commonly diagnosed in Boxers - 7 dogs, other breeds were represented by: 4 cross-breed dogs, 2 Bichon Maltais, 3 Miniature Pinschers, 2 Bernese Mountain Dogs, 2 French Bulldogs, and individuals of following breeds: Bichon Frise, Bull Terrier, Czech Wolfdog, German Shepherd, Hairless Chinese Crested Dog, Miniature Schnauzer, Pug, Rottweiler, Samoyed, West Highland White Terrier and Yorkshire Terrier. In all the dogs, the murmurs could be heard, graded from 2 to 5 (on a scale of 1-6). Besides, in 9 cases other congenital defects were diagnosed: patent ductus arteriosus, mitral valve dysplasia, pulmonary or aortic valve regurgitation, tricuspid valve dysplasia, ventricular or atrial septal defect. The majority of the dogs suffered from pulmonary valvular stenosis (1 dog had supravalvular pulmonary artery stenosis) and subvalvular aortic stenosis (2 dogs had valvular aortic stenosis). Conclusions and clinical relevance - co-occurrence of AS and PS is the most common complex congenital heart defect. Boxer breed was predisposed to this complex defect. It was found that coexisting AS and PS is more common in male dogs and the degree of PS and AS was mostly similar.
Wani, Saima; Maharshi, Neelam; Kothiwal, Deepash; Mahendrawada, Lakshmi; Kalaivani, Raju; Laloraya, Shikha
2018-06-01
Genomic stability is maintained by the concerted actions of numerous protein complexes that participate in chromosomal duplication, repair, and segregation. The Smc5/6 complex is an essential multi-subunit complex crucial for repair of DNA double-strand breaks. Two of its subunits, Nse1 and Nse3, are homologous to the RING-MAGE complexes recently described in human cells. We investigated the contribution of the budding yeast Nse1 RING-domain by isolating a mutant nse1-103 bearing substitutions in conserved Zinc-coordinating residues of the RING-domain that is hypersensitive to genotoxic stress and temperature. The nse1-103 mutant protein was defective in interaction with Nse3 and other Smc5/6 complex subunits, Nse4 and Smc5. Chromosome loss was enhanced, accompanied by a delay in the completion of replication and a modest defect in sister chromatid cohesion, in nse1-103. The nse1-103 mutant was synthetic sick with rrm3∆ (defective in fork passage through pause sites), this defect was rescued by inactivation of Tof1, a subunit of the fork protection complex that enforces pausing. The temperature sensitivity of nse1-103 was partially suppressed by deletion of MPH1, encoding a DNA-helicase. Homology modeling of the structure of the budding yeast Nse1-Nse3 heterodimer based on the human Nse1-MAGEG1 structure suggests a similar organization and indicates that perturbation of the Zn-coordinating cluster has the potential to allosterically alter structural elements at the Nse1/Nse3 interaction interface that may abrogate their association. Our findings demonstrate that the budding yeast Nse1 RING-domain organization is important for interaction with Nse3, which is crucial for completion of chromosomal replication, cohesion, and maintenance of chromosome stability.
Mądry, Wojciech; Karolczak, Maciej A; Grabowski, Krzysztof
2017-09-01
The authors present a case of echocardiographic diagnosis of supravalvar mitral ring (a fibromembranous structure that arose from the atrial surface of the mitral leaflets) in a child with a parachute mitral valve, a ventricular septal defect, and mild narrowing of the aortic isthmus. The supravalvar mitral stenosis is a typical but very infrequently detected element of the complex of anatomical abnormalities located within the left heart and the proximal aorta, called the Shone's complex (syndrome). Diagnosing an additional, hemodynamically significant anatomic defect during echocardiography was possible thanks to the detection of marked mobility limitation of the ring-adjacent part of the mitral valve mural leaflet as well as of an atypical image of turbulence occurring during the inflow from the left atrium to the left ventricle. The early diagnosis made it possible to perform complete correction of this complex congenital defect within a single operation.
Hydrogen Peroxide Formation and pH Changes at Rock-Water Interface during Stressing
NASA Astrophysics Data System (ADS)
Xie, S.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Balk, M.; Rothschild, L. J.; Freund, F. T.
2008-12-01
Common igneous and high-grade metamorphic rocks contain dormant defects, which become activated when stressed. They release electronic charge carriers, in particular defect electrons associated with O- states in a matrix of O2-. Known as 'positive holes' or pholes for short, the O- states can spread out of the stressed rock volume, travel along stress gradients over distances on the order of meters in the lab and probably over kilometers in the field. They carry a current, which can flow through meters of rock in the laboratory, probably tens of kilometers in the field. At rock-water interfaces the O- states turn into O radicals, which subtract H from H2O, forming OH- in the rock surface and PH radicals in the water. Two OH combine to H2O2. In the process the pH becomes more acidic. The discovery of H2O2 formation at rock-water interfaces as part of stress- activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life.
Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D
2008-07-01
Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.
Wang, Ying; Mijares, Michelle; Gall, Megan D.; Turan, Tolga; Javier, Anna; Bornemann, Douglas J; Manage, Kevin; Warrior, Rahul
2010-01-01
Mutations in the Drosophila variable nurse cells (vnc) gene result in female sterility and oogenesis defects, including egg chambers with too many or too few nurse cells. We show that vnc corresponds to Arrest Defective1 (Ard1) and encodes the catalytic subunit of NatA, the major N-terminal acetyl-transferase complex. While N-terminal acetylation is one of the most prevalent covalent protein modifications in eukaryotes, analysis of its role in development has been challenging since mutants that compromise NatA activity have not been described in any multicellular animal. Our data show that reduced ARD1 levels result in pleiotropic oogenesis defects including abnormal cyst encapsulation, desynchronized cystocyte division, disrupted nurse cell chromosome dispersion and abnormal chorion patterning, consistent with the wide range of predicted NatA substrates. Further we find that loss of Ard1 affects cell survival/proliferation and is lethal for the animal, providing the first demonstration that this modification is essential in higher eukaryotes. PMID:20882681
Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures
NASA Astrophysics Data System (ADS)
Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.
2018-04-01
The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daghbouj, N.; Faculté des Sciences de Monastir, Université de Monastir, Monastir; Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr
2016-04-07
Hydrogen and helium co-implantation is nowadays used to efficiently transfer thin Si layers and fabricate silicon on insulator wafers for the microelectronic industry. The synergy between the two implants which is reflected through the dramatic reduction of the total fluence needed to fracture silicon has been reported to be strongly influenced by the implantation order. Contradictory conclusions on the mechanisms involved in the formation and thermal evolution of defects and complexes have been drawn. In this work, we have experimentally studied in detail the characteristics of Si samples co-implanted with He and H, comparing the defects which are formed followingmore » each implantation and after annealing. We show that the second implant always ballistically destroys the stable defects and complexes formed after the first implant and that the redistribution of these point defects among new complexes drives the final difference observed in the samples after annealing. When H is implanted first, He precipitates in the form of nano-bubbles and agglomerates within H-related platelets and nano-cracks. When He is implanted first, the whole He fluence is ultimately used to pressurize H-related platelets which quickly evolve into micro-cracks and surface blisters. We provide detailed scenarios describing the atomic mechanisms involved during and after co-implantation and annealing which well-explain our results and the reasons for the apparent contradictions reported at the state of the art.« less
The Sun: Source of the Earth's Energy
NASA Technical Reports Server (NTRS)
Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.
Injectable Reactive Biocomposites For Bone Healing In Critical-Size Rabbit Calvarial Defects
2012-03-29
defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of...temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the...complex defects (i.e. be conformable), harden to provide temporary protection until tissue remodels (i.e. be settable), and enhance tissue regeneration
First-Principles Study of Defects in GaN
2009-07-29
This means both Mg and Be are not suitable p-type dopants in AlN. c) We have calculated the Ga Frenkel pairs (interstitial Ga and gallium vacancy... gallium vacancy complexes) in GaN. We studied both the stability of the pair at different separations and the barriers for the pair to form/disintegrate...high in energy than vacancy defects, especially for covalent materials. However, in ionic materials the charged interstitial defects can have low
Cor triatriatum dexter associated with atrial septal defect: Management in a complex clinical case.
Sozzi, Fabiola B; Montanaro, Claudia; Bacà, Laura; Viani, Giacomo M; Zilocchi, Massimo; Canetta, Ciro; Meazza, Roberto; Pavone, Laura; Lombardi, Federico
2017-11-01
The coexistence of an atrial septal defect and a prominent eustachian valve is a rare congenital anomaly, rarely reported in literature. Differentiation between a giant eustachian valve and cor triatriatum dexter can be difficult. A case of a large atrial septal defect associated with cor triatriatum dexter diagnosed by echocardiography in an asymptomatic woman is reported. A watchful waiting strategy was adopted. © 2017, Wiley Periodicals, Inc.
Structure Formation in Solutions of Rigid Polymers Undergoing a Phase Transition
1987-04-01
cyclohexene dioxide (ERL-4206) - 10 g. nonenyl succinic anhydride (NSA) - 26 g. dimethyl amino ethanol ( DMAE ) - 0.4 g. After infiltration, short segments...existence of a significant number of defects within the individual microfibril. The presence of defects in the lateral packing of PBT chains is also suggested...of the D- and L- enantiomers yields a nematic phase. The ordered phases exhi- bit complex textures due to defects (disclinations) which depend on
Wurm, Gabriele; Tomancok, Berndt; Holl, Kurt; Trenkler, Johannes
2004-12-01
The aim of this study was to evaluate the value of carbon fiber reinforced polymer (CFRP) cranial implants produced by means of 3-dimensional (3D) stereolithography (SL) and template modeling for reconstructions of complex or extensive cranial defects. A series of 41 cranioplasties with individual CFRP implants was performed in 37 patients between April 1996 and November 2002. Only patients with complex and/or large cranial defects were included, most of them having extended scarring or dural calcification and poor quality of the overlying soft-tissue cover after infection or multiple preceding operations. Involvement of frontal sinus, a known risk factor for complications after cranioplasty, was the case in 21 patients (51.2%). A computer-based 3D model of the skull with the bony defect was generated by means of stereolithography after acquisition, evaluation and transfer of the patient's helical computed tomography (CT) data. A wax template of the defect that was used to design the individual prosthesis-shape was invested in dental stone. Then, the cranial implant was fabricated out of CFRP by loosen mold. Reconstruction of defects measuring up to 17 x 9 cm was performed. The intra-operative fit of the implants was excellent in 36 (87.8%), good in 1 (2.4%), and fair in 4 (9.8%) of the cases. Problems of implant fit occurred because of extended scarring and poor quality of soft-tissue cover. Adverse reactions were observed in 5 patients (1 subdural, 1 subcutaneous hematoma, 2 infections, 1 allergic reaction). Excellent contours and a solid stable reconstruction have been maintained in 30 out of 35 remaining plates (mean follow-up 3.6 years). No adverse effects concerning postoperative imaging, the accuracy of electroencephalograms and radiation therapy have been observed. The authors believe that this relatively new technique represents an advance in the management of complex and large cranial defects, but seems less suitable for simple defects because of cost-intensive techniques. Because of the high mechanical strength, biocompatibility, innovative design, and especially radiolucency, CFRP implants should, however, be considered in smaller defects if further imaging investigations or irradiation therapies are necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in
2014-02-24
We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.
Al-Qattan, M M
2007-09-01
The reverse sural artery fasciomusculocutaneous flap is a modification of the original fasciocutaneous flap in which a midline gastrocnemius muscle cuff around the buried sural pedicle is included in the flap. This modification was done to improve the blood supply of the distal part of the flap, which is harvested from the upper leg. The aim of this paper is to demonstrate that there is another important advantage of the modified flap: the use of the muscle cuff as a "plug" for small lower limb defects following debridement of infected/necrotic bone. A total of 10 male adult patients with small complex lower-limb defects with underlying bone pathology were treated with the modified flap using the muscle component to fill up the small bony defects. The bony pathology included necrotic exposed bone without evidence of osteomyelitis or wound infection (n = 1), an underlying neglected tibial fracture with wound infection (n = 4), and a sinus at the heel with underlying calcaneal osteomyelitis (n = 5). Primary wound healing of the flap into the defect was noted in all patients. No recurrence of calcaneal osteomyelitis was seen and all tibial fractures united following appropriate orthopedic fixation. It was concluded that the reverse sural artery fasciomusculocutaneous flap is well suited for small complex lower-limb defects with underlying bone pathology.
Defect control of conventional and anomalous electron transport at complex oxide interfaces
Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...
2016-08-30
Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less
Jacobs, Russell E.; Lopez-Burks, Martha E.; Choi, Hojae; Wikenheiser, Jamie; Hallgrimsson, Benedikt; Jamniczky, Heather A.; Fraser, Scott E.; Lander, Arthur D.; Calof, Anne L.
2016-01-01
Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form. PMID:27606604
Numerical simulation and optimization of casting process for complex pump
NASA Astrophysics Data System (ADS)
Liu, Xueqin; Dong, Anping; Wang, Donghong; Lu, Yanling; Zhu, Guoliang
2017-09-01
The complex shape of the casting pump body has large complicated structure and uniform wall thickness, which easy give rise to casting defects. The numerical simulation software ProCAST is used to simulate the initial top gating process, after analysis of the material and structure characteristics of the high-pressure pump. The filling process was overall smooth, not there the water shortage phenomenon. But the circular shrinkage defects appear at the bottom of casting during solidification process. Then, the casting parameters were optimized and adding cold iron in the bottom. The shrinkage weight was reduced from 0.00167g to 0.0005g. The porosity volume was reduced from 1.39cm3 to 0.41cm3. The optimization scheme is simulated and actual experimented. The defect has been significantly improved.
NASA Astrophysics Data System (ADS)
Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.
2018-04-01
Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.
Du, Shanshan; Yin, Jianhao; Chi, Yue; Xu, Ling; Zhang, Wen-Xiong
2017-12-11
The [3+1] fragmentation reaction of rare-earth metallacyclopentadienes 1 a-c with 0.5 equivalents of P 4 affords a series of rare-earth metal cyclo-P 3 complexes 2 a-c and a phospholyl anion 3. 2 a-c demonstrate an unusual η 3 coordination mode with one P-P bond featuring partial π-bonding character. 2 a-c are the first cyclo-P 3 complexes of rare-earth metals, and also the first organo-substituted polyphosphides in the category of Group 3 and f-block elements. Rare-earth metallacyclopentadienes play a dual role in the combination of aromatization and Diels-Alder reaction. Compounds 2 a-c can coordinate to one or two [W(CO) 5 ] units, yielding 4 a-c or 5 c, respectively. Furthermore, oxidation of 2 a with p-benzoquinone produces its corresponding phospholyllithium and regenerated P 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Junwen; Mitzi, David B; Shenoy, Vivek B
2011-11-22
We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society
Hypoxia and the Edema Syndrome: Elucidation of a Mechanism of Teratogenesis
The elucidation of mechanisms and pathogenesis of birth defects is exceedingly complex. Consequently, there are few examples where the etiology of birth defects caused by a specific agent has been well described. One such example is the "Edema Syndrome" first described by Casimer...
Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef
2017-01-01
To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.
Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.
Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba
2017-01-01
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
Regulation of flower development in Arabidopsis by SCF complexes.
Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong
2004-04-01
SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.
ERIC Educational Resources Information Center
Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.
2010-01-01
Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr; Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk
2016-03-28
Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands weremore » transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at 280 °C converts to the C{sub i}O{sub i}(Si{sub I}){sub 4} complex. The latter defect anneals out at 315 °C, without being accompanied in the spectra by the growth of new bands.« less
2014-07-19
ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.
Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers
NASA Astrophysics Data System (ADS)
Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari
2018-01-01
Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.
First principles study of intrinsic defects in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying
2010-11-01
The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.
Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qingbang, Han; Ling, Chen; Changping, Zhu
2014-02-18
The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... Earth-to-space transmissions from feeder link earth station complexes. A “feeder link earth station complex” may include up to three (3) earth station groups, with each earth station group having up to four... NGSO MSS licensees or applicants pursuant to § 101.147. (b) A maximum of seven (7) feeder link earth...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Earth-to-space transmissions from feeder link earth station complexes. A “feeder link earth station complex” may include up to three (3) earth station groups, with each earth station group having up to four... NGSO MSS licensees or applicants pursuant to § 101.147. (b) A maximum of seven (7) feeder link earth...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Earth-to-space transmissions from feeder link earth station complexes. A “feeder link earth station complex” may include up to three (3) earth station groups, with each earth station group having up to four... NGSO MSS licensees or applicants pursuant to § 101.147. (b) A maximum of seven (7) feeder link earth...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Earth-to-space transmissions from feeder link earth station complexes. A “feeder link earth station complex” may include up to three (3) earth station groups, with each earth station group having up to four... NGSO MSS licensees or applicants pursuant to § 101.147. (b) A maximum of seven (7) feeder link earth...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Earth-to-space transmissions from feeder link earth station complexes. A “feeder link earth station complex” may include up to three (3) earth station groups, with each earth station group having up to four... NGSO MSS licensees or applicants pursuant to § 101.147. (b) A maximum of seven (7) feeder link earth...
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.
2013-12-01
Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.
How rare is complex life in the Milky Way?
Bounama, Christine; von Bloh, Werner; Franck, Siegfried
2007-10-01
An integrated Earth system model was applied to calculate the number of habitable Earth-analog planets that are likely to have developed primitive (unicellular) and complex (multicellular) life in extrasolar planetary systems. The model is based on the global carbon cycle mediated by life and driven by increasing stellar luminosity and plate tectonics. We assumed that the hypothetical primitive and complex life forms differed in their temperature limits and CO(2) tolerances. Though complex life would be more vulnerable to environmental stress, its presence would amplify weathering processes on a terrestrial planet. The model allowed us to calculate the average number of Earth-analog planets that may harbor such life by using the formation rate of Earth-like planets in the Milky Way as well as the size of a habitable zone that could support primitive and complex life forms. The number of planets predicted to bear complex life was found to be approximately 2 orders of magnitude lower than the number predicted for primitive life forms. Our model predicted a maximum abundance of such planets around 1.8 Ga ago and allowed us to calculate the average distance between potentially habitable planets in the Milky Way. If the model predictions are accurate, the future missions DARWIN (up to a probability of 65%) and TPF (up to 20%) are likely to detect at least one planet with a biosphere composed of complex life.
Fumonisins, Tortillas and Neural Tube Defects: Untangling a Complex Issue
USDA-ARS?s Scientific Manuscript database
Fumonisin mycotoxins are found in corn and corn-based foods. Fumonisin B1 (FB1), the most common, disrupts sphingolipid metabolism thereby causing species-specific diseases in animals that include cancer in rodents and (birth) neural tube defects (NTD) in LM/Bc mice. Fumonisins’ affect on human heal...
Nuclear Pasta: Topology and Defects
NASA Astrophysics Data System (ADS)
da Silva Schneider, Andre; Horowitz, Charles; Berry, Don; Caplan, Matt; Briggs, Christian
2015-04-01
A layer of complex non-uniform phases of matter known as nuclear pasta is expected to exist at the base of the crust of neutron stars. Using large scale molecular dynamics we study the topology of some pasta shapes, the formation of defects and how these may affect properties of neutron star crusts.
Temperature dependent mobility measurements of alkali earth ions in superfluid helium
NASA Astrophysics Data System (ADS)
Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.
1998-05-01
Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.
Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.
Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin
2015-08-18
The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single-site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts.
NASA Astrophysics Data System (ADS)
de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti
2016-06-01
A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.
ERIC Educational Resources Information Center
McInnis, Noel F.
1973-01-01
Describes various activities to understand the nature of the earth as a spaceship and its impact on human life. A figure depicting a holocoenotic environmental complex is given which can be used to illustrate various interacting forces on earth. (PS)
Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M.; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C.; Fischer, Alain; Durandy, Anne
2015-01-01
Background Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. Objective This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Methods Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. Results We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. Conclusion INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. PMID:25312759
Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)
2008-07-10
a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We
NASA Astrophysics Data System (ADS)
Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter
2016-05-01
At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.
Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun
2012-02-27
A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cochran, Meagan E; Nelson, Katherine R; Robin, Nathaniel H
2014-12-01
To summarize the existing literature on the international adoption of children with birth defects and identify areas for further research. International adoption brings thousands of children to the United States each year, and children with birth defects are overrepresented in this population. Studies have demonstrated disparities in the health of children adopted from different countries as well as the complexity of medical care needed after adoption. Although the health of children involved in international adoption has been well studied, there is a lack of information about the experiences of the adoptive parents of children with birth defects. We discuss a pilot study conducted on adoptive parents of children with a specific birth defect, orofacial clefting, and discuss areas for future research.
Szatmári, Zsuzsanna; Sass, Miklós
2014-01-01
Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation. PMID:25006588
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin
2015-10-01
Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.
The gas-surface interaction of a human-occupied spacecraft with a near-Earth object
NASA Astrophysics Data System (ADS)
Farrell, W. M.; Hurley, D. M.; Poston, M. J.; Zimmerman, M. I.; Orlando, T. M.; Hibbitts, C. A.; Killen, R. M.
2016-11-01
NASA's asteroid redirect mission (ARM) will feature an encounter of the human-occupied Orion spacecraft with a portion of a near-Earth asteroid (NEA) previously placed in orbit about the Moon by a capture spacecraft. Applying a shuttle analog, we suggest that the Orion spacecraft should have a dominant local water exosphere, and that molecules from this exosphere can adsorb onto the NEA. The amount of adsorbed water is a function of the defect content of the NEA surface, with retention of shuttle-like water levels on the asteroid at 1015 H2O's/m2 for space weathered regolith at T ∼ 300 K.
A GCM simulation of the earth-atmosphere radiation balance for winter and summer
NASA Technical Reports Server (NTRS)
Wu, M. L. C.
1979-01-01
The radiation balance of the earth-atmosphere system simulated by using the general circulation model (GCM) of the Laboratory for Atmospheric Sciences (GLAS) is examined in regards to its graphical distribution, zonally-averaged distribution, and global mean. Most of the main features of the radiation balance at the top of the atmosphere are reasonably simulated, with some differences in the detailed structure of the patterns and intensities for both summer and winter in comparison with values as derived from Nimbus and NOAA (National Oceanic and Atmospheric Administration) satellite observations. Both the capability and defects of the model are discussed.
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Bach, Liên; Michaelson, Louise V.; Haslam, Richard; Bellec, Yannick; Gissot, Lionel; Marion, Jessica; Da Costa, Marco; Boutin, Jean-Pierre; Miquel, Martine; Tellier, Frédérique; Domergue, Frederic; Markham, Jonathan E.; Beaudoin, Frederic; Napier, Johnathan A.; Faure, Jean-Denis
2008-01-01
Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2–1 mutant. The pas2–1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes. PMID:18799749
NASA Technical Reports Server (NTRS)
Patterson, James D.; Li, Wei-Gang
1995-01-01
The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.
Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek
2016-01-01
A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142
Nordhues, André; Schöttler, Mark Aurel; Unger, Ann-Katrin; Geimer, Stefan; Schönfelder, Stephanie; Schmollinger, Stefan; Rütgers, Mark; Finazzi, Giovanni; Soppa, Barbara; Sommer, Frederik; Mühlhaus, Timo; Roach, Thomas; Krieger-Liszkay, Anja; Lokstein, Heiko; Crespo, José Luis; Schroda, Michael
2012-01-01
The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids. PMID:22307852
NASA Astrophysics Data System (ADS)
Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.
2013-12-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis
Barnett, Chris; Yazgan, Oya; Kuo, Hui-Ching; Malakar, Sreepurna; Thomas, Trevor; Fitzgerald, Amanda; Harbour, Billy; Henry, Jonathan J.; Krebs, Jocelyn E.
2012-01-01
Williams Syndrome Transcription Factor (WSTF) is one of ~25 haplodeficient genes in patients with the complex developmental disorder Williams Syndrome (WS). WS results in visual/spatial processing defects, cognitive impairment, unique behavioral phenotypes, characteristic “elfin” facial features, low muscle tone and heart defects. WSTF exists in several chromatin remodeling complexes and has roles in transcription, replication, and repair. Chromatin remodeling is essential during embryogenesis, but WSTF’s role in vertebrate development is poorly characterized. To investigate the developmental role of WSTF, we knocked down WSTF in Xenopus laevis embryos using a morpholino that targets WSTF mRNA. BMP4 shows markedly increased and spatially aberrant expression in WSTF-deficient embryos, while SHH, MRF4, PAX2, EPHA4 and SOX2 expression are severely reduced, coupled with defects in a number of developing embryonic structures and organs. WSTF-deficient embryos display defects in anterior neural development. Induction of the neural crest, measured by expression of the neural crest-specific genes SNAIL and SLUG, is unaffected by WSTF depletion. However, at subsequent stages WSTF knockdown results in a severe defect in neural crest migration and/or maintenance. Consistent with a maintenance defect, WSTF knockdowns display a specific pattern of increased apoptosis at the tailbud stage in regions corresponding to the path of cranial neural crest migration. Our work is the first to describe a role for WSTF in proper neural crest function, and suggests that neural crest defects resulting from WSTF haploinsufficiency may be a major contributor to the pathoembryology of WS. PMID:22691402
2008-09-01
monolithic ceramics initiates at small defects formed during processing. Minimization of such defects may improve performance, but thermal shock and cyclic...fiber tows are used in CMCs, where the use of small -diameter fibers causes a reduction in scale of microstructural defects associated with the fibers [7... Small Diameter · Improves matrix strength and facilitates fab- rication of thin and complex-shaped CMCs. · Low Density · Improves CMC specific properties
Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.
2008-03-01
Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .
Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong
2014-02-14
The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.
The Complex Genetic Basis of Congenital Heart Defects
Akhirome, Ehiole; Walton, Nephi A.; Nogee, Julie M.; Jay, Patrick Y.
2017-01-01
Twenty years ago, chromosomal abnormalities were the only identifiable genetic causes of a small fraction of congenital heart defects (CHD). Today, a de novo or inherited genetic abnormality can be identified as pathogenic in one-third of cases. We refer to them here as monogenic causes, insofar as the genetic abnormality has a readily detectable, large effect. What explains the other two-thirds? This review considers a complex genetic basis. That is, a combination of genetic mutations or variants that individually may have little or no detectable effect contribute to the pathogenesis of a heart defect. Genes in the embryo that act directly in cardiac developmental pathways have received the most attention, but genes in the mother that establish the gestational milieu via pathways related to metabolism and aging also have an effect. A growing body of evidence highlights the pathogenic significance of genetic interactions in the embryo and maternal effects that have a genetic basis. The investigation of CHD as guided by a complex genetic model could help estimate risk more precisely and logically lead to a means of prevention. PMID:28381817
Medical image segmentation based on SLIC superpixels model
NASA Astrophysics Data System (ADS)
Chen, Xiang-ting; Zhang, Fan; Zhang, Ruo-ya
2017-01-01
Medical imaging has been widely used in clinical practice. It is an important basis for medical experts to diagnose the disease. However, medical images have many unstable factors such as complex imaging mechanism, the target displacement will cause constructed defect and the partial volume effect will lead to error and equipment wear, which increases the complexity of subsequent image processing greatly. The segmentation algorithm which based on SLIC (Simple Linear Iterative Clustering, SLIC) superpixels is used to eliminate the influence of constructed defect and noise by means of the feature similarity in the preprocessing stage. At the same time, excellent clustering effect can reduce the complexity of the algorithm extremely, which provides an effective basis for the rapid diagnosis of experts.
Mental Images and the Modification of Learning Defects.
ERIC Educational Resources Information Center
Patten, Bernard M.
Because human memory and thought involve extremely complex processes, it is possible to employ unusual modalities and specific visual strategies for remembering and problem-solving to assist patients with memory defects. This three-part paper discusses some of the research in the field of human memory and describes practical applications of these…
Prosthetic Rehabilitation of Defects of the Head and Neck
Salinas, Thomas J.
2010-01-01
Patients afflicted with head and neck cancer, traumatic injuries to the head and neck, or those with congenital or developmental defects benefit from multidisciplinary team management. The head and neck region participates in complex physiologic processes that can often be impeded by these circumstances. Evaluation of the patient by the maxillofacial prosthodontist can assist the other members of the team in providing treatment planning options for the patients. Intraoral defects arising from these circumstances can be treated with prosthodontics that serve to assist with speech, swallowing, and to some degree mastication. If chemotherapeutic or radiation modalities are also used to treat the head and neck, assessment of the patient by the maxillofacial prosthodontist may prove to identify factors that may predispose to undesirable sequelae. Preventive treatment by elective tooth extraction, prosthodontic assessment, and patient education prove to assist in predictable management of these oftentimes complex presenting conditions. Facial defects arising from similar circumstances can be an alternative or adjunct to plastic surgical reconstruction and offer the added advantage of tumor surveillance in susceptible patients. PMID:22550451
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-05-01
The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.
Nicholson-Dykstra, Susan M.; Higgs, Henry N.
2009-01-01
The Arp2/3 complex-mediated assembly and protrusion of a branched actin network at the leading edge occurs during cell migration, although some studies suggest it is not essential. In order to test the role of Arp2/3 complex in leading edge protrusion, Swiss 3T3 fibroblasts and Jurkat T cells were depleted of Arp2 and evaluated for defects in cell morphology and spreading efficiency. Arp2-depleted fibroblasts exhibit severe defects in formation of sheet-like protrusions at early time points of cell spreading, with sheet-like protrusions limited to regions along the length of linear protrusions. However, Arp2-depleted cells are able to spread fully after extended times. Similarly, Arp2-depleted Jurkat T lymphocytes exhibit defects in spreading on anti-CD3. Interphase Jurkats in suspension are covered with large ruffle structures, whereas mitotic Jurkats are covered by finger-like linear protrusions. Arp2-depleted Jurkats exhibit defects in ruffle assembly but not in assembly of mitotic linear protrusions. Similarly, Arp2-depletion has no effect on the highly dynamic linear protrusion of another suspended lymphocyte line. We conclude that Arp2/3 complex plays a significant role in assembly of sheet-like protrusions, especially during early stages of cell spreading, but is not required for assembly of a variety of linear actin-based protrusions. PMID:18720401
Investigation of hydrogen interaction with defects in zirconia
NASA Astrophysics Data System (ADS)
Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.
2010-04-01
Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.
Ribonucleoprotein complexes in neurologic diseases.
Ule, Jernej
2008-10-01
Ribonucleoprotein (RNP) complexes regulate the tissue-specific RNA processing and transport that increases the coding capacity of our genome and the ability to respond quickly and precisely to the diverse set of signals. This review focuses on three proteins that are part of RNP complexes in most cells of our body: TAR DNA-binding protein (TDP-43), the survival motor neuron protein (SMN), and fragile-X mental retardation protein (FMRP). In particular, the review asks the question why these ubiquitous proteins are primarily associated with defects in specific regions of the central nervous system? To understand this question, it is important to understand the role of genetic and cellular environment in causing the defect in the protein, as well as how the defective protein leads to misregulation of specific target RNAs. Two approaches for comprehensive analysis of defective RNA-protein interactions are presented. The first approach defines the RNA code or the collection of proteins that bind to a certain cis-acting RNA site in order to lead to a predictable outcome. The second approach defines the RNA map or the summary of positions on target RNAs where binding of a particular RNA-binding protein leads to a predictable outcome. As we learn more about the RNA codes and maps that guide the action of the dynamic RNP world in our brain, possibilities for new treatments of neurologic diseases are bound to emerge.
Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong
2004-10-01
Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.
Vines, Lasse; Bhoodoo, Chidanand; von Wenckstern, Holger; Grundmann, Marius
2017-11-29
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than 8 orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 1012 cm2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed. © 2017 IOP Publishing Ltd.
Corno, Antonio F; Kocica, Mladen J; Torrent-Guasp, Francisco
2006-04-01
The new concepts of cardiac anatomy and physiology, based on the observations made by Francisco Torrent-Guasp's discovery of the helical ventricular myocardial band, can be useful in the context of the surgical strategies currently used to manage patients with congenital heart defects. The potential impact of the Torrent-Guasp's Heart on congenital heart defects have been analyzed in the following settings: ventriculo-arterial discordance (transposition of the great arteries), double (atrio-ventricular and ventriculo-arterial) discordance (congenitally corrected transposition of the great arteries), Ebstein's anomaly, pulmonary valve regurgitation after repair of tetralogy of Fallot, Ross operation, and complex intra-ventricular malformations. The functional interaction of right and left ventricles occurs not only through their arrangements in series but also thanks to the structural spiral features. Changes in size and function of either ventricle may influence the performance of the other ventricle. The variety and complexity of congenital heart defects make the recognition of the relationship between form and function a vital component, especially when compared to acquired disease. The new concepts of cardiac anatomy and function proposed by Francisco Torrent-Guasp, based on his observations, should stimulate further investigations of alternative surgical strategies by individuals involved with the management of patients with congenital heart defects.
Defect Genome of Cubic Perovskites for Fuel Cell Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.
Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less
Defect Genome of Cubic Perovskites for Fuel Cell Applications
Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...
2017-10-10
Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
Weak scratch detection and defect classification methods for a large-aperture optical element
NASA Astrophysics Data System (ADS)
Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng
2017-03-01
Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.
Orientational order of motile defects in active nematics
DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; ...
2015-08-17
The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-basedmore » active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.« less
Non-monotonic temperature dependence of radiation defect dynamics in silicon carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayu Aji, L. B.; Wallace, J. B.; Shao, L.
Understanding response of solids to particle irradiation remains a major materials physics challenge. This applies even to SiC, which is a prototypical nuclear ceramic and wide-band-gap semiconductor material. The lack of predictability is largely related to the complex, dynamic nature of radiation defect formation. Here, we use a novel pulsed-ion-beam method to study dynamic annealing in 4H-SiC ion-bombarded in the temperature range of 25–250 °C. We find that, while the defect recombination efficiency shows an expected monotonic increase with increasing temperature, the defect lifetime exhibits a non-monotonic temperature dependence with a maximum at ~100 °C. This finding indicates a changemore » in the dominant defect interaction mechanism at ~100 °C. As a result, the understanding of radiation defect dynamics may suggest new paths to designing radiation-resistant materials.« less
Non-monotonic temperature dependence of radiation defect dynamics in silicon carbide
Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...
2016-08-03
Understanding response of solids to particle irradiation remains a major materials physics challenge. This applies even to SiC, which is a prototypical nuclear ceramic and wide-band-gap semiconductor material. The lack of predictability is largely related to the complex, dynamic nature of radiation defect formation. Here, we use a novel pulsed-ion-beam method to study dynamic annealing in 4H-SiC ion-bombarded in the temperature range of 25–250 °C. We find that, while the defect recombination efficiency shows an expected monotonic increase with increasing temperature, the defect lifetime exhibits a non-monotonic temperature dependence with a maximum at ~100 °C. This finding indicates a changemore » in the dominant defect interaction mechanism at ~100 °C. As a result, the understanding of radiation defect dynamics may suggest new paths to designing radiation-resistant materials.« less
NASA Astrophysics Data System (ADS)
Janesko, Benjamin G.
2018-02-01
Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.
A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals
NASA Astrophysics Data System (ADS)
Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong
2018-04-01
A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.
Hybrid Functional Study of Sodium and Potassium Incorporation in Cu2ZnSnS4
NASA Astrophysics Data System (ADS)
Tse, Kin Fai; Wong, Manhoi; Zhang, Yiou; Zhang, Jingzhao; Zhu, Junyi
The thermodynamics of Na and K incorporation and its effects in Cu2ZnSnS4 (CZTS) is studied using density functional theory with hybrid functional. The allowed chemical potential of Na/K in CZTS is established. Formation energy calculations shows that Na can be significantly incorporated as both substitutional defects and interstitial defects, and incorporation of K related defects are generally less favorable. Transition energy calculations is performed showing that both Na and K exhibit benign defect properties and act as a p-type dopant. The qualitative disagreement between GGA with rigid band edge shifting and HSE calculations, formation of defect complexes, and implications in experiment will also be discussed. The understandings on the defect properties of Na and K provides an essential knowledge to further understand the surfactant effects of Na and K observed in experiments. This work is supported by General Research Fund Ref. No: 14319416.
Water sensitivity of the seismic properties of upper-mantle olivine
NASA Astrophysics Data System (ADS)
Cline, Christopher; David, Emmanuel; Faul, Ulrich; Berry, Andrew; Jackson, Ian
2017-04-01
The wave speeds and attenuation of seismic waves in the upper mantle are expected to be strongly influenced by the defect chemistry of olivine grain interiors and the associated chemical complexity of grain-boundary regions. Changes in chemical environment (oxygen fugacity and/or water fugacity) can impose different defect chemistries, including the creation and retention of hydrous defects, and therefore can directly influence anelastic relaxation involving stress-induced migration of lattice defects and/or grain-boundary sliding. Here we report the first low-frequency experimental study of the seismic properties of olivine under water-undersaturated conditions. Three synthetic sol-gel derived olivine (Fo90) specimens were fabricated by hot-pressing in welded Pt capsules with various concentrations of hydroxyl, chemically bound as doubly protonated Si vacancies, charge balanced by substitution of Ti on a neighboring M-site (i.e., the Ti-clinohumite-like defect). Hydroxyl contents, determined following the subsequent mechanical testing within Pt sleeves, increased systematically with the amount of added Ti-dopant. Added Ti concentrations ranged between 176 and 802 atom ppm Ti/Si, resulting in concentrations of bound hydrogen in the three samples ranging between 330 and 1150 atom ppm H/Si. Each hot-pressed specimen was precision ground and then sleeved in Pt for mechanical testing in forced torsional oscillation under water-undersaturated conditions. Forced-oscillation tests were conducted at seismic periods of 1 - 1000 s and 200 MPa confining pressure during slow staged cooling from 1200 to 25°C. Each Ti-doped specimen showed mechanical behavior of the high-temperature background type involving monotonically increasing dissipation and decreasing shear modulus with increasing oscillation period and increasing temperature. Comparison of the mechanical data acquired in these water-undersaturated conditions with a similarly tested, but dry, Ti-bearing specimen (enclosed within an Ni-Fe sleeve under more reducing conditions) shows a marked contrast. The OH-bearing specimens exhibit much lower shear moduli (by as much as 80%) and higher levels of dissipation (by as much as 0.5 log units in Q-1), but also limited sensitivity of the seismic properties to the total water content among the hydrated specimens in the series. These results indicate that the higher oxygen and water fugacities prevailing within Pt-sleeved specimens result in lower shear moduli and higher dissipation under water-undersaturated conditions - presumably attributable to contrasting defect populations and/or grain boundary chemistries. Clarification of the relative roles of grain-boundary sliding and any additional intragranular relaxation under increased fH2O and fO2 thus offers the prospect of an improved understanding of the seismological signature of more oxidized/hydrous portions of the Earth's upper mantle, such as subduction zone environments.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.
1994-01-01
InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.
Point defects in Cd(Zn)Te and TlBr: Theory
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-09-01
The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.
Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
NASA Astrophysics Data System (ADS)
Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
Swelling Mechanisms of UO2 Lattices with Defect Ingrowths
Günay, Seçkin D.
2015-01-01
The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777
Hedge, C.E.; Futa, K.; Engel, C.G.; Fisher, R.L.
1979-01-01
Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. ?? 1979 Springer-Verlag.
Craniofacial Prosthetic Reconstruction Using Polymethyl Methacrylate Implant: A Case Report.
Simon, Paul; Mohan, Jayashree; Selvaraj, Sunantha; Saravanan, B S; Pari, Parikodaiarasan
2014-12-01
Large cranial defects of complex geometric shapes are challenging to reconstruct. The cranial implants has to be fabricated prior to the cranioplastic surgery. The ideal material for cranial implant has to be inert, light weight, easy to fit and adaptable to the defect, offering the best aesthetic and functional results. Here is a clinical case report of a patient who was operated for osteomyelitis in the parieto-temporal region. The defect was reconstructed with heat cure polymethylmethacrylate (PMMA). Operative closure of the defect was facilitated with ligature titanium wires with minimal prosthesis contouring. The heat cure PMMA cranial implant is a safe, easy and economic alternative with great adaptability to cranial vault defects. The cosmetic results in this patient was excellent. No post-operative complications occurred.
Research on metallic material defect detection based on bionic sensing of human visual properties
NASA Astrophysics Data System (ADS)
Zhang, Pei Jiang; Cheng, Tao
2018-05-01
Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.
Toward superconducting critical current by design
Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...
2016-03-31
The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less
Defect-induced magnetism in cobalt-doped ZnO epilayers
NASA Astrophysics Data System (ADS)
Ciatto, G.; Di Trolio, A.; Fonda, E.; Alippi, P.; Polimeni, A.; Capizzi, M.; Varvaro, G.; Bonapasta, A. Amore
2014-02-01
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoO epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.
Quantum defect theory for the orbital Feshbach resonance
NASA Astrophysics Data System (ADS)
Cheng, Yanting; Zhang, Ren; Zhang, Peng
2017-01-01
In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.
Application of NASA management approach to solve complex problems on earth
NASA Technical Reports Server (NTRS)
Potate, J. S.
1972-01-01
The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.
NASA Astrophysics Data System (ADS)
Liu, Shi; Cohen, R. E.
2017-08-01
The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.
Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.
2011-01-01
There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.
Smits, Paulien; Smeitink, Jan; van den Heuvel, Lambert
2010-01-01
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders. PMID:20396601
Dhingra, Rimpy; Margulets, Victoria; Chowdhury, Subir Roy; Thliveris, James; Jassal, Davinder; Fernyhough, Paul; Dorn, Gerald W.; Kirshenbaum, Lorrie A.
2014-01-01
Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy. PMID:25489073
A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme.
Soley, John T
2016-06-01
This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm. Copyright © 2016 Elsevier B.V. All rights reserved.
Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C; Fischer, Alain; Durandy, Anne
2015-04-01
Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Earth Systems Science: An Analytic Framework
ERIC Educational Resources Information Center
Finley, Fred N.; Nam, Younkeyong; Oughton, John
2011-01-01
Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…
Industrial perspectives on earth abundant, multinary thin film photovoltaics
NASA Astrophysics Data System (ADS)
Haight, Richard; Gershon, Talia; Gunawan, Oki; Antunez, Priscilla; Bishop, Douglas; Seog Lee, Yun; Gokmen, Tayfun; Sardashti, Kasra; Chagarov, Evgueni; Kummel, Andrew
2017-03-01
The most efficient earth abundant, non-toxic thin film multelemental PV devices are fabricated from Cu, Zn, Sn, S and Se, with the chemical formula of Cu2ZnSn(S x Se1-x )4 (CZTS,Se). This material has enjoyed relatively rapid increases in efficiency from its inception to its present-day power conversion efficiency of 12.6%. But further increases in efficiency have been hampered by the inability to substantially increase Voc, the open circuit voltage. In this review article we will discuss the fundamentals of this important kesterite material including methods of film growth, post growth processing and device fabrication. Detailed studies of the properties of CZTS,Se including chemical, structural and electronic as well as full device electrical characterization have been performed in an effort to coax out the critical issues that limit performance. These experimental studies, enhanced by density functional theory calculations have pointed to fundamental bulk point defects, such as Cu-Zn antisites, and clusters of defects, as the primary culprits in limiting Voc increases. Improvements in device performance through grain boundary passivation and interface modifications are described. Exfoliation of functioning solar cells to expose the back surface along with engineering of new back contacts designed to impose electrostatic fields that drive electron-hole separation and increase Voc are discussed. A parallel route to increasing device performance by alloying Ag with CZTS,Se in order to inhibit Cu-Zn antisite defect formation has shown significant improvement in material properties. Finally, applications of high S (and hence higher Voc) CZTS,Se based devices to energy harvesting for ‘Internet-of-Things’ devices is discussed.
Bhatla, Puneet; Tretter, Justin T; Ludomirsky, Achi; Argilla, Michael; Latson, Larry A; Chakravarti, Sujata; Barker, Piers C; Yoo, Shi-Joon; McElhinney, Doff B; Wake, Nicole; Mosca, Ralph S
2017-01-01
Rapid prototyping facilitates comprehension of complex cardiac anatomy. However, determining when this additional information proves instrumental in patient management remains a challenge. We describe our experience with patient-specific anatomic models created using rapid prototyping from various imaging modalities, suggesting their utility in surgical and interventional planning in congenital heart disease (CHD). Virtual and physical 3-dimensional (3D) models were generated from CT or MRI data, using commercially available software for patients with complex muscular ventricular septal defects (CMVSD) and double-outlet right ventricle (DORV). Six patients with complex anatomy and uncertainty of the optimal management strategy were included in this study. The models were subsequently used to guide management decisions, and the outcomes reviewed. 3D models clearly demonstrated the complex intra-cardiac anatomy in all six patients and were utilized to guide management decisions. In the three patients with CMVSD, one underwent successful endovascular device closure following a prior failed attempt at transcatheter closure, and the other two underwent successful primary surgical closure with the aid of 3D models. In all three cases of DORV, the models provided better anatomic delineation and additional information that altered or confirmed the surgical plan. Patient-specific 3D heart models show promise in accurately defining intra-cardiac anatomy in CHD, specifically CMVSD and DORV. We believe these models improve understanding of the complex anatomical spatial relationships in these defects and provide additional insight for pre/intra-interventional management and surgical planning.
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.
2015-03-01
We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.
NASA Astrophysics Data System (ADS)
Glasser, Joshua; Pratt, Tim
2008-10-01
Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.
Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R
2015-04-01
Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.
Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D
2017-02-01
We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.
Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.
2016-01-01
The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin
2016-02-14
A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less
Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Mo -Rigen; Wang, Shuai; Jin, Ke
Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.
Fabric defect detection based on faster R-CNN
NASA Astrophysics Data System (ADS)
Liu, Zhoufeng; Liu, Xianghui; Li, Chunlei; Li, Bicao; Wang, Baorui
2018-04-01
In order to effectively detect the defects for fabric image with complex texture, this paper proposed a novel detection algorithm based on an end-to-end convolutional neural network. First, the proposal regions are generated by RPN (regional proposal Network). Then, Fast Region-based Convolutional Network method (Fast R-CNN) is adopted to determine whether the proposal regions extracted by RPN is a defect or not. Finally, Soft-NMS (non-maximum suppression) and data augmentation strategies are utilized to improve the detection precision. Experimental results demonstrate that the proposed method can locate the fabric defect region with higher accuracy compared with the state-of- art, and has better adaptability to all kinds of the fabric image.
Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation
He, Mo -Rigen; Wang, Shuai; Jin, Ke; ...
2016-07-25
Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.
Lower lip reconstruction with nasolabial flap--going back to basics.
Coutinho, Inês; Ramos, Leonor; Gameiro, Ana Rita; Vieira, Ricardo; Figueiredo, Américo
2015-01-01
Squamous cell carcinoma of the lower lip is frequent, and radical excision sometimes leads to complex defects. Many lip repair techniques are aggressive requiring general anesthesia and a prolonged post-operative period. The nasolabial flap, while a common flap for the repair of other facial defects, is an under-recognized option for the reconstruction of the lower lip. We describe the use of nasolabial flap for the repair of a large defect of the lower lip in a ninety year-old male, with good functional results and acceptable cosmetic outcome. We believe the nasolabial flap is a good alternative for intermediate-to-large lower lip defects in patients with impaired general condition.
Moving Carbon, Changing Earth: Bringing the Carbon Cycle to Life
NASA Astrophysics Data System (ADS)
Zabel, I.; Duggan-Haas, D.; Ross, R. M.; Stricker, B.; Mahowald, N. M.
2014-12-01
The carbon cycle presents challenges to researchers - in how to understand the complex interactions of fluxes, reservoirs, and systems - and to outreach professionals - in how to get across the complexity of the carbon cycle and still make it accessible to the public. At Cornell University and the Museum of the Earth in Ithaca, NY, researchers and outreach staff tackled these challenges together through a 2013 temporary museum exhibition: Moving Carbon, Changing Earth. Moving Carbon, Changing Earth introduced visitors to the world of carbon and its effect on every part of our lives. The exhibit was the result of the broader impacts portion of an NSF grant awarded to Natalie Mahowald, Professor in the Department of Earth and Atmospheric Sciences at Cornell University, who has been working with a team to improve simulations of regional and decadal variability in the carbon cycle. Within the exhibition, visitors used systems thinking to understand the distribution of carbon in and among Earth's systems, learning how (and how quickly or slowly) carbon moves between and within these systems, the relative scale of different reservoirs, and how carbon's movement changes climate and other environmental dynamics. Five interactive stations represented the oceans, lithosphere, atmosphere, biosphere, and a mystery reservoir. Puzzles, videos, real specimens, and an interview with Mahowald clarified and communicated the complexities of the carbon cycle. In this talk we'll present background information on Mahowald's research as well as photos of the exhibition and discussion of the components and motivations behind them, showing examples of innovative ways to bring a complex topic to life for museum visitors.
Defect classification in sparsity-based structural health monitoring
NASA Astrophysics Data System (ADS)
Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.
2017-05-01
Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.
Correa, Ricardo; Salpea, Paraskevi; Stratakis, Constantine
2015-01-01
Carney Complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas, and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22–24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment, and molecular etiology including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing’s syndrome. PMID:26130139
High resolution structural characterisation of laser-induced defect clusters inside diamond
NASA Astrophysics Data System (ADS)
Salter, Patrick S.; Booth, Martin J.; Courvoisier, Arnaud; Moran, David A. J.; MacLaren, Donald A.
2017-08-01
Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides, and defects within diamond. We present a transmission electron microscopy study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy indicates that the majority of the irradiated region remains as sp3 bonded diamond. Electrically conductive paths are attributed to the formation of multiple nano-scale, sp2-bonded graphitic wires and a network of strain-relieving micro-cracks.
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.
1980-01-01
Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.
Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures
NASA Astrophysics Data System (ADS)
Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.
1989-11-01
The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.
NASA Astrophysics Data System (ADS)
Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.
2017-07-01
We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.
Atomic oxygen durability of solar concentrator materials for Space Station Freedom
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.
1990-01-01
The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
The survivability of large space-borne reflectors under atomic oxygen and micrometeoroid impact
NASA Technical Reports Server (NTRS)
Gulino, D. A.
1987-01-01
Solar dynamic power system mirrors for use on space station and other spacecraft flown in low Earth orbit (LEO) are exposed to the harshness of the LEO environment. Both atomic oxygen and micrometeoroids/space debris can degrade the performance of such mirrors. Protective coatings will be required to protect oxidizable reflecting media, such as silver and aluminum, from atomic oxygen attack. Several protective coating materials have been identified as good candidates for use in this application. The durability of these coating/mirror systems after pinhole defects have been inflicted during their fabrication and deployment or through micrometeoroid/space debris impact once on-orbit is of concern. Studies of the effect of an oxygen plasma environment on protected mirror surfaces with intentionally induced pinhole defects have been conducted at NASA Lewis and are reviewed. It has been found that oxidation of the reflective layer and/or the substrate in areas adjacent to a pinhole defect, but not directly exposed by the pinhole, can occur.
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
The Origin of Life from the Astrophysical Point of View
NASA Astrophysics Data System (ADS)
Yeghikyan, Ararat
2017-11-01
Тhe problem of the origin of life is discussed from the astrophysical point of view. Most biologists and geologists up to the present time believe that Life was originated on the Earth in some initial natural chemical pre-reactors, where a mixture of water, ammonia, methane containing species and some other substances, under the influence of an energy source like, e.g. lightning, turned into quite complex compounds such as amino acids and complex hydrocarbons. In fact, under conditions of the primordial Earth, it is not possible to obtain such pre-biological molecules by a-bio-chemical methods, as discussed in this lecture. Instead, an astrophysical view of the problem of the origin of life on the Earth is proposed and it is recalled that the biological evolution on the Earth was preceded by the chemical evolution of complex chemical compounds, mostly under extraterrestrial conditions, where it is only possible to form optically active amino acids, sugars and hydrocarbon is necessary for constructing the first pre-biomolecules .
Book, Adam J; Smalle, Jan; Lee, Kwang-Hee; Yang, Peizhen; Walker, Joseph M; Casper, Sarah; Holmes, James H; Russo, Laura A; Buzzinotti, Zachri W; Jenik, Pablo D; Vierstra, Richard D
2009-02-01
The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.
2016-05-01
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.
Li, Yingxin; Li, Pengxiang; Gao, Caiji; Ding, Yu; Lan, Zhiyi; Shi, Zhixuan; Rui, Qingchen; Feng, Yihong; Liu, Yulong; Zhao, Yanxue; Wu, Chengyun; Zhang, Qian; Li, Yan; Jiang, Liwen
2016-01-01
Spatially and temporally regulated membrane trafficking events incorporate membrane and cell wall materials into the pollen tube apex and are believed to underlie the rapid pollen tube growth. In plants, the molecular mechanisms and physiological functions of intra-Golgi transport and Golgi integrity maintenance remain largely unclear. The conserved oligomeric Golgi (COG) complex has been implicated in tethering of retrograde intra-Golgi vesicles in yeast and mammalian cells. Using genetic and cytologic approaches, we demonstrate that T-DNA insertions in Arabidopsis COG complex subunits, COG3 and COG8, cause an absolute, male-specific transmission defect that can be complemented by expression of COG3 and COG8 from the LAT52 pollen promoter, respectively. No obvious abnormalities in the microgametogenesis of the two mutants are observed, but in vitro and in vivo pollen tube growth are defective. COG3 or COG8 proteins fused to green fluorescent protein (GFP) label the Golgi apparatus. In pollen of both mutants, Golgi bodies exhibit altered morphology. Moreover, γ-COP and EMP12 proteins lose their tight association with the Golgi. These defects lead to the incorrect deposition of cell wall components and proteins during pollen tube growth. COG3 and COG8 interact directly with each other, and a structural model of the Arabidopsis COG complex is proposed. We believe that the COG complex helps to modulate Golgi morphology and vesicle trafficking homeostasis during pollen tube tip growth. PMID:27448097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Solomon, Jonathan M.; Asta, Mark
2015-09-01
The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less
Peng, Deqian; Du, Gaixia; Zhang, Pengfei; Yao, Bo; Li, Xiaofang; Zhang, Shaowen
2016-06-01
The polymerization of ocimene has been first achieved by half-sandwich rare-earth metal dialkyl complexes in combination with activator and Al(i) Bu3 . The regio- and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl-ligated Sc complex 1 prepares syndiotactic cis-1,4-polyocimene (cis-1,4-selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2-4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5-7 afford isotactic trans-1,2-polyocimenes (trans-1,2-selectivity up to 100%, mm = 100%). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Guangchao; Wei, Yun; Guo, Liping; Zhu, Xiancui; Wang, Shaowu; Zhou, Shuangliu; Mu, Xiaolong
2015-02-02
Two series of new dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in novel μ-η(2) :η(1) :η(1) hapticities are synthesized and characterized. Treatment of [RE(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of 3-(tBuN=CH)C8 H5 NH (L1 ) in THF gives the dinuclear rare-earth metal alkyl complexes trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH(CH2 SiMe3 )}Ind)RE(thf)(CH2 SiMe3 )]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C=N group is transferred to the amido group by alkyl CH2 SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μ-η(2) :η(1) :η(1) bonding modes, forming the dinuclear rare-earth metal alkyl complexes. When L1 is reduced to 3-(tBuNHCH2 )C8 H5 NH (L2 ), the reaction of [Yb(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of L2 in THF, interestingly, generated the trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (major) and cis-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (minor) complexes. The catalytic activities of these dinuclear rare-earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio- and stereoselectivities for isoprene 1,4-cis-polymerization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Giles, R. C.; Patterson, G.
1991-01-01
Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.
Positive Holes Flowing through Stressed Igneous Rocks
NASA Astrophysics Data System (ADS)
Takeuchi, Akihiro
Igneous rocks generally involve positive hole pairs (PHPs), a kind of lattice defects also known as peroxy links: O3X-OO-YO3 with X, Y = Si4+, Al3+ etc. When a portion of such a rock block is stressed or heated, PHPs are deformed and positive holes (p-holes) are activated. They are defect electrons corresponding to the O- electronic state in the O2- sublattice and can spread away into unstressed portion. Currents and positive surface electrifications detected in laboratory stressed igneous rocks can be explained by the p-holes. When the p-holes are activated in the Earth's crust accompanied with seismic or volcanic events, they would lead to anomalous electromagnetic phenomena and could affect our electronic communication.
Electrical transport properties of single-crystal CaB 6 , SrB 6 , and BaB 6
Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro; ...
2016-09-22
We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less
Electrical transport properties of single-crystal CaB 6 , SrB 6 , and BaB 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro
We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less
NASA Astrophysics Data System (ADS)
Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.
2015-03-01
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.
Stabilization of primary mobile radiation defects in MgF2 crystals
NASA Astrophysics Data System (ADS)
Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.
2016-05-01
Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.
The computational challenges of Earth-system science.
O'Neill, Alan; Steenman-Clark, Lois
2002-06-15
The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.
NASA Astrophysics Data System (ADS)
Kosyak, V.; Postnikov, A. V.; Scragg, J.; Scarpulla, M. A.; Platzer-Björkman, C.
2017-07-01
Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (" separators="|VCu --ZnC u + ) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like ZnC u + antisites are involved in the formation of (" separators="|VCu --ZnC u + ) complex making CuZ n - dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.
Lubrication of dislocation glide in MgO by hydrous defects
NASA Astrophysics Data System (ADS)
Skelton, Richard; Walker, Andrew M.
2018-02-01
Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 1/2<110>{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2<110>{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.
Rivera-Torres, José; Calvo, Conrado J; Llach, Anna; Guzmán-Martínez, Gabriela; Caballero, Ricardo; González-Gómez, Cristina; Jiménez-Borreguero, Luis J; Guadix, Juan A; Osorio, Fernando G; López-Otín, Carlos; Herraiz-Martínez, Adela; Cabello, Nuria; Vallmitjana, Alex; Benítez, Raul; Gordon, Leslie B; Jalife, José; Pérez-Pomares, José M; Tamargo, Juan; Delpón, Eva; Hove-Madsen, Leif; Filgueiras-Rama, David; Andrés, Vicente
2016-11-15
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24 -/- mouse model of HGPS. Challenge of Zmpste24 -/- mice with the β-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24 -/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24 -/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.
2018-05-01
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.
Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O
2018-05-25
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1 eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.
Supporting our scientists with Google Earth-based UIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Janine
2010-10-01
Google Earth and Google Maps are incredibly useful for researchers looking for easily-digestible displays of data. This presentation will provide a step-by-step tutorial on how to begin using Google Earth to create tools that further the mission of the DOE national lab complex.
Torres, Ulysses S; Portela-Oliveira, Eduardo; Braga, Fernanda Del Campo Braojos; Werner, Heron; Daltro, Pedro Augusto Nascimento; Souza, Antônio Soares
2015-12-01
Ventral body wall defects (VBWDs) are one of the main categories of human congenital malformations, representing a wide and heterogeneous group of defects sharing a common feature, that is, herniation of one or more viscera through a defect in the anterior body wall. Gastroschisis and omphalocele are the 2 most common congenital VBWDs. Other uncommon anomalies include ectopia cordis and pentalogy of Cantrell, limb-body wall complex, and bladder and cloacal exstrophy. Although VBWDs are associated with multiple abnormalities with distinct embryological origins and that may affect virtually any system organs, at least in relation to anterior body wall defects, they are thought (except for omphalocele) to share a common embryologic mechanism, that is, a failure involving the lateral body wall folds responsible for closing the thoracic, abdominal, and pelvic portions of the ventral body wall during the fourth week of development. Additionally, many of the principles of diagnosis and management are similar for these conditions. Fetal ultrasound (US) in prenatal care allows the diagnosis of most of such defects with subsequent opportunities for parental counseling and optimal perinatal management. Fetal magnetic resonance imaging may be an adjunct to US, providing global and detailed anatomical information, assessing the extent of defects, and also helping to confirm the diagnosis in equivocal cases. Prenatal imaging features of VBWDs may be complex and challenging, often requiring from the radiologist a high level of suspicion and familiarity with the imaging patterns. Because an appropriate management is dependent on an accurate diagnosis and assessment of defects, radiologists should be able to recognize and distinguish between the different VBWDs and their associated anomalies. In this article, we review the relevant embryology of VBWDs to facilitate understanding of the pathologic anatomy and diagnostic imaging approach. Features will be illustrated with prenatal US and magnetic resonance imaging and correlated with postnatal and clinical imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of aerosols on the earth-atmosphere albedo
NASA Technical Reports Server (NTRS)
Herman, B. M.; Browning, S. R.
1975-01-01
The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).
Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars
NASA Technical Reports Server (NTRS)
Crumpler, L. S.
1993-01-01
Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.
Carbon Nanotubes: Molecular Electronic Components
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash; Menon, Madhu
1997-01-01
The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.
Complex Genetics and the Etiology of Human Congenital Heart Disease
Gelb, Bruce D.; Chung, Wendy K.
2014-01-01
Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed. PMID:24985128
Loop quantum gravity simplicity constraint as surface defect in complex Chern-Simons theory
NASA Astrophysics Data System (ADS)
Han, Muxin; Huang, Zichang
2017-05-01
The simplicity constraint is studied in the context of four-dimensional spinfoam models with a cosmological constant. We find that the quantum simplicity constraint is realized as the two-dimensional surface defect in SL (2 ,C ) Chern-Simons theory in the construction of spinfoam amplitudes. By this realization of the simplicity constraint in Chern-Simons theory, we are able to construct the new spinfoam amplitude with a cosmological constant for an arbitrary simplicial complex (with many 4-simplices). The semiclassical asymptotics of the amplitude is shown to correctly reproduce the four-dimensional Einstein-Regge action with a cosmological constant term.
Infrared absorption study of neutron-transmutation-doped germanium
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.
1988-01-01
Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.
Heart transplantation in adults with congenital heart disease.
Houyel, Lucile; To-Dumortier, Ngoc-Tram; Lepers, Yannick; Petit, Jérôme; Roussin, Régine; Ly, Mohamed; Lebret, Emmanuel; Fadel, Elie; Hörer, Jürgen; Hascoët, Sébastien
2017-05-01
With the advances in congenital cardiac surgery and postoperative care, an increasing number of children with complex congenital heart disease now reach adulthood. There are already more adults than children living with a congenital heart defect, including patients with complex congenital heart defects. Among these adults with congenital heart disease, a significant number will develop ventricular dysfunction over time. Heart failure accounts for 26-42% of deaths in adults with congenital heart defects. Heart transplantation, or heart-lung transplantation in Eisenmenger syndrome, then becomes the ultimate therapeutic possibility for these patients. This population is deemed to be at high risk of mortality after heart transplantation, although their long-term survival is similar to that of patients transplanted for other reasons. Indeed, heart transplantation in adults with congenital heart disease is often challenging, because of several potential problems: complex cardiac and vascular anatomy, multiple previous palliative and corrective surgeries, and effects on other organs (kidney, liver, lungs) of long-standing cardiac dysfunction or cyanosis, with frequent elevation of pulmonary vascular resistance. In this review, we focus on the specific problems relating to heart and heart-lung transplantation in this population, revisit the indications/contraindications, and update the long-term outcomes. Copyright © 2017. Published by Elsevier Masson SAS.
Buried oxide and defects in oxygen implanted Si monitored by positron annihilation
NASA Astrophysics Data System (ADS)
Kruseman, A. C.; van Veen, A.; Schut, H.; Mijnarends, P. E.; Fujinami, M.
2001-08-01
One- and two-detector Doppler broadening measurements performed on low (˜1014 to 1015O+/cm2) and high dose (˜1017 to 1018O+/cm2) oxygen-irradiated Si using variable-energy slow positrons are analyzed in terms of S and W parameters. After annealing the low-dose samples at 800 °C, large VxOy complexes are formed at depths around 400 nm. These complexes produce a clear-cut signature when the ratio of S to that of defect-free bulk Si is plotted. Similar behavior is found for samples irradiated with 2 and 4×1017O+/cm2 and annealed at 1000 °C. After irradiation with 1.7×1018O+/cm2 and anneal at 1350 °C a 170 nm thick almost-bulk-quality Si surface layer is formed on top of a 430 nm thick buried oxide layer. This method of preparation is called separation by implantation of oxygen. S-W measurements show that the surface layer contains electrically inactive VxOy complexes not seen by electron microscopy. A method is presented to decompose the Doppler broadening line shape into contributions of the bulk, surface, and defect.
Bone Repair Cells for Craniofacial Regeneration
Pagni, G; Kaigler, D; Rasperini, G; Avila-Ortiz, G; Bartel, R; Giannobile, WV
2012-01-01
Reconstruction of complex craniofacial deformities is a clinical challenge in situations of injury, congenital defects or disease. The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response for craniofacial wound healing. Both Somatic and Stem Cells have been adopted in the treatment of complex osseous defects and advances have been made in finding the most adequate scaffold for the delivery of cell therapies in human regenerative medicine. As an example of such approaches for clinical application for craniofacial regeneration, Ixmyelocel-T or bone repair cells are a source of bone marrow derived stem and progenitor cells. They are produced through the use of single pass perfusion bioreactors for CD90+ mesenchymal stem cells and CD14+ monocyte/macrophage progenitor cells. The application of ixmyelocel-T has shown potential in the regeneration of muscular, vascular, nervous and osseous tissue. The purpose of this manuscript is to highlight cell therapies used to repair bony and soft tissue defects in the oral and craniofacial complex. The field at this point remains at an early stage, however this review will provide insights into the progress being made using cell therapies for eventual development into clinical practice. PMID:22433781
Aeolian Processes of the Pismo-Oceano Dune Complex, California
NASA Astrophysics Data System (ADS)
Barrineau, C. P.; Tchakerian, V.; Houser, C.
2012-12-01
The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Niño and La Niña periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal scale, excessive vehicular traffic may have impeded the transition of emergent, defect-ridden dune forms into mature transverse ridges. Despite the astounding lack to studies focusing on the Pismo Dunes, the complex presents multiple opportunities for inquiry regarding climatic control on dune field evolution, defect law and complex landform pattern development, and long-term anthropogenic alteration of coastal process morphology.
Neural Network Classifiers to Grade Parts Based on Surface Defects with Spatial Dependencies
Daniel L. Schmoldt
1995-01-01
In many manufacturing situations, production parts must be assigned a qualitative grade, rather than only accepted or rejected. When this is done, spatial relationships between defect areas can be a critical factor in making grade assignments. In the case of grading hardwood lumber, for instance, there exists a highly complex set of grading rules which incorporate...
Ogilvie, Isla; Kennaway, Nancy G.; Shoubridge, Eric A.
2005-01-01
NADH:ubiquinone oxidoreductase (complex I) deficiency is a common cause of mitochondrial oxidative phosphorylation disease. It is associated with a wide range of clinical phenotypes in infants, including Leigh syndrome, cardiomyopathy, and encephalomyopathy. In at least half of patients, enzyme deficiency results from a failure to assemble the holoenzyme complex; however, the molecular chaperones required for assembly of the mammalian enzyme remain unknown. Using whole genome subtraction of yeasts with and without a complex I to generate candidate assembly factors, we identified a paralogue (B17.2L) of the B17.2 structural subunit. We found a null mutation in B17.2L in a patient with a progressive encephalopathy and showed that the associated complex I assembly defect could be completely rescued by retroviral expression of B17.2L in patient fibroblasts. An anti-B17.2L antibody did not associate with the holoenzyme complex but specifically recognized an 830-kDa subassembly in several patients with complex I assembly defects and coimmunoprecipitated a subset of complex I structural subunits from normal human heart mitochondria. These results demonstrate that B17.2L is a bona fide molecular chaperone that is essential for the assembly of complex I and for the normal function of the nervous system. PMID:16200211
Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.
Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten
2014-12-16
Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.
Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut
2016-04-01
The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development of some Earth Observation oriented applications based on flexible description of processing, and adaptive and portable execution over Cloud infrastructure. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Gorgan, D., "Flexible and Adaptive Processing of Earth Observation Data over High Performance Computation Architectures", International Conference and Exhibition Satellite 2015, August 17-19, Houston, Texas, USA. [3] Mihon, D., Bacu, V., Colceriu, V., Gorgan, D., "Modeling of Earth Observation Use Cases through the KEOPS System", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 455-460, (2015). [4] Nandra, C., Gorgan, D., "Workflow Description Language for Defining Big Earth Data Processing Tasks", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 461-468, (2015). [5] Bacu, V., Stefan, T., Gorgan, D., "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).
Monti's procedure as an alternative technique in complex urethral distraction defect.
Hosseini, Jalil; Kaviani, Ali; Mazloomfard, Mohammad M; Golshan, Ali R
2010-01-01
Pelvic fracture urethral distraction defect is usually managed by the end to end anastomotic urethroplasty. Surgical repair of those patients with post-traumatic complex posterior urethral defects, who have undergone failed previous surgical treatments, remains one of the most challenging problems in urology. Appendix urinary diversion could be used in such cases. However, the appendix tissue is not always usable. We report our experience on management of patients with long urethral defect with history of one or more failed urethroplasties by Monti channel urinary diversion. From 2001 to 2007, we evaluated data from 8 male patients aged 28 to 76 years (mean age 42.5) in whom the Monti technique was performed. All cases had history of posterior urethral defect with one or more failed procedures for urethral reconstruction including urethroplasty. A 2 to 2.5 cm segment of ileum, which had a suitable blood supply, was cut. After the re-anastomosis of the ileum, we closed the opened ileum transversely surrounding a 14-16 Fr urethral catheter using running Vicryl sutures. The newly built tube was used as an appendix during diversion. All patients performed catheterization through the conduit without difficulty and stomal stenosis. Mild stomal incontinence occurred in one patient in the supine position who became continent after adjustment of the catheterization intervals. There was no dehiscence, necrosis or perforation of the tube. Based on our data, Monti's procedure seems to be a valuable technique in patients with very long complicated urethral defect who cannot be managed with routine urethroplastic techniques.
Masutani, C; Sugasawa, K; Yanagisawa, J; Sonoyama, T; Ui, M; Enomoto, T; Takio, K; Tanaka, K; van der Spek, P J; Bootsma, D
1994-01-01
Complementation group C of xeroderma pigmentosum (XP) represents one of the most common forms of this cancer-prone DNA repair syndrome. The primary defect is located in the subpathway of the nucleotide excision repair system, dealing with the removal of lesions from the non-transcribing sequences ('genome-overall' repair). Here we report the purification to homogeneity and subsequent cDNA cloning of a repair complex by in vitro complementation of the XP-C defect in a cell-free repair system containing UV-damaged SV40 minichromosomes. The complex has a high affinity for ssDNA and consists of two tightly associated proteins of 125 and 58 kDa. The 125 kDa subunit is an N-terminally extended version of previously reported XPCC gene product which is thought to represent the human homologue of the Saccharomyces cerevisiae repair gene RAD4. The 58 kDa species turned out to be a human homologue of yeast RAD23. Unexpectedly, a second human counterpart of RAD23 was identified. All RAD23 derivatives share a ubiquitin-like N-terminus. The nature of the XP-C defect implies that the complex exerts a unique function in the genome-overall repair pathway which is important for prevention of skin cancer. Images PMID:8168482
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
Polar Misunderstandings: Earth's Dynamic Dynamo
ERIC Educational Resources Information Center
DiSpezio, Michael A.
2011-01-01
This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…
NASA Astrophysics Data System (ADS)
Cota, Iuliana
2017-04-01
Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (a) Operators of NGSO MSS feeder link earth stations and GSO FSS earth stations in the band 29.25 to... MSS feeder link earth station complexes, that will minimize instances of unacceptable interference to the GSO FSS space stations. Earth station licensees operating with GSO FSS systems shall be capable of...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (a) Operators of NGSO MSS feeder link earth stations and GSO FSS earth stations in the band 29.25 to... MSS feeder link earth station complexes, that will minimize instances of unacceptable interference to the GSO FSS space stations. Earth station licensees operating with GSO FSS systems shall be capable of...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (a) Operators of NGSO MSS feeder link earth stations and GSO FSS earth stations in the band 29.25 to... MSS feeder link earth station complexes, that will minimize instances of unacceptable interference to the GSO FSS space stations. Earth station licensees operating with GSO FSS systems shall be capable of...
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (a) Operators of NGSO MSS feeder link earth stations and GSO FSS earth stations in the band 29.25 to... MSS feeder link earth station complexes, that will minimize instances of unacceptable interference to the GSO FSS space stations. Earth station licensees operating with GSO FSS systems shall be capable of...
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (a) Operators of NGSO MSS feeder link earth stations and GSO FSS earth stations in the band 29.25 to... MSS feeder link earth station complexes, that will minimize instances of unacceptable interference to the GSO FSS space stations. Earth station licensees operating with GSO FSS systems shall be capable of...
Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan
2004-08-01
An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...
2016-10-25
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less
Heparan Sulfate Expression in the Neural Crest is Essential for Mouse Cardiogenesis
Pan, Yi; Carbe, Christian; Pickhinke, Ute; Kupich, Sabine; Ohlig, Stefanie; Frye, Maike; Seelige, Ruth; Pallerla, Srinivas R.; Moon, Anne M.; Lawrence, Roger; Esko, Jeffrey D.; Zhang, Xin; Grobe, Kay
2015-01-01
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-Deacetylase/GlcN N-Sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect. PMID:24200809
To repair or not to repair: with FAVOR there is no question
NASA Astrophysics Data System (ADS)
Garetto, Anthony; Schulz, Kristian; Tabbone, Gilles; Himmelhaus, Michael; Scheruebl, Thomas
2016-10-01
In the mask shop the challenges associated with today's advanced technology nodes, both technical and economic, are becoming increasingly difficult. The constant drive to continue shrinking features means more masks per device, smaller manufacturing tolerances and more complexity along the manufacturing line with respect to the number of manufacturing steps required. Furthermore, the extremely competitive nature of the industry makes it critical for mask shops to optimize asset utilization and processes in order to maximize their competitive advantage and, in the end, profitability. Full maximization of profitability in such a complex and technologically sophisticated environment simply cannot be achieved without the use of smart automation. Smart automation allows productivity to be maximized through better asset utilization and process optimization. Reliability is improved through the minimization of manual interactions leading to fewer human error contributions and a more efficient manufacturing line. In addition to these improvements in productivity and reliability, extra value can be added through the collection and cross-verification of data from multiple sources which provides more information about our products and processes. When it comes to handling mask defects, for instance, the process consists largely of time consuming manual interactions that are error prone and often require quick decisions from operators and engineers who are under pressure. The handling of defects itself is a multiple step process consisting of several iterations of inspection, disposition, repair, review and cleaning steps. Smaller manufacturing tolerances and features with higher complexity contribute to a higher number of defects which must be handled as well as a higher level of complexity. In this paper the recent efforts undertaken by ZEISS to provide solutions which address these challenges, particularly those associated with defectivity, will be presented. From automation of aerial image analysis to the use of data driven decision making to predict and propose the optimized back end of line process flow, productivity and reliability improvements are targeted by smart automation. Additionally the generation of the ideal aerial image from the design and several repair enhancement features offer additional capabilities to improve the efficiency and yield associated with defect handling.
Reconstruction of the midface and maxilla.
Dalgorf, Dustin; Higgins, Kevin
2008-08-01
To review the current classification systems and reconstructive options available for restoration of maxillectomy defects. Defects involving the midface can have a great functional and aesthetic impact on the patient. Adequate restoration of the complex three-dimensional maxillary structure is required to replace form and function of the native tissue. An in-depth discussion of appropriate recipient vessel selection and reconstructive options are included in this article. The superficial temporal vessel system is presented as a reliable anastomosis site for restoration of midfacial defects. In addition, the complications of vein grafting, arteriovenous fistula loops and alternative recipient vessels sites are addressed to manage the challenge of the vessel-depleted neck. The current indications, advantages and disadvantages of local, regional and free-flap reconstructive options available for maxillectomy defects are highlighted in order to aid the surgeon in appropriate flap selection. A myriad of reconstructive options are available to restore maxillectomy defects. The surgeon must consider each defect and the needs of the individual patient when choosing the best suited reconstructive technique.
NASA Astrophysics Data System (ADS)
Caban Acevedo, Miguel
The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for electrochemical and solar energy driven hydrogen production.
Pre-melting Behaviour in fcc Metals
NASA Astrophysics Data System (ADS)
Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.
2016-12-01
Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its mechanism(s), the effect of impurities and defects in the solid, and the consequences of pre-melting in the Earth's core.
NASA Astrophysics Data System (ADS)
Pankratov, E. L.
2018-05-01
We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.
Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers
NASA Astrophysics Data System (ADS)
Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.
2016-11-01
We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.
Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
NASA Astrophysics Data System (ADS)
Qi, Bingkun; Zhang, Lingxuan; Ge, Li
2018-03-01
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
Cor triatriatum dexter and atrial septal defect in a 43-year-old woman.
Vukovic, Petar M; Kosevic, Dragana; Milicic, Miroslav; Jovovic, Ljiljana; Stojanovic, Ivan; Micovic, Slobodan
2014-08-01
Cor triatriatum dexter is a rare congenital heart anomaly in which a membrane divides the right atrium into 2 chambers. We report the case of a 43-year-old woman who had cor triatriatum dexter and a large atrial septal defect. During attempted percutaneous closure, the balloon disrupted the membrane and revealed that the defect had no inferior rim, precluding secure placement of an Amplatzer Septal Occluder. Surgical treatment subsequently proved to be successful. In patients with an incomplete membrane and a septal defect with well-defined rims, percutaneous treatment can be the first choice. In patients who have cor triatriatum dexter and unfavorable anatomic features or concomitant complex heart anomalies, open-heart surgery remains the gold standard for treatment.
Cor Triatriatum Dexter and Atrial Septal Defect in a 43-Year-Old Woman
Kosevic, Dragana; Milicic, Miroslav; Jovovic, Ljiljana; Stojanovic, Ivan; Micovic, Slobodan
2014-01-01
Cor triatriatum dexter is a rare congenital heart anomaly in which a membrane divides the right atrium into 2 chambers. We report the case of a 43-year-old woman who had cor triatriatum dexter and a large atrial septal defect. During attempted percutaneous closure, the balloon disrupted the membrane and revealed that the defect had no inferior rim, precluding secure placement of an Amplatzer Septal Occluder. Surgical treatment subsequently proved to be successful. In patients with an incomplete membrane and a septal defect with well-defined rims, percutaneous treatment can be the first choice. In patients who have cor triatriatum dexter and unfavorable anatomic features or concomitant complex heart anomalies, open-heart surgery remains the gold standard for treatment. PMID:25120397
Remote defect imaging for plate-like structures based on the scanning laser source technique
NASA Astrophysics Data System (ADS)
Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo
2018-04-01
In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.
NASA Astrophysics Data System (ADS)
Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.
2015-03-01
Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.
Thermodynamics of surface defects at the aspirin/water interface
NASA Astrophysics Data System (ADS)
Schneider, Julian; Zheng, Chen; Reuter, Karsten
2014-09-01
We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing
2016-11-01
The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.
The evolution of complex and higher organisms
NASA Technical Reports Server (NTRS)
Milne, D. (Editor); Raup, D. (Editor); Billingham, J. (Editor); Niklaus, K. (Editor); Padian, K. (Editor)
1985-01-01
The evolution of Phanerozoic life has probably been influenced by extraterrestrial events and properties of the Earth-Moon system that have not, until now, been widely recognized. Tide range, gravitational strength, the Earth's axial tilt, and other planetary properties provide background conditions whose effects on evolution may be difficult to distinguish. Solar flares, asteroid impacts, supernovae, and passage of the solar system through galactic clouds can provide catastrophic changes on the Earth with consequent characteristic extinctions. Study of the fossil record and the evolution of complex Phanerozoic life can reveal evidence of past disturbances in space near the Earth. Conversely, better understanding of environmental influences caused by extraterrestrial factors and properties of the solar system can clarify aspects of evolution, and may aid in visualizing life on other planets with different properties.
Chen, Yan; Carrington-Lawrence, Stacy D.; Bai, Ping; Weller, Sandra K.
2005-01-01
Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface. PMID:15994803
Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K
2005-07-01
Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.
NASA Technical Reports Server (NTRS)
Henderson, P.; Fishlock, S. J.; Laul, J. C.; Cooper, T. D.; Conard, R. L.; Boynton, W. V.; Schmitt, R. A.
1976-01-01
The paper reports activation-analysis determinations of rare-earth-element (REE) and other trace-element concentrations in selected rocks, plagioclase, and mafic separates from the Fiskenaesset Complex. The REE abundances are found to be very low and atypical in comparison with other terrestrial anorthosites. The plagioclases are shown to be characterized by a deficiency in heavy RE elements relative to light ones and a positive Eu anomaly, while the mafic separates are enriched in heavy rare earths and have no Eu anomaly, except in one sample. It is found that the bulk and trace-element abundances of the plagioclases are similar to those observed in some lunar anorthosites, but the degree of Eu anomaly is less in the plagioclases. The data are taken as confirmation of the idea that fractionation processes were involved in the origin of the Complex, and it is concluded that the Complex may have been produced from a magma generated by partial melting of a garnet-bearing source.
NASA Astrophysics Data System (ADS)
Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.
2011-12-01
Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10^3 migration timescales). In addition, comparisons between spacing and defect density of Titan's dunes and some of the largest fields observed on Earth and Mars reveal that dune patterns on all three planets are geometrically similar, suggesting that growth and organization share common pattern dynamics. Our results suggest that Titan's dunes may react to gross bedform transport averaged over orbital timescales, relaxing the requirement that a single modern wind regime is required to produce the observed pattern.
Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J
2018-02-19
The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.
Acoustically driven degradation in single crystalline silicon solar cell
NASA Astrophysics Data System (ADS)
Olikh, O. Ya.
2018-05-01
The influence of ultrasound on current-voltage characteristics of crystalline silicon solar sell was investigated experimentally. The transverse and longitudinal acoustic waves were used over a temperature range of 290-340 K. It was found that the ultrasound loading leads to the reversible decrease in the photogenerated current, open-circuit voltage, fill factor, carrier lifetime, and shunt resistance as well as the increase in the ideality factor. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The contribution of the boron-oxygen related defects, iron-boron pairs, and oxide precipitates to both the carrier recombination and acousto-defect interaction was discussed. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations.
NASA Astrophysics Data System (ADS)
Vendamani, V. S.; Pathak, A. P.; Kanjilal, D.; Rao, S. V. S. Nageswara
2018-04-01
We report a successful formation of Si-H related complexes under low temperature (LT) proton implantation. H2* defect is one of the Si-H related defects, which is stable at around 600 K. The absorption line of H2* defect is around 1830 cm-1 and has been investigated by Fourier transform infrared spectroscopy (FTIR). The intensity variations in the absorption spectrum has been observed for samples implanted at 1 µA and 8 µA beam currents. It is found that, the formation of H2* defect tends towards saturation level at higher implanted fluencies. This observation might be the effect of ion induced annealing during proton implantation. In addition, Elastic recoil detection analysis (ERDA) has been performed to find out the concentration and desorption of hydrogen in proton implanted Si samples. In conclusion, this work demonstrates the importance of H passivation on the device stability/deterioration performance.
Radiation-acoustic treatment of gallium phosphide light diodes
NASA Astrophysics Data System (ADS)
Tartachnik, Volodimir P.; Gontaruk, Olexsandr M.; Vernydub, Roman M.; Kryvutenko, Anatoly M.; Olikh, Yaroslav M.; Opilat, Vitalij Y.; Petrenko, Igor V.; Pinkovska, Myroslava B.
1999-11-01
The ultrasound influence on the defects of technological and radiation origin of GaP light diodes has been investigated. GaP light diodes were treated by ultrasound wave in different operating modes. Electroluminescence spectra were measured at room and low temperatures, integrated luminosity of devices was checked by solar cell. In order to find out the radiation field influence on non-equilibrium defects of acoustic origin samples were irradiated at room temperature by gamma rays of Co60. It has been discovered that in GaP light diodes treated by ultrasound unstable at room temperature dislocation networks occur at the volume of crystal. Ultrasound dose increase causes the creation of complex defects with high relaxation time and appearing of a part of more mobile defect,s which relax quicker. The nature of effects discovered has been discussed. The method of the emissive capacity restoring of samples degraded after irradiation have been proposed.
NASA Astrophysics Data System (ADS)
Matveev, V. I.; Makarov, D. N.
2017-01-01
The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.
Reconstruction of acquired oromandibular defects.
Fernandes, Rui P; Yetzer, Jacob G
2013-05-01
Acquired defects of the mandible resulting from trauma, infection, osteoradionecrosis, and ablative surgery of the oral cavity and lower face are particularly debilitating. Familiarity with mandibular and cervical anatomy is crucial in achieving mandibular reconstruction. The surgeon must evaluate which components of the hard and soft tissue are missing in selecting a method of reconstruction. Complexity of mandibular reconstruction ranges from simple rigid internal fixation to microvascular free tissue transfer, depending on defect- and patient-related factors. Modern techniques for microvascular tissue transfer provide a wide array of reconstructive options that can be tailored to patients' specific needs. Copyright © 2013 Elsevier Inc. All rights reserved.
Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure
NASA Astrophysics Data System (ADS)
Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.
2018-04-01
Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.
NASA Astrophysics Data System (ADS)
Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.
2005-12-01
In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.
NASA Astrophysics Data System (ADS)
Chen, C.-H.; Tan, T. Y.
1995-10-01
Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.
From micro to macro: the role of defects in the mechanical response of Earth and Planetary materials
NASA Astrophysics Data System (ADS)
McCarthy, Christine
2015-04-01
Microstructural features can greatly influence the bulk behavior of materials. Impurities, grain (and subgrain) size, dislocations, and partial melt can all affect the way that seismic waves are damped in the mantle, for instance, or how tidal energy is dissipated within an icy moon's outer shell. With proper scaling of the viscoelastic response, it is possible to use the attenuation signature -- for instance, the variation of Q with the micro/mesoscale evolution of deformation-induced strain (i.e. fabric) -- as a prospecting tool to determine active deformation structure within bodies of ice or rock at macroscopic (km) scale. In order to better interpret seismic data and provide better constraints for geophysical modeling, I design and perform laboratory experiments to directly measure the plastic and anelastic behaviours of various Earth and planetary materials, including polycrystalline ice. I will discuss findings from attenuation experiments, in particular results that suggest a coupling between deformation-induced microstructure effected by tectonics and attenuation behaviour. I will also discuss recent experiments that combine anelastic and frictional response using a custom-built biaxial friction apparatus. The experiments provide dynamic, frequency-dependent material properties of ice and ice on rock deformation at frequencies consistent with tidal forcing of Antarctic and Greenland glaciers. Such data can be used directly in models of glacier and ice stream flow and will inform our understanding of the complex glacier dynamics needed to improve predictions of sea level rise. Additionally, the experimental measurements can ultimately be compared with field observations to infer characteristics of the bed interface and the material composition of the bulk glacier.
Treatment of gun-shot defect of the foot with bovine collagen matrix application.
Coban, Yusuf Kenan; Kalender, Ali Murat
2009-12-01
Nonoperative therapy might be chosen for patients with small wounds or defects around the foot and ankle region. Lyophilized bovine collagen matrix is one of ideal biological dressings used in wound treatment. We present an example of type 1 bovine collagen (Gelfix, Euroresearch, Inc., Milano, Italy) usage in a complex gun-shot wound of the foot and relevant literature is discussed.
Dhungel, Nripesh; Hopper, Anita K.
2012-01-01
Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity. PMID:22391451
CuBi2O4 Prepared by the Polymerized Complex Method for Gas-Sensing Applications.
Choi, Yun-Hyuk; Kim, Dai-Hong; Hong, Seong-Hyeon
2018-05-02
Multicomponent oxides can be extensively explored as alternative gas-sensing materials to binary oxides with their structural and compositional versatilities. In this work, the gas-sensing properties of CuBi 2 O 4 have been investigated toward various reducing gases (C 2 H 5 OH, NH 3 , H 2 , CO, and H 2 S) and oxidizing gas (NO 2 ) for the first time. For this, the powder synthesis has been developed using the polymerized complex method (Pechini method) to obtain a single-phase polycrystalline CuBi 2 O 4 . The defect, optical, and electronic properties in the prepared CuBi 2 O 4 powder were modulated by varying the calcination temperature from 500 to 700 °C. Noticeably, a high concentration of Cu + -oxygen vacancy ([Formula: see text]) defect complexes and isolated Cu 2+ ion clusters was found in the 500 °C-calcined CuBi 2 O 4 , where they were removed through air calcination at higher temperatures (up to 700 °C) while making the compound more stoichiometric. The change in the intrinsic defect concentration with the calcination temperature led to the variation of the electronic band gap energy and hole concentration in CuBi 2 O 4 with the polaronic hopping conduction (activation energy = 0.43 eV). The CuBi 2 O 4 sensor with 500 °C-calcined powder showed the highest gas responses (specifically, 10.4 toward 1000 ppm C 2 H 5 OH at the operating temperature of 400 °C) with the highest defect concentration. As a result, the gas-sensing characteristics of CuBi 2 O 4 are found to be dominantly affected by the intrinsic defect concentration, which is controlled by the calcination temperature. Toward reducing H 2 S and oxidizing NO 2 gases, the multiple reactions arising simultaneously on the surface of the CuBi 2 O 4 sensor govern its response behavior, depending on the gas concentration and the operating temperature. We believe that this work can be a cornerstone for understanding the effect of chemical defect on the gas-sensing characteristics in multicomponent oxides.
Rimola, Albert; Ugliengo, Piero
2009-04-14
The reaction of glycine (Gly) with a strained (SiO)(2) four-membered ring defect (D2) at the surface of an interstellar silica grain dust has been studied at ONIOM2[B3LYP/6-31+G(d,p):MNDO] level within a cluster approach in the context of hypothetical reactions occurring in the interstellar medium. The D2 opens up exothermically for reaction with Gly (Delta(r)U(0)=-26.3 kcal mol(-1)) to give a surface mixed anhydride S(surf)-O-C([double bond, length as m-dash]O)-CH(2)NH(2) as a product. The reaction barriers, DeltaU( not equal)(0), are 0.1 and 10.4 kcal mol(-1) for reactive channels involving COOH and NH(2) as attacking groups, respectively. Calculations show the surface mixed anhydride to be rather stable under the action of interstellar processes, such as reactions with isolated H(2)O and NH(3) molecules or the exposure to cosmic rays and UV radiation. The hydrolysis of the surface mixed anhydride to release again Gly was modelled by microsolvation (from 1 to 4 H(2)O molecules) mimicking what could have happened to the interstellar dust after seeding the primordial ocean in the early Earth. Results for these calculations show that the reaction is exergonic and activated, the Delta(r)G(298) becoming more negative and the DeltaG( not equal)(298) being dramatically reduced as a function of increasing number of H(2)O molecules. The present results are relevant because they show that defects present at interstellar dust surfaces could have played a significant role in capturing, protecting and delivering essential prebiotic compounds on the early Earth.
Applications of Computer Technology in Complex Craniofacial Reconstruction.
Day, Kristopher M; Gabrick, Kyle S; Sargent, Larry A
2018-03-01
To demonstrate our use of advanced 3-dimensional (3D) computer technology in the analysis, virtual surgical planning (VSP), 3D modeling (3DM), and treatment of complex congenital and acquired craniofacial deformities. We present a series of craniofacial defects treated at a tertiary craniofacial referral center utilizing state-of-the-art 3D computer technology. All patients treated at our center using computer-assisted VSP, prefabricated custom-designed 3DMs, and/or 3D printed custom implants (3DPCI) in the reconstruction of craniofacial defects were included in this analysis. We describe the use of 3D computer technology to precisely analyze, plan, and reconstruct 31 craniofacial deformities/syndromes caused by: Pierre-Robin (7), Treacher Collins (5), Apert's (2), Pfeiffer (2), Crouzon (1) Syndromes, craniosynostosis (6), hemifacial microsomia (2), micrognathia (2), multiple facial clefts (1), and trauma (3). In select cases where the available bone was insufficient for skeletal reconstruction, 3DPCIs were fabricated using 3D printing. We used VSP in 30, 3DMs in all 31, distraction osteogenesis in 16, and 3DPCIs in 13 cases. Utilizing these technologies, the above complex craniofacial defects were corrected without significant complications and with excellent aesthetic results. Modern 3D technology allows the surgeon to better analyze complex craniofacial deformities, precisely plan surgical correction with computer simulation of results, customize osteotomies, plan distractions, and print 3DPCI, as needed. The use of advanced 3D computer technology can be applied safely and potentially improve aesthetic and functional outcomes after complex craniofacial reconstruction. These techniques warrant further study and may be reproducible in various centers of care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.
2015-03-31
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less
A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects.
Brie, Joël; Chartier, Thierry; Chaput, Christophe; Delage, Cyrille; Pradeau, Benjamin; Caire, François; Boncoeur, Marie-Paule; Moreau, Jean-Jacques
2013-07-01
Neurosurgery and Maxillofacial Surgery Departments of Limoges University Hospital Centre have developed a new concept of a custom made ceramic implant in hydroxyapatite (HA) for the reconstruction of large and complex craniofacial bone defects (more than 25 cm(2)). The manufacturing process of the implants used a stereolithography technique that produces implants with three-dimensional shapes derived directly from the scan file of the patient's skull without moulding or machining. Eight patients received 8 implants between 2005 and 2008. The surgical procedure is simple and fast. The post-operative follow-up was 12 months. No major complications (infection or fracture of the implant) were observed. The cosmetic result was considered satisfactory by both patients and surgeons. These new implants are well suited for reconstruction of large craniofacial bone defects (greater than 25 cm(2)) in adults and children over 8 years. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
EPR and photoluminescence study of irradiated anion-defective alumina single crystals
NASA Astrophysics Data System (ADS)
Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.
2017-09-01
Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.
Tunable magnetism in metal adsorbed fluorinated nanoporous graphene
Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...
2016-08-24
Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μ B along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAEmore » is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less
A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends
Kern, David M.; Nicholls, Peter K.; Page, David C.
2016-01-01
The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257
[Free flap reconstruction in the head and neck. Indications, technical aspects and outcomes].
Llorente, José Luis; López, Fernando; Suárez, Vanessa; Fueyo, Angel; Carnero, Susana; Martín, Clara; López, Victoria; Camporro, Daniel; Suárez, Carlos
2014-01-01
The use of microvascular free flaps (MFF) has become a common method of head and neck reconstruction because of its high success rates and better functional results. We report our experience in reconstructing complex defects with MFF. We analysed a series of 246 patients that underwent reconstruction using MFF in our Department from 1991 to 2013. There were 259 interventions performed in 246 patients. The most common reason for surgery was tumour recurrence (46%), followed by primary tumour resection (25%). The hypopharynx (52%) and the craniofacial region (22%) were the most frequently reconstructed sites. The free flaps most commonly used were the radial forearm free flap (41%) and the anterolateral thigh free flap (35%). Overall success and complication rates of 92% and 20% respectively were reported. The microvascular free flap is a reliable and useful tool for reconstructing complex head and neck defects and continues to be the reconstructive modality of choice for these defects. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Zhang, Lei; Sun, Hao; Yu, Hong-bo; Yuan, Hao; Shen, Guo-fang; Wang, Xu-dong
2013-05-01
Maxillectomy in childhood not only causes composite primary defects but also secondary malformation of the middle and lower face. In the case presented, we introduced computer-assisted planning and simulation of orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct complex craniofacial deformities. Virtual orthognathic surgery and maxillary reconstruction surgery were undertaken preoperatively. LeFort I osteotomy, with bilateral sagittal split ramus osteotomy and lower border ostectomy, was performed to correct malocclusion and facial asymmetry. Maxillary reconstruction was accomplished using a fibular osteomyocutaneous flap. The patient recovered uneventfully with an adequate aesthetic appearance on 3D computed tomography. Our experience indicates that orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction can used to correct complex facial asymmetry and maxillary defects secondary to maxillectomy. Computer-assisted simulation enables precise execution of the reconstruction. It shortens the free flap ischemia time and reduces the risks associated with microsurgery.
Computer-assisted innovations in craniofacial surgery.
Rudman, Kelli; Hoekzema, Craig; Rhee, John
2011-08-01
Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand. © Thieme Medical Publishers.
Student-Teachers' Use of "Google Earth" in Problem-Based Geology Learning
ERIC Educational Resources Information Center
Ratinen, Ilkka; Keinonen, Tuula
2011-01-01
Geographical Information Systems (GIS) are adequate for analyzing complex scientific and spatial phenomena in geography education. "Google Earth" is a geographic information tool for GIS-based learning. It allows students to engage in the lesson, explore the Earth, explain what they identify and evaluate the implications of what they are…
A complex of meteorite-forming bodies (the Innisfree - Ridgedale family).
NASA Astrophysics Data System (ADS)
Shestaka, I. S.
1994-12-01
For the first time a swarm of meteorite-forming bodies was identified. Yearly this swarm's orbit approaches the Earth's orbit in early February. This swarm contains the Innisfree and Ridgedale fireballs, 9 small meteoric swarms, several asteroids and 12 fireballs photographed by the cameras of the Prairie Network and Canadian Meteorite Observation and Discovery Project. The discovery of this complex, intensive bombardments of the Moon's surface recorded by means of seismographs left on the Moon, the analysis of the time distributions of meteorite falls on the Earth and other established facts confirm the existence of swarms of meteorite-forming bodies which are crossing the Earth's orbit.
Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders
NASA Astrophysics Data System (ADS)
Everitt, Henry
2013-03-01
Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (< 2%) because of reabsorption and non-radiative recombination due to a high density of non-radiative bulk traps. By annealing ZnO, bulk trap densities are reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation wavelength, closely mirrors the PLE spectra for both emission bands. Sulfur-doped ZnO exhibits additional PLE and X-ray features indicative of a ZnS-rich surface shell that correlates with even more efficient defect emission. The results presented here offer hope that engineering defects in ZnO materials may significantly improve the quantum efficiency for white light phosphor applications. This work was supported by the Army's in-house laboratory innovative research program.
EPR and ENDOR Studies of Point Defects in Lithium Tetraborate Crystals
2012-12-14
the US and its allies. Terrorist groups have shown interest in seeking and deploying weapons of mass destruction and mass disruption--weapons that...5]. Lithium tetraborate, has been grown pure and doped with many different elements including transition metals, actinides , and rare earth...microwave cavity is said to be “ critically coupled” when there is no reflected microwave power. Absorption of microwaves, which occurs when the magnetic
Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.
Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi
2018-04-01
As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.
Radiation hardening of rare-earth doped fiber amplifiers
NASA Astrophysics Data System (ADS)
Vivona, Marilena; Girard, Sylvain; Marcandella, Claude; Pinsard, Emmanuel; Laurent, Arnaud; Robin, Thierry; Cadier, Benoît; Cannas, Marco; Boukenter, Aziz; Ouerdane, Y.
2017-11-01
We investigated the radiation hardening of optical fiber amplifiers operating in space environments. Through a real-time analysis in active configuration, we evaluated the role of Ce in the improvement of the amplifier performance against ionizing radiations. Ce-codoping is an efficient hardening solution, acting both in the limitation of defects in the host glass matrix of RE-doped optical fibers and in the stabilization of lasing properties of the Er3+-ions. On the one hand, in the near-infrared region, radiation induced attenuation measurements show the absence of radiation induced P-related defect species in host glass matrix of the Ce-codoped active fibers; on the other hand, in the Ce-free fiber, the higher lifetime variation shows stronger local modifications around the Er3+-ions with the absence of Ce.
Osada, Shigehiro; Sutton, Ann; Muster, Nemone; Brown, Christine E.; Yates, John R.; Sternglanz, Rolf; Workman, Jerry L.
2001-01-01
It is well established that acetylation of histone and nonhistone proteins is intimately linked to transcriptional activation. However, loss of acetyltransferase activity has also been shown to cause silencing defects, implicating acetylation in gene silencing. The something about silencing (Sas) 2 protein of Saccharomyces cerevisiae, a member of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, promotes silencing at HML and telomeres. Here we identify a ∼450-kD SAS complex containing Sas2p, Sas4p, and the tf2f-related Sas5 protein. Mutations in the conserved acetyl-CoA binding motif of Sas2p are shown to disrupt the ability of Sas2p to mediate the silencing at HML and telomeres, providing evidence for an important role for the acetyltransferase activity of the SAS complex in silencing. Furthermore, the SAS complex is found to interact with chromatin assembly factor Asf1p, and asf1 mutants show silencing defects similar to mutants in the SAS complex. Thus, ASF1-dependent chromatin assembly may mediate the role of the SAS complex in silencing. PMID:11731479
NASA Astrophysics Data System (ADS)
Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.
2018-04-01
This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.
Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor
2015-03-21
Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.
3D lattice distortions and defect structures in ion-implanted nano-crystals
Hofmann, Felix; Tarleton, Edmund; Harder, Ross J.; Phillips, Nicholas W.; Ma, Pui-Wai; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian; Liu, Wenjun; Beck, Christian E.
2017-01-01
Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale revolutionised sample preparation across the life, earth and materials sciences. Despite its widespread usage, detailed understanding of the FIB-induced structural damage, intrinsic to the technique, remains elusive. Here we examine the defects caused by FIB in initially pristine objects. Using Bragg Coherent X-ray Diffraction Imaging (BCDI), we are able to spatially-resolve the full lattice strain tensor in FIB-milled gold nano-crystals. We find that every use of FIB causes large lattice distortions. Even very low ion doses, typical of FIB imaging and previously thought negligible, have a dramatic effect. Our results are consistent with a damage microstructure dominated by vacancies, highlighting the importance of free-surfaces in determining which defects are retained. At larger ion fluences, used during FIB-milling, we observe an extended dislocation network that causes stresses far beyond the bulk tensile strength of gold. These observations provide new fundamental insight into the nature of the damage created and the defects that lead to a surprisingly inhomogeneous morphology. PMID:28383028
3D lattice distortions and defect structures in ion-implanted nano-crystals.
Hofmann, Felix; Tarleton, Edmund; Harder, Ross J; Phillips, Nicholas W; Ma, Pui-Wai; Clark, Jesse N; Robinson, Ian K; Abbey, Brian; Liu, Wenjun; Beck, Christian E
2017-04-06
Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga + ), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale revolutionised sample preparation across the life, earth and materials sciences. Despite its widespread usage, detailed understanding of the FIB-induced structural damage, intrinsic to the technique, remains elusive. Here we examine the defects caused by FIB in initially pristine objects. Using Bragg Coherent X-ray Diffraction Imaging (BCDI), we are able to spatially-resolve the full lattice strain tensor in FIB-milled gold nano-crystals. We find that every use of FIB causes large lattice distortions. Even very low ion doses, typical of FIB imaging and previously thought negligible, have a dramatic effect. Our results are consistent with a damage microstructure dominated by vacancies, highlighting the importance of free-surfaces in determining which defects are retained. At larger ion fluences, used during FIB-milling, we observe an extended dislocation network that causes stresses far beyond the bulk tensile strength of gold. These observations provide new fundamental insight into the nature of the damage created and the defects that lead to a surprisingly inhomogeneous morphology.
NASA Technical Reports Server (NTRS)
Stillwell, R. P.
1983-01-01
For spacecraft operation in the near Earth environment, solar cell arrays constitute the major source of reliable long term power. Optimization of mass and power efficiency results in a general requirement for high voltage solar arrays. The space plasma environment, though, can result in large currents being collected by exposed solar cells. The solution of a protective covering of transparent insulation is not a complete solution, inasmuch as defects in the insulation result in anomalously large currents being collected through the defects. Tests simulating the electron collection from small defects in an insulation have shown that there are two major collection modes. The first mode involves current enhancement by means of a surface phenomenon involving the surrounding insulator. In the second mode the current collection is enhanced by vaporization and ionization of the insulators materials, in addition to the surface enhancement of the first mode. A model for the electron collection is the surface enhanced collection mode was developed. The model relates the secondary electron emission yield to the electron collection. It correctly predicts the qualitative effects of hole size, sample temperature and roughening of sample surface. The theory was also shown to predict electron collection within a factor of two for the polymers teflon and polyimide.
Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects
NASA Astrophysics Data System (ADS)
Kaur, Sarbjit
Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 +/- 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.
Reaven, G M
1984-01-01
Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Simulations of defect spin qubits in piezoelectric semiconductors
NASA Astrophysics Data System (ADS)
Seo, Hosung
In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.
NASA Astrophysics Data System (ADS)
Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans
2017-01-01
Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.
SPR4-peptide Alters Bone Metabolism of Normal and HYP Mice
Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N
2015-01-01
Context ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. Results Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. Conclusions SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic. PMID:25460577
Li, Zonghuan; Yu, Aixi; Qi, Baiwen; Pan, Zhenyu; Ding, Junhui
2017-08-01
The aim of this report was to present the use of flow-through free fibula osteocutaneous flap for the repair of complex tibial bone, soft tissue, and main artery segmental defects. Five patients with bone, soft tissue, and segmental anterior tibial artery defects were included. The lengths of injured tibial bones ranged from 4 to 7 cm. The sizes of impaired soft tissues were between 9 × 4 and 15 × 6 cm. The lengths of defect of anterior tibial artery segments ranged from 6 to 10 cm. Two patients had distal limb perfusion problems. Flow-through free fibula osteocutaneous flap was performed for all 5 patients. Patients were followed for 12 to 18 months. All wounds healed after 1-stage operation, and all flow-through flaps survived. The distal perfusion after vascular repair was normal in all patients. Superficial necrosis of flap edge was noted in 1 case. After the local debridement and partial thickness skin graft, the flap healed uneventfully, and the surgical operation did not increase injury to the donor site. Satisfactory bone union was achieved in all patients in 2 to 4 months postoperation. Enlargement of fibula graft was observed during follow-up from 12 to 18 months. The functions of adjacent joints were recovered, and all patients were able to walk normally. Flow-through free fibula osteocutaneous flap was shown to be an effective and efficient technique for repairing composite tibial bone, soft tissue, and main artery segmental defects. This 1-stage operation should be useful in clinical practice for the treatment of complex bone, soft tissue, and vessel defects.
A novel lobule rotation flap for the reconstruction of middle third auricular defects.
Basu, Indraneil; Way, Benjamin; Al-Basri, Isam
2013-12-01
There are numerous techniques for the reconstruction of cutaneous defects of the pinna. Many of these distort the auricle, and several are challenging and time-consuming to perform. An illustrative case is presented to demonstrate a novel lobule rotational flap, which can be used to cover cutaneous defects of the middle third of the pinna. Postoperative photography illustrates that this simple one-stage technique causes minimal anatomical distortion and allows the final scar to be concealed within the inner helical rim. Small local flaps can be raised from the lobule to cover challenging defects of the middle third of the pinna. In selected patients, with abundant lobular tissue, this technique can be as effective as more complex reconstructive options. © 2013 The International Society of Dermatology.
Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.
Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363
Point Defects in Oxides: Tailoring Materials Through Defect Engineering
NASA Astrophysics Data System (ADS)
Tuller, Harry L.; Bishop, Sean R.
2011-08-01
Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.
Repairing Nanoparticle Surface Defects.
Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter
2017-10-23
Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Response function of a moving contact line
NASA Astrophysics Data System (ADS)
Perrin, H.; Belardinelli, D.; Sbragaglia, M.; Andreotti, B.
2018-04-01
The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.
[The repair of bulky tissue defect of forearm with skin flaps].
Huang, Xiaoyuan; Long, Jianhong; Xie, Tinghong; Zhang, Minghua; Zhang, Pihong; Yang, Xinghua; Zhong, Keqin
2002-12-01
To evaluate the repairing methods of bulky tissue defect of forearm with flaps. Twenty-one burned patients with wounds in the forearm were enrolled in this study. The injury causes were high-voltage electricity, hot press or crush injury. After local debridement, the forearm defects were repaired with pedicled complex flaps, latissimus dorsi musculocutaneous island flaps or large thoraco-abdominal flaps immediately. All the flaps survived very well with satisfactory results except for 1 patient in whom local ischemic necrosis and sub-flap infection at the distal end of the flap occurred. Early debridement followed by skin flaps with pedicles or musculocutaneous flaps transfer could be simple, safe and reliable treatment strategies in the management of bulky tissue defects of the forearm due to burn, electric injury, or other devastating injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciatto, G.; Fonda, E.; Trolio, A. Di
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoOmore » epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.« less
Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces
Zhu, Xuan; Li, Xiaoshi; Chen, Zeyu; Chen, Yimu; Lei, Yusheng; Li, Yang; Nomoto, Akihiro; Zhou, Qifa; di Scalea, Francesco Lanza
2018-01-01
Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an “island-bridge” layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces. PMID:29740603
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2007-01-01
The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2009-01-01
The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915
Mantle dynamics and seismic tomography
Tanimoto, Toshiro; Lay, Thorne
2000-01-01
Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784
NASA Astrophysics Data System (ADS)
Milani, Lorenzo; Bolhar, Robert; Frei, Dirk; Harlov, Daniel E.; Samuel, Vinod O.
2017-12-01
In-situ trace element analyses of fluorapatite, calcite, dolomite, olivine, and phlogopite have been undertaken on representative phoscorite and carbonatite rocks of the Palaeoproterozoic Phalaborwa Complex. Textural and compositional characterization reveals uniformity of fluorapatite and calcite among most of the intrusions, and seems to favor a common genetic origin for the phoscorite-carbonatite association. Representing major repositories for rare earth elements (REE), fluorapatite and calcite exhibit tightly correlated light REE (LREE) abundances, suggesting that partitioning of LREE into these rock forming minerals was principally controlled by simple igneous differentiation. However, light rare earth element distribution in apatite and calcite cannot be adequately explained by equilibrium and fractional crystallization and instead favors a complex crystallization history involving mixing of compositionally distinct magma batches, in agreement with previously reported mineral isotope variability that requires open-system behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia
2016-03-07
Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less
Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasileska, Dragica
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously overmore » the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire sys-tem and its interactions is required.« less
Improving reticle defect disposition via fully automated lithography simulation
NASA Astrophysics Data System (ADS)
Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan
2016-03-01
Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in-fab reticle qualification.
Metastability and reliability of CdTe solar cells
NASA Astrophysics Data System (ADS)
Guo, Da; Brinkman, Daniel; Shaik, Abdul R.; Ringhofer, Christian; Vasileska, Dragica
2018-04-01
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers devote significant empirical efforts to study these phenomena and to improve semiconductor device stability. Still, understanding the underlying reasons of these instabilities remains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most commonly alleged causes of metastability in CdTe devices, such as ‘migration of Cu’, have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses suggesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe provide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic defects; for example, changing the state of an impurity from an interstitial donor to a substitutional acceptor often is accompanied by generation of a compensating intrinsic interstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire system and its interactions is required.
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
Complex doping of group 13 elements In and Ga in caged skutterudite CoSb 3
Xi, Lili; Qiu, Yting; Zheng, Shang; ...
2014-12-12
The complex doping behavior of Ga and In in CoSb 3 has been investigated using ab initio total-energy calculations and thermodynamics. The formation energies of void filling, Sb substitution and complex dual-site occupancy defects with different charge states, and their dependence on chemical potentials of species, were studied. Results show that Ga predominantly forms dual-site 2Ga VF–Ga Sb defects and substitutes for Sb only at very high Fermi levels or electron concentrations. In, on the other hand, can play multiple roles in skutterudites, including filling in the crystalline voids, substituting for Sb atoms or forming dual-site occupancy, among which themore » fully charge-compensated dual-site defects (2In VF–In Sb and 4In VF–2In Sb) are dominant. The equilibrium concentration ratio of impurities at void-filling sites to those at Sb-substitution sites for Ga-doped CoSb 3 is very close to be 2:1, while this value markedly deviates from 2:1 for In-doped CoSb 3. Furthermore, the 2:1 ratio of Ga doping in CoSb 3 leads to low electron concentration (~2 × 10 19 cm –3) and makes the doped system a semiconductor.« less
Divacancy complexes induced by Cu diffusion in Zn-doped GaAs
NASA Astrophysics Data System (ADS)
Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.
2013-08-01
Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.
Pasek, Raymond C; Malarkey, Erik; Berbari, Nicolas F; Sharma, Neeraj; Kesterson, Robert A; Tres, Laura L; Kierszenbaum, Abraham L; Yoder, Bradley K
2016-04-15
Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Homza, B V; Vasyl'kovs'ka, R A; Semchyshyn, H M
2014-01-01
TOR signaling pathway first described in yeast S. cerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of alpha-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium.
Cx-02 Program, workshop on modeling complex systems
Mossotti, Victor G.; Barragan, Jo Ann; Westergard, Todd D.
2003-01-01
This publication contains the abstracts and program for the workshop on complex systems that was held on November 19-21, 2002, in Reno, Nevada. Complex systems are ubiquitous within the realm of the earth sciences. Geological systems consist of a multiplicity of linked components with nested feedback loops; the dynamics of these systems are non-linear, iterative, multi-scale, and operate far from equilibrium. That notwithstanding, It appears that, with the exception of papers on seismic studies, geology and geophysics work has been disproportionally underrepresented at regional and national meetings on complex systems relative to papers in the life sciences. This is somewhat puzzling because geologists and geophysicists are, in many ways, preadapted to thinking of complex system mechanisms. Geologists and geophysicists think about processes involving large volumes of rock below the sunlit surface of Earth, the accumulated consequence of processes extending hundreds of millions of years in the past. Not only do geologists think in the abstract by virtue of the vast time spans, most of the evidence is out-of-sight. A primary goal of this workshop is to begin to bridge the gap between the Earth sciences and life sciences through demonstration of the universality of complex systems science, both philosophically and in model structures.
NASA Astrophysics Data System (ADS)
Salem, Mohamed; Fazzini, Marina; Ouagne, Pierre
2018-02-01
During the complex shape forming of composite fibrous reinforcement, the planar bending of roving tows results in an out-of-plane deflection, along with a rotation on its central axis. The need to accurately follow and quantify the mechanism of formation of such defect has led us to consider two 3D imaging techniques, of which, have been tested and compared in this work.
McCammon, M. T.
1996-01-01
The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn(-) (``ACetate Nonutilizing'') mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism. PMID:8878673
Gwynn, B; Ciciotte, S L; Hunter, S J; Washburn, L L; Smith, R S; Andersen, S G; Swank, R T; Dell'Angelica, E C; Bonifacino, J S; Eicher, E M; Peters, L L
2000-12-15
Defects in a triad of organelles (melanosomes, platelet granules, and lysosomes) result in albinism, prolonged bleeding, and lysosome abnormalities in Hermansky-Pudlak syndrome (HPS). Defects in HPS1, a protein of unknown function, and in components of the AP-3 complex cause some, but not all, cases of HPS in humans. There have been 15 inherited models of HPS described in the mouse, underscoring its marked genetic heterogeneity. Here we characterize a new spontaneous mutation in the mouse, cappuccino (cno), that maps to mouse chromosome 5 in a region conserved with human 4p15-p16. Melanosomes of cno/cno mice are immature and dramatically decreased in number in the eye and skin, resulting in severe oculocutaneous albinism. Platelet dense body contents (adenosine triphosphate, serotonin) are markedly deficient, leading to defective aggregation and prolonged bleeding. Lysosomal enzyme concentrations are significantly elevated in the kidney and liver. Genetic, immunofluorescence microscopy, and lysosomal protein trafficking studies indicate that the AP-3 complex is intact in cno/cno mice. It was concluded that the cappuccino gene encodes a product involved in an AP-3-independent mechanism critical to the biogenesis of lysosome-related organelles. (Blood. 2000;96:4227-4235)
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian Piero; Meo, Michele
2017-04-01
Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).
Xekouki, Paraskevi; Stratakis, Constantine A
2012-12-01
Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney-Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.
Xekouki, Paraskevi; Stratakis, Constantine A
2013-01-01
Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney–Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD’s loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects. PMID:22889736
Controlling defects and secondary phases of CZTS by surfactant Potassium
NASA Astrophysics Data System (ADS)
Zhu, Junyi; Zhang, Yiou; Tse, Kinfai; Xiao, Xudong
Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material with earth abundant and nontoxic elements. However, the detrimental native defects and secondary phases of CSTS will largely reduce the energy conversion efficiencies. To understand the origin of these problems during the growth of CZTS, we investigated the kinetic processes on CZTS (-1-1-2) surface, using first principles calculations. A surface Zn atom was found to occupy the subsurface Cu site easily due to a low reaction barrier, which may lead to a high ZnCu concentration and a secondary phase of ZnS. These n-type defects may create deep electron traps near the interface and become detrimental to device performance. To reduce the population of ZnCu and the secondary phase, we propose to use K as a surfactant to alter surface kinetic processes. Improvements on crystal quality and device performance based on this surfactant are consistent with early experimental observations. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding at CUHK.
Point defect formation in optical materials expos ed to the space environment
NASA Astrophysics Data System (ADS)
Allen, J. L.; Seifert, N.; Yao, Y.; Albridge, R. G.; Barnes, A. V.; Tolk, N. H.; Strauss, A. M.; Linton, Roger C.; Kamenetzky, R. R.; Vaughn, Jason A.
1995-02-01
Point defect formation associated with early stages of optical damage was observed unexpectedly in two, and possibly three, different optical materials subjected to short-duration space exposure. Three calcium fluoride, two lithium fluoride, and three magnesium fluoride samples were flown on Space Shuttle flight STS-46 as part of the Evaluation of Oxygen Interactions with Materials - Third Phase experiment. One each of the calcium and magnesium fluoride samples was held at a fixed temperature of 60 C during the space exposure, while the temperatures of the other samples were allowed to vary with the ambient temperature of the shuttle cargo bay. Pre-flight and post-flight optical absorption measurements were performed on all of the samples. With the possible exception of the magnesium fluoride samples, every sample clearly showed the formation of F-centers in that section of the sample that was exposed to the low earth orbit environment. Solar vacuum ultraviolet radiation is the most probable primary cause of the defect formation; however, the resulting surface metallization may be synergistically altered by the atomic oxygen environment.
SISGR: Defect Studies of CZTSSe & Related Thin Film Photovoltaic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpulla, Michael
2017-03-30
The research objectives of this project centered around investigations of the basic properties of Cu2ZnSn(S,Se)4 especially the electronic defects in the bulk, at the interface with heterojunction partners used in solar cells, and at the polycrystalline grain boundaries. In the course of the project we addressed many specific sub-areas in 17 peer reviewed publications listed at the end of this report (2 more are also in preparation). The impact of this research is to generate basic but critical materials knowledge about this emerging alloy system that may be capable of photovoltaic efficiency on par with CdTe and CIGS but atmore » lower cost and having the benefit of avoiding constraints on scale-up from rare and expensive elements using earth abundant elements. In the final phase of this project, Prof. Scarpulla worked with Dr. Kirstin Alberi at NREL and rigorously solved a theoretical problem that is general across all semiconductors – the prediction of point defect concentrations in the presence of excess carriers.« less
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A.; Brada, Mark P.
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-03-01
The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.
Simple intrinsic defects in GaP and InP
NASA Astrophysics Data System (ADS)
Schultz, Peter A.
2012-02-01
To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.
2015-08-28
The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gapmore » decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.« less
Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films
NASA Astrophysics Data System (ADS)
Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.
2018-02-01
Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.
An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan
2018-01-01
In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.
NASA Astrophysics Data System (ADS)
Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao
2018-04-01
In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.
Potential implications of the helical heart in congenital heart defects.
Corno, Antonio F; Kocica, Mladen J
2007-01-01
The anatomic and functional observations made by Francisco Torrent-Guasp, in particular his discovery of the helical ventricular myocardial band (HVMB), have challenged what has been taught to cardiologists and cardiac surgeons over centuries. A literature debate is ongoing, with interdependent articles and comments from supporters and critics. Adequate understanding of heart structure and function is obviously indispensable for the decision-making process in congenital heart defects. The HVMB described by Torrent-Guasp and the potential impact on the understanding and treatment of congenital heart defects has been analyzed in the following settings: embryology, ventriculo-arterial discordance (transposition of great arteries), Ebstein's anomaly, pulmonary valve regurgitation after repair of tetralogy of Fallot, Ross operation, and other congenital heart defects. The common structural spiral feature is only one of the elements responsible for the functional interaction of right and left ventricles, and understanding the form/function relationship in congenital heart defects is more difficult than for acquired heart disease because of the variety and complexity of congenital heart defects. Individuals involved in the care of patients with congenital heart defects have to be stimulated to consider further investigations and alternative surgical strategies.
Defect induced visible-light-activated near-infrared emissions in Gd3-x-y-zYbxBiyErzGa5O12
NASA Astrophysics Data System (ADS)
Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Fan, Tongxiang; Zhang, Di
2017-11-01
Visible-light-activated near-infrared luminescent materials are promising photoluminescent materials due to their convenience and low cost. Crystal defects can seriously affect the performance of luminescent materials, and better understanding of the complexity of the structural disorder and electronic structures of such materials opens up new possibilities in luminescent material development. In this work, we successfully design a novel, effective, visible-light-activated near-infrared luminescent Gd3Ga5O12: 4.2%Yb3+, 8.4%Er3+, and 4.2%Bi3+ system based on first principles. This exhibits strong emission intensity and high luminous efficiency (0.993) and also has a lifetime (7.002 ms) that is at least twice as long as the longest lifetime reported in published papers. We utilize density functional theory with an effective LSDA + U method to study the structural properties of Gd3-x-y-zGa5O12: xYb3+, yBi3+, zEr3+ (GGG: Yb3+, Bi3+, Er3+). The d and f electron orbits of rare-earth ions are considered for an effective Hund exchange. Detailed analysis reveals that GGG: 4.2%Yb3+, 8.4%Er3+, 4.2%Bi3+ has the smallest cell volume because of the strong covalent bonds of Bi-O, Er-O, and Yb-O. Bi 3d is a hybridized state that acts as sensitizing ions during the process of luminescence in GGG: Yb3+, Bi3+, Er3+. Together with experimental and theoretical results, we analyze the influence of defects on emission intensity. The locations of Yb3+, Er3+, and Bi3+ are determined by X-ray absorption fine structure measurements, which are in agreement with the model constructed using first principles. This work may provide innovative guidance for the design of high-performance visible-light-activated near-infrared luminophores based on calculations and a new methodology for application of coherent laser radar and optical communication.