Sample records for earth discover clues

  1. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  2. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  3. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  4. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  5. NASA's Kepler Mission Discovers First Earth-size Planet in Habitable Zone of Another Star (Reporter Package)

    NASA Image and Video Library

    2014-04-17

    NASA's Kepler mission has discovered the first Earth-size planet orbiting in the habitable zone of a star outside our solar system. The newly discovered planet is called Kepler-186f and is about 10 percent larger than Earth.

  6. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  7. Discovering Communicable Models from Earth Science Data

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Langley, Pat; Potter, Christopher; Klooster, Steven; Torregrosa, Alicia

    2002-01-01

    This chapter describes how we used regression rules to improve upon results previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  8. DISCOVER-AQ

    Atmospheric Science Data Center

    2017-01-31

    ... Relevant Documents:  DISCOVER-AQ - Airborne Science Data for Atmospheric Composition DISCOVER-AQ - NASA Earth ... DISCOVER-AQ - Mission Highlight Featured Articles : Articles featuring DISCOVER-AQ data products SCAR-B ...

  9. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    Two giant swaths of radiation, known as the Van Allen Belts, surrounding Earth were discovered in 1958. In 2012, observations from the Van Allen Probes showed that a third belt can sometimes appear. The radiation is shown here in yellow, with green representing the spaces between the belts. Credit: NASA/Van Allen Probes/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Research &Discover: A Pipeline of the Next Generation of Earth System Scientists

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Einaudi, F.; Moore, B.; Salomonson, V.; Campbell, J.

    2006-12-01

    In 2002, the University of New Hampshire (UNH) and NASA Goddard Space Flight Center (GSFC) started the educational initiative Research &Discover with the goals to: (i) recruit outstanding young scientists into research careers in Earth science and Earth remote sensing (broadly defined), and (ii) support Earth science graduate students enrolled at UNH through a program of collaborative partnerships with GSFC scientists and UNH faculty. To meet these goals, the program consists of a linked set of educational opportunities that begins with a paid summer research internship at UNH for students following their Junior year of college, and is followed by a second paid summer internship at GSFC for students following their Senior year of college. These summer internships are then followed by two-year fellowship opportunities at UNH for graduate studies jointly supervised by UNH faculty and GSFC scientists. After 5 years of implementation, the program has awarded summer research internships to 22 students, and graduate research fellowships to 6 students. These students have produced more than 78 scientific research presentations, 5 undergraduate theses, 2 Masters theses, and 4 peer-reviewed publications. More than 80% of alums are actively pursuing careers in Earth sciences now. In the process, the program has engaged 19 faculty from UNH and 15 scientists from GSFC as advisors/mentors. New collaborations between these scientists have resulted in new joint research proposals, and the development, delivery, and assessment of a new course in Earth System Science at UNH. Research &Discover represents an educational model of collaboration between a national lab and university to create a pipeline of the next generation of Earth system scientists.

  11. Supercomputing in the Age of Discovering Superearths, Earths and Exoplanet Systems

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2015-01-01

    NASA's Kepler Mission was launched in March 2009 as NASA's first mission capable of finding Earth-size planets orbiting in the habitable zone of Sun-like stars, that range of distances for which liquid water would pool on the surface of a rocky planet. Kepler has discovered over 1000 planets and over 4600 candidates, many of them as small as the Earth. Today, Kepler's amazing success seems to be a fait accompli to those unfamiliar with her history. But twenty years ago, there were no planets known outside our solar system, and few people believed it was possible to detect tiny Earth-size planets orbiting other stars. Motivating NASA to select Kepler for launch required a confluence of the right detector technology, advances in signal processing and algorithms, and the power of supercomputing.

  12. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  13. A rocky composition for an Earth-sized exoplanet.

    PubMed

    Howard, Andrew W; Sanchis-Ojeda, Roberto; Marcy, Geoffrey W; Johnson, John Asher; Winn, Joshua N; Isaacson, Howard; Fischer, Debra A; Fulton, Benjamin J; Sinukoff, Evan; Fortney, Jonathan J

    2013-11-21

    Planets with sizes between that of Earth (with radius R Earth symbol) and Neptune (about 4R Earth symbol) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass--and hence its density, which is a clue to its composition--is more difficult. Planets of size 2-4R Earth symbol have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R Earth symbol and a mass of 1.69 ± 0.41 R Earth symbol, the planet's mean density of 5.3 ± 1.8 g cm(-3) is similar to Earth's, suggesting a composition of rock and iron.

  14. Discovering and measuring a layered Earth: A foundational laboratory for developing students' understanding of Earth's interior structure

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Braile, L. W.; Olds, S. E.; Taber, J.

    2010-12-01

    Geophysics research is continuously revealing new insights about Earth’s interior structure. Before students can grasp theses new complexities, they first must internalize the 1st order layered structure of Earth and comprehend how seismology contributes to the development of such models. Earth structure is of course covered in most introductory geoscience courses, though all too often instruction of this content is limited to didactic methods that make little effort to inspire or engage the minds of students. In the process, students are expected to blindly accept our understanding of the unseen and abstract. Thus, it is not surprising then that many students can draw a layered Earth diagram, yet not know that knowledge of Earth’s interior is based on information from earthquakes. Cognitive learning theory would suggest that what has been missing from instruction of Earth structure is a feasible method to present students with seismic evidence in a manner that allows students to become minds-on with the content; discovering or dispelling the presence of a layered Earth for themselves. Recent advances in serving seismic data to a non-seismologist audience have made the development of such laboratory investigations possible. In this exercise students use an inquiry approach to examine seismic evidence and determine that the Earth cannot have a homogeneous composition. Further they use the data to estimate the dimensions of Earth’s outer core. To reach these conclusions, students are divided into two teams, theoreticians and seismologists, to test the simplest hypothesis for Earth's internal structure; a homogeneous Earth. The theoreticians create a scale model of a homogeneous Earth and predict when seismic waves should arrive at various points on the model. Simultaneously, seismologists interpret a seismic record section from a recent earthquake noting when seismic waves arrive at various points around Earth. The two groups of students then compare the

  15. The Impact of Discovering Life beyond Earth

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2016-01-01

    Introduction: astrobiology and society Steven J. Dick; Part I. Motivations and Approaches. How Do We Frame the Problems of Discovery and Impact?: Introduction; 1. Current approaches to finding life beyond earth, and what happens if we do Seth Shostak; 2. The philosophy of astrobiology: the Copernican and Darwinian presuppositions Iris Fry; 3. History, discovery, analogy: three approaches to the impact of discovering life beyond earth Steven J. Dick; 4. Silent impact: why the discovery of extraterrestrial life should be silent Clément Vidal; Part II. Transcending Anthropocentrism. How Do We Move beyond our Own Preconceptions of Life, Intelligence and Culture?: Introduction; 5. The landscape of life Dirk Schulze-Makuch; 6. The landscape of intelligence Lori Marino; 7. Universal biology: assessing universality from a single example Carlos Mariscal; 8. Equating culture, civilization, and moral development in imagining extraterrestrial intelligence: anthropocentric assumptions? John Traphagan; 9. Communicating with the other: infinity, geometry, and universal math and science Douglas Vakoch; Part III. Philosophical, Theological, and Moral Impact. How Do We Comprehend the Cultural Challenges Raised by Discovery?: Introduction; 10. Life, intelligence and the pursuit of value in cosmic evolution Mark Lupisella; 11. 'Klaatu barada nikto' - or, do they really think like us? Michael Ruse; 12. Alien minds Susan Schneider; 13. The moral subject of astrobiology: guideposts for exploring our ethical and political responsibilities towards extraterrestrial life Elspeth Wilson and Carol Cleland; 14. Astrobiology and theology Robin Lovin; 15. Would you baptize an extraterrestrial? Guy Consolmagno, SJ; Part IV. Practical Considerations: How Should Society Prepare for Discovery - and Non-Discovery?: Introduction; 16. Is there anything new about astrobiology and society? Jane Maienschein; 17. Evaluating preparedness for the discovery of extraterrestrial life: considering potential

  16. DISCOVER-AQ Featured Articles

    Atmospheric Science Data Center

    2017-01-31

    ...     Not Your Average Video Traffic Report : Earth Matters Blogs  - DISCOVER-AQ planes have been flying over roadways, ... of air quality during “rush hour” and throughout the day. News Roundup: Arctic Ice, Spacesuit Satellites and More : Earth ...

  17. DISCOVER-AQ Aircraft insitu TraceGas Data (ICT)

    Atmospheric Science Data Center

    2018-03-28

    DISCOVER-AQ Aircraft insitu TraceGas Data (ICT) Project Title:  N/A Platform:  NASA ... Relevant Documents:  DISCOVER-AQ - Airborne Science Data for Atmospheric Composition DISCOVER-AQ - NASA Earth ...

  18. Water inventories on Earth and Mars: Clues to atmosphere formation

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1992-01-01

    Water is distributed differently on Earth and on Mars and the differences may have implications for the accretion of the two planets and the formation of their atmospheres. The Earth's mantle appears to contain at least several times the water content of the Martian mantle even accounting for differences in plate tectonics. One explanation is that the Earth's surface melted during accretion, as a result of development of a steam atmosphere, thereby allowing impact-devolitalized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second possibility is suggested by the siderophile elements in the Earth's mantle, which indicates the Earth acquired a volatile-rich veneer after the core formed. Mars may have acquired a late volatile-rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water rich veneer. This perception of Mars with a wet surface but dry interior is consistent with our knowledge of Mars' geologic history.

  19. Discover Supercomputer 5

    NASA Image and Video Library

    2017-12-08

    Two rows of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS) contain more than 4,000 computer processors. Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  20. Discover Supercomputer 3

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  1. Discover Supercomputer 2

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  2. Discover Supercomputer 4

    NASA Image and Video Library

    2017-12-08

    This close-up view highlights one row—approximately 2,000 computer processors—of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS). Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  3. Discover Supercomputer 1

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  4. Clues to the Past

    ERIC Educational Resources Information Center

    Weaver, Julie K.

    2010-01-01

    Students love a mystery. So what do America's most majestic bird, a bag of habitat clues, and a soft-shelled egg have in common? This easy-to-do inquiry activity engages students as they connect clues to problem-solve how the bald eagle reached the brink of extinction in the 1960s in the lower 48 states. It was designed to give students an…

  5. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler

    2011-01-01

    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov/

  6. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    NASA Astrophysics Data System (ADS)

    Aleman, A.; Olsen, L. M.; Ritz, S.; Stevens, T.; Morahan, M.; Grebas, S. K.

    2011-12-01

    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide.The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs.Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information.In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries.By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways.This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data.

  7. Fossils harbor climate clues and fuel debate over glacier stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    At the edge of the Ross Ice Shelf near McMurdo Station in Antarctica, scientists have discovered fossils of well preserved wood and a mixture of microscopic marine organisms, dating from the Eocene epoch. This discovery promises significant clues to the onset of glaciation in Antarctica. Geologists believe that this discovery may shed light on Antarctica's link to world climate and help predict future climatic change. Debate centers around when glaciation first became extensive, 15 or 20 million years ago, and whether or not the ice sheet was dynamic and responsive to small fluctuations in climate or stable and able tomore » lock up massive amounts of the world's water. 7 refs.« less

  8. Finding Long Lost Lexell's Comet: The Fate of the First Discovered Near-Earth Object

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    2018-04-01

    Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000. This finding remains valid even if a moderate non-gravitational effect is imposed. Messier’s observations also suggest that the comet is one of the largest known near-Earth comets, with a nucleus of ≳10 km in diameter. This implies that the comet should have been detected by contemporary NEO surveys regardless of its activity level if it has remained in the inner solar system. We identify asteroid 2010 JL33 as a possible descendant of D/Lexell, with a 0.8% probability of chance alignment, but a direct orbital linkage of the two bodies has not been successfully accomplished. We also use the recalculated orbit to investigate the meteors potentially originating from D/Lexell. While no associated meteors have been unambiguously detected, we show that meteor observations can be used to better constrain the orbit of D/Lexell despite the comet being long lost.

  9. The "Planet Earth Week": a National Scientific Festival helping Italy Discover Geosciences.

    NASA Astrophysics Data System (ADS)

    Seno, S.; Coccioni, R.

    2017-12-01

    The "Planet Earth Week- Italy Discovering Geosciences: a More Informed Society is a More Engaged Society" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country (see map) are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Planet Earth Week is growing year after year: the 2016 edition proposed 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.

  10. Clues in Histopathological Diagnosis of Panniculitis.

    PubMed

    Llamas Velasco, Mar; Pérez-Gónzalez, Yosmar Carolina; Kempf, Werner; Paredes, Bruno Emilio; Cerroni, Lorenzo; Fernández Figueras, María Teresa

    2018-03-01

    Panniculitides comprise a group of heterogeneous inflammatory diseases. Nevertheless, histopathological study along with clinicopathological correlation usually led to a specific diagnosis. In most textbooks, the first step in the diagnosis is to classify them as mostly septal or lobular depending on where the inflammatory infiltrate is located. The second step is deciding if vasculitis is present or not. Finally, the third step is further characterizing the inflammatory infiltrate. However, in addition to the algorithmic approach to panniculitis diagnosis, some subtle changes may help to the diagnosis. To review some clues in panniculitis dermatopathological diagnosis such as presence of granulation tissue, sclerotic connective tissue septa, small granulomas arranged around a central clear space, so-called ghost adipocytes, needle-shaped crystals, small lobules with a proliferation of capillaries, Splendore-Hoeppli phenomenon, refractile microspheres, neutrophilic infiltrates, granulomas and fibroplasia or presence of adipose tissue in dermis. We have compiled 12 clues based in our personal experience in this field. Specificity and sensibility of every clue may vary and these clues are a guide to correct diagnoses that should rely in clinicopathological correlation. Knowledge of these 12 clues will help to increase the diagnostic accuracy in panniculitis diagnosis.

  11. Planetary dreams : the quest to discover life beyond earth

    NASA Astrophysics Data System (ADS)

    Shapiro, Robert

    1999-03-01

    The Quest To Discover Life Beyond Earth. "The 'dreams' that I write of are not the usual ones, the images that come up in our minds involuntarily during certain stages of sleep, but rather the hopes and expectations that we have lavished upon other worlds around us."-from the Preface. The surprisingly long history of debate over extraterrestrial life is full of marvelous visions of what life "out there" might be like, as well as remarkable stories of alleged sightings and heated disputes about the probability that life might actually have arisen more than once. In Planetary Dreams, acclaimed author Robert Shapiro explores this rich history of dreams and debates in search of the best current answers to the most elusive and compelling of all questions: Are we alone? In his pursuit, he presents three contrasting views regarding how life might have started: through Divine Creation, by a highly unlikely stroke of luck, or by the inevitable process of a natural law that he terms the Life Principle. We are treated to a lively fictional dinner debate among the leading proponents of these schools of thought-with the last named group arguing that life has almost surely formed in many places throughout the universe, and the others that life may well be entirely unique to our own blue planet. To set the stage for a deep exploration of the question, the author then leads us on a fantastic journey through the museum of the cosmos, an imagined building that holds models of the universe at different degrees of magnification. We then journey deep into inner space to view the astonishingly intricate life of a single cell, and learn why the origin of such a complex object from simple chemical mixtures poses one of the most profound enigmas known to science. Writing in a wonderfully entertaining style, Shapiro then reviews the competing theories about the start of life on Earth, and suggests the debate may best be settled by finding signs of life on the other worlds of our solar

  12. A Keen Eye for Clues

    NASA Astrophysics Data System (ADS)

    Logan, Jonothan

    2010-03-01

    Samuel Goudsmit, a pioneering atomic theorist who specialized in the exacting, quantitative art of interpreting line spectra and who, with George Uhlenbeck, discovered electron spin, also contributed key studies of nuclear moments, neutron scattering, and the statistics of experimental measurement. Beyond the traditional ambit of laboratory, desk, and blackboard, Goudsmit was drawn to a wider world of inquiry -- to museums and archaeological sites in Cairo as a respected amateur Egyptologist; to the MIT Radiation Lab early in WWII and to the briefing rooms of British pilots, analyzing the effectiveness of radar; and across wartime Europe by jeep, as head of an Allied mission in pursuit of clear information on Germany's secret fission program. After the war he took up chairmanship of a major physics department and editorship of the Physical Review, where he created the ambitious new journal, Physical Review Letters. The present author, Goudsmit's assistant at the journal forty years ago, looks for a common element that might explain this extraordinary diversity of interests and contributions, and finds one in Goudsmit's abiding delight in solving puzzles of every kind, coupled with a detective's keen eye for clues.

  13. How Inge Lehmann Discovered the Inner Core of the Earth

    ERIC Educational Resources Information Center

    Rousseau, Christiane

    2013-01-01

    The mathematics behind Inge Lehmann's discovery that the inner core of the Earth is solid is explained using data collected around the Earth on seismic waves and their travel time through the Earth.

  14. Astronomers Discover Clue to Origin of Milky Way Gas Clouds

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A surprising discovery that hydrogen gas clouds found in abundance in and above our Milky Way Galaxy have preferred locations has given astronomers a key clue about the origin of such clouds, which play an important part in galaxy evolution. We've concluded that these clouds are gas that has been blown away from the Galaxy's plane by supernova explosions and the fierce winds from young stars in areas of intense star formation," said H. Alyson Ford of the University of Michigan, whose Ph.D thesis research from Swinburne University formed the basis for this result. The team, consisting of Ford and collaborators Felix J. Lockman, of the National Radio Astronomy Observatory (NRAO), and Naomi Mclure-Griffiths of CSIRO Astronomy and Space Science, presented their findings to the American Astronomical Society's meeting in Miami, Florida. The astronomers studied gas clouds in two distinct regions of the Galaxy. The clouds they studied are between 400 and 15,000 light-years outside the disk-like plane of the Galaxy. The disk contains most of the Galaxy's stars and gas, and is surrounded by a "halo" of gas more distant than the clouds the astronomers studied. "These clouds were first detected with the National Science Foundation's Robert C. Byrd Green Bank Telescope, and are quite puzzling. They are in a transitional area between the disk and the halo, and their origin has been uncertain," Lockman explained. The research team used data from the Galactic All-Sky Survey, made with CSIRO's Parkes radio telescope in Australia. When the astronomers compared the observations of the two regions, they saw that one region contained three times as many hydrogen clouds as the other. In addition, that region's clouds are, on average, twice as far above the Galaxy's plane. The dramatic difference, they believe, is because the region with more clouds lies near the tip of the Galaxy's central "bar," where the bar merges with a major spiral arm. This is an area of intense star formation

  15. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-26

    ISS043E142265 (04/26/2015) --- NASA astronaut Scott Kelly on the International Space Station Apr.26, 2015 tweeted this image out of an Earth observation as part of his Space Geo contest "name this location" with this remark and clue: "This frozen body of water is the world's oldest (25 million years) and deepest basin on Earth. Name it!"

  16. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Mei, Zhixiong; Wu, Hao; Li, Shiyun

    2018-06-01

    The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the

  17. Accessibility of near-Earth asteroids, 1990

    NASA Technical Reports Server (NTRS)

    Hulkower, Neal D.; Child, Jack B.

    1991-01-01

    Previous research which analyzed the accessibility of all known near-Earth asteroids is updated. Since then, many new near-Earth asteroids have been discovered, and 1928 DB, the most accessible asteroid at that time, has been recovered. Many of these recently discovered near-Earth asteroids have promising orbital characteristics. In addition to accessibility (as defined by minimum global delta v), ideal rendezvous opportunities are identified.

  18. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  19. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  20. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    On Aug. 31, 2012, a giant prominence on the sun erupted, sending out particles and a shock wave that traveled near Earth. This event may have been one of the causes of a third radiation belt that appeared around Earth a few days later, a phenomenon that was observed for the very first time by the newly-launched Van Allen Probes. This image of the prominence before it erupted was captured by NASA's Solar Dynamics Observatory (SDO). Credit: NASA/SDO/AIA/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Asteroid and comet flux in the neighborhood of the earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Shoemaker, Carolyn S.; Wolfe, Ruth F.

    1988-01-01

    Significant advances in the knowledge and understanding of the flux of large solid objects in the neighborhood of Earth have occurred. The best estimates of the collision rates with Earth of asteroids and comets and the corresponding production of impact craters are presented. Approximately 80 Earth-crossing asteroids were discovered through May 1988. Among 42 new Earth-crossing asteroids found in the last decade, two-thirds were discovered from observations at Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar 46 cm Schmidt. Probabilities of collision with Earth have been calculated for about two-thirds of the known Earth-crossing asteroids. When multiplied by the estimated population of Earth-crossers, this yields an estimated present rate of collision about 65 pct higher than that previously reported. Spectrophotometric data obtained chiefly in the last decade show that the large majority of obvserved Earth-crossers are similar to asteroids found in the inner part of the main belt. The number of discovered Earth-crossing comets is more than 4 times greater than the number of known Earth-crossing asteroids, but reliable data on the sizes of comet nuclei are sparse. The flux of comets almost certainly was highly variable over late geologic time, owing to the random perturbation of the Oort comet cloud by stars in the solar neighborhood.

  2. Inferred Cosmic-Ray Spectrum from Fermi-LAT Gamma-Ray Observations of the Earths Limb

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2014-01-01

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the -ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range approx. 90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68 +/- 0.04 and 2.61 +/- 0.08 above approx. 200 GeV, respectively.

  3. The 2-Year Checkup on 10 SNe IIn Discovered by Spitzer to Exhibit Late-Time (is greater than 100 Day) IR Emission

    NASA Technical Reports Server (NTRS)

    Fox, Ori Dosovitz; Chevalier, R. A.; Skrutskie, A. V.; Filippenko, A. V.; Silverman, J. M.; Ganeshalingam, M.

    2012-01-01

    Two years ago, a warm Spitzer survey of sixty-eight SNe IIn identified between the years 1998-2008 discovered 10 events with unreported late-time infrared (IR) excesses, in some cases more than 5 years post-explosion. These data nearly double the database of existing mid-IR observations of SNe IIn and offer important clues regarding the SN circumstellar.

  4. Deep drilling; Probing beneath the earth's surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, J.250

    1991-06-01

    This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

  5. Was Earth ever infected by martian biota? Clues from radioresistant bacteria.

    PubMed

    Pavlov, Anatoly K; Kalinin, Vitaly L; Konstantinov, Alexei N; Shelegedin, Vladimir N; Pavlov, Alexander A

    2006-12-01

    Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.

  6. (4015) 1979 VA: 'Missing Link' Discovered

    NASA Technical Reports Server (NTRS)

    Helin, Eleanor F.

    1993-01-01

    Apollo Asteroid (4015) 1979 VA was discovered in November of 1979 by Helin at Palomar with the 0.46m Schmidt Telescope. It's orbital elements immediately indicated a possible cometary origin. With an extremely eccentric orbit, it approaches the orbit of Jupiter (at the time, the largest 'Q', aphelion, of any known near-Earth asteroid). Physical observations acquired during the discovery apparition suggested that it was carbonaceous in nature. Research into prediscovery observations of Near-Earth Asteroids (Bowell et. al., 1992) has located Palomar Sky Survey photographic plates taken in 1949 observations of (4015) 1979 VA, not as an asteroid, but rather a small cometary image (IAU Circular Nos. 5585 and 5586, August 13, 1992)...

  7. Primary school children and teachers discover the nature and science of planet Earth and Mars

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  8. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  9. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  10. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  11. Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang

    NASA Astrophysics Data System (ADS)

    2003-11-01

    The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago. The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no indication of any complex structure or a jet. "This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the Big Bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20th Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the Big Bang. Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. Radio image of GB1508 Radio Image of GB1508 As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe. When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions," said Siemiginowska. "This jet is hopefully just the

  12. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  13. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  14. Development of the Contact Lens User Experience: CLUE Scales

    PubMed Central

    Wirth, R. J.; Edwards, Michael C.; Henderson, Michael; Henderson, Terri; Olivares, Giovanna; Houts, Carrie R.

    2016-01-01

    ABSTRACT Purpose The field of optometry has become increasingly interested in patient-reported outcomes, reflecting a common trend occurring across the spectrum of healthcare. This article reviews the development of the Contact Lens User Experience: CLUE system designed to assess patient evaluations of contact lenses. CLUE was built using modern psychometric methods such as factor analysis and item response theory. Methods The qualitative process through which relevant domains were identified is outlined as well as the process of creating initial item banks. Psychometric analyses were conducted on the initial item banks and refinements were made to the domains and items. Following this data-driven refinement phase, a second round of data was collected to further refine the items and obtain final item response theory item parameters estimates. Results Extensive qualitative work identified three key areas patients consider important when describing their experience with contact lenses. Based on item content and psychometric dimensionality assessments, the developing CLUE instruments were ultimately focused around four domains: comfort, vision, handling, and packaging. Item response theory parameters were estimated for the CLUE item banks (377 items), and the resulting scales were found to provide precise and reliable assignment of scores detailing users’ subjective experiences with contact lenses. Conclusions The CLUE family of instruments, as it currently exists, exhibits excellent psychometric properties. PMID:27383257

  15. Isotopes as clues to the origin and earliest differentiation history of the Earth.

    PubMed

    Jacobsen, Stein B; Ranen, Michael C; Petaev, Michael I; Remo, John L; O'Connell, Richard J; Sasselov, Dimitar D

    2008-11-28

    Measurable variations in (182)W/(183)W, (142)Nd/(144)Nd, (129)Xe/(130)Xe and (136)XePu/(130)Xe in the Earth and meteorites provide a record of accretion and formation of the core, early crust and atmosphere. These variations are due to the decay of the now extinct nuclides (182)Hf, (146)Sm, (129)I and (244)Pu. The (l82)Hf-(182)W system is the best accretion and core-formation chronometer, which yields a mean time of Earth's formation of 10Myr, and a total time scale of 30Myr. New laser shock data at conditions comparable with those in the Earth's deep mantle subsequent to the giant Moon-forming impact suggest that metal-silicate equilibration was rapid enough for the Hf-W chronometer to reliably record this time scale. The coupled (146)Sm-(147)Sm chronometer is the best system for determining the initial silicate differentiation (magma ocean crystallization and proto-crust formation), which took place at ca 4.47Ga or perhaps even earlier. The presence of a large (129)Xe excess in the deep Earth is consistent with a very early atmosphere formation (as early as 30Myr); however, the interpretation is complicated by the fact that most of the atmospheric Xe may be from a volatile-rich late veneer.

  16. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-14

    ISS043E120523 (04/14/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this earth observation image out on Apr. 14, 2015 as part of his Space Geo contest of "name this location": Scott tweeted this comment and clue: "#SpaceGeo! In 1962, former Astronaut John Glenn's Friendship 7 Mercury landed in this vicinity. Name it!"

  17. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  18. Orthographic Analogies and Early Reading: Evidence from a Multiple Clue Word Paradigm

    ERIC Educational Resources Information Center

    Savage, Robert S.; Deault, Louise; Daki, Julia; Aouad, Julie

    2011-01-01

    Two experiments using a variation of the clue word analogy task (Goswami, 1986) explored whether children can make orthographic analogies when given multiple clue words, beyond the known effects of purely phonological activation. In Experiment 1, 42 children (mean age 6 years and 8 months) were first taught 3 "clue" words (e.g.,…

  19. The search for life on Earth and other planets.

    PubMed

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  20. NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns (Reporter Pkg)

    NASA Image and Video Library

    2012-08-28

    NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more than one planets can form and survive in orbit around a binary star.

  1. Inferred cosmic-ray spectrum from Fermi large area telescope γ-ray observations of Earth's limb.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Bouvier, A; Brandt, T J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hewitt, J W; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Yang, Z

    2014-04-18

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90  GeV-6  TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200  GeV, respectively.

  2. Clues to patients' explanations and concerns about their illnesses. A call for active listening.

    PubMed

    Lang, F; Floyd, M R; Beine, K L

    2000-03-01

    Most patients who experience illness symptoms develop an explanatory model. More frequently than physicians realize, these attributions involve serious and potentially life-threatening medical conditions. Only a minority of patients spontaneously disclose or "offer" their ideas, concerns, and expectations. Often patients suggest or imply their ideas through "clues." Active listening is a skill for recognizing and exploring patients' clues. Without this communication skill, patients' real concerns often go unrecognized by health care professionals. Qualitative techniques including videotape analysis, postinterviewing debriefing, and interpersonal process recall were used to identify types of clues. We propose a taxonomy of clues that includes (1) expression of feelings (especially concern or worry), (2) attempts to understand or explain symptoms, (3) speech clues that underscore particular concerns of the patient, (4) personal stories that link the patient with medical conditions or risks, and (5) behaviors suggestive of unresolved concerns or unmet expectations. This clue taxonomy will help physicians recognize patients' clues more readily and thereby improve their active listening skills. A deeper understanding of the true reasons for the visit should result in increased patient satisfaction and improved outcomes.

  3. Correlates of the Ability to Use Context Clues in Reading.

    ERIC Educational Resources Information Center

    Dulin, Kenneth L.

    Results of two studies of the ability to use specific context clues and possible academic correlates of this ability are reported. In the first study, a five-form data-gathering instrument, using categories of context clues derived from Artley, Betts, and McCullough, was administered to 315 tenth-grade students in Seattle, Washington. Simulated…

  4. NASA's Kepler Mission Discovers Its Smallest Habitable Zone Planets (Reporter Pkg)

    NASA Image and Video Library

    2013-04-18

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the 'habitable zone,' the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water. Scientists do not know whether life could exist on the newfound planets, but their discovery signals we are another step closer to finding a world similar to Earth around a star like our sun. Kepler-62 and -69 systems

  5. Earth's Minimoons: Opportunities for Science and Technology.

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce T.; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Jones, Lynne; Urrutxua, Hodei

    2018-05-01

    Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated \\RH. Despite significant improvements in ground-based asteroid surveying technology in the past decade they have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-meter diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for 1) studying the dynamics of the Earth-Moon system, 2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, 3) rapid and frequent low delta-v missions to

  6. Clues about Reading Enrichment (CARE).

    ERIC Educational Resources Information Center

    Daly, Nancy Jo; And Others

    Compiled by members of the Reading Committee of the North Middlesex Regional School District (Massachusetts), this illustrated guide provides tips, suggestions, and activities that parents can follow at home to help their children read. The Clues about Reading Enrichment (CARE) guide notes that regularly reading aloud to and with children is an…

  7. Earth-approaching asteroid streams

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.

    1991-01-01

    Three association patterns have been noted among 139 earth-approaching asteroids on the basis of current orbital similarity; these asteroid streams, consisting of two groups of five members and one of four, can be matched to three of the four meteorite-producing fireball streams determined by Halliday et al. (1990). If the asteroid streams are true nonrandom associations, the opportunity arises for studies of an 'exploded' asteroid in the near-earth environment. Near-earth asteroid-search projects are encouraged to search the mean orbit of the present streams in order to discover additional association members.

  8. Earth's biggest 'whodunnit': unravelling the clues in the case of the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    White, Rosalind V.

    2002-12-01

    The mass extinction that occurred at the end of the Permian period, 250 million years ago, was the most devastating loss of life that Earth has ever experienced. It is estimated that ca.96% of marine species were wiped out and land plants, reptiles, amphibians and insects also suffered. The causes of this catastrophic event are currently a topic of intense debate. The geological record points to significant environmental disturbances, for example, global warming and stagnation of ocean water. A key issue is whether the Earth's feedback mechanisms can become unstable on their own, or whether some forcing is required to precipitate a catastrophe of this magnitude. A prime suspect for pushing Earth's systems into a critical condition is massive end-Permian Siberian volcanism, which would have pumped large quantities of carbon dioxide and toxic gases into the atmosphere. Recently, it has been postulated that Earth was also the victim of a bolide impact at this time. If further research substantiates this claim, it raises some intriguing questions. The Cretaceous-Tertiary mass extinction, 65 million years ago, was contemporaneous with both an impact and massive volcanism. Are both types of calamity necessary to drive Earth to the brink of faunal cataclysm? We do not presently have enough pieces of the jigsaw to solve the mystery of the end-Permian extinction, but the forensic work continues.

  9. 'Tennessee' Clues

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image shows the area within 'Endurance Crater,' currently being investigated by the Mars Exploration Rover Opportunity. The rover is inspecting a hole it drilled into a flat rock (center) dubbed 'Tennessee,' which scientists believe may be made up of the same evaporite-rich materials as those found in 'Eagle Crater.'

    The overall geography inside Endurance is more complex than scientists anticipated, with at least three distinct bands of rock visible in front of the rover. Scientists hope to investigate the second and third layers of rock for more clues to Mars' history. This image was taken on sol 133 (June 8, 2004) with the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

  10. Three Transits for the Price of One: Super-Earth Transits of the Nearest Planetary System Discovered By Kepler/K2

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Niraula, Prajwal; Hedges, Christina; Crossfield, Ian; Kreidberg, Laura; Greene, Tom; Rodriguez, Joey; Vanderburg, Andrew; Laughlin, Gregory; Millholland, Sarah; Wang, Songhu; Cochran, William; Livingston, John; Gandolfi, Davide; Guenther, Eike; Fridlund, Malcolm; Korth, Judith

    2018-05-01

    We propose primary transit observations of three Super-Earth planets in the newly discovered planetary system around a bright, nearby star, GJ 9827. We recently announced the detection of three super-Earth planets in 1:3:5 commensurability, the inner planet, GJ 9827 b having a period of 1.2 days. This is the nearest planetary system that Kepler or K2 has found, at 30 pc, and given its brightness is one of the top systems for follow-up characterization. This system presents a unique opportunity to acquire three planetary transits for the price of one. There are several opportunities in the Spitzer visibility windows to obtain all three transits in a short period of time. We propose 3.6 micron observations of all three Super-Earth transits in a single 18-hour observation window. The proximity to a 1:3:5 resonance is intriguing from a dynamical standpoint as well. Indeed, anomalous transit timing offsets have been measured for planet d in Hubble observations that suffer from partial phase coverage. The short cadence and extended coverage of Spitzer is essential to provide a firm determination of the ephemerides and characterize any transit timing variations. Constraining these orbital parameters is critical for follow-up observations from space and ground-based telescopes. Due to the brightness of the host star, this planetary system is likely to be extensively observed in the years to come. Indeed, our team has acquired observations of the planets orbiting GJ9827 with Hubble in the ultraviolet and infrared. The proposed observations will provide infrared atmospheric measurements and firm orbital characterization which is critical for planning and designing future observations, in particular atmospheric characterization with JWST.

  11. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-15

    ISS043E194350 (05/15/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this image out of an Earth observation image as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo Four international borders in one photo from the International @Space_Station. Name them"! Two winners! Congrats to @TeacherWithTuba & @PC101!. The correct answer is :#SpaceGeo A: #Denmark #Norway #Sweden #Germany & #Poland. The winners will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: www.nasa.gov/feature/where-over-the-world-is-astronaut-sc...

  12. Mineral remains of early life on Earth? On Mars?

    USGS Publications Warehouse

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  13. Integrated Solid Earth Science: the right place and time to discover the unexpected? (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd

    2013-04-01

    go. Not only on a national level, such as pursued by the Netherlands Research School of Integrated Solid Earth Science (ISES), but also on a full European scale, such as the TOPO-EUROPE research program. This goes hand in hand with setting the stage for a pan-European research infrastructure for solid earth science by the European Plate Observing System (EPOS). Much of the unexpected remains to be discovered. The Holmes medal awarded by the European Geosciences Union, itself an example of the immense progress European earth scientists have made in joining forces, means a lot to me. I share it with my co-workers in my group, the close to 70 PhD students who worked with us, and other numerous colleagues and friends that all contributed immensely to the unexpected.

  14. Are we alone? Lessons from the evolution of life on earth.

    PubMed

    Via, S

    2001-12-01

    The understanding of life on Earth that we have obtained from the science of evolutionary biology offers clues to the qustion of what life might be like if found elsewhere. After presenting the basics of the evolutionary process, I discuss the factors that determine the outcome of evolution, the role of key innovations and extinction in evolution, and whether the evolution of human life is inevitable.

  15. GEOCAB Portal: A gateway for discovering and accessing capacity building resources in Earth Observation

    NASA Astrophysics Data System (ADS)

    Desconnets, Jean-Christophe; Giuliani, Gregory; Guigoz, Yaniss; Lacroix, Pierre; Mlisa, Andiswa; Noort, Mark; Ray, Nicolas; Searby, Nancy D.

    2017-02-01

    The discovery of and access to capacity building resources are often essential to conduct environmental projects based on Earth Observation (EO) resources, whether they are Earth Observation products, methodological tools, techniques, organizations that impart training in these techniques or even projects that have shown practical achievements. Recognizing this opportunity and need, the European Commission through two FP7 projects jointly with the Group on Earth Observations (GEO) teamed up with the Committee on Earth observation Satellites (CEOS). The Global Earth Observation CApacity Building (GEOCAB) portal aims at compiling all current capacity building efforts on the use of EO data for societal benefits into an easily updateable and user-friendly portal. GEOCAB offers a faceted search to improve user discovery experience with a fully interactive world map with all inventoried projects and activities. This paper focuses on the conceptual framework used to implement the underlying platform. An ISO19115 metadata model associated with a terminological repository are the core elements that provide a semantic search application and an interoperable discovery service. The organization and the contribution of different user communities to ensure the management and the update of the content of GEOCAB are addressed.

  16. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    NASA Astrophysics Data System (ADS)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  17. Pantheon of Planets Similar to Earth Artist Concept

    NASA Image and Video Library

    2015-07-23

    A newly discovered exoplanet, Kepler-452b, comes the closest of any found so far to matching our Earth-sun system. This artist's conception of a planetary lineup shows habitable-zone planets with similarities to Earth: from left, Kepler-22b, Kepler-69c, the just announced Kepler-452b, Kepler-62f and Kepler-186f. Last in line is Earth itself. http://photojournal.jpl.nasa.gov/catalog/PIA19830

  18. Space-based infrared near-Earth asteroid survey simulation

    NASA Astrophysics Data System (ADS)

    Tedesco, Edward F.; Muinonen, Karri; Price, Stephan D.

    2000-08-01

    We demonstrate the efficiency and effectiveness of using a satellite-based sensor with visual and infrared focal plane arrays to search for that subclass of Near-Earth Objects (NEOs) with orbits largely interior to the Earth's orbit. A space-based visual-infrared system could detect approximately 97% of the Atens and 64% of the IEOs (the, as yet hypothetical, objects with orbits entirely Interior to Earth's Orbit) with diameters greater than 1 km in a 5-year mission and obtain orbits, albedos and diameters for all of them; the respective percentages with diameters greater than 500 m are 90% and 60%. Incidental to the search for Atens and IEOs, we found that 70% of all Earth-Crossing Asteroids (ECAs) with diameters greater than 1 km, and 50% of those with diameters greater than 500 m, would also be detected. These are the results of a feasibility study; optimizing the concept presented would result in greater levels of completion. The cost of such a space-based system is estimated to be within a factor of two of the cost of a ground-based system capable of about 21st magnitude, which would provide only orbits and absolute magnitudes and require decades to reach these completeness levels. In addition to obtaining albedos and diameters for the asteroids discovered in the space-based survey, a space-based visual-infrared system would obtain the same information on virtually all NEOs of interest. A combined space-based and ground-based survey would be highly synergistic in that each can concentrate on what it does best and each complements the strengths of the other. The ground-based system would discover the majority of Amors and Apollos and provide long-term follow-up on all the NEOs discovered in both surveys. The space-based system would discover the majority of Atens and IEOs and provide albedos and diameters on all the NEOs discovered in both surveys and most previously discovered NEOs as well. Thus, an integrated ground- and space-based system could accomplish

  19. Towards The Exo-Earth Era

    NASA Astrophysics Data System (ADS)

    Horner, J.

    2017-09-01

    In the past few years, the number of planets discovered orbiting other stars has grown dramatically, and newly discovered planets are now announced on an almost daily basis. In this presentation, I will describe how simulations of the orbital evolution of such planets can help us to better constrain their orbits, and even allow us to identify systems that are not all they seem to be. In addition, in coming years it is likely that the first truly Earth-like exoplanets will be discovered, and I will describe how those same dynamical tools will prove vital in assessing which of those planets are the most promising targets in the search for life beyond the Solar system.

  20. Dermoscopic 'Chaos and Clues' in the diagnosis of melanoma in situ.

    PubMed

    Ramji, Rajan; Valdes-Gonzalez, Guillermo; Oakley, Amanda; Rademaker, Marius

    2017-11-02

    To describe the dermoscopic features of melanoma in situ using the Chaos and Clues method. Histologically proven primary melanoma in situ (MIS) diagnosed through a specialist teledermoscopy clinic were reviewed by three dermatologists. By consensus they agreed on the global dermoscopic pattern, colours, presence of chaos (asymmetry of colour and structure and more than one pattern), and each of the nine clues described for malignancy. One hundred MIS in 92 patients of European ethnicity (45 males) were assessed. Mean age was 67.3 years (range 20-95). The mean dimensions of the lesions were 11.1 × 12.0 mm (range 2.5-31.3 × 2.3-32.3 mm). Using pattern analysis, 82% of the lesions had three or more patterns (multicomponent) and the rest had 2 patterns. Colours included light brown (100%), dark brown (98%) and grey (75%). All MIS demonstrated chaos. The most prevalent clues were thick lines (88%), eccentric structureless areas (88%), and grey or blue structures (75%). Dermoscopy can be very helpful in the early diagnosis of melanoma and MIS. The Chaos and Clues method is simple to use. Its unambiguous descriptors can be successfully used to describe MIS. The presence of chaos and clues to malignancy (including thick lines, eccentric structureless areas, and blue/grey structures) should raise a red flag and lead to referral or excision. © 2017 The Australasian College of Dermatologists.

  1. Evidence for a near-Earth asteroid belt

    NASA Technical Reports Server (NTRS)

    Rabinowitz, D. L.; Gehrels, T.; Scotti, J. V.; Mcmillan, R. S.; Perry, M. L.; Wisniewski, W.; Larson, S. M.; Howell, E. S.; Mueller, B. E. A.

    1993-01-01

    In January 1991, the 0.9-m Spacewatch telescope made the first observation of an asteroid outside Earth's atmosphere but in the neighborhood of the Earth-moon system. Since then, more than 40 Earth-approaching asteroids have been discovered, including 13 smaller than 50 m. Using these data, one of us has shown that there is an excess of Earth-approaching asteroids with diameters less than 50 m, relative to the population inferred from the distribution of larger objects. Here we argue that these smaller objects - characterized by low eccentricities, widely ranging inclinations and unusual spectral properties - form a previously undetected asteroid belt concentrated near Earth. The recent discovery of additional small Earth-approaching asteroids supports this conclusion.

  2. Discovering Communicable Scientific Knowledge from Spatio-Temporal Data

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Langley, Pat; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes how we used regression rules to improve upon a result previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  3. Central Metabolic Pathways of Hyperthermophiles: Important Clues on how Metabolism Gives Rise to Life

    NASA Astrophysics Data System (ADS)

    Ronimus, R. S.; Morgan, H. W.

    2004-06-01

    Vital clues on life's origins within the galaxy exist here on present day Earth. Life is currently divided into the three domains Bacteria, Archaea and Eukarya based on the phylogeny of small ribosomal subunit RNA (16S/18S) gene sequences. The domains are presumed to share a ``last universal common ancestor'' (LUCA). Hyperthermophilic bacteria and archaea, which are able to thrive at 80^{circ}C or higher, dominate the bottom of the tree of life and are thus suggested to be the least evolved, or most ``ancient''. Geochemical data indicates that life first appeared on Earth approximately 3.8 billion years ago in a hot environment. Due to these considerations, hyperthermophiles represent the most appropriate microorganisms to investigate the origins of metabolism. The central biochemical pathway of gluconeogenesis/glycolysis (the Embden-Meyerhof pathway) which produces six carbon sugars from three carbon compounds is present in all organisms and can provide important hints concerning the early development of metabolism. Significantly, there are a number of striking deviations from the textbook canonical reaction sequence that are found, particularly in hyperthermophilic archaea. In this paper the phylogenetic istribution of enzymes of the pathway is detailed; overall, the distribution pattern provides strong evidence for the pathway to have developed from the bottom-up.

  4. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-21

    ISS043E128768 (04/21/2015) --- NASA astronaut Scott Kelly on the International Space Station May 6, 2015 tweeted this image out of an Earth observation as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo! A serpent is known for deceptive traits, but don’t let this snake pull the wool over your eyes. Name it!” Congratulations to @splinesmith for correctly identifying this image first, : #BighornRiver Montana/Wyoming named in 1805 for Bighorn sheep along its banks. He will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: http://www.nasa.gov/feature/where-over-the-world-is-astronaut-scott-kelly

  5. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  6. Investigating the Effect of Contextual Clues on the Processing of Unfamiliar Words in Second Language Listening Comprehension

    ERIC Educational Resources Information Center

    Cai, Wei; Lee, Benny P. H.

    2010-01-01

    This study examines the effect of contextual clues on the use of strategies (inferencing and ignoring) and knowledge sources (semantics, morphology, world knowledge, and others) for processing unfamiliar words in listening comprehension. Three types of words were investigated: words with local co-text clues, global co-text clues and extra-textual…

  7. Exploring the hidden interior of the Earth with directional neutrino measurements.

    PubMed

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.

  8. Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars

    USGS Publications Warehouse

    Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.

    2004-01-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and

  9. Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro

    2004-09-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and

  10. Lupus erythematosus cells in bone marrow: the only clue to a previously unsuspected diagnosis of systemic lupus erythematosus.

    PubMed

    Pujani, Mukta; Kushwaha, Shivani; Sethi, Neha; Beniwal, Anu; Shukla, Shailaja

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune multisystem disease characterized by the development of antinuclear antibodies. Nowadays considered outdated, lupus erythematosus (LE) cell preparation served as a screening test for SLE for decades. However, the importance of discovering LE cells on routine cytology cannot be overemphasized. We report the case of a 30-year-old female in whom bone marrow aspiration (BMA) was performed during an investigative workup for pyrexia of unknown origin. The observation of LE cells in direct bone marrow smears (without the use of an anticoagulant) raised the suspicion of SLE, which was later confirmed by antinuclear antibody testing. In the present case, LE cells were observed on BMA performed for the investigation of fever of unknown origin. The unexpected observation of LE cells in BMA smears emphasizes the fact that good morphological observation of marrow aspirates can provide crucial clues to a previously unsuspected diagnosis.

  11. Discovery: Near-Earth Asteroid Rendezvous (NEAR)

    NASA Technical Reports Server (NTRS)

    Veverka, Joseph

    1992-01-01

    The work carried out under this grant consisted of two parallel studies aimed at defining candidate missions for the initiation of the Discovery Program being considered by NASA's Solar System Exploration Division. The main study considered a Discover-class mission to a Near Earth Asteroid (NEA); the companion study considered a small telescope in Earth-orbit dedicated to ultra violet studies of solar system bodies. The results of these studies are summarized in two reports which are attached (Appendix 1 and Appendix 2).

  12. Seafloor Fluid Flow and the Search for Extant Life: Escaping Earthly Prejudices

    NASA Astrophysics Data System (ADS)

    German, C. R.

    2018-05-01

    Despite decades of experience, ocean scientists on Earth continue to discover novel forms of seafloor fluid flow with the potential to host novel forms of life. Ocean Science can inform the search for life beyond Earth but should not dictate it.

  13. Clue Insensitivity in Remote Associates Test Problem Solving

    ERIC Educational Resources Information Center

    Smith, Steven M.; Sifonis, Cynthia M.; Angello, Genna

    2012-01-01

    Does spreading activation from incidentally encountered hints cause incubation effects? We used Remote Associates Test (RAT) problems to examine effects of incidental clues on impasse resolution. When solution words were seen incidentally 3-sec before initially unsolved problems were retested, more problems were resolved (Experiment 1). When…

  14. Near-Earth Asteroids: Destinations for Human Exploration

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  15. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  16. Discovering the plates boundaries in the Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Marinelli, Maurizio

    2017-04-01

    During the 8th class the students learn geology. We analyze the earth's layers, the earthquakes, the volcanoes and other natural phenomena like subduction and orogeny. We start with a global study but our goal is to focus on the crust to discover the plates boundaries, particularly the boundary between Eurasian and African Plate in the Mediterranean sea. It's very simple for the students to discover all the information using the Internet or the science book, but I want to make with them an exploration of earth science with the help of the natural phenomena we studied during the year. We connect with Istituto Nazionale di Geofisica e Vulcanologia ( http://www.ingv.it/en/ ) where we can find a map with the earthquakes happened in the last years in Italy and in the Mediterranean sea and the list of the main volcanoes. In this way we can draw a map of the mediterranean plates and we can talk about the past and the future of the Mediterranean sea, Europe and Africa based on our maps and on the Alps orogeny. Using youtube we can have a confirm of our hypothesis about the future of the Mediterranean sea (https://www.youtube.com/watch?v=uGcDed4xVD4 ). A good observation for the students is given by the fact that we live in Europe but actually we stay on the African plate. The boundary is 5 km north of our school and we can go and visit the place where it is possible to see the different height of the two plates.

  17. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  18. Dust: A major environmental hazard on the earth's moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  19. Tinea imbricata as a clue to occult immunodeficiency.

    PubMed

    Maroñas Jiménez, Lidia; Monsálvez, Verónica; Gutiérrez García-Rodrigo, Carlota; Postigo Llorente, Concepción

    2014-01-01

    Tinea imbricata (TI) is a geographically restricted dermatophytosis with distinctive clinical and immunologic features. We present a case of TI occurring in a native Brazilian child with previously undiagnosed human immunodeficiency virus infection. Physicians should bear in mind that diagnosis of TI may be a clinical clue to potentially serious underlying immunodeficiency. © 2014 Wiley Periodicals, Inc.

  20. Trojan Asteroid Shares Orbit with Earth Artist Animation

    NASA Image and Video Library

    2011-07-27

    This artist concept illustrates the first known Earth Trojan asteroid, discovered by NEOWISE, the asteroid-hunting portion of NASA WISE mission. The asteroid is shown in gray and its extreme orbit is shown in green. Objects are not drawn to scale.

  1. TV Crime Reporter Missed Clues | NIH MedlinePlus the Magazine

    MedlinePlus

    ... JavaScript on. Feature: Women and Heart Disease TV Crime Reporter Missed Clues Past Issues / Spring 2016 Table ... heart attack at the age of 36. A crime reporter for WJLA-TV in Washington, D.C., ...

  2. How to See a Recently Discovered Supernova

    ScienceCinema

    Nugent, Peter

    2017-12-12

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/

  3. How to See a Recently Discovered Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter

    2011-08-31

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release:more » http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/« less

  4. Atmospheres of partially differentiated super-Earth exoplanets

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Sasselov, Dimitar

    2015-11-01

    Terrestrial exoplanets have been discovered in a range of sizes, densities and orbital locations that defy our expectations based upon the Solar System. Planets discovered to date with radii less than ~1.5-1.6 Earth radii all seem to fall on an iso-density curve with the Earth [1]. However, mass and radius determinations, which depend on the known properties of the host star, are not accurate enough to distinguish between a fully differentiated three-layer planet (core, mantle, ocean/atmosphere) and an incompletely differentiated planet [2]. Full differentiation of a planet will depend upon the conditions at the time of accretion, including the abundance of short-lived radioisotopes, which will vary from system to system, as well as the number of giant impacts the planet experiences. Furthermore, separation of metal and silicates at the much larger pressures found inside super-Earths will depend on how the chemistry of these materials change at high pressures. There are therefore hints emerging that not all super-Earths will be fully differentiated. Incomplete differentiation will result in a more reduced mantle oxidation state and may have implications for the composition of an outgassed atmosphere. Here we will present the first results from a chemical equilibrium model of the composition of such an outgassed atmosphere and discuss the possibility of distinguishing between fully and incompletely differentiated planets through atmospheric observations.[1] Rogers, L. 2015. ApJ, 801, 41. [2] Zeng, L. & Sasselov, D. 2013. PASP, 125, 227.

  5. Artificial Intelligence and NASA Data Used to Discover Eighth Planet Circling Distant Star

    NASA Image and Video Library

    2017-12-12

    Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA’s Kepler space telescope. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found by researchers from Google and The University of Texas at Austin using machine learning. Machine learning is an approach to artificial intelligence in which computers “learn.” In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded signals from planets beyond our solar system, known as exoplanets. Video Credit: NASA Ames Research Center / Google

  6. Contextual Clues Vocabulary Strategies Choice among Business Management Students

    ERIC Educational Resources Information Center

    Ahmad, Siti Nurshafezan; Muhammad, Ahmad Mazli; Kasim, Aini Mohd

    2018-01-01

    New trends in vocabulary learning focus on strategic vocabulary learning to create more active and independent language learners. Utilising suitable contextual clues strategies is seen as vital in enabling and equipping language learners with the skill to guess word meaning accurately, moving away from dependency on a dictionary to improve their…

  7. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  8. The size distribution of the earth-approaching asteroids

    NASA Technical Reports Server (NTRS)

    Rabinowitz, D. L.

    1993-01-01

    The discovery circumstances of the first asteroids ever observed outside the earth's atmosphere but within the neighborhood of the earth-moon system are described. Four natural objects with diameters in the range 5-50 m were detected during a search for earth-approaching asteroids conducted each month at the 0.91-m Spacewatch Telescope at Kitt Peak. An additional 19 earth approachers with sizes in the range 50 m to 5 km were discovered. These obervations determine the cumulative flux of asteroids near earth as a function of absolute magnitude. For asteroids larger than about 100 m, a power-law dependence with exponent of about 0.9 is observed, consistent with their evolution from the main-belt population. At about 10 m, the flux is more than two orders of magnitude greater than this power-law extrapolation.

  9. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    PubMed

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  10. Near Earth space sporadic radio emission busts occurring during sunrise

    NASA Technical Reports Server (NTRS)

    Dudnik, A. V.; Zaljubovsky, I. I.; Kartashev, V. M.; Lasarev, A. V.; Shmatko, E. S.

    1985-01-01

    During the period of low solar activity at sunrise the effect of sporadic high frequency near Earth space radio emission was experimentally discovered at middle latitudes. The possible mechanism of its origin is discussed.

  11. Astronomy: A small star with an Earth-like planet

    NASA Astrophysics Data System (ADS)

    Deming, Drake

    2015-11-01

    A rocky planet close in size to Earth has been discovered in the cosmic vicinity of our Sun. The small size and proximity of the associated star bode well for studies of the planet's atmosphere. See Letter p.204

  12. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  13. Precambrian Time - The Story of the Early Earth

    USGS Publications Warehouse

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  14. An Analysis of Sixth Grade Pupil's Ability to Use Context Clues in Science and Social Studies.

    ERIC Educational Resources Information Center

    Olson, Arthur V.

    The ability of sixth-grade students to use context clues for identifying unknown words in science and social studies reading materials and the types of context clues most frequently used are examined. The 30 subjects from three white, middle-class urban schools missed 50 percent or more of the words on a prevocabulary test. The subjects read two…

  15. Eratosthenes Visits Middle School: Assessing the Ability of Students to Work with Models of the Earth

    ERIC Educational Resources Information Center

    Torres, Sergio; Powers, Judith L.

    2009-01-01

    In the exciting, "out of this world" activity described here, students measure the Earth using meter sticks while measuring their shadows in two distant locations. To obtain the size of the Earth, students discover the connection between the measurements of the shadows and a model of the spherical Earth following the method developed by…

  16. Heritability Maps May Hold Clues to Delayed Onset of Mental Disorders

    MedlinePlus

    ... Office 301-443-4536 NIMHpress@nih.gov More Science News about Brain Anatomy and Physiology Genetics Contact ... the Field News from the Field NIMH-Funded Science on EurekAlert Researchers find clues to treating psychoses ...

  17. Lightest exoplanet yet discovered

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  18. Introducing the Benson Prize for Discovery Methods of Near Earth Objects by Amateurs

    NASA Astrophysics Data System (ADS)

    Benson, J. W.

    1997-05-01

    The Benson Prize Sponsored by Space Development Corporation The Benson Prize for Discovery Methods of Near Earth Objects by Amateurs is an annual competition which awards prizes to the best proposed methods by which amateur astronomers may discover such near earth objects as asteroids and comet cores. The purpose of the Benson Prize is to encourage the discovery of near earth objects by amateur astronomers. The utilization of valuable near earth resources can provide many new jobs and economic activities on earth, while also creating many new opportunities for opening up the space frontier. The utilization of near earth resources will significantly contribute to the lessening of environmental degradation on the Earth caused by mining and chemical leaching operations required to exploit the low grade ores now remaining on Earth. In addition, near earth objects pose grave dangers for life on earth. Discovering and plotting the orbits of all potentially dangerous near earth objects is the first and necessary step in protecting ourselves against the enormous potential damage possible from near earth objects. With the high quality, large size and low cost of todays consumer telescopes, the rapid development of powerful, high resolution and inexpensive CCD cameras, and the proliferation of inexpensive software for todays powerful home computers, the discovery of near earth objects by amateur astronomers is more attainable than ever. The Benson Prize is sponsored by the Space Development Corporation, a space resource exploration and utilization company. In 1997 one prize of \\500 will be awarded to the best proposed method for the amateur discovery of NEOs, and in each of the four following years, Prizes of \\500, \\250 and \\100 will be awarded. Prizes for the actual discovery of Near Earth Asteroids will be added in later years.

  19. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  20. Kepler-20f -- An Earth-size World Artist Concept

    NASA Image and Video Library

    2011-12-20

    Kepler-20f is the closest object to the Earth in terms of size ever discovered. With an orbital period of 20 days and a surface temperature of 800 degrees Fahrenheit 430 degrees Celsius, it is too hot to host life, as we know it.

  1. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  2. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  3. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  4. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  5. Discovering chemistry with an ab initio nanoreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  6. Exoplanets: the quest for Earth twins.

    PubMed

    Mayor, Michel; Udry, Stephane; Pepe, Francesco; Lovis, Christophe

    2011-02-13

    Today, more than 400 extra-solar planets have been discovered. They provide strong constraints on the structure and formation mechanisms of planetary systems. Despite this huge amount of data, we still have little information concerning the constraints for extra-terrestrial life, i.e. the frequency of Earth twins in the habitable zone and the distribution of their orbital eccentricities. On the other hand, these latter questions strongly excite general interest and trigger future searches for life in the Universe. The status of the extra-solar planets field--in particular with respect to very-low-mass planets--will be discussed and an outlook on the search for Earth twins will be given in this paper.

  7. The Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; NEOCam Science Team

    2017-10-01

    The Near-Earth Object Camera (NEOCam) is a NASA mission in formulation designed to find, track, and provide basic physical characterization of asteroids and comets that make close approaches to Earth. Its goal is to reduce the risk of impacts from undetected near-Earth objects (NEOs) capable of causing global and regional disasters. NEOCam consists of a 50 cm telescope operating at two channels dominated by NEO thermal emission, 4.2-5.0um and 6-10um, in order to better constrain the objects' temperatures and diameters. Orbiting the Sun-Earth L1 Lagrange point, the mission would find hundreds of thousands of NEOs and would make significant progress toward the Congressional objective of discovering more than 90% of NEOs larger than 140 m during its five-year lifetime. The mission uses novel 2048x2048 HgCdTe detectors that extend the wavelength cutoff beyond 10um at an operating temperature of 40K (Dorn et al. 2016). Both the optical system and the detectors are cooled passively using radiators and thermal shields to enable long mission life and to avoid the complexity of cryocoolers or cryogens. NEOCam is currently in an extended Phase A.

  8. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    PubMed

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  9. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy

    PubMed Central

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-01-01

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y2O3 and Yb2O3 could cause massive vacuolization. Y2O3 and Yb2O3 treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects. PMID:20856835

  10. ClueNet: Clustering a temporal network based on topological similarity rather than denseness.

    PubMed

    Crawford, Joseph; Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.

  11. ClueNet: Clustering a temporal network based on topological similarity rather than denseness

    PubMed Central

    Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of “topologically related” nodes, where the resulting topology-based clusters are expected to “correlate” well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data—their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance. PMID:29738568

  12. Digimarc Discover on Google Glass

    NASA Astrophysics Data System (ADS)

    Rogers, Eliot; Rodriguez, Tony; Lord, John; Alattar, Adnan

    2015-03-01

    This paper reports on the implementation of the Digimarc® Discover platform on Google Glass, enabling the reading of a watermark embedded in a printed material or audio. The embedded watermark typically contains a unique code that identifies the containing media or object and a synchronization signal that allows the watermark to be read robustly. The Digimarc Discover smartphone application can read the watermark from a small portion of printed image presented at any orientation or reasonable distance. Likewise, Discover can read the recently introduced Digimarc Barcode to identify and manage consumer packaged goods in the retail channel. The Digimarc Barcode has several advantages over the traditional barcode and is expected to save the retail industry millions of dollars when deployed at scale. Discover can also read an audio watermark from ambient audio captured using a microphone. The Digimarc Discover platform has been widely deployed on the iPad, iPhone and many Android-based devices, but it has not yet been implemented on a head-worn wearable device, such as Google Glass. Implementing Discover on Google Glass is a challenging task due to the current hardware and software limitations of the device. This paper identifies the challenges encountered in porting Discover to the Google Glass and reports on the solutions created to deliver a prototype implementation.

  13. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  14. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model

    PubMed Central

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-01-01

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575

  15. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model.

    PubMed

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-03-24

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.

  16. Into the deep Earth: Using comics as a learning tool

    NASA Astrophysics Data System (ADS)

    Lee, K. K.; Wallenta, A.

    2012-12-01

    Illustrations make an ideal way to visualize what is not readily seen, especially for the deep Earth where photographs are impossible. To take this medium a step further, we use illustrations in the form of comics as a way to teach Earth science concepts. The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. We use the comic book format to introduce the extreme conditions reproduced in our experiments and used to "probe" the deep interior of the Earth. The exploration of such inaccessible regions is readily disseminated to the public through such a graphical approach. The comic books are aimed at middle school students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum. The first of two comics will be presented entitled, "The Adventures of GEO: Tackling Plate Tectonics."

  17. Unconfirmed Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Vereš, Peter; Payne, Matthew J.; Holman, Matthew J.; Farnocchia, Davide; Williams, Gareth V.; Keys, Sonia; Boardman, Ian

    2018-07-01

    We studied the Near-Earth Asteroid (NEA) candidates posted on the Minor Planet Center’s Near-Earth Object Confirmation Page (NEOCP) between years 2013 and 2016. Out of more than 17000 NEA candidates, while the majority became either new discoveries or were associated with previously known objects, about 11% were unable to be followed-up or confirmed. We further demonstrate that of the unconfirmed candidates, 926 ± 50 are likely to be NEAs, representing 18% of discovered NEAs in that period. Only 11% (∼93) of the unconfirmed NEA candidates were large (having absolute magnitude H < 22). To identify the reasons why these NEAs were not recovered, we analyzed those from the most prolific asteroid surveys: Pan-STARRS, the Catalina Sky Survey, the Dark Energy Survey, and the Space Surveillance Telescope. We examined the influence of plane-of-sky positions and rates of motion, brightnesses, submission delays, and computed absolute magnitudes, as well as correlations with the phase of the moon and seasonal effects. We find that delayed submission of newly discovered NEA candidate to the NEOCP drove a large fraction of the unconfirmed NEA candidates. A high rate of motion was another significant contributing factor. We suggest that prompt submission of suspected NEA discoveries and rapid response to fast-moving targets and targets with fast growing ephemeris uncertainty would allow better coordination among dedicated follow-up observers, decrease the number of unconfirmed NEA candidates, and increase the discovery rate of NEAs.

  18. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    PubMed

    Arbesman, Samuel; Laughlin, Gregory

    2010-10-04

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  19. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE PAGES

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  20. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  1. Exploring the hidden interior of the Earth with directional neutrino measurements

    PubMed Central

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-01-01

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. PMID:28691700

  2. Discovering New Drugs on the Cellular Level

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the Vision for Space Exploration calling for a sustained human presence in space, astronauts will need to grow plants, while in orbit, for nourishment that they will not receive from only consuming dehydrated foods. As a potential source of food for long-duration missions, space-grown plants could also give astronauts an important psychological boost, as fresh vegetables could serve as a welcomed change from monotonous meals consisting of reconstituted foods in plastic bags. Even more, these plants could likely aid in the recycling of air and wastewater on spacecraft. With a helping hand from a company by the name of Biolog, Inc., NASA is studying the impacts of decreased gravity and spaceborne bacteria on the plants being grown for food in space. With a helping hand from NASA, this very same company is creating powerful new cell- and bacteria-analysis tools for use in discovering and developing new drugs on Earth.

  3. Microanalytical study of some cosmic dust discovered in sea-floor sediments in China

    NASA Technical Reports Server (NTRS)

    Shijie, Z.; Hanchang, P.; Zhong, Y.

    1984-01-01

    The study of cosmic dust can provide useful data in the investigation of the origin of the Earth and the evolution of celestial bodies. Three types of cosmic dust (ferriginous, siliceous, and glassy) were discovered in the seafloor sediments near China. Their chemical composition and microstructure were examined by X-ray diffraction, fractography, and electron microscopy. The major mineral in an iron-containing cosmic dust is magnetite. The silicate spheres contain sundry metals and metal oxides. Glassy microtektites are similar in composition to tektites, and are found in all the major meteorite areas worldwide.

  4. New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science

    NASA Astrophysics Data System (ADS)

    Skolnik, S.; Ramirez-Linan, R.

    2016-12-01

    NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.

  5. Physicochemical Profiles of the Marketed Agrochemicals and Clues for Agrochemical Lead Discovery and Screening Library Development.

    PubMed

    Rao, Hanbing; Huangfu, Changxin; Wang, Yanying; Wang, Xianxiang; Tang, Tiansheng; Zeng, Xianyin; Li, Zerong; Chen, Yuzong

    2015-05-01

    Combinatorial chemistry, high-throughput and virtual screening technologies have been extensively used for discovering agrochemical leads from chemical libraries. The knowledge of the physicochemical properties of the marketed agrochemicals is useful for guiding the design and selection of such libraries. Since the earlier profiling of marketed agrochemicals, the number and types of marketed agrochemicals have significantly increased. Recent studies have shown the change of some physicochemical properties of oral drugs with time. There is a need to also profile the physicochemical properties of the marketed agrochemicals. In this work, we analyzed the key physicochemical properties of 1751 marketed agrochemicals in comparison with the previously-analyzed herbicides and insecticides, 106 391 natural products and 57 548 diverse synthetic libraries compounds. Our study revealed the distribution profiles and evolution trend of different types of agrochemicals that in many respects are broadly similar to the reported profiles for oral drugs, with the most marked difference being that agrochemicals have a lower number of hydrogen bond donors. The derived distribution patterns provided the rule of thumb guidelines for selecting potential agrochemical leads and also provided clues for further improving the libraries for agrochemical lead discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Epidermal multinucleated keratinocytes: a histopathologic clue to dermatitis artefacta.

    PubMed

    Gutierrez, Daniel; Schowalter, Michael K; Piliang, Melissa P; Fernandez, Anthony P

    2016-10-01

    Dermatitis artefacta is a psycho-cutaneous disorder characterized by self-inflicted cutaneous injuries, often in association with an underlying psychiatric disorder or as a response to external stressors. Cutaneous lesions suggestive of dermatitis artefacta are dependent on the means of injury and thus may be morphologically variable, but typically have geometric shapes, spare hard-to-reach anatomic areas, and are present in variable stages of evolution at any specific time. Although a dermatologist may be suspicious of dermatitis artefacta in a given patient, making a definitive diagnosis is extremely challenging. Patients often clinically evade questioning and deny creating skin lesions, and histopathologic evaluation of lesional biopsies usually reveals non-specific epidermal and dermal changes and inflammation. Thus, identification of clues that lend support to a diagnosis of dermatitis artefacta would be welcomed by both clinicians and pathologists. Here we present a case of dermatitis artefacta with a unique, yet previously reported, histopathological finding of multinucleated keratinocytes within the epidermis. Although probably uncommon and dependent on the etiology of cutaneous injury, we believe this finding is important for dermatopathologists to be aware of as a potential diagnostic clue when evaluating biopsies in patients suspected to have dermatitis artefacta. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Measuring Uncertainty within Organizational Relationships: An Analysis of the CLUES Instrument.

    ERIC Educational Resources Information Center

    Jorgensen, Jerry D.; Petelle, John L.

    1992-01-01

    Presents an overview of the CLUES (also known as the CL7) instrument. Discusses the instrument's reliability and validity and its application to organizational communication research. Suggests that the instrument demonstrates unidimensionality in low-context cultures, high reliability, and known validity in a wide array of relational types. (RS)

  8. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  9. New Literacies and Multimediacy: The Immersive Universe of "The 39 Clues"

    ERIC Educational Resources Information Center

    Sekeres, Diane Carver; Watson, Christopher

    2011-01-01

    "The 39 Clues" (2009) is a multimedia series produced by Scholastic for readers 7-14 years old that includes printed texts released periodically; trading cards also published periodically in print and virtually; and a complex, intriguing, and entertaining website. To fully experience the multimedia series, the publishers expect that readers can…

  10. Case Report: Laparoscopic Approach for Orchiopexy in a 26-Year-Old Man with Accidentally Discovered Persistent Müllerian Duct Syndrome and Bilateral Undescended Testis.

    PubMed

    Noureldin, Mohamed Essam; Tawfik, Ahmed Mohamed; Shaker, Hassan S

    2018-01-01

    Background: Persistent Müllerian duct syndrome (PMDS) is not a common form of disorder of sex development in which Müllerian duct derivatives (fallopian tubes, uterus, and the proximal vagina) are present in an otherwise normally differentiated 46 XY male. In most of cases, the challenge comes in the procedure of orchiopexy. Case Presentation: We report a case of a 26-year-old man with PMDS. It was accidentally discovered when the patient presented to our outpatient clinic concerning about his empty scrotum as a premarital check. Diagnostic laparoscopy discovered Mullerian remnants in the form of uterus, cervix, and fallopian tubes with two attached testes to the fallopian tubes. Staged laparoscopic orchiopexy was done. We discuss the presentation, the management of this case in the literature, and our intervention. Conclusion: PMDS is not a common condition. Several concerns present in the management of these cases. Malignant transformation of the testis is the main risk facing those patients. Few literature studies discussed the risk of changing of these remnants into malignant tissue. Thus discussion with the patient, tissue histopathology, expert opinions, and literature review are the main clues in management of such cases.

  11. Radially fractured domes: A comparison of Venus and the Earth

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1993-01-01

    Radially fractured domes are large, tectonic and topographic features discovered on the surface of Venus by the Magellan spacecraft. They are thought to be due to uplift over mantle diapirism, and to date are known to occur only on Venus. Since Venus and the Earth are grossly similar in size, composition and structure, we seek to understand why these features have not been seen on the Earth. We model the uplift and fracturing over a mantle diapir as functions of lithospheric thickness and diapir size and depth. We find that lithospheres of the same thickness on the Earth and Venus should respond similarly to the same sized diapir, and that radially fractured domes should form most readily in thin oceanic lithospheres on Earth if diapiric activity is similar on the two planets. However, our current knowledge of the Earth's oceanic floors is insufficient to confirm or deny the presence of radially fractured domes. We compute the expected dimensions for these features on the Earth and suggest a search for them to determine whether mantle diapirism operates similarly on the Earth and Venus.

  12. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  13. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-05-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be

  14. The Decline in Female Elementary Principals Since 1928: Riddles and Clues.

    ERIC Educational Resources Information Center

    Kalvelage, Joan

    In 1928, 55 percent of elementary school principals were women. By 1973, only 20 percent were women. This paper examines research data for explanations of the decline of the percentage of women elementary school principals. Both incompetence and sex discrimination are rejected as explanations. Clues to the decline are traced to the decline of the…

  15. A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth

    PubMed Central

    Arbesman, Samuel; Laughlin, Gregory

    2010-01-01

    Background The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Methodology/Principal Findings Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Conclusions/Significance Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields. PMID:20957226

  16. Dynamical features of hazardous near-Earth objects

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. V.; Naroenkov, S. A.

    2015-07-01

    We discuss the dynamical features of near-Earth objects moving in dangerous proximity to Earth. We report the computation results for the motions of all observed near-Earth objects over a 600-year-long time period: 300 years in the past and 300 years in the future. We analyze the dynamical features of Earth-approaching objects. In particular, we established that the observed distribution of geocentric velocities of dangerous objects depends on their size. No bodies with geocentric velocities smaller that 5 kms-1 have been found among hazardous objects with absolute magnitudes H <18, whereas 9% of observed objects with H <27 pass near Earth moving at such velocities. On the other hand, we found a tendency for geocentric velocities to increase at H >29. We estimated the distribution of absolute magnitudes of hazardous objects based on our analysis of the data for the asteroids that have passed close to Earth. We inferred the Earth-impact frequencies for objects of different sizes. Impacts of objects with H <18 with Earth occur on average once every 0.53 Myr, and impacts of objects with H <27—once every 130-240 years. We show that currently about 0.1% of all near-Earth objects with diameters greater than 10 m have been discovered. We point out the discrepancies between the estimates of impact rates of Chelyabinsk-type objects, determined from fireball observations and from the data of telescopic asteroid tracking surveys. These estimates can be reconciled assuming that Chelyabinsk-sized asteroids have very low albedos (about 0.02 on average).

  17. Transient Weakening of Earth's Magnetic Shield Probed by a Cosmic Ray Burst.

    PubMed

    Mohanty, P K; Arunbabu, K P; Aziz, T; Dugad, S R; Gupta, S K; Hariharan, B; Jagadeesan, P; Jain, A; Morris, S D; Rao, B S; Hayashi, Y; Kawakami, S; Oshima, A; Shibata, S; Raha, S; Subramanian, P; Kojima, H

    2016-10-21

    The GRAPES-3 tracking muon telescope in Ooty, India measures muon intensity at high cutoff rigidities (15-24 GV) along nine independent directions covering 2.3 sr. The arrival of a coronal mass ejection on 22 June 2015 18:40 UT had triggered a severe G4-class geomagnetic storm (storm). Starting 19:00 UT, the GRAPES-3 muon telescope recorded a 2 h high-energy (∼20  GeV) burst of galactic cosmic rays (GCRs) that was strongly correlated with a 40 nT surge in the interplanetary magnetic field (IMF). Simulations have shown that a large (17×) compression of the IMF to 680 nT, followed by reconnection with the geomagnetic field (GMF) leading to lower cutoff rigidities could generate this burst. Here, 680 nT represents a short-term change in GMF around Earth, averaged over 7 times its volume. The GCRs, due to lowering of cutoff rigidities, were deflected from Earth's day side by ∼210° in longitude, offering a natural explanation of its night-time detection by the GRAPES-3. The simultaneous occurrence of the burst in all nine directions suggests its origin close to Earth. It also indicates a transient weakening of Earth's magnetic shield, and may hold clues for a better understanding of future superstorms that could cripple modern technological infrastructure on Earth, and endanger the lives of the astronauts in space.

  18. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  19. Clues to prolific productivity among prominent scientists.

    PubMed

    Kantha, S S

    1992-10-01

    In a survey based on the biographical sketches, obituary notes and eulogies of notable scientists, eight were identified as belonging to an elite group, having authored more than 1000 research publications, which include books, monographs and patents. They were, in chronological order, Thomas Alva Edison, Paul Karrer, Margaret Mead, Giulio Natta, Hans Selye, Herbert C Brown, Tetsuji Kametani and Carl Djerassi. Among these, Karrer, Natta and Brown were Nobelists in chemistry. Four criteria which can be identified as clues to their prolific productivity are, 1) enthusiasm for compulsive work and eccentric life style, 2) physical and/or environmental handicap, 3) pioneering efforts in a new research field, and 4) selection of research area, predominantly organic chemistry.

  20. New worlds on the horizon: Earth-sized planets close to other stars.

    PubMed

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  1. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  2. K2 Finds Earth-Sized Planets Artist Concept

    NASA Image and Video Library

    2016-07-18

    This artist's concept shows NASA's Kepler Space Telescope on its K2 mission. In July 2016, an international team of astronomers announced they had discovered more than 100 new planets using this telescope. The batch includes four planets in the size range of Earth that are orbiting a single dwarf star, depicted in this illustration. Two of these planets are too hot to support life as we know it, but two are in the star's "habitable" zone, where liquid water could exist on the surface. These small, rocky worlds are far closer to their star than Mercury is to our sun. But because the star is smaller and cooler than ours, its habitable zone is much closer. One of the two planets in the habitable zone, K2-72c, has a "year" about 15 Earth-days long -- the time it takes to complete one orbit. This closer planet is likely about 10 percent warmer than Earth. The slightly more distant planet in the habitable zone, K2-72e, has a year lasting 24 Earth days, and would be about 6 percent colder than Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20698

  3. When Earth Songs Filled the Void of Space

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.

    2003-01-01

    Before the late 50's we had the planets, our Sun, the stars, galaxies, spectacular clouds of dust and very little else in our universe. There was evidence for a highly tenuous "sea" of dust in interstellar space, but little else. Space was empty above the ionized gases of our upper atmosphere, a little like there was no color in the world before the 40's. The clues were there to think otherwise, however, and in the late 50's and early 60's a few researchers dared to challenge the conventional ideas about space. It was a time of discovery and, with our new ability to fly in space, a time that launched a new science. Today that science makes it possible to literally see some of the plasmas that populate near-Earth space, which are now known to exist everywhere.

  4. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  5. Effects of Variable Eccentricity on the Climate of an Earth-Like World

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  6. Near-Earth Object Survey Simulation Software

    NASA Astrophysics Data System (ADS)

    Naidu, Shantanu P.; Chesley, Steven R.; Farnocchia, Davide

    2017-10-01

    There is a significant interest in Near-Earth objects (NEOs) because they pose an impact threat to Earth, offer valuable scientific information, and are potential targets for robotic and human exploration. The number of NEO discoveries has been rising rapidly over the last two decades with over 1800 being discovered last year, making the total number of known NEOs >16000. Pan-STARRS and the Catalina Sky Survey are currently the most prolific NEO surveys, having discovered >1600 NEOs between them in 2016. As next generation surveys such as Large Synoptic Survey Telescope (LSST) and the proposed Near-Earth Object Camera (NEOCam) become operational in the next decade, the discovery rate is expected to increase tremendously. Coordination between various survey telescopes will be necessary in order to optimize NEO discoveries and create a unified global NEO discovery network. We are collaborating on a community-based, open-source software project to simulate asteroid surveys to facilitate such coordination and develop strategies for improving discovery efficiency. Our effort so far has focused on development of a fast and efficient tool capable of accepting user-defined asteroid population models and telescope parameters such as a list of pointing angles and camera field-of-view, and generating an output list of detectable asteroids. The software takes advantage of the widely used and tested SPICE library and architecture developed by NASA’s Navigation and Ancillary Information Facility (Acton, 1996) for saving and retrieving asteroid trajectories and camera pointing. Orbit propagation is done using OpenOrb (Granvik et al. 2009) but future versions will allow the user to plug in a propagator of their choice. The software allows the simulation of both ground-based and space-based surveys. Performance is being tested using the Grav et al. (2011) asteroid population model and the LSST simulated survey “enigma_1189”.

  7. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  8. Discovering Tau and Muon Solar Neutrino Flares above Backgrounds

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Moscato, F.

    2005-01-01

    Solar neutrino flares astronomy is at the edge of its discover. High energy flare particles (protons, alpha) whose self scattering within the solar corona is source of a rich prompt charged pions are also source of sharp solar neutrino "burst" (at tens-hundred MeV) produced by their pion-muon primary decay in flight. This brief (minute) solar neutrino "burst" at largest peak overcome by four-five order of magnitude the steady atmospheric neutrino noise at the Earth. Later on, solar flare particles hitting the terrestrial atmosphere may marginally increase the atmospheric neutrino flux without relevant consequences. Largest prompt "burst" solar neutrino flare may be detected in present or better in future largest neutrino underground neutrino detectors. Our estimate for the recent and exceptional October - November 2003 solar flares gives a number of events above or just near unity for Super-Kamiokande. The neutrino spectra may reflect in a subtle way the neutrino flavour mixing in flight. A surprising tau appearance may even occur for a hard ({E}_{nu}_{mu}--> {E}_{nu}_{tau} > 4 GeV) flare spectra. A comparison of the solar neutrino flare (at their birth place on Sun and after oscillation on the arrival on the Earth) with other neutrino foreground is here described and it offer an independent road map to disentangle the neutrino flavour puzzles and its secret flavour mixing angles .

  9. Mapping Near-Earth Hazards

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  10. Developmental origins of NAFLD: a womb with a clue

    PubMed Central

    Wesolowski, Stephanie R.; El Kasmi, Karim C.; Jonscher, Karen R.; Friedman, Jacob E.

    2017-01-01

    Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation. PMID:27780972

  11. Examination of Children Decision Making Using Clues during the Logical Reasoning Process

    ERIC Educational Resources Information Center

    Çelik, Meryem

    2017-01-01

    Logical reasoning is the process of thinking about a problem and finding the most effective solution. Children's decision-making skills are part of their cognitive development and are also indicative. The purpose of this study was to examine children's decision-making skills using clues in logical reasoning based on various variables. The study…

  12. [Response of water yield function of ecosystem to land use change in Nansi Lake Basin based on CLUE-S model and InVEST model .

    PubMed

    Guo, Hong Wei; Sun, Xiao Yin; Lian, Li Shu; Zhang, Da Zhi; Xu, Yan

    2016-09-01

    Land use change has an important role in hydrological processes and utilization of water resources, and is the main driving force of water yield function of ecosystem. This paper analyzed the change of land use from 1990 to 2013 in Nansi Lake Basin, Shandong Province. The future land use in 2030 was also predicted and simulated by CLUE-S model. Based on land use scenarios, we analyzed the influence of land use change on ecosystem function of water yield in nearly 25 years through InVEST water yield model and spatial mapping. The results showed that the area of construction land increased by 3.5% in 2013 because of burgeoning urbanization process, but farmland area decreased by 2.4% which was conversed to construction land mostly. The simulated result of InVEST model suggested that water yield level of whole basin decreased firstly and increased subsequently during last 25 years and peaked at 232.1 mm in 2013. The construction land area would increase by 6.7% in 2030 based on the land use scenarios of fast urbanization, which would lead to a remarkable growth for water yield and risk of flowing flooding. However, the water yield level of whole basin would decrease by 1.2 % in 2013 if 300 meter-wide forest buffer strips around Nansi Lake were built up.

  13. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    ERIC Educational Resources Information Center

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  14. Data Driven Quality Improvement of Health Professions Education: Design and Development of CLUE - An Interactive Curriculum Data Visualization Tool.

    PubMed

    Canning, Claire Ann; Loe, Alan; Cockett, Kathryn Jane; Gagnon, Paul; Zary, Nabil

    2017-01-01

    Curriculum Mapping and dynamic visualization is quickly becoming an integral aspect of quality improvement in support of innovations which drive curriculum quality assurance processes in medical education. CLUE (Curriculum Explorer) a highly interactive, engaging and independent platform was developed to support curriculum transparency, enhance student engagement, and enable granular search and display. Reflecting a design based approach to meet the needs of the school's varied stakeholders, CLUE employs an iterative and reflective approach to drive the evolution of its platform, as it seeks to accommodate the ever-changing needs of our stakeholders in the fast pace world of medicine and medical education today. CLUE exists independent of institutional systems and in this way, is uniquely positioned to deliver a data driven quality improvement resource, easily adaptable for use by any member of our health care professions.

  15. The Population of Near-Earth Asteroids Revisited

    NASA Astrophysics Data System (ADS)

    Harris, Alan William

    2017-10-01

    I have been tracking progress of the surveys discovering Near-Earth Asteroids (NEAs) for more than 20 years, and have reported updates every few years at past meetings. Following my last report at a DPS and the published update two years ago (Harris and D’Abramo 2015, Icarus 257, 302-312), it came to light that these and previous estimates were affected by round-off of H magnitudes by the Minor Planet Center to 0.1 mag. While it is true that individual magnitudes are generally not even that accurate, statistically the round-off shifted the population estimate by ~6%. While this hardly matters in the small size range, for the largest asteroids the shift alters N(H<17.75), assumed equivalent to N(D>1km), from 990 ± 20 (Harris & D’Abramo 2015) to 934 ± 20. Since the number already discovered, 872, is the same for both solutions, the implied completion of the surveys shifts from 88% to 93%. Not only is this correction satisfying with regard to the “Spaceguard Goal” of discovering 90% of NEAs of D > 1 km, but it reduces the estimated number of large NEAs remaining to be discovered by nearly a factor of 2. In this presentation I will explain the correction to the round-off bias and present an updated population estimate and survey progress using discoveries up to July, 2017.

  16. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-12-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues’ expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable “software appliance” to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish “talkoot” (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a “science story” in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of

  17. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  18. Effects of Variable Eccentricity on the Climate of an Earth-like World

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the astronomical community with a cornucopia of planetary systems that are very different from the one that we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for the Moon. Using a three-dimensional general circulation model (3D GCM) with a fully coupled ocean, we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. We investigate two scenarios that involve the evolution of the Earth-like planet’s orbital eccentricity from 0 to 0.283 over 6500 years, and from 0 to 0.066 on a timescale of 4500 years. In both cases we discover that they would maintain relatively temperate climates over the timescales simulated. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitability of these worlds. These are the first such 3D GCM simulations using a fully coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  19. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  20. Titanium Isotopes Provide Clues to Lunar Origin

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than

  1. Small asteroids temporarily captured in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff

    2016-01-01

    We present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system like the 2-3 meter diameter, 2006 RH120, that was discovered by the Catalina Sky Survey. We use the term `minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.

  2. Small asteroids temporarily captured in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff

    2015-08-01

    We will present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system, such as the 2-3 meter diameter 2006 RH120 that was discovered by the Catalina Sky Survey. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.

  3. Planetary Defense. Department of Defense Cost for the Detection, Exploration, and Rendezvous Mission of Near-Earth Objects

    DTIC Science & Technology

    1997-01-01

    or even impact the Earth. In the past 15 years, research on NEOs has dra­ mati cally increased as astrono mers and ge­ olo gists real ize the Earth...fig. 7). In 1989, astrono mers discov ered an aster­ oid labeled 1989FC after its closest approach to Earth. This illus trates a disturb ing fact...Cur rently only astrono mers on shoestring, aca demic budgets are trying to locate and track NEOs, making esti mates of NEO popu­ la tions very impre

  4. Nasa s near earth object program office

    NASA Astrophysics Data System (ADS)

    Yeomans, D.; Chamberlin, A.; Chesley, S.; Chodas, P.; Giorgini, J.; Keesey, M.

    In 1998, NASA formed the Near-Earth Object Program Office at JPL to provide a focal point for NASA's efforts to discover and monitor the motions of asteroids and comets that can approach the Earth. This office was charged with 1.) facilitating communication between the near-Earth object (NEO) community and the public, 2.) helping coordinate the search efforts for NEOs, 3.) monitoring the progress in finding NEOs at NASA -supported sites, and 4.) monitoring the future motions of all known NEOs and cataloging their orbits. There are far more near-Earth asteroids (NEAs) than near-Earth comets and one of the driving motivations for NASA's NEO Program is the Spaceguard Goal to find 90% of the NEAs larger than one kilometer by 2008. While the total population of NEAs is not clearly established, the consensus opinion seems to be that the total population of NEAs larger than one kilometer is about 1000 (with a range of perhaps 800 - 1200). By April 2002, nearly 60% of the total population of large NEAs had been discovered and while the discovery rate will likely drop off as the easy ones are found, these early discovery efforts are encouraging. The five NASA-supported NEO discovery teams are the Lincoln Laboratory Near-Earth Asteroid Research effort (LINEAR, Grant Stokes, Principal Investigator), the Near-Earth Asteroid Tracking team at JPL (NEAT, Eleanor Helin, P.I.), the Lowell Observatory Near-Earth Object Search (LONEOS, E. Bowell, P.I.), and two discovery teams near Tucson Arizona - the Spacewatch effort (R. McMillan, P.I.) and the Catalina Sky Survey group (S. Larson, P.I.). Mention should also be made of the Japanese Spaceguard discovery site at Bisei Japan (S. Isobe, P.I.). A substantial portion of the critical follow-up observations necessary to secure the orbits of NEOs and provide information on their physical characteristics is provided by a group of very sophisticated amateur astronomers who might better be described as unfunded professionals. After nearly two

  5. Theoretical validation of potential habitability via analytical and boosted tree methods: An optimistic study on recently discovered exoplanets

    NASA Astrophysics Data System (ADS)

    Saha, S.; Basak, S.; Safonova, M.; Bora, K.; Agrawal, S.; Sarkar, P.; Murthy, J.

    2018-04-01

    Seven Earth-sized planets, known as the TRAPPIST-1 system, was discovered with great fanfare in the last week of February 2017. Three of these planets are in the habitable zone of their star, making them potentially habitable planets (PHPs) a mere 40 light years away. The discovery of the closest potentially habitable planet to us just a year before - Proxima b and a realization that Earth-type planets in circumstellar habitable zones are a common occurrence provides the impetus to the existing pursuit for life outside the Solar System. The search for life has two goals essentially: looking for planets with Earth-like conditions (Earth similarity) and looking for the possibility of life in some form (habitability). An index was recently developed, the Cobb-Douglas Habitability Score (CDHS), based on Cobb-Douglas habitability production function (CD-HPF), which computes the habitability score by using measured and estimated planetary parameters. As an initial set, radius, density, escape velocity and surface temperature of a planet were used. The proposed metric, with exponents accounting for metric elasticity, is endowed with analytical properties that ensure global optima and can be scaled to accommodate a finite number of input parameters. We show here that the model is elastic, and the conditions on elasticity to ensure global maxima can scale as the number of predictor parameters increase. K-NN (K-Nearest Neighbor) classification algorithm, embellished with probabilistic herding and thresholding restriction, utilizes CDHS scores and labels exoplanets into appropriate classes via feature-learning methods yielding granular clusters of habitability. The algorithm works on top of a decision-theoretical model using the power of convex optimization and machine learning. The goal is to characterize the recently discovered exoplanets into an "Earth League" and several other classes based on their CDHS values. A second approach, based on a novel feature-learning and

  6. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  7. The Mission Accessible Near-Earth Objects Survey (MANOS): spectroscopy results

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Moskovitz, Nicholas; Hinkle, Mary L.; Mommert, Michael; Polishook, David; Thirouin, Audrey; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca E.; Person, Michael J.; Trilling, David E.; Willman, Mark; Burt, Brian

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is an ongoing physical characterization survey to build a large, uniform catalog of physical properties including lightcurves and visible wavelength spectroscopy. We will use this catalog to investigate the global properties of the small NEO population and identify individual objects that can be targets of interest for future exploration. To accomplish our goals, MANOS uses a wide variety of telescopes (1-8m) in both the northern and southern hemispheres. We focus on targets that have been recently discovered and operate on a regular cadence of remote and queue observations to enable rapid characterization of small NEOs. Targets for MANOS are selected based on three criteria: mission accessibility, size, and observability. With our resources, we observe 5-10 newly discovered sub-km NEOs per month. MANOS has been operating for three years and we have observed over 500 near-Earth objects in that time.We will present results from the spectroscopy component of the MANOS program. Visible wavelength spectra are obtained using DeVeny on the Discovery Channel Telescope (DCT), Goodman on the Southern Astrophysical Research (SOAR) telescope, and GMOS on Gemini North and South. Over 300 NEO spectra have been obtained during our program. We will present preliminary results from our spectral sample. We will discuss the compositional diversity of the small NEO population and how the observed NEOs compare to the meteorite population.MANOS is funded by the NASA Near-Earth Object Observations program.

  8. Prehistoric Packrats Piled Up Clues to Climate Change

    USGS Publications Warehouse

    Cole, Kenneth L.

    2008-01-01

    Scientists from the U.S. Geological Survey and Northern Arizona University studying climate change in the Southwestern United States are getting a helping hand?or would that be paw??from prehistoric packrats. By hoarding parts of animals and plants, including seeds and leaves, in garbage piles or ?middens,? these bushy-tailed rodents preserved crucial ecological and environmental information about the past. From these middens, scientists are able to reconstruct plant communities and natural systems from as long ago as 50,000 years. The contents of middens allow scientists to understand how ecosystems responded to rapid, large-scale climate changes of the past. The insights gained from midden research could offer clues to future changes driven by rapid climate shifts.

  9. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  10. Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry.

    PubMed

    Ritson, Dougal J; Battilocchio, Claudio; Ley, Steven V; Sutherland, John D

    2018-05-08

    When considering life's aetiology, the first questions that must be addressed are "how?" and "where?" were ostensibly complex molecules, considered necessary for life's beginning, constructed from simpler, more abundant feedstock molecules on primitive Earth. Previously, we have used multiple clues from the prebiotic synthetic requirements of (proto)biomolecules to pinpoint a set of closely related geochemical scenarios that are suggestive of flow and semi-batch chemistries. We now wish to report a multistep, uninterrupted synthesis of a key heterocycle (2-aminooxazole) en route to activated nucleotides starting from highly plausible, prebiotic feedstock molecules under conditions which mimic this scenario. Further consideration of the scenario has uncovered additional pertinent and novel aspects of prebiotic chemistry, which greatly enhance the efficiency and plausibility of the synthesis.

  11. Understanding Super-Earths with MINERVA-Australis at USQ's Mount Kent Observatory

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert; Horner, Jonathan; Kane, Stephen; Plavchan, Peter; Ciardi, David; Eastman, Jason; Johnson, John Asher; Wright, Jason; McCrady, Nate; MINERVA Collaboration

    2018-01-01

    Super Earths, planets between 5-10 Earth masses, are the most common types of planets known, yet are completely absent from our Solar system. As a result, their detailed properties, compositions, and formation mechanisms are poorly understood. NASA's Transiting Exoplanet Survey Satellite (TESS) will identify hundreds of Super-Earths orbiting bright stars, for the first time allowing in-depth characterisation of these planets. At the University of Southern Queensland, we are host to the MINERVA-Australis project, dedicated wholly to the follow-up characterisation and mass measurement of TESS planets. We give an update on the status of MINERVA-Australis and our expected performance. We also present results from the fully operational Northern MINERVA array, with the primary mission of discovering rocky planets orbiting 80 nearby bright stars.

  12. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenshan; Zheng, Mingyue; Du, Li; Shen, Jianhua; Luo, Xiaomin; Zhu, Weiliang; Jiang, Hualiang

    2006-05-01

    To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA®), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r 2 cv values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.

  13. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have

  14. Did the ancient egyptians discover Algol?

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.

    2013-02-01

    Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).

  15. MARCO POLO: near earth object sample return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.

    2009-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small

  16. The sun,the planets and life on Earth

    NASA Astrophysics Data System (ADS)

    Claudia, Tacu Cristina

    2017-04-01

    We all knowthat Earth,our planet,it's not alone in the Universe.We will discover together a few of its secrets: 0 The influence of the sun on our planet is very important.It provides us thelight ,the warnith and the enery without whice life on Earth wouldn't be possible. 0 Thank to the Sun and the endless spinning of our planet around its own axe and, at the same time around this star,we receive as a gift the day,the night,the seasons. 0In our Solar System there are other spheres appart from the Sun and planets -the asteroids ,wandering pieces of stone.It is said that many milions of years ago it they made a lot of plants and animals disappear. If I have arisen your curiosity,let's go!

  17. NASA Reverb: Standards-Driven Earth Science Data and Service Discovery

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Mitchell, A.; Pilone, D.

    2011-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) is a core capability in NASA's Earth Science Data Systems Program. NASA's EOS ClearingHOuse (ECHO) is a metadata catalog for the EOSDIS, providing a centralized catalog of data products and registry of related data services. Working closely with the EOSDIS community, the ECHO team identified a need to develop the next generation EOS data and service discovery tool. This development effort relied on the following principles: + Metadata Driven User Interface - Users should be presented with data and service discovery capabilities based on dynamic processing of metadata describing the targeted data. + Integrated Data & Service Discovery - Users should be able to discovery data and associated data services that facilitate their research objectives. + Leverage Common Standards - Users should be able to discover and invoke services that utilize common interface standards. Metadata plays a vital role facilitating data discovery and access. As data providers enhance their metadata, more advanced search capabilities become available enriching a user's search experience. Maturing metadata formats such as ISO 19115 provide the necessary depth of metadata that facilitates advanced data discovery capabilities. Data discovery and access is not limited to simply the retrieval of data granules, but is growing into the more complex discovery of data services. These services include, but are not limited to, services facilitating additional data discovery, subsetting, reformatting, and re-projecting. The discovery and invocation of these data services is made significantly simpler through the use of consistent and interoperable standards. By utilizing an adopted standard, developing standard-specific adapters can be utilized to communicate with multiple services implementing a specific protocol. The emergence of metadata standards such as ISO 19119 plays a similarly important role in discovery as the 19115 standard

  18. Morphological clues to the appropriate recognition of hereditary renal neoplasms.

    PubMed

    Moch, Holger; Ohashi, Riuko; Gandhi, Jatin S; Amin, Mahul B

    2018-05-01

    An important emerging role of the surgical pathologist besides the traditional tasks of establishment of the diagnosis and documentation of prognostic and predictive factors, is to recognize the possibility of a hereditary condition in cases where the histology is suggestive for a familial cancer syndrome. In recent years, the knowledge regarding all of the above roles, including the role of recognition of familial cancer, has particularly expanded in renal neoplasms with the close scrutiny to morphology, molecular correlates and clinical features of the different sub-types of renal cell carcinoma. Awareness of these clinically distinctive sub-types and their associated histologic clues will prompt the pathologist for further immunohistochemical or molecular work up, to look for clinical information to support the suspected diagnosis of familial cancer, to alert managing physician/s to look for stigmata of history of familial cancer, which will permit triaging patients and their families for appropriate genetic counseling. This review provides a comprehensive review of the known sub-types of renal cell carcinoma that have a predilection to occur in the setting of hereditary disease; examples include renal cancers occurring in the background of von Hippel Lindau disease, hereditary leiomyomatosis and renal cell carcinoma syndrome, tuberous sclerosis, Birt Hogg Dube syndrome and succinate dehydrogenase deficiency. Herein we focus on diagnostic clues for renal tumors occurring in a non-pediatric setting that should prompt their correct recognition and reiterate the importance of the correct diagnosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Phase Curve Analysis of Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2018-01-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus, or a bare-rock surface that may come with a tenuous atmosphere like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase curve photometric data around secondary eclipse has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a previously developed semi-analytical framework to fit a physical model to infrared photometric data of host star 55 Cancri from the Spitzer telescope IRAC 2 band at 4.5 μm. The model uses various parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., the ratio between the radiative timescale and advective timescale of the photosphere), and atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hot spot located on the planet surface. We determine the heat redistribution efficiency to be ≈1.47, which implies that the advective timescale is on the same order as the radiative timescale. This requirement from the phase curve cannot be met by the bare-rock planet scenario, because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to a photosphere pressure of ~1.4 bar. The Spitzer IRAC 2 band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  20. Optical data communication for Earth observation satellite systems

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Loecherbach, E.

    1991-10-01

    The current development status of optical communication engineering in comparison to the conventional microwave systems and the different configurations of the optical data communication for Earth observation satellite systems are described. An outlook to future optical communication satellite systems is given. During the last decade Earth observation became more and more important for the extension of the knowledge about our planet and the human influence on nature. Today pictures taken by satellites are used, for example, to discover mineral resources or to predict harvest, crops, climate, and environment variations and their influence on the population. A new and up to date application for Earth observation satellites can be the verification of disarmament arrangements and the control of crises areas. To solve these tasks a system of Earth observing satellites with sensors tailored to the envisaged mission is necessary. Besides these low Earth orbiting satellites, a global Earth observation system consists of at least two data relay satellites. The communication between the satellites will be established via Inter-Satellite Links (ISL) and Inter-Orbit Links (IOL). On these links, bitrates up to 1 Gbit/s must be taken into account. Due to the increasing scarcity of suitable frequencies, higher carrier frequencies must probably be considered, and possible interference with terrestrial radio relay systems are two main problems for a realization in microwave technique. One important step to tackle these problems is the use of optical frequencies for IOL's and ISL's.

  1. School, Earth and Imagination

    NASA Astrophysics Data System (ADS)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    that uses most of the five senses to approach materials of the Earth. In this way children discover the different spheres of the Earth materials, like water, soils, minerals, rocks. In the second part of each module children discover that knowledge can be applied acting on the geological objects. So they learn how to clean water using different kinds of soils or how to separate garbage according to the materials of which objects are made and not to other more showy characteristics like shape, size or color. The reiteration in time of the same scheme through the different modules is fundamental to give children a solid method of approach to the problems that children have to face, giving the basics to start the scholastic experience in the best possible way. Indeed, following structured modules activity, children will become accustomed with various situations inside and outside school with this analytical and experimental approach, overcoming sensory preconceptions and building their own perception based on an empirical method.

  2. Llnking the EarthScope Data Virtual Catalog to the GEON Portal

    NASA Astrophysics Data System (ADS)

    Lin, K.; Memon, A.; Baru, C.

    2008-12-01

    The EarthScope Data Portal provides a unified, single-point of access to EarthScope data and products from USArray, Plate Boundary Observatory (PBO), and San Andreas Fault Observatory at Depth (SAFOD) experiments. The portal features basic search and data access capabilities to allow users to discover and access EarthScope data using spatial, temporal, and other metadata-based (data type, station specific) search conditions. The portal search module is the user interface implementation of the EarthScope Data Search Web Service. This Web Service acts as a virtual catalog that in turn invokes Web services developed by IRIS (Incorporated Research Institutions for Seismology), UNAVCO (University NAVSTAR Consortium), and GFZ (German Research Center for Geosciences) to search for EarthScope data in the archives at each of these locations. These Web Services provide information about all resources (data) that match the specified search conditions. In this presentation we will describe how the EarthScope Data Search Web service can be integrated into the GEONsearch application in the GEON Portal (see http://portal.geongrid.org). Thus, a search request issued at the GEON Portal will also search the EarthScope virtual catalog thereby providing users seamless access to data in GEON as well as the Earthscope via a common user interface.

  3. Computational search for rare-earth free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  4. Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record.

    PubMed

    Ludwig, Peter; Bishop, Shawn; Egli, Ramon; Chernenko, Valentyna; Deneva, Boyana; Faestermann, Thomas; Famulok, Nicolai; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Hain, Karin; Korschinek, Gunther; Hanzlik, Marianne; Merchel, Silke; Rugel, Georg

    2016-08-16

    Massive stars ([Formula: see text]), which terminate their evolution as core-collapse supernovae, are theoretically predicted to eject [Formula: see text] of the radioisotope (60)Fe (half-life 2.61 Ma). If such an event occurs sufficiently close to our solar system, traces of the supernova debris could be deposited on Earth. Herein, we report a time-resolved (60)Fe signal residing, at least partially, in a biogenic reservoir. Using accelerator mass spectrometry, this signal was found through the direct detection of live (60)Fe atoms contained within secondary iron oxides, among which are magnetofossils, the fossilized chains of magnetite crystals produced by magnetotactic bacteria. The magnetofossils were chemically extracted from two Pacific Ocean sediment drill cores. Our results show that the (60)Fe signal onset occurs around 2.6 Ma to 2.8 Ma, near the lower Pleistocene boundary, terminates around 1.7 Ma, and peaks at about 2.2 Ma.

  5. How Do Earth-Sized, Short-Period Planets Form?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  6. Discovering the Solar System

    NASA Astrophysics Data System (ADS)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  7. Astronomers Gain Clues About Fundamental Physics

    NASA Astrophysics Data System (ADS)

    2005-12-01

    superstring theory and extra dimensions in spacetime calling for the "constants" to change over time, he said. The astronomers used the GBT to detect and study radio emissions at four specific frequencies between 1612 MHz and 1720 MHz coming from hydroxyl (OH) molecules in a galaxy more than 6 billion light-years from Earth, seen as it was at roughly half the Universe's current age. Each of the four frequencies represents a specific change in the energy level of the molecule. The exact frequency emitted or absorbed when the molecule undergoes a transition from one energy level to another depends on the values of the fundamental physical constants. However, each of the four frequencies studied in the OH molecule will react differently to a change in the constants. That difference is what the astronomers sought to detect using the GBT, which, Kanekar explained, is the ideal telescope for this work because of its technical capabilities and its location in the National Radio Quiet Zone, where radio interference is at a minimum. "We can place very tight limits on changes in the physical constants by studying the behavior of these OH molecules at a time when the Universe was only about half its current age, and comparing this result to how the molecules behave today in the laboratory," said Karl Menten of the Max-Planck Institute for Radioastronomy in Germany. Wetterich, a theorist, welcomes the new capability, saying the observational method "seems very promising to obtain perhaps the most accurate values for such possible time changes of the constants." He pointed out that, while some theoretical models call for the constants to change only in the early moments after the Big Bang, models of the recently-discovered, mysterious "dark energy" that seems to be accelerating the Universe's expansion call for changes "even in the last couple of billion years." "Only observations can tell," he said. This research ties together the theoretical and observational work of Wetterich and

  8. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  9. Earth Science Research as IPY Priority

    NASA Astrophysics Data System (ADS)

    Kotlyakov, V.; Leonov, Y.; Coakley, B.; Grikurov, G.; Johnson, L.; Kaminsky, V.; Kristoffersen, Y.; Leitchenkov, G.; Pavlenko, V.

    2004-05-01

    The preparations for IPY 2007/2008 are evolving from conceptual to implementation planning. Many earth scientists are concerned that the emerging plans for IPY are too narrowly focused on environmental processes and therefore appear discriminatory with respect to other fundamental sciences. National/international efforts such as USGCRP (U.S. Global Change Research program) and IPCC (Intergovernmental Panel on Climate Change) are also involved in the multitude of climate change issues, and just how the proposed IPY program could augment and complement these ongoing activities without reproducing them requires careful analysis and coordination. In particular, the polar research is unthinkable without study of the geological history of the Arctic and the Southern Oceans as a clue to tectonic evolution of the entire planet and test of the current geodynamic paradigm. In addition to these fundamental objectives, the circum-polar continental margins of the Arctic and Antarctica are likely to become the scenes of geopolitical intrigue provoked by implementation of the provisions of the Law of the Sea that require acquisition of specific earth science knowledge at internationally recognized levels of credibility. Interdisciplinary international programs (e. g. JEODI), based on geophysical data acquisition and analysis that would lead, where appropriate, to scientific drilling, had independently been proposed for studying the coupled tectonic and oceanographic history of the polar regions. Admitting the importance of identifying fundamental constraints for paleooceanography and climatic history of the high latitudes, and acknowledging the progress achieved so far in promoting IPY activities, the international earth science community has suggested developing the proposed approach into a major IPY endeavor - to examine the Polar Ocean Gateway Evolution (POGE). Such study would enable linking the geological history of the Polar Regions during the last 100 Ma and related

  10. Discovery of non-volcanic tremor and contribution to earth science by NIED Hi-net

    NASA Astrophysics Data System (ADS)

    Obara, K.

    2015-12-01

    Progress of seismic observation network brings breakthroughs in the earth science at each era. High sensitivity seismograph network (Hi-net) was constructed by National Research Institute for Earth Science and Disaster Prevention (NIED) as a national project in order to improve the detection capability of microearthquake after disastrous 1995 Kobe earthquake. Hi-net has been contributing to not only monitoring of seismicity but also producing many research results like as discoveries of non-volcanic tremor and other slow earthquakes. More important thing is that we have continued to make efforts to monitor all of data visually and effectively. The discovery of tremor in southwest Japan stimulated PGC researchers to search similar seismic signature in Cascadia because of a couple of common features in the tremor in Japan and slow slip event (SSE) they already discovered in Cascadia. At last, episodic tremor and slip (ETS) was discovered, then the SSE associated with tremor was also detected in Japan by using the tilting data measured by high-sensitivity accelerometer attached with the Hi-net. This coupling phenomena strengthened the connection between seismology and geodesy. Widely separated spectrum of tremor and SSE motivated us to search intervened phenomena, then we found very low frequency earthquake during ETS episode. These slow earthquakes obey a scaling law different from ordinary earthquake. This difference is very important to resolve the earthquake physics. Hi-net is quite useful for not only three-dimensional imaging of underground structure beneath the Japan Islands, but also resolving deep Earth interior by using teleseismic events or ambient noises and source rupture process of large earthquakes by using back-projection analysis as a remote array. Hi-net will continue to supply unexpected new discoveries. I expect that multiple installation of similar dense seismic array in the world will give us great opportunity to discover more important and

  11. Got the World on a Screen

    ERIC Educational Resources Information Center

    Adam, Anna; Mowers, Helen

    2007-01-01

    In this article, the authors discuss how Google Earth provides more than a geography lesson. For starters, Google Earth is perfect for teaching geography. Subscribe to Where in the World, for example, and have their students listen to podcast clues in a find-the-location game created by students worldwide. Clues relate to math (the population of…

  12. Discovering Mendeleev's Model.

    ERIC Educational Resources Information Center

    Sterling, Donna

    1996-01-01

    Presents an activity that introduces the historical developments in science that led to the discovery of the periodic table and lets students experience scientific discovery firsthand. Enables students to learn about patterns among the elements and experience how scientists analyze data to discover patterns and build models. (JRH)

  13. So What's a Toxic Waste Site? Kids for Saving Earth News. Action Program #16.

    ERIC Educational Resources Information Center

    Kids for Saving Earth Worldwide, Minneapolis, MN.

    This document provides ideas for activities on toxic waste sites. A toxic tour around the home accompanied by an adult is recommended to discover items that are dangerous for humans and the earth. Activities on understanding forests, pollution problems, recycling, and prevention of pollution for a healthy planet is included. (YDS)

  14. Spacewatch search for near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gehreis, Tom

    1991-01-01

    The objective of the Spacewatch Program is to develop new techniques for the discovery of near-earth asteroids and to prove the efficiency of the techniques. Extensive experience was obtained with the 0.91-m Spacewatch Telescope on Kitt Peak that now has the largest CCD detector in the world: a Tektronix 2048 x 2048 with 27-micron pixel size. During the past year, software and hardware for optimizing the discovery of near-earth asteroids were installed. As a result, automatic detection of objects that move with rates between 0.1 and 4 degrees per day has become routine since September 1990. Apparently, one or two near-earth asteroids are discovered per month, on average. The follow up is with astrometry over as long an arc as the geometry and faintness of the object allow, typically three months following the discovery observations. During the second half of 1990, replacing the 0.91-m mirror with a larger one, to increase the discovery rate, was considered. Studies and planning for this switch are proposed for funding during the coming year. It was also proposed that the Spacewatch Telescope be turned on the sky, instead of having the drive turned off, in order to increase the rate of discoveries by perhaps a factor of two.

  15. Near-Earth asteroids: Observer alert network and physical observations

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1992-01-01

    This project strives to obtain physical observations on newly discovered Near-Earth Objects (NEO's) in order to provide fundamental data needed to assess the resources available in the population. The goal is acquiring data on all objects brighter than magnitude V= 17.0. To accomplish this, an electronic mail alert and observer information service that informs observers around the world as to the status of physical observations on currently observable NEO's was established. Such data is also acquired ourselves through a cooperative program with European colleagues that uses telescopes on La Palma to obtain spectra of NEO's and through observations made from a local telescope on Tumamoc Hill. This latter telescope has the advantage that large amounts of observing time are available, so that whenever a new NEO's discovered, we can be assured of getting time to observe it.

  16. A Case for an Atmosphere on Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  17. Deep Phylogeny—How a Tree Can Help Characterize Early Life on Earth

    PubMed Central

    Gaucher, Eric A.; Kratzer, James T.; Randall, Ryan N.

    2010-01-01

    The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history. “You know, a tree is a tree.  How many more do you need to look at?” –Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966 PMID:20182607

  18. Deep phylogeny--how a tree can help characterize early life on Earth.

    PubMed

    Gaucher, Eric A; Kratzer, James T; Randall, Ryan N

    2010-01-01

    The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history."You know, a tree is a tree. How many more do you need to look at?"--Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966.

  19. Properties of Earth's temporarily-captured flybys

    NASA Astrophysics Data System (ADS)

    Fedorets, Grigori; Granvik, Mikael

    2014-11-01

    In addition to the Moon, a population of small temporarily-captured NEOs is predicted to orbit the Earth. The definition of a natural Earth satellite is that it is on an elliptic geocentric orbit within 0.03 au from the Earth. The population is further divided into temporarily-captured orbiters (TCOs, or minimoons, making at least one full revolution around the Earth in a coordinate system co-rotating with the Sun) and temporarily-captured flybys (TCFs) which fail to make a full revolution, but are temporarily on an elliptic orbit around the Earth. Only one minimoon has been discovered to date, but it is expected that next generation surveys will be able to detect these objects regularly.Granvik et al. (2012) performed an extensive analysis of the behaviour of these temporarily-captured objects. One of the main results was that at any given moment there is at least one 1-meter-diameter minimoon in orbit around the Earth. However, the results of Granvik et al. (2012) raised questions considering the NES population such as the bimodality of the capture duration distribution and a distinctive lack of test particles within Earth's Hill sphere, which requires investigating the statistical properties also of the TCF population.In this work we confirm the population characteristics for minimoons described by Granvik et al. (2012), and extend the analysis to TCFs. For the calculations we use a Bulirsch-Stoer integrator implemented in the OpenOrb software package (Granvik et al. 2009). We study, e.g., the capture statistics, residence-time distributions, and steady-state properties of TCFs. Our preliminary results indicate that TCFs may be suitable targets for asteroid-redirect missions. More detailed knowledge of the TCF population will also improve our understanding of the link between temporarily-captured objects and NEOs in general.References: Granvik et al. (2009) MPS 44(12), 1853-1861; Granvik et al. (2012) Icarus 218, 262-277.

  20. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  1. Successful Educational Leadership at High Performing Schools

    ERIC Educational Resources Information Center

    Wilson, Doris L.

    2011-01-01

    Successful educational leadership is not a random phenomenon, but an executed success which leaves clues whereby one can discover them. These clues lead to a desired destination--higher student achievement. Essential, non-negotiable elements have been identified. That is, each element has been systemically embedded at schools that have turned from…

  2. The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) List of Near-Earth Asteroids: Identifying Potential Targets for Future Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Barbee, B. W.; Mink, R. G.; Alberding, C. M.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs [1, 2], and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system [3]. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010 [4]. Detailed planning for such deep space exploration missions and identifying potential NEAs as targets for human spaceflight requires selecting objects from the ever growing list of newly discovered NEAs. Hence NASA developed and implemented the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Target Study (NHATS), which identifies potential candidate objects on the basis of defined dynamical trajectory performance constraints.

  3. A Knowledge Portal and Collaboration Environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.

    2008-12-01

    Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.

  4. A concept for providing warning of earth impacts by small asteroids

    NASA Astrophysics Data System (ADS)

    Dunham, D. W.; Reitsema, H. J.; Lu, E.; Arentz, R.; Linfield, R.; Chapman, C.; Farquhar, R.; Ledkov, A. A.; Eismont, N. A.; Chumachenko, E.

    2013-07-01

    The atmospheric detonation of a 17 m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, a 4 m-asteroid that was discovered 20h before it exploded over northeastern Sudan (Jenniskens, 2009). 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects (NEO's). The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point could find objects like the "Chelyabinsk" asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach. Such a system would have the astrometric accuracy needed to determine the time and impact zone for a NEO on a collision course. This would give at least several hours, and usually 2-4 days, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. A perhaps even more important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. A concept using a space telescope similar to that needed for an SE-L1 monitoring satellite, is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140 m and larger NEO's, including those in orbits mostly inside the Earth's orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit (Lu, 2013). Few modifications would be needed to the Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from

  5. Connections between the bulk composition, geodynamics and habitability of Earth

    NASA Astrophysics Data System (ADS)

    Jellinek, A. M.; Jackson, M. G.

    2015-08-01

    The bulk composition of the silicate part of Earth has long been linked to chondritic meteorites. Ordinary chondrites -- the most abundant meteorite class -- are thought to represent planetary building materials. However, a landmark discovery showed that the 142Nd/144Nd ratio of the accessible parts of the modern terrestrial mantle on Earth is greater than that of ordinary chondrites. If Earth was derived from these precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20 to 30 million years of accretion. This reservoir would host the equivalent of the modern continents' budget of radioactive heat-producing elements (uranium, thorium and potassium), yet has not been discovered. We argue that this reservoir could have been lost to space by ablation from early impactors. If so, Earth's radiogenic heat generation is between 18 and 45% lower than estimates based on a chondritic composition. Calculations of Earth's thermal history that incorporate such reduced radiogenic heating are consistent with a transition to the current plate tectonic mode in the past 2.5 billion years or so, a late onset of the dynamo and an evolving rate of volcanic outgassing consistent with Earth's long-term habitable climate. Reduced heat production compared with Venus and Mars could also explain aspects of the differences between the current climatic regimes of these planets and Earth.

  6. Origin and evolution of life on terrestrial planets.

    PubMed

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  7. Terraforming the Planets and Climate Change Mitigation on Earth

    NASA Astrophysics Data System (ADS)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  8. Near-Earth Asteroids 2006 RH120 And 2009 BD: Proxies For Maximally Accessible Objects?

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Chodas, Paul W.

    2015-01-01

    Near-Earth Object Human Space Flight Accessible Targets Study(NHATS): http://neo.jpl.nasa.govnhats/. As of mid-July 2015: 1,434 of the 12,778 currently known NEAs are more astrodynamically accessible than is Mars (requiring less Delta v and or less flight time for round-trip missions). Within those 1,434 NEAs: 605 NEAs can be visited round-trip for less Delta v (9 km/s) than the lunar surface. 51 NEAs can be visited round-trip for less v (5 km/s) than low circular lunar orbit. NEO population statistical models:Tens of thousands of NEAs greater than 100 m yet to be discovered. At least several million NEAs less than or equal to100 m in size (down to approximately 3 m in size) yet to be discovered. How accessible are the NEAs that haven't yet been discovered?

  9. Digital Earth - Young generation's comprehension and ideas

    NASA Astrophysics Data System (ADS)

    Bandrova, T.; Konecny, M.

    2014-02-01

    The authors are experienced in working with children and students in the field of early warning and crises management and cartography. All these topics are closely connected to Digital Earth (DE) ideas. On the basis of a questionnaire, the young generation's comprehension of DE concept is clarified. Students from different age groups (from 19 to 36) from different countries and with different social, cultural, economical and political backgrounds are asked to provide definition of DE and describe their basic ideas about meaning, methodology and applications of the concept. The questions aim to discover the young generation's comprehension of DE ideas. They partially cover the newest trends of DE development like social, cultural and environmental issues as well as the styles of new communications (Google Earth, Facebook, LinkedIn, etc.). In order to assure the future development of the DE science, it is important to take into account the young generation's expectations. Some aspects of DE development are considered in the Conclusions.

  10. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Lawrence, Lisa Ayers

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an “Educator's Companion” section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  11. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Ayers Lawrence, Lisa

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an "Educator's Companion" section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  12. Astronomers Discover Dizzying Spin of the Milky Way Galaxy’s “Halo”

    NASA Image and Video Library

    2017-12-08

    Our Milky Way galaxy and its small companions are surrounded by a giant halo of million-degree gas (seen in blue in this artists' rendition) that is only visible to X-ray telescopes in space. University of Michigan astronomers discovered that this massive hot halo spins in the same direction as the Milky Way disk and at a comparable speed. Read more: go.nasa.gov/29VgLdK Credit: NASA/CXC/M.Weiss/Ohio State/A Gupta et al NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Discovering Diabetes Complications: an Ontology Based Model.

    PubMed

    Daghistani, Tahani; Shammari, Riyad Al; Razzak, Muhammad Imran

    2015-12-01

    Diabetes is a serious disease that spread in the world dramatically. The diabetes patient has an average of risk to experience complications. Take advantage of recorded information to build ontology as information technology solution will help to predict patients who have average of risk level with certain complication. It is helpful to search and present patient's history regarding different risk factors. Discovering diabetes complications could be useful to prevent or delay the complications. We designed ontology based model, using adult diabetes patients' data, to discover the rules of diabetes with its complications in disease to disease relationship. Various rules between different risk factors of diabetes Patients and certain complications generated. Furthermore, new complications (diseases) might be discovered as new finding of this study, discovering diabetes complications could be useful to prevent or delay the complications. The system can identify the patients who are suffering from certain risk factors such as high body mass index (obesity) and starting controlling and maintaining plan.

  14. The Clue to Minimizing the Developer-User Divide by Good Practice in Earth and Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Messerotti, M.

    2009-04-01

    Earth and Space Science research, as well as many other disciplines, can nowadays benefit from advanced data handling techniques and tools capable to significantly relieve the scientist of the burden of data search, retrieval, visualization and manipulation, and to exploit the data information content. Some typical examples are Virtual Observatories (VO) specific to a variety of sub-disciplines but anyway interlinked, a feature intrinsic to the VO architecture, Virtual Globes as advanced 3D selection and visualization interfaces to distributed data repositories, and the Global Earth Observation System of Systems. These information systems are proving also effective in education and outreach activities as they are usable via web interfaces to give access to, to display and to download nonhomogeneous datasets in order to raise the awareness of the students and the public on the relevant disciplines. Despite of that, all of this effective machineries are still poorly used both by the scientific community and by the community active in education and outreach. All such infrastructures are designed and developed according to the state-of-the-art information and computer engineering techniques and are provided with top features such as ontology- and semantics-based data management, and advanced unified web-based interfaces. Anyway, a careful analysis of the issue mentioned above indicates a key aspect that play a major role, i.e., the inadequate interaction with the users' communities during the design, the development, the deployment and the test phases. Even the best technical tool can appear inadequate to the final user when it does not meet the user's requirements in terms of achievable goals and use friendliness. In this work, we consider the user-side features to be taken into account for the optimum exploitation of an information system in the framework of the interaction among the design engineers and the target communities towards the setting of a good practice

  15. Application of Ontologies for Big Earth Data

    NASA Astrophysics Data System (ADS)

    Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.

    2014-12-01

    Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know

  16. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  17. Observations give us CLUES to Cosmic Flows' origins

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny; Courtois, H.; Gottloeber, S.; Hoffman, Y.; Pomarede, D.; Tully, R. B.; Flows, Cosmic; CLUES

    2014-01-01

    In an era where the wealth of telescope-data and the development of computer superclusters keep increasing, the knowledge of Large Scale Structures' formation and evolution constitutes a tremendous challenge. Within this context the project Cosmic Flows has recently produced a catalog of peculiar velocities up to 150 Mpc. These velocities, obtained from direct distance measurements, are ideal markers of the underlying gravitational potential. They form a fantastic input to perform constrained simulations of the Local Universe within the CLUES project. A new method has recently been elaborated to achieve these simulations which prove to be excellent replicas of our neighborhood. The Wiener-Filter, the Reverse Zel'dovich Approximation and the Constrained Realization techniques are combined to build Initial Conditions. The resulting second generation of constrained simulations presents us the formidable history of the Great Attractor's and nearby supercluster's formation.

  18. Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Friedman, Louis

    2012-01-01

    This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into

  19. Contract management using cause-effect clues in service worksheets.

    PubMed

    Chen, J H

    1996-01-01

    Sophisticated equipment often needs intensive technical resources to maintain its system availability. Service contracts can be an easy channel to outside technical resources. Usually, a service contract purchaser only sees its cost instead of its maintenance quality. A system's needs, however, depend on the trade-off between the cost paid and the quality received. If a clinical engineer can actively interpret and integrate the cause-effect consequences on the compiled service worksheets, those clues can serve as a criterion to justify the quality and the cost-effectiveness of a service contract. Through the analysis of the service labor consumed, the justification of the parts replaced, and the assessment of the "fit" to system availability, this paper provides a cost-effective tool for equipment management.

  20. Geodetic Earth Observation

    NASA Astrophysics Data System (ADS)

    Rothacher, Markus

    2017-04-01

    Mankind is constantly threatened by a variety of natural disasters and global change phenomena. In order to be able to better predict and assess these catastrophic and disastrous events a continuous observation and monitoring of the causative Earth processes is a necessity. These processes may happen in time scales from extremely short (earthquakes, volcano eruptions, land slides, ...) to very long (melting of ice sheets, sea level change, plate tectonics, ...). Appropriate monitoring and early warning systems must allow, therefore, the detection and quantification of catastrophic events in (near) real-time on the one hand and the reliable identification of barely noticeable, but crucial long-term trends (e.g., sea level rise) on the other hand. The Global Geodetic Observing System (GGOS), established by the International Association of Geodesy (IAG) in 2003, already now contributes in a multitude of ways to meet this challenge, e.g., by providing a highly accurate and stable global reference frame, without which the measurement of a sea level rise of 2-3 mm/y would not be possible; by measuring displacements in near real-time and deformations over decades that offer valuable clues to plate tectonics, earthquake processes, tsunamis, volcanos, land slides, and glaciers dynamics; by observing the mass loss of ice sheets with gravity satellite missions; and by estimating essential variables such as the amount of water vapor in the troposphere relevant for weather predictions and climate and the content of free electrons in the ionosphere crucial for space weather.

  1. Discovering Our Stellar Neighborhood

    ERIC Educational Resources Information Center

    Black, David V.

    2014-01-01

    The stars closest to Earth are not particularly remarkable or exciting. They are average stars typical of the spiral arms of our Milky Way galaxy. In fact, until recently, most astronomy and Earth science textbooks ignored all but the largest of them to focus on distant, more exotic objects like red supergiants or black holes. The recent discovery…

  2. An international program to protect the earth from impact catastrophe - Initial steps

    NASA Technical Reports Server (NTRS)

    Morrison, David

    1992-01-01

    Risks posed by impacting objects of various sizes are analyzed using the Spaceguard Survey, the 1992 NASA report of International Near-Earth-Object (NEO) Detection workshop. The state-of-the-art technology makes it possible to discover and track nearly all earth-crossing asteroids and short-period comets large enough to threaten global catastrophe. To deal with this hazard a long-term telescopic search is required that reaches stellar magnitude 22 in order to achieve a nearly complete census of objects 1 km or larger. A program can be performed on the basis of an international network of six telescopes of 2-3 m aperture equipped with modern CCD detectors and automatic signal processing capability.

  3. Discovering Diabetes Complications: an Ontology Based Model

    PubMed Central

    Daghistani, Tahani; Shammari, Riyad Al; Razzak, Muhammad Imran

    2015-01-01

    Background: Diabetes is a serious disease that spread in the world dramatically. The diabetes patient has an average of risk to experience complications. Take advantage of recorded information to build ontology as information technology solution will help to predict patients who have average of risk level with certain complication. It is helpful to search and present patient’s history regarding different risk factors. Discovering diabetes complications could be useful to prevent or delay the complications. Method: We designed ontology based model, using adult diabetes patients’ data, to discover the rules of diabetes with its complications in disease to disease relationship. Result: Various rules between different risk factors of diabetes Patients and certain complications generated. Furthermore, new complications (diseases) might be discovered as new finding of this study, discovering diabetes complications could be useful to prevent or delay the complications. Conclusion: The system can identify the patients who are suffering from certain risk factors such as high body mass index (obesity) and starting controlling and maintaining plan. PMID:26862251

  4. Searching for Water Earths in the Near-infrared

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Kasting, J. F.; Williams, D. M.; Kane, T. J.; Philbrick, C. R.

    2011-09-01

    Over 500 extrasolar planets (exoplanets) have now been discovered, but only a handful are small enough that they might be rocky terrestrial planets like Venus, Earth, and Mars. Recently, it has been proposed that observations of variability in scattered light (both polarized and total flux) from such terrestrial-sized exoplanets could be used to determine if they possess large surface oceans, an important indicator of potential habitability. Observing such oceans at visible wavelengths would be difficult, however, in part because of obscuration by atmospheric scattering. Here, we investigate whether observations performed in the near-infrared (NIR), where Rayleigh scattering is reduced, could improve the detectability of exoplanet oceans. We model two wavebands of the NIR which are "window regions" for an Earth-like atmosphere: 1.55-1.75 μm and 2.1-2.3 μm. Our model confirms that obscuration in these bands from Rayleigh scattering is very low, but aerosols are generally the limiting factor throughout the wavelength range for Earth-like atmospheres. As a result, observations at NIR wavelengths are significantly better at detecting oceans than those at visible wavelengths only when aerosols are very thin by Earth standards. Clouds further dilute the ocean reflection signature. Hence, other techniques, e.g., time-resolved color photometry, may be more effective in the search for liquid water on exoplanet surfaces. Observing an exo-Earth at NIR wavelengths does open the possibility of detecting water vapor or other absorbers in the atmosphere, by comparing scattered light in window regions to that in absorption bands.

  5. Response to comments on "Can we name Earth's species before they go extinct?".

    PubMed

    Costello, Mark J; May, Robert M; Stork, Nigel E

    2013-07-19

    Mora et al. disputed that most species will be discovered before they go extinct, but not our main recommendations to accelerate species' discoveries. We show that our conclusions would be unaltered by discoveries of more microscopic species and reinforce our estimates of species description and extinction rates, that taxonomic effort has never been greater, and that there are 2 to 8 million species on Earth.

  6. DISCOVER AQ Research Plane Arrives

    NASA Image and Video Library

    2011-06-28

    James Crawford, principal investigator and scientist based at NASA’s Langley Research Center in Hampton, Va., talks about the DISCOVER-AQ project on board the P-3B NASA research aircraft at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)

  7. Structure and morphology of submarine slab slides: clues to origin and behavior

    USGS Publications Warehouse

    O'Leary, Dennis W.

    1991-01-01

    Geologic features suggest that some slab slides probably result from long-term strength degradation of weak layers deep in the homoclinal section. Time-dependent strain in clay-rich layers can create potential slide surfaces of low frictional strength. Competent layers are weak in tension and probably fragment in the first instance of, or even prior to, translation, and the allochthonous mass is readily transformed into a high-momentum debris flow. The structure and geomorphology of slab slides provide important clues to their origin and behavior. -from Author

  8. The Near-Earth Object Camera: A Next-Generation Minor Planet Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; Wright, Edward L.; Bauer, James; Grav, Tommy; Cutri, Roc M.; Masiero, Joseph; Nugent, Carolyn R.

    2015-11-01

    The Near-Earth Object Camera (NEOCam) is a next-generation asteroid and comet survey designed to discover, characterize, and track large numbers of minor planets using a 50 cm infrared telescope located at the Sun-Earth L1 Lagrange point. Proposed to NASA's Discovery program, NEOCam is designed to carry out a comprehensive inventory of the small bodies in the inner regions of our solar system. It address three themes: 1) quantify the potential hazard that near-Earth objects may pose to Earth; 2) study the origins and evolution of our solar system as revealed by its small body populations; and 3) identify the best destinations for future robotic and human exploration. With a dual channel infrared imager that observes at 4-5 and 6-10 micron bands simultaneously through the use of a beamsplitter, NEOCam enables measurements of asteroid diameters and thermal inertia. NEOCam complements existing and planned visible light surveys in terms of orbital element phase space and wavelengths, since albedos can be determined for objects with both visible and infrared flux measurements. NEOCam was awarded technology development funding in 2011 to mature the necessary megapixel infrared detectors.

  9. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  10. [Chemical submission, epidemiology and some clues for the diagnosis].

    PubMed

    Cruz-Landeira, Angelines; Quintela-Jorge, Oscar; López-Rivadulla, Manuel

    2008-12-06

    The use of chemical substances to control people is not a new event. Indeed, it has been done for centuries. This practice has recenttly acquired a new dimension because of its association with sexual assaults and other type of crimes. The frequency of the association of the use of chemical substances with sexual assaults is behind the term SQ (drug facilitated sexual assauit). The Spaniish term foir this practice, Sumisión Química, comes from the French one, Soumissión Chimique, and has a wide meaning. In this review, the epidemiology of SQ is revised and an analysis of its main involved elements, namely the chemical, the victim and the assailant, is done. Chief clinical signs and clues for the toxicological doiagnosis are also appproached.

  11. The cratering record in the inner solar system: Implications for earth

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters. The estimated size of the impactor purportedly responsible for the Cretaceous-Tertiary mass

  12. What clues are available for differential diagnosis of headaches in emergency settings?

    PubMed

    Mert, Ertan; Ozge, Aynur; Taşdelen, Bahar; Yilmaz, Arda; Bilgin, Nursel G

    2008-04-01

    The correct diagnosis of headache disorders in an emergency room is important for developing early management strategies and determining optimal emergency room activities. This prospective clinical based study was performed in order to determine demographic and clinical clues for differential diagnosis of primary and secondary headache disorders and also to obtain a classification plot for the emergency room practitioners. This study included 174 patients older than 15 years of age presenting in the emergency room with a chief complaint of headache. Definite headache diagnoses were made according to ICHD-II criteria. Classification and regression tree was used as new method for the statistical analysis of the differential diagnostic process. Our 174 patients with headache were diagnosed as basically primary (72.9%) and secondary (27.1%) headaches. Univariate analysis with cross tabs showed three important results. First, unilateral pain location caused 1.431-fold increase in the primary headache risk (p = 0.006). Second, having any triggers caused 1.440-fold increase in the primary headache risk (p = 0.001). Third, having associated co-morbid medical disorders caused 4.643-fold increase in the secondary headache risk (p < 0.001). It was concluded that the presence of comorbidity, the patient's age, the existence of trigger and relaxing factors, the pain in other body parts that accompanies headache and the quality of pain in terms of location and duration were all important clues for physicians in making an accurate differentiation between primary and secondary headaches.

  13. A Service Oriented Infrastructure for Earth Science exchange

    NASA Astrophysics Data System (ADS)

    Burnett, M.; Mitchell, A.

    2008-12-01

    NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and

  14. Asteroid 2014 OL339: yet another Earth quasi-satellite

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2014-12-01

    Our planet has one permanently bound satellite - the Moon - a likely large number of mini-moons or transient irregular natural satellites, and three temporary natural retrograde satellites or quasi-satellites. These quasi-moons - (164207) 2004 GU9, (277810) 2006 FV35 and 2013 LX28 - are unbound companions to the Earth. The orbital evolution of quasi-satellites may transform them into temporarily bound satellites of our planet. Here, we study the dynamical evolution of the recently discovered Aten asteroid 2014 OL339 to show that it is currently following a quasi-satellite orbit with respect to the Earth. This episode started at least about 775 yr ago and it will end 165 yr from now. The orbit of this object is quite chaotic and together with 164207 are the most unstable of the known Earth quasi-satellites. This group of minor bodies is, dynamically speaking, very heterogeneous but three of them exhibit Kozai-like dynamics: the argument of perihelion of 164207 oscillates around -90°, the one of 277810 librates around 180° and that of 2013 LX28 remains around 0°. Asteroid 2014 OL339 is not currently engaged in any Kozai-like dynamics.

  15. The Common Framework for Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Stryker, T. S.; Sherman, R.

    2016-12-01

    Each year, the Federal government records petabytes of data about our home planet. That massive amount of data in turn provides enormous benefits to society through weather reports, agricultural forecasts, air and water quality warnings, and countless other applications. To maximize the ease of transforming the data into useful information for research and for public services, the U.S. Group on Earth Observations released the first Common Framework for Earth Observation Data in March 2016. The Common Framework recommends practices for Federal agencies to adopt in order to improve the ability of all users to discover, access, and use Federal Earth observations data. The U.S. Government is committed to making data from civil Earth observation assets freely available to all users. Building on the Administration's commitment to promoting open data, open science, and open government, the Common Framework goes beyond removing financial barriers to data access, and attempts to minimize the technical impediments that limit data utility. While Earth observation systems typically collect data for a specific purpose, these data are often also useful in applications unforeseen during development of the systems. Managing and preserving these data with a common approach makes it easier for a wide range of users to find, evaluate, understand, and utilize the data, which in turn leads to the development of a wide range of innovative applications. The Common Framework provides Federal agencies with a recommended set of standards and practices to follow in order to achieve this goal. Federal agencies can follow these best practices as they develop new observing systems or modernize their existing collections of data. This presentation will give a brief on the context and content of the Common Framework, along with future directions for implementation and keeping its recommendations up-to-date with developing technology.

  16. IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikoma, M.; Hori, Y., E-mail: ikoma@eps.s.u-tokyo.ac.jp, E-mail: yasunori.hori@nao.ac.jp

    2012-07-01

    Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. Wemore » have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.« less

  17. A septet of Earth-sized planets

    NASA Astrophysics Data System (ADS)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  18. Glowing Hot Transiting Exoplanet Discovered

    NASA Astrophysics Data System (ADS)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  19. Helping Your Children Discover.

    ERIC Educational Resources Information Center

    Schroepfer, Dorothy; Yeaton, Charles

    Children discover many things about themselves, about the world around them, and about words and language, before they go to school. This booklet was prepared to guide parents in helping their children make such discoveries in preparation for the demands of learning in school. Activities are suggested for developing children's self-confidence,…

  20. Discovering interesting molecular substructures for molecular classification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2010-06-01

    Given a set of molecular structure data preclassified into a number of classes, the molecular classification problem is concerned with the discovering of interesting structural patterns in the data so that "unseen" molecules not originally in the dataset can be accurately classified. To tackle the problem, interesting molecular substructures have to be discovered and this is done typically by first representing molecular structures in molecular graphs, and then, using graph-mining algorithms to discover frequently occurring subgraphs in them. These subgraphs are then used to characterize different classes for molecular classification. While such an approach can be very effective, it should be noted that a substructure that occurs frequently in one class may also does occur in another. The discovering of frequent subgraphs for molecular classification may, therefore, not always be the most effective. In this paper, we propose a novel technique called mining interesting substructures in molecular data for classification (MISMOC) that can discover interesting frequent subgraphs not just for the characterization of a molecular class but also for the distinguishing of it from the others. Using a test statistic, MISMOC screens each frequent subgraph to determine if they are interesting. For those that are interesting, their degrees of interestingness are determined using an information-theoretic measure. When classifying an unseen molecule, its structure is then matched against the interesting subgraphs in each class and a total interestingness measure for the unseen molecule to be classified into a particular class is determined, which is based on the interestingness of each matched subgraphs. The performance of MISMOC is evaluated using both artificial and real datasets, and the results show that it can be an effective approach for molecular classification.

  1. Gigantic Wave Discovered in Perseus Galaxy Cluster

    NASA Image and Video Library

    2017-12-08

    Combining data from NASA's Chandra X-ray Observatory with radio observations and computer simulations, an international team of scientists has discovered a vast wave of hot gas in the nearby Perseus galaxy cluster. Spanning some 200,000 light-years, the wave is about twice the size of our own Milky Way galaxy. The researchers say the wave formed billions of years ago, after a small galaxy cluster grazed Perseus and caused its vast supply of gas to slosh around an enormous volume of space. "Perseus is one of the most massive nearby clusters and the brightest one in X-rays, so Chandra data provide us with unparalleled detail," said lead scientist Stephen Walker at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The wave we've identified is associated with the flyby of a smaller cluster, which shows that the merger activity that produced these giant structures is still ongoing." Read more at nasa.gov Credit: NASA's Goddard Space Flight Center/Stephen Walker href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. DISCOVER in Middle School: Identifying Gifted Minority Students

    ERIC Educational Resources Information Center

    Sarouphim, Ketty M.

    2004-01-01

    The purpose of this study was to examine the validity of the grades 6-8 version of DISCOVER, a performance-based assessment, and investigate its effectiveness in identifying gifted minority students. Questions examined the alignment between DISCOVER and Gardner's (1983) theory of multiple intelligences (MI) and assessed gender and ethnic…

  3. Discover: What Is Public Health?

    MedlinePlus

    ... Resources Contact About Membership Contact Discover What is Public Health? Public health protects and improves the health of individuals, families, communities, and populations, locally and globally. Public health is personal. Public health professionals focus on preventing ...

  4. Mitochondrial alterations in Parkinson's disease: new clues.

    PubMed

    Vila, Miquel; Ramonet, David; Perier, Celine

    2008-10-01

    Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). In particular, complex I impairment and subsequent oxidative stress have been widely demonstrated in experimental models of PD and in post-mortem PD samples. A recent wave of new studies is providing novel clues to the potential involvement of mitochondria in PD. In particular, (i) mitochondria-dependent programmed cell death pathways have been shown to be critical to PD-related dopaminergic neurodegeneration, (ii) many disease-causing proteins associated with familial forms of PD have been demonstrated to interact either directly or indirectly with mitochondria, (iii) aging-related mitochondrial changes, such as alterations in mitochondrial DNA, are increasingly being associated with PD, and (iv) anomalies in mitochondrial dynamics and intra-neuronal distribution are emerging as critical participants in the pathogenesis of PD. These new findings are revitalizing the field and reinforcing the potential role of mitochondria in the pathogenesis of PD. Whether a primary or secondary event, or part of a multi-factorial pathogenic process, mitochondrial dysfunction remains at the forefront of PD research and holds the promise as a potential molecular target for the development of new therapeutic strategies for this devastating, currently incurable, disease.

  5. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  6. Laser Prevention of Earth Impact Disasters

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.; Howell, Joe (Technical Monitor)

    2002-01-01

    Today we are seeing the geological data base constantly expanding as new evidence from past impacts with the Earth are discovered and investigated. It is now commonly believed that a hypervelocity impact occurring approximately 65 million years ago in the Yucatan Peninsula area was the disaster responsible for the extinction of almost 70% of the species of life on Earth including of course the dinosaurs. What is sobering is that we believe now that this was just one of several such disasters and that some of the others caused extinctions to even a greater extent. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important problem facing human civilization. While there are many global problems facing our planet including overpopulation, pollution, disease, and deforestation; none of these offer the potential of rapid, total extinction. Rapid is the operative word here in that many of the global problems we face may indeed, if not sufficiently addressed, pose a similar long-term threat. However, with the impact threat, a single, almost unpredictable event could lead to a chain reaction of disasters that would end everything mankind has worked to achieve over the centuries. Our chances of being hit are greater than our chance of winning the lottery. We now believe that while there are only about 2000-earth orbit crossing rocks great than 1 kilometer in diameter, there may be as many as 100,000 rocks in the 100 m size range. The 1 kilometer rocks are difficult to detect and even harder to track. The 100 m class ones are almost impossible to find with today's technology. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes. By using an intelligent combination of Earth and space based sensors coupled with high-energy laser stations in orbit, we can deflect rocks from striking the Earth. This is accomplished by irradiating the surface of the rock with sufficiently intense

  7. The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America

    USGS Publications Warehouse

    Atwater, Brian F.; Musumi-Rokkaku, Satoko; Satake, Kenji; Tsuji, Yoshinobu; Ueda, Kazue; Yamaguchi, David K.

    2005-09-15

    The Orphan Tsunami of 1700, now in its second edition, tells this scientific detective story through its North American and Japanese clues. The discoveries underpin many of today’s precautions against earthquakes and tsunamis in the Cascadia region of northwestern North America. The Japanese tsunami of March 2011 called attention to those hazards as a mirror image of the transpacific waves of January 1700.

  8. Reliability of mercury-in-silastic strain gauge plethysmography curve reading: influence of clinical clues and observer variation.

    PubMed

    Høyer, Christian; Pavar, Susanne; Pedersen, Begitte H; Biurrun Manresa, José A; Petersen, Lars J

    2013-08-01

    Mercury-in-silastic strain gauge pletysmography (SGP) is a well-established technique for blood flow and blood pressure measurements. The aim of this study was to examine (i) the possible influence of clinical clues, e.g. the presence of wounds and color changes during blood pressure measurements, and (ii) intra- and inter-observer variation of curve interpretation for segmental blood pressure measurements. A total of 204 patients with known or suspected peripheral arterial disease (PAD) were included in a diagnostic accuracy trial. Toe and ankle pressures were measured in both limbs, and primary observers analyzed a total of 804 pressure curve sets. The SGP curves were later reanalyzed separately by two observers blinded to clinical clues. Intra- and inter-observer agreement was quantified using Cohen's kappa and reliability was quantified using intra-class correlation coefficients, coefficients of variance, and Bland-Altman analysis. There was an overall agreement regarding patient diagnostic classification (PAD/not PAD) in 202/204 (99.0%) for intra-observer (κ = 0.969, p < 0.001), and 201/204 (98.5%) for inter-observer readings (κ = 0.953, p < 0.001). Reliability analysis showed excellent correlation between blinded versus non-blinded and inter-observer readings for determination of absolute segmental pressures (all intraclass correlation coefficients ≥ 0.984). The coefficient of variance for determination of absolute segmental blood pressure ranged from 2.9-3.4% for blinded/non-blinded data and from 3.8-5.0% for inter-observer data. This study shows a low inter-observer variation among experienced laboratory technicians for reading strain gauge curves. The low variation between blinded/non-blinded readings indicates that SGP measurements are minimally biased by clinical clues.

  9. Clues from hands/Part 2. Personal details about patients revealed by hand examination.

    PubMed

    Schilli, Karen Danielle; Stricklin, Sherea Monica; Payne, Katie Sue; Rader, Ryan Kent; Stoecker, William V

    2014-01-01

    This is the second part of a two-part article on personal details revealed by hand examination. Examining hands to determine daily activities was the focus of Part 1 in the July/August 2014 Missouri Medicine. Personal traits and preferences, including pets, nutrition and psychology are presented here. These articles serve as a guide for visual clues on the hands to discern a patient's daily activities and personal preference, thereby providing social information that may help establish rapport between patient and physician and may have medical significance.

  10. Hair shafts in trichoscopy: clues for diagnosis of hair and scalp diseases.

    PubMed

    Rudnicka, Lidia; Rakowska, Adriana; Kerzeja, Marta; Olszewska, Małgorzata

    2013-10-01

    Trichoscopy (hair and scalp dermoscopy) analyzes the structure and size of growing hair shafts, providing diagnostic clues for inherited and acquired causes of hair loss. Types of hair shaft abnormalities observed include exclamation mark hairs (alopecia areata, trichotillomania, chemotherapy-induced alopecia), Pohl-Pinkus constrictions (alopecia areata, chemotherapy-induced alopecia, blood loss, malnutrition), comma hairs (tinea capitis), corkscrew hairs (tinea capitis), coiled hairs (trichotillomania), flame hairs (trichotillomania), and tulip hairs (in trichotillomania, alopecia areata). Trichoscopy allows differential diagnosis of most genetic hair shaft disorders. This article proposes a classification of hair shaft abnormalities observed by trichoscopy. Copyright © 2013. Published by Elsevier Inc.

  11. The "Week Of Planet Earth" Italy Discovering Geosciences: a More Informed Society is a More Engaged Society.

    NASA Astrophysics Data System (ADS)

    Seno, S.; Coccioni, R.

    2016-12-01

    The "Week of Planet Earth" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Week of Planet Earth is growing year after year: the 2016 edition proposes 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.

  12. Discover: An Educational Opportunity for Women in Transition.

    ERIC Educational Resources Information Center

    Willson, Linda M.; And Others

    The Discover program is a program for women who want to become self-sufficient and self-supporting. Clients of the program may be separated or divorced, single mothers, or married to an underemployed spouse. The Discover program involves career exploration in the hope that its graduates will enter an occupational training program. The goals of the…

  13. A Governance Roadmap and Framework for EarthCube

    NASA Astrophysics Data System (ADS)

    Governance Steering Committee, EarthCube

    2013-04-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  14. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    -on activities and use significantly more multi-media and animation resources in the classroom. The “Discovering Plate Boundaries” jigsaw (Sawyer et al, this session) is a very useful example of how lessons were taught in Earth Science II. The USGS-developed “Tennis Ball Globe” or “Wegner Puzzle” can be used as appropriate Elicit/Engage activities. With only basic instructions, the students are first split into their specialty teams, then re-arranged into their specific plate teams. “Expert” explanation is limited to the very end of the lesson, and is most effective when tailored to the abilities of the class and particularly the interests the students had highlighted during their own discussions and presentations. Typical student comments as revealed on the daily evaluations were “It was very hard at first, but when I kept working with the maps, I found I really could figure it out myself,” “The coolest was where I figured out a new plate boundary might be forming,” and (in response to “How much did you learn today:”) “More than I wanted!”

  15. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  16. Teaching Chemistry Using From the Earth to the Moon

    NASA Astrophysics Data System (ADS)

    Goll, James G.; Mundinger, Stacie L.

    2003-03-01

    The space program and media based on it have provided fascinating examples that can be used to expore chemical principles. The HBO series From the Earth to the Moon and a documentary Moonshot provide examples for teaching chemical principles from the Apollo missions. A docking problem between two spacecrafts occurred during the Apollo 14 mission. This situation can be used to discuss the conditions necessary for a chemical reaction. A catastrophic fire on Apollo 1 can be used to illustrate the influence of different conditions on the rate of a reaction. Lightning striking Apollo 12 during liftoff showed the consequence of adding ions to solution. The landing of Apollo 12, which touched down only 535 feet from Surveyor 3, can be used to teach accuracy and absolute and relative error. The astronauts of Apollo 15 discovered a sample of the primordial lunar crust, and during Apollo 17, astronauts discovered orange dust on the moon. These discoveries can be used to demonstrate the importance of trained observation skills and analytical thinking.

  17. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    NASA Technical Reports Server (NTRS)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  18. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  19. Utility of the clue - From assessing the investigative contribution of forensic science to supporting the decision to use traces.

    PubMed

    Bitzer, Sonja; Albertini, Nicola; Lock, Eric; Ribaux, Olivier; Delémont, Olivier

    2015-12-01

    In an attempt to grasp the effectiveness of forensic science in the criminal justice process, a number of studies introduced some form of performance indicator. However, most of these indicators suffer from different weaknesses, from the definition of forensic science itself to problems of reliability and validity. We suggest the introduction of the concept of utility of the clue as an internal evaluation indicator of forensic science in the investigation. Utility of the clue is defined as added value of information, gained by the use of traces. This concept could be used to assess the contribution of the trace in the context of the case. By extension, a second application of this concept is suggested. By formalising and considering, a priori, the perceived utility of using traces, we introduce the notion of expected utility that could be used as decision factor when choosing which traces to use, once they have been collected at the crime scene or from an object in the laboratory. In a case-based approach, utility can be assessed in the light of the available information to evaluate the investigative contribution of forensic science. In the decision-making process, the projection or estimation of the utility of the clue is proposed to be a factor to take into account when triaging the set of traces. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Clues of subjective social status among young adults.

    PubMed

    Nielsen, François; Roos, J Micah; Combs, R M

    2015-07-01

    We investigate determinants of subjective social status (SSS) as measured by respondents placing themselves on a ten-rung ladder from least to most "money", "education" and "respected job", in a large sample of young adults. The most potent clues of SSS are proximate in the life course, reflecting educational attainment and current socioeconomic and job situation, rather than distal characteristics such as family background, although relatively distal High school GPA has a lingering effect. Additional analyses reveal that College selectivity has a substantial impact on SSS, net of other variables in the model; Currently married does not significantly contribute to SSS, but contrary to some expectations Number of children significantly lowers SSS. We find no evidence of greater "status borrowing" by women as associations of SSS with shared household characteristics (Household income, Household assets, Home ownership) do not differ by gender. Our findings for these young adults support the conclusion of earlier research that SSS reflects a "cognitive averaging" of standard dimensions of socioeconomic status. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Discovering system requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahill, A.T.; Bentz, B.; Dean, F.F.

    1996-07-01

    Cost and schedule overruns are often caused by poor requirements that are produced by people who do not understand the requirements process. This report provides a high-level overview of the system requirements process, explaining types, sources, and characteristics of good requirements. System requirements, however, are seldom stated by the customer. Therefore, this report shows ways to help you work with your customer to discover the system requirements. It also explains terminology commonly used in the requirements development field, such as verification, validation, technical performance measures, and the various design reviews.

  2. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  3. The Rotation Temperature of Methanol in Comet 103P/Hartley 2

    NASA Technical Reports Server (NTRS)

    Chuang, Yo-Ling; Kuan, Yi-Jehng; Milam, Stefanie; Charnley, Steven B.; Coulson, Iain M.

    2012-01-01

    Considered to be relics from Solar System formation, comets may provide the vital information connecting Solar Nebula and its parent molecular cloud. Study of chemical and physical properties of comets is thus important for our better understanding of the formation of Solar System. In addition, observing organic molecules in comets may provide clues fundamental to our knowledge on the formation of prebiotically important organic molecules in interstellar space, hence, may shed light on the origin of life on the early Earth. Comet 103PIHartley 2 was fIrst discovered in 1986 and had gone through apparitions in 1991, 1997, and 2004 with an orbital period of about 6 years, before its latest return in 2010. 2010 was also a special year for Comet 103PIHartley 2 because of the NASA EPOXI comet-flyby mission.

  4. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  5. EVEREST: Creating a Virtual Research Environment for Earth Science

    NASA Astrophysics Data System (ADS)

    Glaves, H.

    2017-12-01

    There is an increasing trend towards researchers working together using common resources whilst being geographically dispersed. The EVER-EST project is developing a range of both generic and domain specific technologies, tailored to the needs of Earth Science (ES) communities, to create a virtual research environment (VRE) that supports this type of dynamic collaborative research. The EVER-EST VRE provides a suite of services to overcome the existing barriers to sharing of Earth Science data and information allowing researchers to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, and with other domains beyond the Earth Sciences. Researchers will be able to seamlessly manage both the data and the scientific methods applied in their observations and modelling that lead to results that need to be attributable, validated and shared both within their communities and more widely in the form of scholarly communications.To ensure that the EVER-EST VRE meets the specific needs of the Earth Science domain, it is being developed and validated in consultation with four pre-selected virtual research communities (VRC) that include ocean observing, natural hazards, land monitoring and volcanic risk management. The requirements of these individual VRCs for data, software, best practice and community interaction are used to customise the VRE platform This user-centric approach allows the EVER-EST infrastructure to be assessed in terms of its capability to satisfy the heterogeneous needs of Earth Science communities for more effective collaboration, greater efficiency and increasingly innovative research. EVER-EST is a three year project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907.

  6. Threat Assessment of Small Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Ryan, W.

    2010-09-01

    Researchers at the Magdalena Ridge Observatory’s (MRO) 2.4-meter telescope facility are in their third year of a program to derive physical characterization information on some of the smallest (less than 200 meters in diameter) objects in the Near-Earth Object (NEO) population. Tiny comets and asteroids are being discovered by survey programs on a routine basis, so targets available for study have been abundant. Our primary objective is to derive rotation rates for these objects, and to place the results in context with previous data to enhance our understanding of asteroid impact physics and better address the threat from NEOs having Earth-crossing orbits. Rotation rate can be used to infer internal structure, which is a physical property important to assessing the energy needed for object disruption or other forms of hazard mitigation. Since the existing database of rotational data derived from lightcurves of objects in this small size regime is sparse, collection of additional observational data is beneficial. Acquiring more knowledge about the physical nature of NEOs not only contributes to general scientific pursuits, but is important to planetary defense.

  7. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    NASA Technical Reports Server (NTRS)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  8. DISCOVER-AQ: An Overview and Initial Comparisons of NO2 with OMI Observations

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth; Crawford, James; Krotkov, Nickolay; Bucsela, Eric; Lamsal, Lok; Celarier, Edward; Herman, Jay; Janz, Scott; Cohen, Ron; Weinheimer, Andrew

    2011-01-01

    The first deployment of the Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. Two aircraft (a P-3B for in-situ sampling and a King Air for remote sensing) were used along with an extensive array of surface-based in-situ and remote sensing instrumentation. Fourteen flight days were accomplished by both aircraft and over 250 profiles of trace gases and aerosols were performed by the P-3B over surface air quality monitoring stations, which were specially outfitted with sunphotometers and Pandora UV/Vis spectrometers. The King Air flew with the High Spectral Resolution Lidar for aerosols and the ACAM UV/Vis spectrometer for trace gases. This suite of observations allows linkage of surface air quality with the vertical distributions of gases and aerosols, with remotely-sensed column amounts observed from the surface and from the King Air, and with satellite observations from Aura (OMI and TES), GOME-2, MODIS and GOES. The DISCOVER-AQ data will allow determination of under what conditions satellite retrievals are indicative of surface air quality, and they will be useful in planning new satellites. In addition to an overview of the project, a preliminary comparison of tropospheric column NO2 densities from the integration of in-situ P-3B observations, from the Pandoras and ACAM, and from the new Goddard OMI NO2 algorithm will be presented.

  9. The hazard of near-Earth asteroid impacts on earth

    NASA Astrophysics Data System (ADS)

    Chapman, Clark R.

    2004-05-01

    Near-Earth asteroids (NEAs) have struck the Earth throughout its existence. During epochs when life was gaining a foothold ˜4 Ga, the impact rate was thousands of times what it is today. Even during the Phanerozoic, the numbers of NEAs guarantee that there were other impacts, possibly larger than the Chicxulub event, which was responsible for the Cretaceous-Tertiary extinctions. Astronomers have found over 2500 NEAs of all sizes, including well over half of the estimated 1100 NEAs >1 km diameter. NEAs are mostly collisional fragments from the inner half of the asteroid belt and range in composition from porous, carbonaceous-chondrite-like to metallic. Nearly one-fifth of them have satellites or are double bodies. When the international telescopic Spaceguard Survey, which has a goal of discovering 90% of NEAs >1 km diameter, is completed, perhaps as early as 2008, nearly half of the remaining impact hazard will be from land or ocean impacts by bodies 70-600 m diameter. (Comets are expected to contribute only about 1% of the total risk.) The consequences of impacts for civilization are potentially enormous, but impacts are so rare that worldwide mortality from impacts will have dropped to only about 150 per year (averaged over very long durations) after the Spaceguard goal has, presumably, ruled out near-term impacts by 90% of the most dangerous ones; that is, in the mid-range between very serious causes of death (disease, auto accidents) and minor but frightening ones (like shark attacks). Differences in perception concerning this rather newly recognized hazard dominate evaluation of its significance. The most likely type of impact events we face are hyped or misinterpreted predicted impacts or near-misses involving small NEAs.

  10. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  11. Near-Earth Asteroid Follow-up Observations from the Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Linder, Tyler R.

    2017-10-01

    The Astronomical Research Institute (ARI) operates eight telescopes ranging in size from 0.41m to 1.3m. These telescopes are dedicated to the astrometric recovery and arc-extension of Near-Earth Asteroids (NEAs). Four telescopes are located outside Westfield, Illinois, USA (0.61, 0.76, 0.81, 1.3m) while the other four telescopes are at Cerro Tololo Inter-American Observatory (0.41, 0.61, 0.61, 1.0m).The increase in NEA discovery from PanSTARRS and Catalina Sky Survey continues to escalate the nightly demand for newly discovered NEA follow-up. ARI has developed a new protocol which allows the discovery rate to increase fivefold without the need for additional telescopes.ARI’s new secondary priority is to provide spectra and spectrophotometry observations of the brightest newly discovered NEAs. Proposed methods and procedures will be discussed so that other NEA researchers may have access to the results without a peer-reviewed delay.

  12. The Large Synoptic Survey Telescope: Projected Near-Earth Object Discovery Performance

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Veres, Peter

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is a large-aperture, wide-field survey that has the potential to detect millions of asteroids. LSST is under construction with survey operations slated to begin in 2022. We describe an independent study to assess the performance of LSST for detecting and cataloging near-Earth objects (NEOs). A significant component of the study will be to assess the survey's ability to link observations of a single object from among the large numbers of false detections and detections of other objects. We also will explore the survey's basic performance in terms of fraction of NEOs discovered and cataloged, both for the planned baseline survey, but also for enhanced surveys that are more carefully tuned for NEO search, generally at the expense of other science drivers. Preliminary results indicate that with successful linkage under the current baseline survey LSST would discover approximately 65% of NEOs with absolute magnitude H is less than 22, which corresponds approximately to 140m diameter.

  13. A Governance Roadmap and Framework for EarthCube

    NASA Astrophysics Data System (ADS)

    Allison, M. L.

    2012-12-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  14. Microbial Biogeochemistry of Seafloor Fluid Flow on Earth and Implications for Biological Potential on Enceladus

    NASA Astrophysics Data System (ADS)

    Huber, J. A.

    2017-12-01

    The interaction between liquid water and the rocky seafloor provides high potential for release of chemical energy, thus seafloor fluid flow is viewed an essential driver of subseafloor microbial life in Earth's oceans. Given predictions that Enceladus hosts a global-scale ocean underlain by a rocky seafloor, and new data suggesting on-going hydrothermal activity on Enceladus based on detection of hydrogen by Cassini, it is timely to investigate those subseafloor Earth analogs that may be informative when developing future missions to and interpreting mission data from Enceladus. Over the last 35 years, the breadth of seafloor fluid flow regimes that have been discovered and studied on Earth has expanded to include a wide spectrum of geological settings, geochemical characteristics, and microorganisms, including environments that were not previously known to exist, e.g. hydrogen-rich mafic systems, ridge-flank oxic systems, etc. This presentation will provide an overview of the latest and most exciting findings on the microbial biogeochemistry of seafloor fluid flow in Earth's oceans and place these findings in the context of biological potential for Enceladus.

  15. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone.

    PubMed

    Heller, René; Pudritz, Ralph E

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  16. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone

    NASA Astrophysics Data System (ADS)

    Heller, René; Pudritz, Ralph E.

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 105 K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 104) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  17. Delving into the deep Earth: Using comics as a learning tool

    NASA Astrophysics Data System (ADS)

    Lee, K. K.; Wallenta, A.

    2011-12-01

    The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. As part of an NSF CAREER-funded outreach program, we use this medium to introduce the extreme conditions reproduced in our experiments and used to "probe" the deep interior of the Earth. The exploration of such inaccessible regions is readily disseminated to the public through such a graphical approach. The comic books' contents are provided by the PI, while the design and layout is produced by a professional illustrator and certified Connecticut public school teacher. The comic books are aimed at 5th and 8th grade students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum. The NHPS has an enrollment of nearly 21,000 students K-12, of which 89% are minorities. In order to comply with NHPS, a review process will be followed that will incorporate a panel of NHPS science teachers and administration to check for pedagogy.

  18. A Potpourri of Near-Earth Asteroid Observations

    NASA Astrophysics Data System (ADS)

    Tholen, David J.; Ramanjooloo, Yudish; Fohring, Dora; Hung, Denise; Micheli, Marco

    2016-10-01

    Ongoing astrometric follow-up of near-Earth asteroids has yielded a variety of interesting results. In the limited space of a DPS abstract, three recently observed objects are worth mentioning.2008 HU4 is among the most accessible asteroids for a human space flight mission. We successfully recovered this object at a second opposition on 2016 April 26 despite the large ephemeris uncertainty. The small size of this asteroid makes it relatively easy to detect the departure from purely gravitational motion caused by solar radiation pressure, which can be used to estimate the density of the object. At the time of this writing, the object remains bright enough for additional observations, so we expect to improve on our five-sigma detection of a relatively low density (roughly similar to water, indicating a high porosity) between now and the DPS meeting.2016 HO3 is a newly-discovered co-orbital with the Earth. Our 2016 May 10-11 observations extended the observational arc by enough to permit backward extrapolation that led to prediscovery observations by Pan-STARRS in 2015, and then annually back to 2011, and ultimately to Sloan DSS observations in 2004. The 12-year arc is sufficient to examine the dynamical behavior of the object, which shows how it will remain in the vicinity of the Earth for decades, if not centuries. Our observations also revealed a rapid rotation (less than a half hour) with large brightness variation (in excess of 1 magnitude), which helps to explain why this object eluded discovery until this year.2011 YV62 is among the top 20 largest near-Earth asteroids with Earth impact solutions (in 2078 and 2080). At the time of this writing, the object is flagged as being "lost", but a re-examination of observations made in 2013 and 2015 finally yielded a successful recovery at a magnitude fainter than 24. We expect the new observations to eliminate the impact possibilities. The story behind this difficult recovery is fascinating.

  19. Predictive value of the "clue cells" investigation and the amine volatilization test in vaginal infections caused by Gardnerella vaginalis.

    PubMed Central

    Marquez-Davila, G; Martinez-Barreda, C E

    1985-01-01

    Although still controversial, an etiologic role of Gardnerella vaginalis is imputed in vaginitis. Besides isolation of the organism by culture, two alternative diagnostic procedures have been claimed to be useful: the investigation of "clue cells" in clinical specimens and the amine volatilization test or fishy odor perception in genital secretions. Herein we report on the findings of the simultaneous use of G. vaginalis isolation, the clue cell test and amine volatilization perception in specimens from 1,263 consecutive female patients referred to our clinic. Our results show that the simultaneous use of both alternative tests is very useful as a screening procedure. A negative result of both tests predicts a negative culture result in 99% of the cases. However, a positive result of either or both should be considered as an indication to proceed to culture and not as diagnostic of infection. PMID:3878365

  20. A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-07-01

    Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earth's co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. These objects are not primordial and may have originated within the Venus-Earth-Mars region or in the main-belt, then transition to Amor-class asteroid before entering Earth's co-orbital region. Objects in this group could be responsible for the production of Earth's transient irregular natural satellites.

  1. Technology Required to Image and Characterize an exo-Earth from Space

    NASA Astrophysics Data System (ADS)

    Crill, Brendan

    2018-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of Sun-like stars with future space observatories. Here we present the 2018 ExEP Technology Gap List, an annual update to ExEP's list of technologies, to be advanced in the next 1-5 years. Key technology gaps are starlight suppression with a coronagraph (internal occulters) or a starshade (external occulters), enabling imaging at extreme contrast (more than 10 billion) by blocking on-axis starlight, while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast coronagraph in space. A starshade has never been used in a space mission and requires new capabilities in precision deployment of large structures, starlight suppression, and in formation sensing and control. We review the current state-of-the-art in coronagraph and starshade technology and the performance level that must be achieved to discover and characterize Earth analogs.

  2. Equatorial anisotropy in the inner part of Earth's inner core from autocorrelation of earthquake coda

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Xiaodong; Xia, Han H.

    2015-03-01

    The Earth's solid inner core exhibits strong anisotropy, with wave velocity dependent on the direction of propagation due to the preferential alignment of iron crystals. Variations in the anisotropic structure, laterally and with depth, provide markers for measuring inner-core rotation and offer clues into the formation and dynamics of the inner core. Previous anisotropy models of the inner core have assumed a cylindrical anisotropy in which the symmetry axis is parallel to the Earth's spin axis. An inner part of the inner core with a distinct form of anisotropy has been suggested, but there is considerable uncertainty regarding its existence and characteristics. Here we analyse the autocorrelation of earthquake coda measured by global broadband seismic arrays between 1992 and 2012, and find that the differential travel times of two types of core-penetrating waves vary at low latitudes by up to 10 s. Our findings are consistent with seismic anisotropy in the innermost inner core that has a fast axis near the equatorial plane through Central America and Southeast Asia, in contrast to the north-south alignment of anisotropy in the outer inner core. The different orientations and forms of anisotropy may represent a shift in the evolution of the inner core.

  3. A temperate rocky super-Earth transiting a nearby cool star

    NASA Astrophysics Data System (ADS)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; Berta-Thompson, Zachory K.; Newton, Elisabeth R.; Rodriguez, Joseph E.; Winters, Jennifer G.; Tan, Thiam-Guan; Almenara, Jose-Manuel; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C.; Udry, Stephane; Wünsche, Anaël; Esquerdo, Gilbert A.; Latham, David W.; Dressing, Courtney D.

    2017-04-01

    M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.

  4. A temperate rocky super-Earth transiting a nearby cool star.

    PubMed

    Dittmann, Jason A; Irwin, Jonathan M; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D; Berta-Thompson, Zachory K; Newton, Elisabeth R; Rodriguez, Joseph E; Winters, Jennifer G; Tan, Thiam-Guan; Almenara, Jose-Manuel; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C; Udry, Stephane; Wünsche, Anaël; Esquerdo, Gilbert A; Latham, David W; Dressing, Courtney D

    2017-04-19

    M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.

  5. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  6. Chandra Discovers Cosmic Cannonball

    NASA Astrophysics Data System (ADS)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  7. Properties and evolution of near-Earth-object families created by tidal disruption at the Earth

    NASA Astrophysics Data System (ADS)

    Schunova, E.; Walsh, K.; Granvik, M.; Jedicke, R.; Wainscoat, R.; Haghighipour, N.

    2014-07-01

    We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent 'S-class' disruption events and create a 'string of pearls' configuration of the resulting fragments after their reaccummulation into gravitationally bound components [3]. We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is Δ H ˜ 1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10^{(0.55±0.04) H}, for the fragments in the S-class families is steeper than the slope of the NEO population [2] in the same size range. The families remain coherent as statistically significant clusters of orbits within the NEO population for an average of barτ_c = (14.7±0.6)×10^3 years after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space -- they are detectable with the techniques developed by [1] and [4] for an average duration (barτ_{det}) ranging from about 2,000 to about 12,000 years for progenitors in the absolute magnitude (H_p) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is H_{p,max} = 20 (about 350 m diameter). The short detectability lifetime explains why zero NEO families have been discovered to-date. Nonetheless, every tidal disruption event of a progenitor with diameter greater than 0.5 km is capable of producing several million fragments in the 1 m to 10 m diameter range that can contribute to temporary local density enhancements of small NEOs in Earth's vicinity. These objects may be

  8. Newly Discovered Clouds Found Floating High Above Milky Way

    NASA Astrophysics Data System (ADS)

    2002-10-01

    light-years in diameter. "These objects were just below the ability of the older telescopes to detect," said Lockman, "but I looked with the GBT, and they popped right out." Lockman's results will be published in the Astrophysical Journal Letters. The clouds were discovered about 15,000 light-years from Earth toward the center of our Galaxy, and about 5,000 light-years above the Galaxy's plane. One of the most compelling facts revealed by the GBT is that the clouds are coupled dynamically to the disk of the Galaxy; that is, they follow along with the rotation of the rest of the Milky Way. Material from other sources crashing into the Milky Way would have different velocities and also appear quite different. "These are home grown objects, and not interlopers from outside our own Galaxy," said Lockman. Although the origin of these newly discovered clouds is not yet known, one mechanism to explain how this gas could be lifted into the halo is through supernova explosions. When a massive star reaches the end of its life it erupts in a cataclysm that produces a burst of cosmic rays and an enormous expanding bubble of gas at a temperature of several million degrees Celsius. Over time, this hot gas can flow outward into the Milky Way's halo. The question remains, however, what happens to this gas once it's ejected into the halo. One possibility is that it leaves the Galaxy as a wind, never to return. Some astronomers predict, however, that as the gas slowly cools it would condense into hydrogen clouds, eventually falling like raindrops back into the Milky Way, and forming what is referred to as a galactic fountain. "If the clouds were formed by material ejected from the Galactic plane into the halo," Lockman said, "then it's possible that they are now falling back onto the Galaxy. This would then require a continuing flow of new material from supernova explosions into the halo to replenish the hydrogen gas that has rained back into the disk." The researcher comments that

  9. Design of Round-trip Trajectories to Near-Earth Asteroids Utilizing a Lunar Flyby

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 7,700 known Near-Earth Asteroids (NEAs), and more are being discovered on a continual basis. Current models predict that the actual order of magnitude of the NEA population may range from 10' to 10 6 . The close proximity of NEA orbits to Earth's orbit makes it possible to design short duration round-trip trajectories to NEAs under the proper conditions. In previous work, 59 potentially accessible NEAs were identified for missions that depart Earth between the years 2016 and 2050 and have round-trip flight times of a year or less. We now present a new method for designing round-trip trajectories to NEAs in which the Moon's gravity aids the outbound trajectory via a lunar flyby. In some cases this gravity assist can reduce the overall spacecraft propellant required for the mission, which in turn can allow NEAs to be reached which would otherwise be inaccessible to a given mission architecture. Results are presented for a specific case study on NEA 2003 LN6.

  10. Discover Assessment and Restoration Data | NOAA Gulf Spill Restoration

    Science.gov Websites

    Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story Archive Home Discover Assessment and Restoration Data Discover Assessment and Restoration Data During the course of the damage assessment, we collected a large amount of data to document the location and extent

  11. Inner solar system material discovered in the Oort cloud.

    PubMed

    Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J

    2016-04-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.

  12. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  13. Accretion of Interplanetary Dust Particles by the Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Dermott, Stanley F.

    1998-10-01

    Analyses of hypervelocity micrometeoroid impact craters preserved in lunar material and on the panels of the Long Duration Exposure Facility (LDEF) indicate that each year Earth accretes about 3 × 107kg of interplanetary dust particles (IDPs) from the zodiacal cloud (E. Grünet al.1985,Astron. Astrophys.286, 915-924; S. G. Love and D. E. Brownlee, 1993,Science262, 550-553). The size distributions of these lunar and LDEF craters indicate that the mass distribution of IDPs encountering Earth peaks at about 200 μm diameter. This particle-size cutoff may be indicative of collisionally evolved asteroidal dust, where the collisional lifetime of dust particles larger than ∼100 μm is shorter than the time required for their orbits to decay under Poynting-Robertson light drag from the asteroid belt to Earth (B. Å. S. Gustafson, 1994,Annu. Rev. Earth Planet. Sci.22, 553-595). Additionally, analyses of IDPs collected from the stratosphere by high-flying aircraft reveal a diversity in chemical composition which is even narrower than that of the meteorites (G. J. Flynn, 1995,Nature376, 114). Together these findings suggest that IDPs present in the atmosphere and our collections may originate from very limited sources in the asteroid belt. The most abundant sources of dust to be unambiguously linked to the zodiacal cloud are the three asteroid families Eos, Themis, and Koronis-the progenitors of the ten-degree and low-latitude dust bands discovered by the Infrared Astronomical Satellite in 1984. We use direct numerical integration of the full equations of motion to model the orbital evolution of dust particles from these three families as well as from other nonfamily asteroids and from the population of known short period comets. Our simulations include gravitational perturbations from the planets, radiation pressure, and solar wind drag. We find that a large, and perhaps the dominant, fraction of the IDPs accreted by Earth comes from the asteroid families Eos, Themis, and

  14. A New Clue in the Mystery of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    .Bassa and collaborators also found that the properties of the host galaxy are consistent with those of a type of galaxy known as extreme emission line galaxies. This provides a tantalizing clue, as these galaxies are known to host both hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts.Linking to the CauseWhat can this tell us about the cause of FRB 121102? The fact that this burst repeats already eliminates cataclysmic events as the origin. But the projected location of FRB 121102 within a star-forming region especially in a host galaxy thats similar to those typically hosting superluminous supernovae and long gamma-ray bursts strongly suggests theres a relation between these events.Artists impression of a gamma-ray burst in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]The authors propose that this observed coincidence, supported by models of magnetized neutron star birth, indicate an evolutionary link between fast radio bursts and neutron stars. In this picture, neutron stars or magnetars are born as long gamma-ray bursts or hydrogen-poor supernovae, and then evolve into fast-radio-burst-emitting sources.This picture may finally explain the cause of fast radio bursts but Bassa and collaborators caution that its also possible that this model applies only to FRB 121102. Since FRB 121102 is unique in being the only burst discovered to repeat, its cause may also be unique. The authors suggest that targeted searches of star-forming regions in galaxies similar to FRB 121102s host may reveal other repeating burst candidates, helping us to unravel the ongoing mystery of fast radio bursts.CitationC. G. Bassa et al 2017 ApJL 843 L8. doi:10.3847/2041-8213/aa7a0c

  15. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  16. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  17. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Gaffey, M. J.; Landis, R. R.; Jarvis, K. S.

    2005-01-01

    It is now thought that approximately 16% of all asteroids among the near-Earth population may be binary objects. Several independent lines of evidence, such as the presence of doublet craters on the Earth and Moon [1, 2], complex lightcurves of near-Earth objects exhibiting mutual events [3], and radar images of near-Earth asteroids revealing distinct primary and secondary objects, have supported this conclusion [4]. To date at least 23 near-Earth objects have been discovered as binary systems with expectations that many more have yet to be identified or recognized. Little is known about the physical characteristics of binary objects except that they seem to have fairly rapid rotation rates, generally have primaries in the approx. 1 km diameter range with smaller secondaries on the order of a few hundred meters, and apart from a few exceptions, are in synchronous orbits [4, 5]. Previously only two of these binary near-Earth asteroids (1998 ST27 and 2003 YT1) have been characterized in terms of detailed mineralogical investigations [6, 7]. Such investigations are required to fully understand the formation mechanisms of these binary objects and their possible source regions. In addition, detailed knowledge of these objects may play an important role for planning future spacecraft missions and for the development of impact mitigation strategies. The work presented here represents a continued effort to characterize this particular sub-group of the near- Earth asteroid population.

  18. BingEO: Enable Distributed Earth Observation Data for Environmental Research

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yang, C.; Xu, Y.

    2010-12-01

    Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data

  19. Seismological evidence for a localized mushy zone at the Earth's inner core boundary.

    PubMed

    Tian, Dongdong; Wen, Lianxing

    2017-08-01

    Although existence of a mushy zone in the Earth's inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth's inner core boundary, here we present seismic evidence for a localized 4-8 km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a localized mushy zone is found to be surrounded by a sharp inner core boundary nearby. These seismic results suggest that, in the current thermo-compositional state of the Earth's core, the outer core composition is close to eutectic in most regions resulting in a sharp inner core boundary, but deviation from the eutectic composition exists in some localized regions resulting in a mushy zone with a thickness of 4-8 km.The existence of a mushy zone in the Earth's inner core has been suggested, but has remained unproven. Here, the authors have discovered a 4-8 km thick mushy zone at the inner core boundary beneath the Okhotsk Sea, indicating that there may be more localized mushy zones at the inner core boundary.

  20. Earth Through Time as an Exoplanet: Lessons for Exoplanet Astrobiology (Invited)

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Meadows, V. S.

    2013-12-01

    The Archean Earth represents the most alien biosphere for which we have data. Oxygenic photosynthesis was not the dominant primary production metabolism at the surface, as it is on modern-day Earth. Due to this, the atmospheric composition, climate, and ocean chemistry of the planet were all dramatically different than they are on today's planet. These dramatic differences are instructive on biology in a planetary context. Furthermore, they provide an example of a "working inhabited planet" that would have different biosignatures. We can thus use the lessons from the rock record to inform us about the possibilities for and improve our ability to search for life. When we do that, we discover that by looking strictly for the "traditional" biosignatures from methane, oxygen, and ozone, we may conclude dead planets to be alive and living planets to be dead. In this talk, we will discuss these issues and their implications for future space-based observatories designed to search for life beyond the solar system.

  1. Hereditary inclusion-body myopathy: clues on pathogenesis and possible therapy.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Mirabella, Massimiliano

    2009-09-01

    Hereditary inclusion-body myopathy (h-IBM), or distal myopathy with rimmed vacuoles (DMRV), is an autosomal recessive disorder with onset in early adult life and a progressive course leading to severe disability. h-IBM/DMRV is due to mutations of a gene (GNE) that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. Despite the identification of the causative gene defect, it has not been unambiguously clarified how GNE gene mutations impair muscle metabolism. Although numerous studies have indicated a key role of hyposialylation of glycoproteins in h-IBM/DMRV pathogenesis, others have demonstrated new and unpredicted functions of the GNE gene, outside the sialic acid biosynthetic pathway, that may also be relevant. This review illustrates the clinical and pathologic characteristics of h-IBM/DMRV and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of this disorder.

  2. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  3. Secondary Dystonia-Clinical Clues and Syndromic Associations

    PubMed Central

    Schneider, Susanne A; Bhatia, Kailash P

    2009-01-01

    Background: Dystonia is a hyperkinetic movement disorder defined by involuntary sustained muscle spasms and unusual postures. Etiologically, dystonic syndromes can be broadly divided into primary and secondary forms, dystonia-plus syndromes and heredodegenerative forms. In particular, diagnosis of secondary dystonic syndromes can be challenging in view of the variety of causes. Purpose: The purpose of this article is to highlight some clinical clues and syndromic associations as well as investigational findings which may be helpful in the approach to a patient with suspected secondary dystonia. Methods: We outline characteristic clinical and neuroimaging findings which may be directive in the diagnostic process of dystonia patients and facilitate making the correct diagnosis, thus allowing initiating the best treatment. Results: Secondary causes of dystonia include, among others, strategic brain lesions of various origins, metabolic disease, neurodegenerative conditions, and previous exposure to drugs or toxins. Presence of clinical signs including prominent oromandibular involvement, eye movement disorders, retinitis pigmentosa, deafness, peripheral neuropathy, parkinsonism or progressive dementia should alert the clinician to consider a secondary cause. Strategic lesions within the basal ganglia, but also within the brainstem, cerebellum or cortical areas may underlie dystonia and should thus be excluded. Conclusions: When thorough clinical examination reveals features atypical of primary dystonia, syndromic associations may help the clinician to narrow down the list of differential diagnosis. Directive investigations like neuroimaging may confirm the clinical suspicion. PMID:24868358

  4. [Fractality, "coast line of the universe", movement of the earth and "macroscopic fluctuations"].

    PubMed

    Shnol', S E

    2013-01-01

    The evolution of views on the nature of "macroscopic fluctuations" phenomenon, discovered about sixty years ago as an "anomalous scattering of results" of actomyosin enzyme activity measurement, is traced in the paper. Ever since the general character of this phenomenon was stated because it was found in measurements of processes of different nature and caused by movement of the Earth in heterogeneous and anisotropic space-time. The paper is dedicated to the memory of L.A. Blumenfeld: a many-decade discussion with him favoured these investigations.

  5. Planet Within a Planet: Rotation of the Inner Core of Earth

    PubMed

    Su; Dziewonski; Jeanloz

    1996-12-13

    The time dependence of the orientation of Earth's inner core relative to the mantle was determined using a recently discovered 10-degree tilt in the axis of symmetry of the inner core's seismic-velocity anisotropy. Two methods of analyzing travel-time variations for rays traversing the inner core, on the basis of 29 years of data from the International Seismological Centre (1964-1992), reveal that the inner core appears to rotate about 3 degrees per year faster than the mantle. An anomalous variation in inner-core orientation from 1969 to 1973 coincides in time with a sudden change ("jerk") in the geomagnetic field.

  6. CMU OAQA at TREC 2015 LiveQA: Discovering the Right Answer with Clues

    DTIC Science & Technology

    2015-11-20

    QA) system that was evaluated in the TREC 2015 LiveQA Challenge. This system answers real-user questions freshly submitted to the Yahoo ! Answers...questions on the Yahoo ! Answers site 1, which have not yet received a human answer. As per the requirements for this track, participants must deploy their... Yahoo ! Answers. We also designed and im- plemented a new data model and novel relevance ranking methods for LiveQA. During the official run, our QA web

  7. The road to Earth twins

    NASA Astrophysics Data System (ADS)

    Mayor, M.; Lovis, C.; Pepe, F.; Ségransan, D.; Udry, S.

    2011-06-01

    A rich population of low-mass planets orbiting solar-type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super-Earths and Neptune-type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low-mass planets have been detected by the HARPS spectrograph around 30% of solar-type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M⊕. Karl Schwarzschild Award Lecture 2010

  8. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  9. Foucault and the rotation of the Earth

    NASA Astrophysics Data System (ADS)

    Sommeria, Joël

    2017-11-01

    In February 1851, Léon Foucault published in the Comptes rendus his famous pendulum experiment performed at the "Observatoire de Paris". This ended two centuries of quest for an experimental demonstration of Earth rotation. One month later, the experiment was reproduced at larger scale in the Panthéon and, as early as the summer of 1851, it was being repeated in many places across the world. The next year, Foucault invented the gyroscope to get a still more direct proof of Earth rotation. The theory relied on the masterpiece treatise of Laplace on celestial mechanics, published in 1805, which already contained the mathematical expression of the force that would be discovered by Gustave Coriolis 30 years later. The idea of a fictitious inertial force proposed by Coriolis prevailed by the end of 19th century, as it was conceptually simpler than Laplace's approach. The full theory of the Foucault pendulum, taking into account its unavoidable imperfections, was not obtained until three decades later by Kamerlingh Onnes, the future discoverer of liquid helium and superconductivity. Today, Foucault's exceptional creativity is still a source of inspiration for research and the promotion of science through experimental proofs widely available to the public.

  10. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  11. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    PubMed

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  12. Observing the Earth from Afar with NASA's Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Boller, Ryan; Baynes, Kathleen; King, Benjamin; Rice, Zachary

    2017-01-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land, Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  13. Observing the Earth from afar with NASA's Worldview

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  14. The Pan-STARRS search for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard J.; Weryk, Robert; Chambers, Kenneth

    2018-01-01

    The Pan-STARRS1 telescope on Haleakala, Hawaii has become the leading discovery telescope for Near-Earth Objects (NEOs), and is now responsible for discovering almost half of all new NEOs, more than half of all larger NEOs, and more than half of all new comets. The survey routinely reaches depths of V=22 or fainter (in dark sky conditions) over an area of approximately 1,000 square degrees per night. The survey strategy will be described. The survey will soon be augmented by the addition of the Pan-STARRS2 telescope, which has similar optics and an improved camera, and which will roughly double the survey power. A sample of the important recent solar system discoveries made by the Pan-STARRS survey will be summarized.

  15. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    NASA Astrophysics Data System (ADS)

    1999-09-01

    Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, is the remnant of a star that was observed to explode in 1054 A.D. Chinese astronomers in that year reported a "guest star" that appeared suddenly and remained visible for weeks, even during daytime. From gamma-ray telescopes to radio telescopes, the Crab has been observed using virtually every astronomical instrument that could see that part of the sky. Unraveling the mysteries of the Crab has proven to be the door to insight after insight into the workings of the universe. The Crab convincingly tied the origin of enigmatic "pulsars" to the stellar cataclysms known as supernovas. Observations of the expanding cloud of filaments in the Crab were instrumental in confirming the cosmic origin of the chemical elements from which planets (and people) are made. The nebula is located 6,000 light years from Earth in the constellation Taurus. The Crab pulsar, which was discovered by radio astronomers in 1968, is a neutron star rotating 30 times per second. Neutron stars are formed in the seconds before a supernova explosion when gravity crushes the central core of the star to densities 50 trillion times that of lead and a diameter of only 12 miles. Another consequence of the dramatic collapse is that neutron stars are rapidly rotating and highly magnetized. Like a gigantic cosmic generator, the rotating magnet generates 10 quadrillion volts of electricity, 30 million times that of a typical lightning bolt. "It is an incredibly efficient generator," Ruderman explained. "More than ninety-five percent efficient. There's nothing like it on Earth." Press: Fact Sheet To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight

  16. Discovering body site and severity modifiers in clinical texts.

    PubMed

    Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K

    2014-01-01

    To research computational methods for discovering body site and severity modifiers in clinical texts. We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. The performance of our method for discovering body site modifiers achieves F1 of 0.740-0.908 and our method for discovering severity modifiers achieves F1 of 0.905-0.929. Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES).

  17. New Details about Interstellar Visitor on This Week @NASA – November 24, 2017

    NASA Image and Video Library

    2017-11-24

    New data reveal that the interstellar asteroid that recently zipped through our solar system is rocky, cigar-shaped, and has a somewhat reddish hue. It’s the first confirmed object from another star observed in our solar system, and was discovered Oct. 19 by the University of Hawaii’s Pan-STARRS1 telescope team, funded by NASA’s Near-Earth Object Observations Program. The telescope team named it ‘Oumuamua (oh MOO-uh MOO-uh) – Hawaiian for “a messenger from afar arriving first.” The unusually-shaped asteroid, which is up to a quarter mile long and perhaps 10 times as long as it is wide, may provide new clues into how other solar systems formed. Also, Advanced Weather Satellite Launched, James Webb Space Telescope Completes Final Cryogenic Testing, Recurring Martian Streaks: Flowing Sand, Not Water? and Happy Thanksgiving, from Space!

  18. The Mission Accessible Near-Earth Object Survey (MANOS)

    NASA Astrophysics Data System (ADS)

    Moskovitz, N.; Manos Team

    2014-07-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v < 7 km/s), size (H > 20), and observability. Our telescope assets allow

  19. Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds.

    PubMed

    Flematti, Gavin R; Waters, Mark T; Scaffidi, Adrian; Merritt, David J; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M

    2013-01-01

    Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the strigolactone class of plant hormones, and both signal through a common F-box protein. However, karrikins and strigolactones operate through otherwise distinct signaling pathways, each distinguished by a specific α/β hydrolase protein. Genetic analysis suggests that plants contain endogenous compounds that signal specifically through the karrikin pathway. The other active compounds discovered in smoke are cyanohydrins that release germination-stimulating cyanide upon hydrolysis. Cyanohydrins occur widely in plants and have a role in defense against other organisms, but an additional role in endogenous cyanide signaling should also now be considered.

  20. Microorganisms in desert rocks: the edge of life on Earth.

    PubMed

    Wierzchos, Jacek; de los Ríos, Asunción; Ascaso, Carmen

    2012-12-01

    This article reviews current knowledge on microbial communities inhabiting endolithic habitats in the arid and hyper-arid regions of our planet. In these extremely dry environments, the most common survival strategy is to colonize the interiors of rocks. This habitat provides thermal buffering, physical stability, and protection against incident UV radiation, excessive photosynthetically active radiation, and freeze-thaw events. Above all, through water retention in the rocks' network of pores and fissures, moisture is made available. Some authors have argued that dry environments pose the most extreme set of conditions faced by microorganisms. Microbial cells need to withstand the biochemical stresses created by the lack of water, along with temperature fluctuations and/or high salinity. In this review, we also address the variety of ways in which microorganisms deal with the lack of moisture in hyper-arid environments and point out the diversity of microorganisms that are able to cope with only the scarcest presence of water. Finally, we discuss the important clues to the history of life on Earth, and perhaps other places in our solar system, that have emerged from the study of extreme microbial ecosystems.

  1. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  2. How to Tell What's Underground.

    ERIC Educational Resources Information Center

    Bartholomew, Rolland B.

    Presented is a suggested instructional lesson based on important clues that lead to a better understanding of the kinds of materials that lie under and within the earth's crust. Comparing density of earth rocks to density of the whole earth, and accounting for the discrepancy, leads to awareness of the difference of materials of the earth's…

  3. Microlensing Discovery of an Earth-Mass Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195

  4. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  5. Leveraging Earth and Planetary Datasets to Support Student Investigations in an Introductory Geoscience Course

    NASA Astrophysics Data System (ADS)

    Ryan, Jeffrey; De Paor, Declan

    2016-04-01

    Engaging undergraduates in discovery-based research during their first two years of college was a listed priority in the 2012 Report of the USA President's Council of Advisors on Science and Technology (PCAST), and has been the focus of events and publications sponsored by the National Academies (NAS, 2015). Challenges faced in moving undergraduate courses and curricula in this direction are the paired questions of how to effectively provide such experiences to large numbers of students, and how to do so in ways that are cost- and time-effiicient for institutions and instructional faculty. In the geosciences, free access to of a growing number of global earth and planetary data resources and associated visualization tools permits one to build into introductory-level courses straightforward data interrogation and analysis activities that provide students with valuable experiences with the compilation and critical investigation of earth and planetary data. Google Earth provides global Earth and planetary imagery databases that span large ranges in resolution and in time, permitting easy examination of earth surface features and surface features on Mars or the Moon. As well, "community" data sources (i.e., Gigapan photographic collections and 3D visualizations of geologic features, as are supported by the NSF GEODE project) allow for intensive interrogation of specific geologic phenomena. Google Earth Engine provides access to rich satellite-based earth observation data, supporting studies of weather and related student efforts. GeoMapApp, the freely available visualization tool of the Interdisciplinary Earth Data Alliance (IEDA), permits examination of the seafloor and the integration of a range of third-party data. The "Earth" meteorological website (earth.nullschool.net) provides near real-time visualization of global weather and oceanic conditions, which in combination with weather option data from Google Earth permits a deeper interrogation of atmospheric

  6. Discovering Technicolor

    NASA Astrophysics Data System (ADS)

    Andersen, J. R.; Antipin, O.; Azuelos, G.; Del Debbio, L.; Del Nobile, E.; Di Chiara, S.; Hapola, T.; Järvinen, M.; Lowdon, P. J.; Maravin, Y.; Masina, I.; Nardecchia, M.; Pica, C.; Sannino, F.

    2011-09-01

    We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low-energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.

  7. New clues about magnetosphere noise and black aurora

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The noise sounds vaguely as if it emanates from the high-pitched chatter of tropical birds or wetted fingers rubbing along musical glasses. However, the auroral kilometric radiation (AKR)—a radio wave of about 540-550 kilohertz just below the AM radio band—emanates from Earth's magnetosphere 11,000-13,000 kilometers above the Earth's northern lights.Some researchers had proposed this as the likely origin for the noise three decades ago. However, scientists at the AGU Fall Meeting, held in San Francisco, California, said that new measurements made by instruments onboard the four spacecraft of the European Space Agency's (ESA) Cluster mission have confirmed this theory.

  8. Case study of visualizing global user download patterns using Google Earth and NASA World Wind

    NASA Astrophysics Data System (ADS)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao

    2012-01-01

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).

  9. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  10. Searching for a shadow biosphere on Earth as a test of the 'cosmic imperative'.

    PubMed

    Davies, P C W

    2011-02-13

    Estimates for the number of communicating civilizations in the galaxy, based on the so-called Drake equation, are meaningless without a plausible estimate for the probability that life will emerge on an Earth-like planet. In the absence of a theory of the origin of life, that number can be anywhere from 0 to 1. Distinguished scientists have been known to argue that life on Earth is a freak accident, unique in the observable universe and, conversely, that life is almost bound to arise in the course of time, given Earth-like conditions. De Duve, adopting the latter position, coined the phrase that 'life is a cosmic imperative'. De Duve's position would be immediately verified if we were to discover a second sample of life that we could be sure arose from scratch independently of known life. Given the current absence of evidence for life beyond Earth, the best way to test the hypothesis of the cosmic imperative is to see whether terrestrial life began more than once. If it did, it is possible that descendants of a second genesis might be extant, forming a sort of 'shadow biosphere' existing alongside, or perhaps interpenetrating, the known biosphere. I outline a strategy to detect the existence of such a shadow biosphere.

  11. Improving Access to NASA Earth Science Data through Collaborative Metadata Curation

    NASA Astrophysics Data System (ADS)

    Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.

    2017-12-01

    The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.

  12. Discovering body site and severity modifiers in clinical texts

    PubMed Central

    Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K

    2014-01-01

    Objective To research computational methods for discovering body site and severity modifiers in clinical texts. Methods We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. Results The performance of our method for discovering body site modifiers achieves F1 of 0.740–0.908 and our method for discovering severity modifiers achieves F1 of 0.905–0.929. Discussion Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. Conclusions We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES). PMID:24091648

  13. "Cercariform" cells: a clue to the cytodiagnosis of transitional cell origin of metastatic neoplasms?

    PubMed

    Powers, C N; Elbadawi, A

    1995-07-01

    The "cercariform" cell is described as a distinct cytomorphologic clue that may be helpful in the diagnosis of metastatic transitional cell neoplasms, particularly low grade. This cell has a nucleated globular body and a cytoplasmic process with a nontapering, flattened, bulbous or fishtail-like end. The cercariform cell corresponds to intermediate cells in histologic and ultrastructural preparations of normal urothelium. The cercariform appearance is the result of pseudostratification of both normal and low-grade neoplastic urothelium. The unique features of cercariform cells make them readily distinguishable from neoplastic squamous cells as well as spindle cells of mesenchymal origin.

  14. Application of recursive approaches to differential orbit correction of near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria

    2016-10-01

    Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation

  15. Inner solar system material discovered in the Oort cloud

    PubMed Central

    Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J.

    2016-01-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud. PMID:27386512

  16. Did Viking discover life on Mars?

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1999-01-01

    A major argument in the claim that life had been discovered during the Viking mission to Mars is that the results obtained in the Labeled Release (LR) experiment are analogous to those observed with terrestrial microorganisms. This assertion is critically examined and found to be implausible.

  17. Did Viking discover life on Mars?

    PubMed

    Klein, H P

    1999-12-01

    A major argument in the claim that life had been discovered during the Viking mission to Mars is that the results obtained in the Labeled Release (LR) experiment are analogous to those observed with terrestrial microorganisms. This assertion is critically examined and found to be implausible.

  18. The detection of gravitational waves using electrodynamic system of Earth

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Isakevich, Valiriy

    There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. There has been developed a programme-analytical system (PAS) to investigate signal structures in spectral and time series, caused by geophysical and astrophysical processes based on the method of eigen vectors. There were discovered frequencies in the electrical and geomagnetical field of ELF range with PAS, which coincide with the frequency of gravitational -wave radiation of a number of double stellar systems. In the electrical and geomagnetic field there was discovered a specific axion frequency VA=0.5*10-5 Hz belonging to the ELF range which was predicted by the theory. The problem of the anomalous behavior of the electrodynamic system response to the gravitational - wave affect is being discussed. On the basis of the rich experimental material have been investigated the frequencies of gravitational-wave radiation of a number of binary systems: J0700+6418, J1012+5307, J1537+1155, J1959+2048, J2130+1210, J1915+1606. The work is carried out with supporting of RFFI No. 14-07-97510, State Task to Universities on 2014-2016.

  19. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  20. Classifying transcription factor targets and discovering relevant biological features

    PubMed Central

    Holloway, Dustin T; Kon, Mark; DeLisi, Charles

    2008-01-01

    Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs) and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1) Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4), Ino2(2.6), Yaf1(2.4), and Yap6(2.4). (2) Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3) A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4) An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and growth related

  1. The Exploration of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Near-Earth objects (NEOs) are asteroids and comets with orbits that intersect or pass near that of our planet. About 400 NEOs are currently known, but the entire population contains perhaps 3000 objects with diameters larger than 1 km. These objects, thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets, are interesting and highly accessible targets for scientific research. They carry records of the solar system's birth and the geologic evolution of small bodies in the interplanetary region. Because collisions of NEOs with Earth pose a finite hazard to life, the exploration of these objects is particularly urgent. Devising appropriate risk-avoidance strategies requires quantitative characterization of NEOS. They may also serve as resources for use by future human exploration missions. The scientific goals of a focused NEO exploration program are to determine their orbital distribution, physical characteristics, composition, and origin. Physical characteristics, such as size, shape, and spin properties, have been measured for approximately 80 NEOs using observations at infrared, radar, and visible wavelengths. Mineralogical compositions of a comparable number of NEOs have been inferred from visible and near-infrared spectroscopy. The formation and geologic histories of NEOs and related main-belt asteroids are currently inferred from studies of meteorites and from Galileo and Near-Earth Asteroid Rendezvous spacecraft flybys of three main-belt asteroids. Some progress has also been made in associating specific types of meteorites with main-belt asteroids, which probably are the parent bodies of most NEOs. The levels of discovery of NEOs in the future will certainly increase because of the application of new detection systems. The rate of discovery may increase by an order of magnitude, allowing the majority of Earth-crossing asteroids and comets with diameters greater than 1 km to he discovered in the next decade. A

  2. Using the EXIST Active Shields for Earth Occultation Observations of X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Fishman, Gerald; Hong, Jae-Sub; Gridlay, Jonathan; Krawczynski, Henric

    2005-01-01

    The EXIST active shields, now being planned for the main detectors of the coded aperture telescope, will have approximately 15 times the area of the BATSE detectors; and they will have a good geometry on the spacecraft for viewing both the leading and training Earth's limb for occultation observations. These occultation observations will complement the imaging observations of EXIST and can extend them to higher energies. Earth occultatio observations of the hard X-ray sky with BATSE on the Compton Gamma Ray Observatory developed and demonstrated the capabilities of large, flat, uncollimated detectors for this method. With BATSE, a catalog of 179 X-ray sources was monitored twice every spacecraft orbit for 9 years at energies above about 25 keV, resulting in 83 definite detections and 36 possible detections with 5-sigma detection sensitivities of 3.5-20 mcrab (20-430 keV) depending on the sky location. This catalog included four transients discovered with this technique and many variable objects (galactic and extragalactic). This poster will describe the Earth occultation technique, summarize the BATSE occultation observations, and compare the basic observational parameters of the occultation detector elements of BATSE and EXIST.

  3. Data Albums: An Event Driven Search, Aggregation and Curation Tool for Earth Science

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Maskey, Manil; Bakare, Rohan; Basyal, Sabin; Li, Xiang; Flynn, Shannon

    2014-01-01

    Approaches used in Earth science research such as case study analysis and climatology studies involve discovering and gathering diverse data sets and information to support the research goals. To gather relevant data and information for case studies and climatology analysis is both tedious and time consuming. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. In cases where researchers are interested in studying a significant event, they have to manually assemble a variety of datasets relevant to it by searching the different distributed data systems. This paper presents a specialized search, aggregation and curation tool for Earth science to address these challenges. The search rool automatically creates curated 'Data Albums', aggregated collections of information related to a specific event, containing links to relevant data files [granules] from different instruments, tools and services for visualization and analysis, and information about the event contained in news reports, images or videos to supplement research analysis. Curation in the tool is driven via an ontology based relevancy ranking algorithm to filter out non relevant information and data.

  4. The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) List of Near-Earth Asteroids: Identifying Potential Targets for Future Exploration

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Barbee, B. W.; Mink, R. G.; Adamo, D. R.; Alberding, C. M.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Drake, B. G.; Friedensen, V. P.

    2012-10-01

    Introduction: Much attention has recently been focused on human exploration of near-Earth asteroids (NEAs). Detailed planning for deep space exploration and identification of potential NEA targets for human space flight requires selecting objects from the growing list of known NEAs. NASA therefore initiated the Near-Earth Object Human Space Flight Accessible Target Study (NHATS), which uses dynamical trajectory performance constraints to identify potentially accessible NEAs. Accessibility Criteria: Future NASA human space flight capability is being defined while the Orion Multi-Purpose Crew Vehicle and Space Launch System are under development. Velocity change and mission duration are two of the most critical factors in any human spaceflight endeavor, so the most accessible NEAs tend to be those with orbits similar to Earth’s. To be classified as NHATS-compliant, a NEA must offer at least one round-trip trajectory solution satisfying purposely inclusive constraints, including total mission change in velocity ≤ 12 km/s, mission duration ≤ 450 days (with at least 8 days at the NEA), Earth departure between Jan 1, 2015 and Dec 31, 2040, Earth departure C3 ≤ 60 km2/s2, and Earth return atmospheric entry speed ≤ 12 km/s. Monitoring and Updates: The NHATS list of potentially accessible targets is continuously updated as NEAs are discovered and orbit solutions for known NEAs are improved. The current list of accessible NEAs identified as potentially viable for future human exploration under the NHATS criteria is available to the international community via a website maintained by NASA’s NEO Program Office (http://neo.jpl.nasa.gov/nhats/). This website also lists predicted optical and radar observing opportunities for each NHATS-compliant NEA to facilitate acquisition of follow-up observations. Conclusions: This list of NEAs will be useful for analyzing robotic mission opportunities, identifying optimal round trip human space flight trajectories, and

  5. Advancing the Vision of the Global Earth Observation System of Systems: a European Perspective

    NASA Astrophysics Data System (ADS)

    Edwards, A. W.; Craglia, M.; Nativi, S.

    2012-12-01

    The purpose of the Global Earth Observation System of Systems (GEOSS), a network of Earth observation and information systems, contributed on a voluntary basis by Members and Participating Organisations of the intergovernmental Group on Earth Observations (GEO), is to achieve comprehensive, coordinated and sustained observations of the Earth system, in order to improve monitoring of the state of the Earth, increase understanding of Earth processes, and enhance prediction of the behaviour of the Earth system. Such a global research effort requires an integrated multi-disciplinary effort that is underpinned by a cyber-infrastructure which is able to discover and access vast quantities of data across heterogeneous information systems and many disciplines. As GEO develops and the implementation of the GEOSS gathers pace, it is becoming common practice for groups to be organised at national, regional and international level to address critical issues. In many cases these groups evolve to become "communities", organising themselves to carry out tasks of interest to that community. In most cases, communities develop their own "community portal" to provide a focal point on the web for their activities. The data and information held by the members of a specific community can normally be discovered via their particular "community portal". There is now a clear recognition that the many thematic community initiatives, each with their own information system and portal, need to be fully connected into the overall GEOSS architecture. With the introduction of a brokering capability this becomes possible. The value of the brokering approach has been demonstrated within the European Union funded EuroGEOSS research project. The EuroGEOSS brokering capability has now been incorporated into the GEOSS information system, (known as the GEOSS Common Infrastructure, or GCI) and renamed the GEOSS Discovery and Access Broker. In a matter of a few months the GEOSS DAB has enabled the GEOSS to

  6. Discovering novel subsystems using comparative genomics

    PubMed Central

    Ferrer, Luciana; Shearer, Alexander G.; Karp, Peter D.

    2011-01-01

    Motivation: Key problems for computational genomics include discovering novel pathways in genome data, and discovering functional interaction partners for genes to define new members of partially elucidated pathways. Results: We propose a novel method for the discovery of subsystems from annotated genomes. For each gene pair, a score measuring the likelihood that the two genes belong to a same subsystem is computed using genome context methods. Genes are then grouped based on these scores, and the resulting groups are filtered to keep only high-confidence groups. Since the method is based on genome context analysis, it relies solely on structural annotation of the genomes. The method can be used to discover new pathways, find missing genes from a known pathway, find new protein complexes or other kinds of functional groups and assign function to genes. We tested the accuracy of our method in Escherichia coli K-12. In one configuration of the system, we find that 31.6% of the candidate groups generated by our method match a known pathway or protein complex closely, and that we rediscover 31.2% of all known pathways and protein complexes of at least 4 genes. We believe that a significant proportion of the candidates that do not match any known group in E.coli K-12 corresponds to novel subsystems that may represent promising leads for future laboratory research. We discuss in-depth examples of these findings. Availability: Predicted subsystems are available at http://brg.ai.sri.com/pwy-discovery/journal.html. Contact: lferrer@ai.sri.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21775308

  7. ESIP's Earth Science Knowledge Graph (ESKG) Testbed Project: An Automatic Approach to Building Interdisciplinary Earth Science Knowledge Graphs to Improve Data Discovery

    NASA Astrophysics Data System (ADS)

    McGibbney, L. J.; Jiang, Y.; Burgess, A. B.

    2017-12-01

    Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS

  8. Planet Imager Discovers Young Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new

  9. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-08-01

    the Earth. The Stanford research team has been viewing the Sun's surface with one of these instruments called a Michelson Doppler Imager that can measure the vertical motion of the Sun's surface at one million different points once per minute. The measurements show the effects of sound waves that permeate the interior. The researchers then apply techniques similar to Earth based seismology and computer aided tomography to infer and map the flow patterns and temperature beneath the Sun's roiling surface. "These techniques allow us to peer inside the Sun using sound waves, much like a doctor can look inside a pregnant woman with a sonogram," said Dr. Schou. Currently, the Stanford scientists have both identified new structures in the interior of the Sun and clarified the form of previously discovered ones. Understanding their relationship to solar activity will require more observations and time for analysis. "At this point, we do not know whether the plasma streams snake around like the jet stream on Earth, or whether it is a less dynamic feature," said Dr. Douglas Gough, of Cambridge University, UK. "It is intriguing to speculate that these streams may affect solar weather like the terrestrial jetstream impacts weather patterns on Earth, but this is completely unclear right now. The same speculation may apply to the other flows we've observed, or they may act in concert. It will be especially helpful to make observations as the Sun enters its next active cycle, expected to peak around the year 2001." NOTE TO EDITORS: Images to support this story and further information are available from : ESA Public Relations Division Tel: +33.1(0)53.69.7155 Fax: +33.1(0)53.69.7690 The images also can be found at the following Internet address: http://www.gsfc.nasa.gov/

  10. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-07-01

    the Earth. The Stanford research team has been viewing the Sun's surface with one of these instruments called a Michelson Doppler Imager that can measure the vertical motion of the Sun's surface at one million different points once per minute. The measurements show the effects of sound waves that permeate the interior. The researchers then apply techniques similar to Earth based seismology and computer aided tomography to infer and map the flow patterns and temperature beneath the Sun's roiling surface. "These techniques allow us to peer inside the Sun using sound waves, much like a doctor can look inside a pregnant woman with a sonogram," said Dr. Schou. Currently, the Stanford scientists have both identified new structures in the interior of the Sun and clarified the form of previously discovered ones. Understanding their relationship to solar activity will require more observations and time for analysis. "At this point, we do not know whether the plasma streams snake around like the jet stream on Earth, or whether it is a less dynamic feature," said Dr. Douglas Gough, of Cambridge University, UK. "It is intriguing to speculate that these streams may affect solar weather like the terrestrial jetstream impacts weather patterns on Earth, but this is completely unclear right now. The same speculation may apply to the other flows we've observed, or they may act in concert. It will be especially helpful to make observations as the Sun enters its next active cycle, expected to peak around the year 2001." NOTE TO EDITORS: Images to support this story and further information are available from : ESA Public Relations Division Tel: +33.1(0)53.69.7155 Fax: +33.1(0)53.69.7690 The images also can be found at the following Internet address: http://www.gsfc.nasa.gov/

  11. Near-Earth Asteroids Astrometry with Gaia and Beyond

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2010-05-01

    Gaia is an astrometric mission from the European Space Agency (ESA) that will be launched in Spring 2012. The Gaia telescope and spectrometer will operate in the visible wavelength scanning the whole sky during 5 years (nominal mission duration). It will observe about one billion stars and QSOs but also a large number of solar system bodies, mainly asteroids, and a few comets and planetary satellites. The unprecedented accuracy of the measures both astrometric and photometric (note that the spectroscopic observations are of little scientific value for Solar System objects science) will enable to significantly improve the knowledge of the dynamics and physical properties for a large number of asteroids. With a relatively limiting magnitude somewhat reduced to V≤20 (compared to other future or ongoing surveys) Gaia will mainly oserve main-belt asteroids (MBAs), and very few TNOs or Centaurs. The Gaia telescope will also be able to observe several thousands of Near- Earth Objects (NEOs) down to low solar elongation (observation of solar system objects are performed with elongation 45° ≤ L ≤ 135°). Gaia will not be a ''big'' NEO discover, however it can possibly discover inner-Earth orbiting objects (IEOs) or sub-Atens, from atmosphereless low solar-elongation observations. In the case of discovering a new NEO target, ground-based observations in network could be needed to avoid confusion in identifying the object in the database, or loss of the target. We are aiming to generate VO-alert for such eventuality. Ground-based observations of NEOs would also more generally enter into the operational centre in construction at the IMCCE that will deal with data mining, astrometric reduction, orbit computation, alerts, etc. On the other hand, in the framework of ESA Space Situational Awareness (SSA), ground-based astrometry, possibly complemented by Gaia data, is needed to refine the orbits and collision assessment of PHAs. High accuracy astrometric and colour

  12. Parallels among the ``music scores'' of solar cycles, space weather and Earth's climate

    NASA Astrophysics Data System (ADS)

    Kolláth, Zoltán; Oláh, Katalin; van Driel-Gesztelyi, Lidia

    2012-07-01

    Solar variability and its effects on the physical variability of our (space) environment produces complex signals. In the indicators of solar activity at least four independent cyclic components can be identified, all of them with temporal variations in their timescales. Time-frequency distributions (see Kolláth & Oláh 2009) are perfect tools to disclose the ``music scores'' in these complex time series. Special features in the time-frequency distributions, like frequency splitting, or modulations on different timescales provide clues, which can reveal similar trends among different indices like sunspot numbers, interplanetary magnetic field strength in the Earth's neighborhood and climate data. On the pseudo-Wigner Distribution (PWD) the frequency splitting of all the three main components (the Gleissberg and Schwabe cycles, and an ~5.5 year signal originating from cycle asymmetry, i.e. the Waldmeier effect) can be identified as a ``bubble'' shaped structure after 1950. The same frequency splitting feature can also be found in the heliospheric magnetic field data and the microwave radio flux.

  13. DISCOVER-AQ Acoustics : Measurement and Data Report.

    DOT National Transportation Integrated Search

    2015-09-01

    The following report documents the acoustic measurements that supplemented the September 2013 NASA DISCOVER-AQ flight tests in Houston, Texas and the corresponding data set developed from those measurements. These data include aircraft performance an...

  14. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  15. Photographic coronagraph, Skylab particulate experiment T025. [earth atmospheric pollution and Kohoutek Comet monitoring

    NASA Technical Reports Server (NTRS)

    Giovane, F.; Schuerman, D. W.; Greenberg, J. M.

    1977-01-01

    A photographic coronagraph, built to monitor Skylab's extravehicular contamination, is described. This versatile instrument was used to observe the earth's vertical aerosol distribution and Comet Kohoutek (1973f) near perihelion. Although originally designed for deployment from the solar airlock, the instrument was modified for EVA operation when the airlock was rendered unusable. The results of the observations made in four EVA's were almost completely ruined by the failure of a Skylab operational camera used with the coronagraph. Nevertheless, an aerosol layer at 48 km was discovered in the southern hemisphere from the few useful photographs.

  16. Discovering the Sequential Structure of Thought

    ERIC Educational Resources Information Center

    Anderson, John R.; Fincham, Jon M.

    2014-01-01

    Multi-voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method to a task where participants solve novel…

  17. Earth's Coming of Age: Isotopically Tracking the Global Transformation from the Hadean to the Geologically Modern Earth

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2017-12-01

    Some of the strongest direct evidence that documents fundamental changes in the chemistry and organisation of Earth's interior derives from radiogenic isotopic compositions that include both long-lived (particularly 176Lu-176Hf and 147Sm-143Nd) and short-lived, i.e., now extinct parent isotope, systems (182Hf-182W, 146Sm-142Nd). Changes in patterns of isotopic evolution are linked to changes in mantle dynamics such that tracking these signatures in geologically well-characterised rocks can be used to discover the the nature and evolution of tectonic processes. Over the past decade, intensive geochemical investigations by various groups focussing on the oldest (> 4.0 Ga to 3.6 Ga) rock record, as preserved in several localities, have revealed isotopic distinctions in the early Earth compared with those in Proterozoic and younger rocks. For example, whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern style characterised by plate tectonics. The emerging image is that many Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182Hf isotopic signatures that are absent in modern terrestrial samples; these signatures are evidence of chemical fractionation processes occuring within the first ca. 10-300 million years of Solar System history. In addition, viewing the global database, patterns of long-half life isotope signatures i.e., 143Nd and 176Hf differ from those seen in younger (<3.6 Ga) rocks, again providing a tracer of mantle dynamics and reflecting the influence of early processes. It is becoming increasingly apparent that the well demonstrated "coupled" 176Hf-143Nd isotopic evolution generated by plate tectonic

  18. Discovering English with the Sketch Engine

    ERIC Educational Resources Information Center

    Thomas, James

    2014-01-01

    "Discovering English with the Sketch Engine" is the title of a new book (Thomas, 2014) which introduces the use of corpora in language study, teaching, writing and translating. It focuses on using the Sketch Engine to identify patterns of normal usage in many aspects of English ranging from morphology to discourse and pragmatics. This…

  19. Multiple Disk Gaps and Rings Generated by a Single Super-Earth

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Li, Shengtai; Chiang, Eugene; Li, Hui

    2017-07-01

    We investigate the observational signatures of super-Earths (i.e., planets with Earth-to-Neptune mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (α ≲ {10}-4), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the system parameters, additional rings may manifest for a single planet. A double gap located at tens of au from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of ∼0\\buildrel{\\prime\\prime}\\over{.} 03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.

  20. Physical characterization of (333358) 2001 WN1: a large, possibly water-rich, low delta-V near-Earth asteroid.

    NASA Astrophysics Data System (ADS)

    Hicks, M.; Dombroski, D.

    2012-12-01

    The near-Earth asteroid (333358) 2001 WN1 was discovered on 2001 November 17 by the LINEAR NEO survey (MPEC 2001-W30). We obtained one night of Bessel BVRI on 2012 November 25 at the JPL Table Mountain Observatory (TMO) 0.6-m telescope. The observational circumstances are summarized in Table 1, with heliocentric, geocentric, solar phase angle, lunar elongation, and expected V magnitude as computed by the JPL HORIZONS ephemeris service.

  1. What if Fleming had not discovered penicillin?

    PubMed

    Alharbi, Sulaiman Ali; Wainwright, Milton; Alahmadi, Tahani Awad; Salleeh, Hashim Bin; Faden, Asmaa A; Chinnathambi, Arunachalam

    2014-09-01

    What would have happened had Alexander Fleming not discovered penicillin in 1928? Perhaps the obvious answer is that, someone else would have discovered penicillin during 1930s and the Oxford group, would still have purified it sometime in the early 1940s. Here, however, in this counterfactual account of the penicillin story, it is argued that without Fleming, penicillin might still be undiscovered and the antibiotic age would never have dawned. As a result, many of the recent developments in medicine, such as organ transplantation, might have been delayed or, at best, made more hazardous. Penicillin might have come onto the scene a few years later but, had Fleming overlooked the discovery, it seems certain that penicillin would not have saved countless Allied lives, during and after D-Day. Instead of having enjoyed fifty and more years of the antibiotic age, it is argued here, that we would have had to rely upon highly developed sulphonamides, so-called "supasulfas", and other chemically-derived antibacterial drugs. Indeed, it might be the case that, even well into this new millennium, the antibiotic age has yet to dawn, and medicine is still waiting for someone to chance upon penicillin. Here we discuss what might have happened had Fleming not discovered penicillin and come to the conclusion that the medical armoury available today would have been far different and might have relied solely upon highly developed varieties of sulphonamides or similar, synthetic, non-antibiotic antibacterial agents.

  2. What if Fleming had not discovered penicillin?

    PubMed Central

    Alharbi, Sulaiman Ali; Wainwright, Milton; Alahmadi, Tahani Awad; Salleeh, Hashim Bin; Faden, Asmaa A.; Chinnathambi, Arunachalam

    2014-01-01

    What would have happened had Alexander Fleming not discovered penicillin in 1928? Perhaps the obvious answer is that, someone else would have discovered penicillin during 1930s and the Oxford group, would still have purified it sometime in the early 1940s. Here, however, in this counterfactual account of the penicillin story, it is argued that without Fleming, penicillin might still be undiscovered and the antibiotic age would never have dawned. As a result, many of the recent developments in medicine, such as organ transplantation, might have been delayed or, at best, made more hazardous. Penicillin might have come onto the scene a few years later but, had Fleming overlooked the discovery, it seems certain that penicillin would not have saved countless Allied lives, during and after D-Day. Instead of having enjoyed fifty and more years of the antibiotic age, it is argued here, that we would have had to rely upon highly developed sulphonamides, so-called “supasulfas”, and other chemically-derived antibacterial drugs. Indeed, it might be the case that, even well into this new millennium, the antibiotic age has yet to dawn, and medicine is still waiting for someone to chance upon penicillin. Here we discuss what might have happened had Fleming not discovered penicillin and come to the conclusion that the medical armoury available today would have been far different and might have relied solely upon highly developed varieties of sulphonamides or similar, synthetic, non-antibiotic antibacterial agents. PMID:25183937

  3. The Universe for all to discover

    NASA Astrophysics Data System (ADS)

    Ortiz-Gil, A.; Ballesteros, F.; Espinós, H.; Fernández-Soto, A.; Lanzara, M.; Moya, M. J.; Navarro, J.

    2015-05-01

    In the title of this paper, we have changed the slogan of the International Year of Astronomy, ``The Universe yours to discover" to ``The Universe for all to discover" in order to emphasize the need to think about broader audiences when we plan astronomical activities at school or during outreach events. The strategy we propose follows what is known as the Universal Design for Learning (UDL). UDL allows to reach to the general public as well as to audiences which might be regarded as ``special" because they have some disability. It has been shown that everybody has a preferred style of learning (some remember better what they see, others what they hear or what they touch) and therefore, everybody is more or less able under the different styles of learning. Through this talk I am going to outline some of the principles of the UDL that can be applied in the teaching and communication of Astronomy, along with an example of its implementation in the project ``A Touch of the Universe".

  4. 31 CFR 501.723 - Prehearing disclosures; methods to discover additional matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discover additional matter. 501.723 Section 501.723 Money and Finance: Treasury Regulations Relating to... disclosures; methods to discover additional matter. (a) Initial disclosures. (1) Except to the extent... the respondent); (ii) The legal theories upon which it will rely; (iii) Copies and a list of documents...

  5. 31 CFR 501.723 - Prehearing disclosures; methods to discover additional matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... discover additional matter. 501.723 Section 501.723 Money and Finance: Treasury Regulations Relating to... disclosures; methods to discover additional matter. (a) Initial disclosures. (1) Except to the extent... the respondent); (ii) The legal theories upon which it will rely; (iii) Copies and a list of documents...

  6. 31 CFR 501.723 - Prehearing disclosures; methods to discover additional matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... discover additional matter. 501.723 Section 501.723 Money and Finance: Treasury Regulations Relating to... disclosures; methods to discover additional matter. (a) Initial disclosures. (1) Except to the extent... the respondent); (ii) The legal theories upon which it will rely; (iii) Copies and a list of documents...

  7. 31 CFR 501.723 - Prehearing disclosures; methods to discover additional matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discover additional matter. 501.723 Section 501.723 Money and Finance: Treasury Regulations Relating to... disclosures; methods to discover additional matter. (a) Initial disclosures. (1) Except to the extent... the respondent); (ii) The legal theories upon which it will rely; (iii) Copies and a list of documents...

  8. Discover the Nile River

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  9. The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy

  10. 48 CFR 752.209-71 - Organizational conflicts of interest discovered after award.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Interest Discovered After Award (JUN 1993) (a) The Contractor agrees that, if after award it discovers... make an immediate and full disclosure in writing to the Contracting Officer which shall include a...

  11. 48 CFR 752.209-71 - Organizational conflicts of interest discovered after award.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Interest Discovered After Award (JUN 1993) (a) The Contractor agrees that, if after award it discovers... make an immediate and full disclosure in writing to the Contracting Officer which shall include a...

  12. 48 CFR 752.209-71 - Organizational conflicts of interest discovered after award.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Interest Discovered After Award (JUN 1993) (a) The Contractor agrees that, if after award it discovers... make an immediate and full disclosure in writing to the Contracting Officer which shall include a...

  13. 48 CFR 752.209-71 - Organizational conflicts of interest discovered after award.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Interest Discovered After Award (JUN 1993) (a) The Contractor agrees that, if after award it discovers... make an immediate and full disclosure in writing to the Contracting Officer which shall include a...

  14. 48 CFR 752.209-71 - Organizational conflicts of interest discovered after award.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Interest Discovered After Award (JUN 1993) (a) The Contractor agrees that, if after award it discovers... make an immediate and full disclosure in writing to the Contracting Officer which shall include a...

  15. Composition and energy spectra of low energy ions observed upstream of the earth's bow shock on ISEE-1

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1980-01-01

    The characteristics of eleven locally accelerated particle events in the energy range from 30 to 125 keV/Q observed upstream of the earth's bow shock have been determined, including composition, energy spectra, and intensity versus time profiles. The measurements were made with the Ultra Low Energy Charge Analyzer sensor on ISEE-1. The composition in these events is similar to that of the solar wind, with a He to proton ratio of 8% and a CNO to He ratio of 6%. The composition is reasonably constant only when evaluated at equal energy per charge. The energy spectra cannot be adequately fit by a single power law in energy; an exponential or Maxwellian in energy per charge gives a satisfactory representation of the spectra. The time-intensity profiles of these upstream events show an inverse velocity dispersion, which may provide clues to the responsible acceleration mechanism.

  16. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar.

    PubMed

    Clark, Colin J; Pletsch, Holger J; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D; Bloom, Elliott D; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H; Buson, Sara; Cameron, Rob A; Caputo, Regina; Caraveo, Patrizia A; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R; Costantin, Denise; Cutini, Sara; D'Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W; Favuzzi, Cecilia; Ferrara, Elizabeth C; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A; Green, David; Grenier, Isabelle A; Guiriec, Sylvain; Harding, Alice K; Hewitt, John W; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N; Lubrano, Pasquale; Magill, Jeffrey D; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N; McEnery, Julie E; Michelson, Peter F; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S; de Palma, Francesco; Paneque, David; Perkins, Jeremy S; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W; Saz Parkinson, Pablo M; Sgrò, Carmelo; Siskind, Eric J; Smith, David A; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B; Thompson, David J; Torres, Diego F; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-02-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.

  17. Discovering Science through Art-Based Activities

    ERIC Educational Resources Information Center

    Alberts, Rebecca

    2010-01-01

    Art and science are intrinsically linked; the essence of art and science is discovery. Both artists and scientists work in a systematic but creative way--knowledge and understanding are built up through pieces of art or a series of labs. In the classroom, integrating science and visual art can provide students with the latitude to think, discover,…

  18. Ensemble Atmospheric Properties of Small Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Ballard, Sarah; Dragomir, Diana

    2018-01-01

    With the growing number of planets discovered by the Kepler mission and ground-base surveys, people start to try to understand the atmospheric features of those uncovered new worlds. While it has been found that hot Jupiters exhibit diverse atmosphere composition with both clear and cloudy/hazy atmosphere possible, similar studies on ensembles of smaller planets (Earth analogs) have been held up due to the faintness of most of their host stars. In this work, a sample of 20 Earth analogs of similar periods around M dwarfs with existing Kepler transit information and Spitzer observations is composed, complemented with previously studies GJ1214b and GJ1132b, as well as the recently announced 7 small planets in the TRAPPIST-1 system. We evaluate their transit depths with uncertainties on the Spitzer 4.5 micron band using the “pixel-level decorrelation” method, and together with their well analyzed Kepler data and Hubble data, we put constraints on their atmosphere haze slopes and cloud levels. Aside from improving the understanding of ensemble properties of small planets, this study will also provide clues of potential targets for detailed atmospheric studies using the upcoming James Webb Telescope.

  19. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  20. How cosmic rays were discovered and why they received this misnomer

    NASA Astrophysics Data System (ADS)

    Dorman, I. V.; Dorman, L. I.

    2014-05-01

    As many great discoveries, the phenomenon of cosmic rays was discovered mainly accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. We describe the history how step by step cosmic rays was discovered and why this phenomenon received misnomer, how in cosmic rays was discovered the first antiparticle - positron. These discoveries were recognized among greatest in the 20th Century and were awarded by Nobel Prize.

  1. The Earth story ... a facebook world in the geo blogosphere

    NASA Astrophysics Data System (ADS)

    Redfern, S. A.

    2013-12-01

    Facebook has become one of the dominant virtual worlds of our planet, and among the plethora of cute pictures of cats and unintelligible photos of plates of food are a few gems that attract a strong following. I have been contributing as an 'admin' to one facebook community - 'The Earth Story', over the past few months. The initial driver was writing short pieces of geo-news for my first-year undergraduate students, but quickly I discovered that far more people were reading the small newsy items on facebook than would ever hear my lectures or read my academic papers. This is not to negate the latter, but highlights the capacity for short snippets of Earth Science news from the virtual community out there. Each post on 'The Earth Story' (TES) typically gets read by more than 100k people, and the page has more than 0.5 million followers. Such outlets offer great opportunities for conveying the excitement and challenges of our subject, and the responses from readers often take the discussion further. Since contributing to TES I have also had the opportunity to work for 6 weeks at the BBC as a science journalist in BBC world service radio and online news, and again have seen the appetite for readers for good science stories. Here, I reflect on these experiences and consider the challenge of bringing cutting edge discovery to a general audience, and how social media offer routes to discovery that bypass traditional vehicles.

  2. Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.

    2018-05-01

    The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.

  3. Earth Through Time as an Exoplanet: Lessons for Exoplanet Astrobiology

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S.

    2014-04-01

    The Archean Earth represents the most alien biosphere for which we have data. Oxygenic photosynthesis was not the dominant primary production metabolism at the surface, as it is on modern-day Earth. Due to this, the atmospheric composition, climate, and ocean chemistry of the planet were all dramatically different than they are on today's planet, even though life was present at the time. These dramatic differences are instructive on biology in a planetary context. Furthermore, they provide an example of a "working inhabited planet" that would have different biosignatures, climates, and spectral features. We can thus use the lessons from the rock record to inform us about the possibilities for and improve our ability to search for life. When we do that, we discover that by looking strictly for the "traditional" biosignatures from methane, oxygen, and ozone, we may conclude dead planets to be alive and living planets to be dead. In some cases, we may not even be looking for life on the right planets. In this talk, we will discuss these issues and their implications for future space-based observatories designed to search for life beyond the solar system.

  4. Discovering Synergistic Drug Combination from a Computational Perspective.

    PubMed

    Ding, Pingjian; Luo, Jiawei; Liang, Cheng; Xiao, Qiu; Cao, Buwen; Li, Guanghui

    2018-03-30

    Synergistic drug combinations play an important role in the treatment of complex diseases. The identification of effective drug combination is vital to further reduce the side effects and improve therapeutic efficiency. In previous years, in vitro method has been the main route to discover synergistic drug combinations. However, many limitations of time and resource consumption lie within the in vitro method. Therefore, with the rapid development of computational models and the explosive growth of large and phenotypic data, computational methods for discovering synergistic drug combinations are an efficient and promising tool and contribute to precision medicine. It is the key of computational methods how to construct the computational model. Different computational strategies generate different performance. In this review, the recent advancements in computational methods for predicting effective drug combination are concluded from multiple aspects. First, various datasets utilized to discover synergistic drug combinations are summarized. Second, we discussed feature-based approaches and partitioned these methods into two classes including feature-based methods in terms of similarity measure, and feature-based methods in terms of machine learning. Third, we discussed network-based approaches for uncovering synergistic drug combinations. Finally, we analyzed and prospected computational methods for predicting effective drug combinations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. What are the clinical implications of nodular gastritis? Clues from histopathology.

    PubMed

    Sokmensuer, Cenk; Onal, Ibrahim Koral; Yeniova, Ozgur; Ersoy, Osman; Aydinli, Musa; Yonem, Ozlem; Harmanci, Ozgur; Onal, Eda Demir; Altinok, Gulcin; Batman, Figen; Bayraktar, Yusuf

    2009-10-01

    There is no widely accepted histopathological definition for nodular gastritis. In this study we aim to uncover the pathologic entity responsible for the nodular appearance and to find clues about the clinical implications of nodular gastritis. Antral biopsy specimens of 160 patients with nodular gastritis and 133 patients without nodular gastritis were examined by an experienced pathologist for dysplasia, foveolar hyperplasia, inflammatory activity, intraepithelial lymphocytosis, intestinal metaplasia, and lymphoid follicle/aggregate formation, and comparative analysis was performed between the two groups of patients. The presence of intraepithelial lymphocytosis was more frequent in patients with nodular gastritis (P < 0.05). There was no difference between the two groups regarding the other pathological features such as presence of dysplasia, inflammatory activity, intestinal metaplasia, lymphoid hyperplasia, and Helicobacter pylori (H. pylori) infection. Increase of intraepithelial lymphocytes may contribute to formation of macroscopical nodules in this peculiar type of gastritis. Nodular gastritis would not indicate a new therapeutic approach in addition to the current measures for Helicobacter pylori infection.

  6. Planetary habitability: is Earth commonplace in the Milky Way?

    NASA Astrophysics Data System (ADS)

    Franck, S.; Block, A.; Bloh, W.; Bounama, C.; Garrido, I.; Schellnhuber, H.-J.

    2001-08-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  7. Planetary habitability: is Earth commonplace in the Milky Way?

    PubMed

    Franck, S; Block, A; von Bloh, W; Bounama, C; Garrido, I; Schellnhuber, H J

    2001-10-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  8. Navigating recurrent abdominal pain through clinical clues, red flags, and initial testing.

    PubMed

    Noe, Joshua D; Li, B U K

    2009-05-01

    Recurrent abdominal pain is a common chronic complaint that presents to your office. The constant challenge is one of detecting those with organic disease from the majority who have a functional pain disorder including functional dyspepsia, irritable bowel syndrome, functional abdominal pain, and abdominal migraine. Beginning with a detailed history and physical exam, you can: 1) apply the symptom-based Rome III criteria to positively identify a functional disorder, and 2) filter these findings through the diagnostic clues and red flags that point toward specific organic disease and/or further testing. Once a functional diagnosis has been made or an organic disease is suspected, you can initiate a self-limited empiric therapeutic trial. With this diagnostic approach, you should feel confident navigating through the initial evaluation, management, and consultation referral for a child or adolescent with recurrent abdominal pain.

  9. Climate of an Earth-Like World with Changing Eccentricity

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding

  10. Online Metadata Directories: A way of preserving, sharing and discovering scientific information

    NASA Technical Reports Server (NTRS)

    Meaux, M.

    2005-01-01

    The Global Change Master Directory (GCMD) assists the scientific community in the discovery of and linkage to Earth Science data and provides data holders a means to advertise their data to the community through its portals, i.e. online customized subset metadata directories. These directories are effectively serving communities like the Joint Committee on Antarctic Data Management (JCADM), the Global Observing System Information Center (GOSIC), and the Global Ocean Ecosystems Dynamic Program (GLOBEC) by increasing the visibility of their data holding. The purpose of the Gulf of Maine Ocean Data Partnership (GoMODP) is to "promote and coordinate the sharing, linking, electronic dissemination, and use of data on the Gulf of Maine region". The participants have decided that a "coordinated effort is needed to enable users throughout the Gulf of Maine region and beyond to discover and put to use the vast and growing quantities of data in their respective databases". GoMODP members have invited the GCMD to discuss potential collaborations associated with this effort. The presentation will focus on the use of the GCMD s metadata directory as a powerful tool for data discovery and sharing. An overview of the directory and its metadata authoring tools will be given.

  11. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    DOE PAGES

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; ...

    2018-02-28

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. Here, in an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetectedmore » in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.« less

  12. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. Here, in an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetectedmore » in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.« less

  13. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    PubMed Central

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J.; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A.; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D.; Bloom, Elliott D.; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J.; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H.; Buson, Sara; Cameron, Rob A.; Caputo, Regina; Caraveo, Patrizia A.; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R.; Costantin, Denise; Cutini, Sara; D’Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W.; Favuzzi, Cecilia; Ferrara, Elizabeth C.; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A.; Green, David; Grenier, Isabelle A.; Guiriec, Sylvain; Harding, Alice K.; Hewitt, John W.; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N.; Lubrano, Pasquale; Magill, Jeffrey D.; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N.; McEnery, Julie E.; Michelson, Peter F.; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V.; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S.; de Palma, Francesco; Paneque, David; Perkins, Jeremy S.; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A.; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S.; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W.; Saz Parkinson, Pablo M.; Sgrò, Carmelo; Siskind, Eric J.; Smith, David A.; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B.; Thompson, David J.; Torres, Diego F.; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-01-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population. PMID:29503868

  14. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  15. [right] - DUST RING AROUND STAR OFFERS NEW CLUES INTO PLANET FORMATION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope false-color near infrared image of a novel type of structure seen in space - a dust ring around a star. Superficially resembling Saturn's rings -- but on a vastly larger scale -- the 'hula-hoop' around the star called HR 4796A offers new clues into the possible presence of young planets. The near-infrared light reflecting off the dust ring is about 1,000 times fainter than the illuminating central star. Astronomers used a coronagraphic camera on Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), specifically designed to enable observations of very faint and low surface brightness objects in the close proximity to bright stars. Even with the coronagraph, the glare from HR 4796A overwhelms the much-fainter ring at distances less than about 4 billion miles (inside the blacked-out circle, centered on the star). Hubble's crisp view was able to resolve the ring, seen at lower resolution at longer wavelengths, in ground-based thermal infrared images, as a disk with some degree of central clearing. The ring has an angular radius of 1.05 arc seconds, equivalent to the apparent size of a dime seen more than 4 miles away. Unlike the extensive disks of dust seen around other young stars, the HR 4796A dust ring, 6.5 billion miles from the star, is tightly confined within a relatively narrow zone less than 17 Astronomical Units wide. An Astronomical Unit is the distance from the Earth to the Sun). For comparison, the ring width is approximately equal to the distance separating the orbits of Mars and Uranus in our own Solar System. All dust rings, whether around stars or planets, can only stay intact by some mechanism confining the dust, likely the gravitational tug of unseen planets. The image was taken on March 15, 1998, centered at a near infrared wavelength of 1.1 microns. The false-color corresponds to the ring's brightness (yellow is bright, purple is faint). The ring, which is undoubtedly circular, appears elliptical since

  16. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  17. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.; Aleinov, I.; Amundsen, David S.

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less

  18. Strontium-90 Error Discovered in Subcontract Laboratory Spreadsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Brown A. S. Nagel

    1999-07-31

    West Valley Demonstration Project health physicists and environment scientists discovered a series of errors in a subcontractor's spreadsheet being used to reduce data as part of their strontium-90 analytical process.

  19. Intellectual Development and Interaction Effectiveness with DISCOVER.

    ERIC Educational Resources Information Center

    Roselle, Bruce E.; Hummel, Thomas J.

    1988-01-01

    Used Knefelkamp's and Slepitza's (1976) model of career-related intellectual development to investigate how students at different levels of development think as they interact with a computer-assisted career guidance system, DISCOVER II, which comprises modules on understanding interests, values, and abilities; searching for occupations based on…

  20. Pseudomonas blight discovered on raspberry in Watsonville

    USDA-ARS?s Scientific Manuscript database

    In the winter (February) of 2013, a field of raspberries in Watsonville was discovered to be infected with Pseudomonas syringae, the causal agent of Pseudomonas blight disease. This was the first documentation of this disease on raspberry in our region. The infection of raspberry plants is manifeste...

  1. Rubidium Isotope Composition of the Earth and the Moon: Evidence for the Origin of Volatile Loss During Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2016-12-01

    The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). There is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. In particular, eucrites are significantly enriched in 87Rb (up to several per mil) relative to chondrites. Similarly, lunar basalts are enriched in 87Rb compared to terrestrial basalts, by 200 ppm for 87Rb/85Rb. These data are the first measurements of a resolvable difference in Rb isotope composition between the Earth and the Moon. The variations in Rb isotope composition between the Earth and the Moon are consistent with Rb isotope fractionation due to evaporation. References: [1] Humayun & Clayton GCA 1995. [2] Paniello et al. Nature 2012. [3] Kato et al. Nat. Comm. 2015. [4] Wang and Jacobsen Nature in press.

  2. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first

  3. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  4. Observation of freakish-asteroid-discovered-resembles support my idea that many dark comets were arrested and lurked in the solar system after every impaction

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2014-03-01

    New observations show that some asteroids are looked like comets. http://www.astrowatch.net/2013/11/freakish-asteroid-discovered-resembles.html, http://www.astrowatch.net/2013/11/astronomers-puzzle-over-newfound.html. It supports my idea that ``many dark comets with very special tilted orbits were arrested and lurked in the solar system'' - ``Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in the solar system. Because some of them picked up many solar matter, so it looked like the asteroids. When the dark hole-Tyche goes near the solar system again, they will impact near planets.'' The idea maybe explains why do the asteroid looks like the comet? Where are the asteroids come from? What relationship do they have with the impactions and extinctions? http://meetings.aps.org/link/BAPS.2011.CAL.C1.7, http://meetings.aps.org/Meeting/CAL12/Event/181168, http://meetings.aps.org/link/BAPS.2013.MAR.H1.267. During 2009 to 2010, I had presented there are many dark comets like dark Asteroids near the orbit of Jupiter in ASP Meetings. In 2010, NASA's WISE found them. http://meetings.aps.org/link/BAPS.2011.APR.K1.17, http://www.nasa.gov/mission_pages/WISE/news/wise20100122.html Avoid Earth Extinction Associ.

  5. ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Mitchell, A.

    2011-12-01

    Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of

  6. Scientists Discover Sugar in Space

    NASA Astrophysics Data System (ADS)

    2000-06-01

    . Glycolaldehyde is a simpler molecular cousin to table sugar, the scientists say. The sugar molecule was detected in a large cloud of gas and dust some 26,000 light-years away, near the center of our Galaxy. Such clouds, often many light-years across, are the material from which new stars are formed. Though very rarified by Earth standards, these interstellar clouds are the sites of complex chemical reactions that occur over hundreds of thousands or millions of years. So far, about 120 different molecules have been discovered in these clouds. Most of these molecules contain a small number of atoms, and only a few molecules with eight or more atoms have been found in interstellar clouds. The 12 Meter Telescope "Finding glycolaldehyde in one of these interstellar clouds means that such molecules can be formed even in very rarified conditions," said Hollis. "We don't yet understand how it could be formed there," he added. "A combination of more astronomical observations and theoretical chemistry work will be required to resolve the mystery of how this molecule is formed in space." "We hope this discovery inspires renewed efforts to find even more kinds of molecules, so that, with a better idea of the total picture, we may be able to deduce the details of the prebiotic chemistry taking place in interstellar clouds," Hollis said. The discovery was made by detecting faint radio emission from the sugar molecules in the interstellar cloud. Molecules rotate end-for-end, and as they change from one rotational energy state to another, they emit radio waves at precise frequencies. The "family" of radio frequencies emitted by a particular molecule forms a unique "fingerprint" that scientists can use to identify that molecule. The scientists identified glycolaldehyde by detecting six frequencies of radio emission in what is termed the millimeter-wavelength region of the electromagnetic spectrum -- a region between more-familiar microwaves and infrared radiation. The NRAO 12 Meter Telescope

  7. The peculiarities of power terrestrial ELF emission in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Dudkin, Fedir; Pronenko, Vira; Chvach, Valery

    2016-04-01

    The near-Earth space is saturated with electromagnetic (EM) waves of terrestrial origin in a wide frequency range. The most powerful natural sources of EM emission are thunderstorms and triggered by them Schumann resonance (SR) radiation which is the narrowband EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity in frequency range about 7-100 Hz. The considerable part of the terrestrial EM emission belongs to everyday human activity which increases year by year with unpredictable consequences. At the beginning of space exploration era it was considered that high frequency EM waves freely penetrate through the Earth's ionosphere, but the terrestrial EM emission below very low frequency range is limited by ionospheric F2 layer boundary due to great EM losses in plasma. About 40 years ago the power lines harmonic radiation (multiple of 50/60 Hz) was found at satellite observations in a few kilohertz range, nevertheless the ionosphere was considered fully opaque for extremely low frequency (ELF) EM emission. However recently, in spite of theoretical estimations, the SR harmonics and power line emission (PLE) 50/60 Hz were discovered during flights of low Earth orbiting satellites C/NOFS (Simões et al., 2011) and Chibis-M (Dudkin et al., 2015) at heights 400-800 km, i.e. over F2-layer. Last results are a great challenge to the theory of ELF EM emission propagation in the Earth's ionosphere as well as for study of long-term influence of constantly increasing electric energy consumption by human civilization in the Earth's environment. We present the analysis of the space and time distribution for observed PLE and SR harmonics, their connection with power terrestrial sources of ELF emission and possible relation between measured values and ionosphere conditions. Also some electromagnetic parameters have been estimated. Simões, F. A., R. F. Pfaff, and H. T. Freudenreich (2011), Satellite observations of Schumann resonances in the

  8. Life and Death on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Sleep, N. H.

    1999-01-01

    Failure to discover life on Mars has led a great many experts to conclude that it must be hiding. Where? The likeliest hiding places are deep beneath the surface, where geothermal heat could permit liquid water. In this the search for life on Mars parallels the search for water on Mars. Liquid water has been, at least on occasion, a geologically significant presence on the surface. Channels were cut and plains dissected. This water is now hidden, in all likelihood having drained to the base of the porous regolith, where it fills possibly frozen aquifers. Presumably any surviving biota has followed the water from the surface to its hiding places in the deep. Accordingly, we have extended our environmental impact assessment of the environmental hazards posed by large asteroid and comet impacts to Mars, and compare its case to Earth's. In particular, we address the continuous habitability of surface and subsurface environments.

  9. Mt. Kilimanjaro expedition in earth science education

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  10. Discovering Extrasolar Planets with Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Wambsganss, J.

    2016-06-01

    An astronomical survey is commonly understood as a mapping of a large region of the sky, either photometrically (possibly in various filters/wavelength ranges) or spectroscopically. Often, catalogs of objects are produced/provided as the main product or a by-product. However, with the advent of large CCD cameras and dedicated telescopes with wide-field imaging capabilities, it became possible in the early 1990s, to map the same region of the sky over and over again. In principle, such data sets could be combined to get very deep stacked images of the regions of interest. However, I will report on a completely different use of such repeated maps: Exploring the time domain for particular kinds of stellar variability, namely microlens-induced magnifications in search of exoplanets. Such a time-domain microlensing survey was originally proposed by Bohdan Paczynski in 1986 in order to search for dark matter objects in the Galactic halo. Only a few years later three teams started this endeavour. I will report on the history and current state of gravitational microlensing surveys. By now, routinely 100 million stars in the Galactic Bulge are monitored a few times per week by so-called survey teams. All stars with constant apparent brightness and those following known variability patterns are filtered out in order to detect the roughly 2000 microlensing events per year which are produced by stellar lenses. These microlensing events are identified "online" while still in their early phases and then monitored with much higher cadence by so-called follow-up teams. The most interesting of such events are those produced by a star-plus-planet lens. By now of order 30 exoplanets have been discovered by these combined microlensing surveys. Microlensing searches for extrasolar planets are complementary to other exoplanet search techniques. There are two particular advantages: The microlensing method is sensitive down to Earth-mass planets even with ground-based telecopes, and it

  11. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  12. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  13. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  14. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  15. Discovering Astronomy: An Astro 101 e-book

    NASA Astrophysics Data System (ADS)

    Shawl, Stephen J.; Byrd, Gene; Deustua, Susana E.; LoPresto, Michael C.

    2016-01-01

    Discovering Astronomy, now available in its 6th edition as an eText, has many advantages and features for your students. We have partnered with etextink.com and WebAssign.net to produce an affordable set of cost-saving options for your students. Also available is the Discovering Astronomy Activity Manual, which provides students with an active-learning experience.Our etext is device independent and thus accessible through any web browser. Americans with Disabilities Act compatibility provides access for all students. Hotlinks to outside sites provide further information for interested students. Lecture demonstration videos of important concepts, made specifically for this new edition, are embedded within the text as appropriate. Students can highlight text, take notes, and bookmark locations within the text. Important terms are linked to the glossary. Search capabilities allow students to easily find what they want.Instructors can interact with their students directly through the etext once the class roster has been provided. For example, instructors can embed assignments into their students' etext and add their own notes and updates, which are immediately visible to their students.Updates can be quickly made by us as new findings become available. For example, updates from New Horizons were added at the time of the closest approach to Pluto, and an update on the recent announcement of current water on Mars was added the day of the announcement.We will present results of our own experience with college and high school students' use of Discovering Astronomy in online courses.Details of the book, a sample chapter, and other information are available at discoveringastronomy.weebly.com.

  16. DISCOVER AQ Research Plane Arrives

    NASA Image and Video Library

    2011-06-28

    An unidentified researcher works aboard the P-3B NASA research aircraft at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)

  17. Cochlear Implants Keep Twin Sisters Learning, Discovering Together

    MedlinePlus

    ... University. Photo: Johns Hopkins University Keep Twin Sisters Learning, Discovering Together Mia and Isabelle Jeppsen, 10, share ... her mother, gratefully, "There's the obvious benefit of learning to read, write and communicate with facility and ...

  18. A Field-Based Biomimicry Exercise Helps Students Discover Connections among Biodiversity, Form and Function, and Species Conservation during Earth's Sixth Extinction

    ERIC Educational Resources Information Center

    Soja, Constance M.

    2014-01-01

    In a first-year seminar on mass extinctions, a field-based, paleontology-focused exercise promotes active learning about Earth's biodiversity, form and function, and the biomimicry potential of ancient and modern life. Students study Devonian fossils at a local quarry and gain foundational experience in describing anatomy and relating form to…

  19. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  20. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  1. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  2. Demystifying Scientific Data ­ Using Earth Science to Teach the Scientific Method

    NASA Astrophysics Data System (ADS)

    Nassiff, P. J.; Santos, E. A.; Erickson, P. J.; Niell, A. E.

    2006-12-01

    The collection of large quantities of data and their subsequent analyses are important components of any scientific process, particularly at research institutes such as MIT's Haystack Observatory, where the collection and analyses of data is crucial to research efforts. Likewise, a recent study on science education concluded that students should be introduced to analyzing evidence and hypotheses, to critical thinking - including appropriate skepticism, to quantitative reasoning and the ability to make reasonable estimates, and to the role of uncertainty and error in science. In order to achieve this goal with grades 9-12 students and their instructors, we developed lesson plans and activities based on atmospheric science and geodetic research at Haystack Observatory. From the complex steps of experimental design, measurement, and data analysis, students and teachers will gain insight into the scientific research processes as they exist today. The use of these space weather and geodesy activities in classrooms will be discussed. Space Weather: After decades of data collection with multiple variables, space weather is about as complex an area of investigation as possible. Far from the passive relationship between the Sun and Earth often taught in the early grades, or the beautiful auroras discussed in high school, there are complex and powerful interactions between the Sun and Earth. In spite of these complexities, high school students can learn about space weather and the repercussions on our communication and power technologies. Starting from lessons on the basic method of observing space weather with incoherent scatter radar, and progressing to the use of simplified data sets, students will discover how space weather affects Earth over solar cycles and how severe solar activity is measured and affects the Earth over shorter time spans. They will see that even from complex, seemingly ambiguous data with many variables and unknowns, scientists can gain valuable

  3. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  4. The Search for Life on Mars - Current Knowledge, Earth Analogues, and Principal Issues

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.

    2012-01-01

    For centuries, the planet Mars has been imagined as a possible abode for life. Serious searches for life's signatures began in the 19th century via ground-based visual astronomy that stimulated a vibrant fantasy literature but little lasting scientific knowledge. Modern scientific inquiry has emphasized the search for chemical signatures of life in the soil and rocks at the planet's surface, and via biomarker gases in the atmosphere. Today, investigations are based on high-resolution spectroscopy at Earth's largest telescopes along with planet orbiting and landed space missions. Methane has assumed central importance in these searches. Living systems produce more than 900/0 of Earth's atmospheric methane; the balance is of geochemical origin. Abundant methane is not expected in an oxidizing atmosphere such as Mars', and its presence would imply recent release - whether biological or geochemical. F or that reason, the quest for methane on Mars has been a continuing thread in the fabric of searches conducted since 1969. I will review aspects of the discovery and distribution of methane on Mars, and will mention ongoing extended searches for clues to its origin and destruction. On Earth, hydrogen (generated via serpentinization or radiolysis of water) provides an important 'fuel' for carbonate-reducing and sulphate-reducing biota (CH4 and H2S producers, respectively). Several such communities are known to reside at depth in continental domains (e.g., Lidy Hot Springs, Idaho; Witwatersrand Basin, S. Africa). If similar conditions exist in favourable locations on Mars, organisms similar to these could likely prosper there. Geologic (abiotic) production will also be mentioned, especially abiotic methane production associated with low-temperature serpentinization (e.g., terrestrial ophiolites). It is vitally important to pursue evidence for geochemical and biological production with equal vigour and intellectual weight lest unwanted and unintended bias contaminate the

  5. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  6. The Mission Accessible Near-Earth Object Survey (MANOS): Project Status

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Thirouin, Audrey; Mommert, Michael; Thomas, Cristina A.; Skiff, Brian; Polishook, David; Burt, Brian; Trilling, David E.; DeMeo, Francesca E.; Binzel, Richard P.; Christensen, Eric J.; Willman, Mark; Hinkle, Mary

    2017-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of sub-km, low delta-v, newly discovered near-Earth objects (NEOs). MANOS aims to collect astrometry, lightcurve photometry, and reflectance spectra for a representative sample of these important target of opportunity objects in a rarely observed size range. We employ a diverse set of large aperture (2-8 meter) telescopes and observing modes (queue, remote, classical) to overcome the challenge of observing faint NEOs moving at high non-sidereal rates with short observing windows. We target approximately 10% of newly discovered NEOs every month for follow-up characterization.The first generation MANOS ran from late 2013 to early 2017, using telescopes at Lowell Observatory, NOAO, and the University of Hawaii. This resulted in the collection of data for over 500 targets. These data are continuing to provide new insights into the NEO population as a whole as well as for individual objects of interest. Science highlights include identification of the four fastest rotating minor planets found to date with rotation periods under 20 seconds, constraints on the distribution of NEO morphologies as quantified by de-biased estimates for lightcurve-derived axis ratios, and the compositional distribution of NEOs at sizes under 100 meters.The second generation MANOS will begin in late 2017 and will employ much of the same strategies while continuing to build a comprehensive dataset of NEO physical properties. This will grow the MANOS sample to ~1000 objects and provide the means to better address key questions related to understanding the physical properties of NEOs, their viability as exploration mission targets, and their relationship to Main Belt asteroids and meteorites. This continuation of MANOS will include an increased focus on spectroscopic observations at near-IR wavelengths using a new instrument called NIHTS (the Near-Infrared High-Throughput Spectrograph) at Lowell

  7. SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Bauer, J.; Giorgini, J.

    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinationsmore » of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 μm HgCdTe detector arrays capable of operating at ∼35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth–Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next

  8. Quantitative Comparison of Mountain Belt Topographic Profiles on Earth and Venus

    NASA Astrophysics Data System (ADS)

    Stoddard, P. R.; Jurdy, D. M.

    2016-12-01

    Earth's mountain belts result from interactions between tectonic plates. Several styles of belts reflect the differing nature of those interactions: The narrow spine of the Andes results from subduction of the oceanic Nazca plate under the continental South American plate, the soaring Himalayas from the collision of India and Asia, the broad Rockies and Alaskan cordillera from multiple collisions, and the gentle Appalachians and Urals are remnants from ancient collisions. Venus' mountain chains - Maxwell, Freyja, Akna and Danu - surround Lakshmi Planum, a highland with an elevation of 4 km. These make up Ishtar Terra. Maxwell Montes ascends to over 11 km, the highest elevation on the planet. Freyja rises just over 7 km and Akna to about 6 km. The arcuate Danu belt on Ishtar's western boundary comes up to only 1.5 km over the planum. No other mountain belts exist on Venus. The origins of these venusian orogenic belts remain unknown. Earliest explanations invoked subduction around Lakshmi Planum; subsequent models included either up- or down-welling of the mantle, horizontal convergence, or crustal thickening. We quantitatively compare topography of Venus' mountain chains with Earth's for similarities and differences. Patterns may provide clues to the dynamics forming venusian orogenic belts. To do this, we find topographic profiles across the various chains, determine average profiles for each, and then correlate averages to establish the degree of similarity. From this correlation we construct a covariance matrix, diagonalized for eigenvalues, or principal components. These can be displayed as profiles. Correlations and principal components allow us to assess the degree of similarity and variability of the shapes of the average profiles. These analyses thus offer independent and objective modes of comparison; for example, with respect to terrestrial mid-ocean ridges, some Venus chasmata were shown to most closely resemble the ultra-slow Arctic spreading center.

  9. Looking for Clues to the Mystery of Life on Earth

    NASA Astrophysics Data System (ADS)

    Balter, Michael

    1996-08-01

    From the vast central hall in Chambord Castle, the largest of the great chateaux on France's River Loire, an ornate double-helical staircase rises to a roof terrace. It was an appropriate setting for a banquet of the International Society for the Study of the Origin of Life (ISSOL), which held its triennial meeting last month in nearby Orleans. Without double-helical DNA and RNA molecules, life would not exist. At the meeting, nearly 300 scientists, including three Nobel laureates, grappled with the riddle of how these molecules first appeared and how they evolved into self-reproducing cells-questions that have gained new urgency with the hint that life in some form also may have evolved on Mars (see pages 864 and 924).

  10. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  11. Two Different Cell Populations Is an Important Clue for Diagnosis of Primary Cutaneous Adenoid Cystic Carcinoma: Immunohistochemical Study

    PubMed Central

    Alkan, Banu Ince; Karadeniz, Müjde; Bozdoğan, Nazan

    2017-01-01

    Primary cutaneous adenoid cystic carcinoma (PCACC) is a very rare malignancy. The differential diagnosis of PCACCs in pathology practice can be difficult and a group of primary and metastatic lesions, including adenoid basal cell carcinoma of the skin, should be considered in the differential diagnosis. Besides histomorphological clues, immunohistochemistry studies are very helpful in the differential diagnosis of PCACC. We report herein a case of PCACC with extensive immunohistochemical studies and review the literature from an immunohistochemistry perspective. PMID:28243477

  12. Earth Observation Data Quality Monitoring and Control: A Case Study of STAR Central Data Repository

    NASA Astrophysics Data System (ADS)

    Han, W.; Jochum, M.

    2017-12-01

    Earth observation data quality is very important for researchers and decision makers involved in weather forecasting, severe weather warning, disaster and emergency response, environmental monitoring, etc. Monitoring and control earth observation data quality, especially accuracy, completeness, and timeliness, is very useful in data management and governance to optimize data flow, discover potential transmission issues, and better connect data providers and users. Taking a centralized near real-time satellite data repository, STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR), as an example, this paper describes how to develop new mechanism to verify data integrity, check data completeness, and monitor data latency in an operational data management system. Such quality monitoring and control of large volume satellite data help data providers and managers improve data transmission of near real-time satellite data, enhance its acquisition and management, and overcome performance and management issues to better serve research and development activities.

  13. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  14. Do It Yourself (DIY) Earth Science Collaboratories Using Best Practices and Breakthrough Technologies

    NASA Astrophysics Data System (ADS)

    Stephan, E.

    2017-12-01

    The objective of published earth science study data results and literature on the Web should be to provide a means to integrate discoverable science resources through an open collaborative-Web. At the core of any open science collaborative infrastructure is the ability to discover, manage and ultimately use relevant data accessible to the collaboration. Equally important are the relationships between people, applications, services, and publications, which capture critical contextual knowledge that enable their effective use. While contributions of either irreproducible or costly data can be a great asset the inability of users being able to use the data intelligently or make sense of it, makes these investments not usable. An ability to describe ad-hoc discoverable usage methodologies, provide feedback to data producers, and identify and cite data in a systematic way by leveraging existing Web-enabled off the shelf technology is needed. Fortunately many break-through advancements in data publication best practices and government, open source, and commercial investments support consumers who can provide feedback, share experiences, and contribute back to the earth science ecosystem.

  15. Discovering System Health Anomalies Using Data Mining Techniques

    NASA Technical Reports Server (NTRS)

    Sriastava, Ashok, N.

    2005-01-01

    We present a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an Integrated System Health Monitoring system. We specifically treat the problem of discovering anomalous features in the time series that may be indicative of a system anomaly, or in the case of a manned system, an anomaly due to the human. Identification of these anomalies is crucial to building stable, reusable, and cost-efficient systems. The framework consists of an analysis platform and new algorithms that can scale to thousands of sensor streams to discovers temporal anomalies. We discuss the mathematical framework that underlies the system and also describe in detail how this framework is general enough to encompass both discrete and continuous sensor measurements. We also describe a new set of data mining algorithms based on kernel methods and hidden Markov models that allow for the rapid assimilation, analysis, and discovery of system anomalies. We then describe the performance of the system on a real-world problem in the aircraft domain where we analyze the cockpit data from aircraft as well as data from the aircraft propulsion, control, and guidance systems. These data are discrete and continuous sensor measurements and are dealt with seamlessly in order to discover anomalous flights. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.

  16. Discovering and visualizing indirect associations between biomedical concepts

    PubMed Central

    Tsuruoka, Yoshimasa; Miwa, Makoto; Hamamoto, Kaisei; Tsujii, Jun'ichi; Ananiadou, Sophia

    2011-01-01

    Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: tsuruoka@jaist.ac.jp PMID:21685059

  17. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  18. Who discovered the sylvian fissure?

    PubMed

    Collice, Massimo; Collice, Rosa; Riva, Alessandro

    2008-10-01

    Cerebral convolutions were unknown until the 17th century. A constant sulcus was not recognized until the mid-1600s; it was named "the fissure of Sylvius," after the person who had always been considered as the one who discovered it. It is commonly asserted that the first description of the lateral scissure was made by Caspar Bartholin, who attributed its discovery to Sylvius. However, this was not actually the case, as Caspar Bartholin died in 1629, whereas Sylvius started studying medicine in 1632. The description could have been made either by Caspar Bartholin's son Thomas or by Sylvius himself. Irrespective of the description's author, the key to the history of the lateral fissure is that it was first identified by Fabrici d'Acquapendente in 1600, 40 years before Sylvius' description. In one of the 300 colored plates (Tabulae Pictae) by Fabrici, the lateral fissure is perfectly depicted, as are the temporal convolutions. Therefore, even if it was an accidental discovery, Fabrici should be the one noted as having discovered the fissure. This article ends with a short history of the plates. They were painted in oil on paper and were thought to further a great work, the Theatrum Totius Animalis Fabricae, which was begun in 1591 and never completed or published. Only the colored illustrations of this project remain. These plates were forgotten for more than 200 years, until they were rediscovered by Giuseppe Sterzi in 1909. They are among the best examples of anatomic iconography in terms of innovation, accuracy, and artistic accomplishment.

  19. Updating strategies for isolating and discovering giant viruses.

    PubMed

    Khalil, Jacques Yaacoub Bou; Andreani, Julien; La Scola, Bernard

    2016-06-01

    Almost fifteen years ago, the discovery of Acanthamoeba polyphaga mimivirus, the first giant virus, changed how we define a virus. It was discovered incidentally in a process of isolating Legionella sp. from environmental samples in the context of pneumonia epidemics using a co-culture system with Acanthamoeba. Since then, much effort and improvement has been put into the original technique. In addition to the known families of Mimiviridae and Marseilleviridae, four new proposed families of giant viruses have been isolated: Pandoravirus, Pithovirus, Faustovirus and Mollivirus. Major improvements were based on enrichment systems, targeted use of antibiotics and high-throughput methods. The most recent development, using flow cytometry for isolation and presumptive identification systems, opens a path to large environmental surveys that may discover new giant virus families in new protozoa supports used for culture support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Boron Discovered in Ancient Habitable Mars Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasda, Patrick

    Boron was recently discovered in calcium-sulfate veins on Mars using the ChemCam instrument on NASA’s Curiosity Mars Rover. This is the first Mars mission to detect boron on the Red Planet. Los Alamos Post-Doctoral Student Patrick Gasda explains how this discovery helps us better understand the timescale of habitability on Mars.

  1. Discover Presidential Log Cabins. Teacher's Discussion Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    Discover Presidential Log Cabins is a set of materials designed to help educate 6-8 grade students about the significance of three log cabin sites occupied by George Washington, Ulysses Grant, Abraham Lincoln, and Theodore Roosevelt. This teacher's discussion guide is intended for use as part of a larger, comprehensive social studies program, and…

  2. Text Mining to inform construction of Earth and Environmental Science Ontologies

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their

  3. Research on Bacteria in the Mainstream of Biology.

    ERIC Educational Resources Information Center

    Magasanik, Boris

    1988-01-01

    Stresses the importance of investigating bacterial mechanisms to discover clues for a greater understanding of cells. Cites examples of study areas of biological significance which may reveal information about the evolution of prokaryotes and eukaryotes and lead to a comprehensive theory of cell biology. (RT)

  4. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    2011-01-10

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less

  5. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms

    PubMed Central

    Liu, Jie; Shimizu, Kuniyoshi; Tanaka, Akinobu; Shinobu, Wakako; Ohnuki, Koichiro; Nakamura, Takanori; Kondo, Ryuichiro

    2012-01-01

    Ganoderma fungus (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure–activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents. PMID:23205267

  6. DISCOVER AQ Research Plane Arrives

    NASA Image and Video Library

    2011-06-28

    A 117-foot P-3B NASA research aircraft is seen on the tarmac at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)

  7. DISCOVER AQ Research Plane Arrives

    NASA Image and Video Library

    2011-06-28

    Pilots Shane Dover, left, and Mike Singer are seen on the flight deck of the P-3B NASA research aircraft at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)

  8. The pearls of using real-world evidence to discover social groups

    NASA Astrophysics Data System (ADS)

    Cardillo, Raymond A.; Salerno, John J.

    2005-03-01

    In previous work, we introduced a new paradigm called Uni-Party Data Community Generation (UDCG) and a new methodology to discover social groups (a.k.a., community models) called Link Discovery based on Correlation Analysis (LDCA). We further advanced this work by experimenting with a corpus of evidence obtained from a Ponzi scheme investigation. That work identified several UDCG algorithms, developed what we called "Importance Measures" to compare the accuracy of the algorithms based on ground truth, and presented a Concept of Operations (CONOPS) that criminal investigators could use to discover social groups. However, that work used a rather small random sample of manually edited documents because the evidence contained far too many OCR and other extraction errors. Deferring the evidence extraction errors allowed us to continue experimenting with UDCG algorithms, but only used a small fraction of the available evidence. In attempt to discover techniques that are more practical in the near-term, our most recent work focuses on being able to use an entire corpus of real-world evidence to discover social groups. This paper discusses the complications of extracting evidence, suggests a method of performing name resolution, presents a new UDCG algorithm, and discusses our future direction in this area.

  9. Discovering frequently recurring movement sequences in team-sport athlete spatiotemporal data.

    PubMed

    Sweeting, Alice J; Aughey, Robert J; Cormack, Stuart J; Morgan, Stuart

    2017-12-01

    Athlete external load is typically analysed from predetermined movement thresholds. The combination of movement sequences and differences in these movements between playing positions is also currently unknown. This study developed a method to discover the frequently recurring movement sequences across playing position during matches. The external load of 12 international female netball athletes was collected by a local positioning system during four national-level matches. Velocity, acceleration and angular velocity were calculated from positional (X, Y) data, clustered via one-dimensional k-means and assigned a unique alphabetic label. Combinations of velocity, acceleration and angular velocity movement were compared using the Levenshtein distance and similarities computed by the longest common substring problem. The contribution of each movement sequence, according to playing position and relative to the wider data set, was then calculated via the Minkowski distance. A total of 10 frequently recurring combinations of movement were discovered, regardless of playing position. Only the wing attack, goal attack and goal defence playing positions are closely related. We developed a technique to discover the movement sequences, according to playing position, performed by elite netballers. This methodology can be extended to discover the frequently recurring movements within other team sports and across levels of competition.

  10. Don Juan Pond, Antarctica: near-surface CaCl(2)-brine feeding Earth's most saline lake and implications for Mars.

    PubMed

    Dickson, James L; Head, James W; Levy, Joseph S; Marchant, David R

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl(2) brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from "warm/wet" to "cold/dry" climates.

  11. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake and implications for Mars

    PubMed Central

    Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R.

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl2 brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from “warm/wet” to “cold/dry” climates. PMID:23378901

  12. A strategy to discover new organizers identifies a putative heart organizer

    PubMed Central

    Anderson, Claire; Khan, Mohsin A. F.; Wong, Frances; Solovieva, Tatiana; Oliveira, Nidia M. M.; Baldock, Richard A.; Tickle, Cheryll; Burt, Dave W.; Stern, Claudio D.

    2016-01-01

    Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development. PMID:27557800

  13. Investigating Pathways from the Earth Science Knowledge Base to Candidate Solutions

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Johnson, E.; Mita, D.; Dabbiru, L.; Katragadda, S.; Lewis, D.; O'Hara, C.

    2007-12-01

    A principle objective of the NASA Applied Sciences Program is to support the transition of scientific research results into decisions which benefit society. One of the Solutions Network activities supporting this goal is the generation of Candidate Solutions derived from NASA Earth Science research results that have the potential to enhance future operational systems for societal benefit. In short, the program seeks to fill gaps between Earth Science results and operational needs. The Earth Science Knowledge Base (ESKB) is being developed to provide connectivity and deliver content for the research information needs of the NASA Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, examine the individual components of that research, and assist in developing strategies for furthering research. The ESKB will include information about organizations that conduct NASA-funded Earth Science research, NASA research solicitations, principal investigators, research publications and other project reports, publication authors, inter-agency agreements like memoranda-of-understanding, and NASA assets, models, decision support tools, and data products employed in the course of or developed as a part of the research. The generation of candidate solutions is the first step in developing rigorously tested applications for operational use from the normal yet chaotic process of natural discovery. While the process of 'idea generation' cannot be mechanized, the ESKB serves to provide a resource for testing theories about advancing research streams into the operational realm. Formulation Reports are the documents which outline a Candidate Solution. The reports outline the essential elements, most of which are detailed in the ESKB, which must be analyzed

  14. A Spitzer search for transits of radial velocity detected super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less

  15. ISS EarthKam: Taking Photos of the Earth from Space

    ERIC Educational Resources Information Center

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  16. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  17. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  18. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: relation to Fe-oxide (Cu-U-Au-rare earth element) deposits and tectonic implications

    USGS Publications Warehouse

    Foose, M.P.; McLelland, J.M.

    1995-01-01

    Low-Ti iron-oxide deposits in exposed Grenville-age rocks of New York and New Jersey belong to a distinct class of iron-oxide (Cu-U-Au-rare earth element [REE]) deposits that includes similar iron deposits in southeastern Missouri and the Kiruna district of Sweden, the giant Olympic Dam U-Cu-Au-Ag deposit (Australia), and the Bayan Obo REE-Nb deposit (China). Most of the New York-New Jersey deposits exhibit features consistent with a hydrothermal origin and define a regionally significant metallogenic event that provides important clues to the evolution of this part of the Grenville orogen. In the Adirondacks, the tectonic setting of these deposits is consistent with postorogenic uplift and extensive crustal melting at 1070-1050 Ma that was accompanied by late tectonic to posttectonic deposition of iron. -Authors

  19. Heuristics for Relevancy Ranking of Earth Dataset Search Results

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Quinn, P.; Norton, J.

    2016-12-01

    As the Variety of Earth science datasets increases, science researchers find it more challenging to discover and select the datasets that best fit their needs. The most common way of search providers to address this problem is to rank the datasets returned for a query by their likely relevance to the user. Large web page search engines typically use text matching supplemented with reverse link counts, semantic annotations and user intent modeling. However, this produces uneven results when applied to dataset metadata records simply externalized as a web page. Fortunately, data and search provides have decades of experience in serving data user communities, allowing them to form heuristics that leverage the structure in the metadata together with knowledge about the user community. Some of these heuristics include specific ways of matching the user input to the essential measurements in the dataset and determining overlaps of time range and spatial areas. Heuristics based on the novelty of the datasets can prioritize later, better versions of data over similar predecessors. And knowledge of how different user types and communities use data can be brought to bear in cases where characteristics of the user (discipline, expertise) or their intent (applications, research) can be divined. The Earth Observing System Data and Information System has begun implementing some of these heuristics in the relevancy algorithm of its Common Metadata Repository search engine.

  20. Heuristics for Relevancy Ranking of Earth Dataset Search Results

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Quinn, Patrick; Norton, James

    2016-01-01

    As the Variety of Earth science datasets increases, science researchers find it more challenging to discover and select the datasets that best fit their needs. The most common way of search providers to address this problem is to rank the datasets returned for a query by their likely relevance to the user. Large web page search engines typically use text matching supplemented with reverse link counts, semantic annotations and user intent modeling. However, this produces uneven results when applied to dataset metadata records simply externalized as a web page. Fortunately, data and search provides have decades of experience in serving data user communities, allowing them to form heuristics that leverage the structure in the metadata together with knowledge about the user community. Some of these heuristics include specific ways of matching the user input to the essential measurements in the dataset and determining overlaps of time range and spatial areas. Heuristics based on the novelty of the datasets can prioritize later, better versions of data over similar predecessors. And knowledge of how different user types and communities use data can be brought to bear in cases where characteristics of the user (discipline, expertise) or their intent (applications, research) can be divined. The Earth Observing System Data and Information System has begun implementing some of these heuristics in the relevancy algorithm of its Common Metadata Repository search engine.

  1. Quantifying the Risk Posed by Potential Earth Impacts

    NASA Astrophysics Data System (ADS)

    Chesley, Steven R.; Chodas, Paul W.; Milani, Andrea; Valsecchi, Giovanni B.; Yeomans, Donald K.

    2002-10-01

    Predictions of future potential Earth impacts by near-Earth objects (NEOs) have become commonplace in recent years, and the rate of these detections is likely to accelerate as asteroid survey efforts continue to mature. In order to conveniently compare and categorize the numerous potential impact solutions being discovered we propose a new hazard scale that will describe the risk posed by a particular potential impact in both absolute and relative terms. To this end, we measure each event in two ways, first without any consideration of the event's time proximity or its significance relative to the so-called background threat, and then in the context of the expected risk from other objects over the intervening years until the impact. This approach is designed principally to facilitate communication among astronomers, and it is not intended for public communication of impact risks. The scale characterizes impacts across all impact energies, probabilities and dates, and it is useful, in particular, when dealing with those cases which fall below the threshold of public interest. The scale also reflects the urgency of the situation in a natural way and thus can guide specialists in assessing the computational and observational effort appropriate for a given situation. In this paper we describe the metrics introduced, and we give numerous examples of their application. This enables us to establish in rough terms the levels at which events become interesting to various parties.

  2. A space mission to detect imminent Earth impactors

    NASA Astrophysics Data System (ADS)

    Valsecchi, G. B.; Perozzi, E.; Rossi, A.

    2015-03-01

    One of the goals of NEO surveys is to discover Earth impactors before they hit. How much warning time is desirable depends on the size of the impactors: for the larger ones more time is needed to mount effective mitigation measures. Initially, NEO surveys were aimed at large impactors, that can have significant global effects; however, their typical time scale is orders of magnitude larger than human lifetime. At the other extreme, monthly and annual events, liberating energies of the order of 1 to 10 kilotons, are immaterial as a threat to mankind, not justifying substantial expenditure on them. Intermediate events are of more concern: in the megatons range, timescales are of the order of centuries, and the damage can be substantial. A classical example is the Tunguska event, in which a body with a diameter of about 30 to 50 m liberated about 5 megatons in the atmosphere, devastating 2 000 square kilometers of Siberian forest.

  3. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  4. DataONE: A Distributed Environmental and Earth Science Data Network Supporting the Full Data Life Cycle

    NASA Astrophysics Data System (ADS)

    Cook, R.; Michener, W.; Vieglais, D.; Budden, A.; Koskela, R.

    2012-04-01

    Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. Tools are needed to plan management of the data, discover the relevant data, integrate heterogeneous and diverse data, and convert the data to information and knowledge. Addressing these challenges requires new approaches for the full data life cycle of managing, preserving, sharing, and analyzing data. DataONE (Observation Network for Earth) represents a virtual organization that enables new science and knowledge creation through preservation and access to data about life on Earth and the environment that sustains it. The DataONE approach is to improve data collection and management techniques; facilitate easy, secure, and persistent storage of data; continue to increase access to data and tools that improve data interoperability; disseminate integrated and user-friendly tools for data discovery and novel analyses; work with researchers to build intuitive data exploration and visualization tools; and support communities of practice via education, outreach, and stakeholder engagement.

  5. Dive and Discover : Expeditions to the Seafloor

    Science.gov Websites

    me a link other What is your highest level of education? -- please select -- K-12 student High School : Are you a teacher? Yes No Email: Your email will not be revealed to any third party, nor be used for Us | Contact © 2005 Dive and Discover is a registered trademark of Woods Hole Oceanographic

  6. Young Pulsar Reveals Clues to Supernova

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers examined the remnants of a stellar explosion with NASA's Chandra X-ray Observatory and discovered one of the youngest known pulsars. The properties of this pulsar, a neutron star rotating 15 times a second, will enable scientists to better understand how neutron stars are formed in the seconds just before a supernova explosion, and how they pump energy into the space around them for thousands of years after the explosion. A team led by Stephen Murray of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA studied 3C58, the remains of a supernova observed on Earth in 1181 AD in the constellation Cassiopeia. In addition to a pulsating central source they observed an extended X-ray source surrounding the pulsar thought to be produced by a cloud of high-energy particles about 20 light years across. These results were presented at the "Two Years of Science with Chandra" symposium in Washington, D.C. According to Murray, "Our discovery shows that all pulsars are not born equal. This pulsar is about the same age as the Crab Nebula pulsar, but there is little family resemblance." Murray explained that the 3C58 pulsar, which is now rotating at about half the rate of the Crab pulsar, is rotating almost as fast as it was when it was formed. In contrast, the Crab pulsar was formed spinning much more rapidly and has slowed to about half its initial speed. Conventional theory has assumed that all pulsars were like the Crab, born with rapid rotation and then have spun down considerably. The observations of 3C58, along with Chandra observations by another group of scientists of a pulsar associated with the supernova of 386 AD have cast doubt on that assumption, however. Furthermore, the X-ray power of 3C58 and its surrounding nebula are 20,000 and 1,000 times weaker than the Crab pulsar and its surrounding nebula respectively. One possibility for the low power of 3C58 is that the energy flow from its pulsar is primarily in the form of electromagnetic fields

  7. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  8. LIDAR technology for measuring trace gases on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart

    2017-11-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a

  9. DISCOVER AQ Research Plane Arrives

    NASA Image and Video Library

    2011-06-28

    WFF Pilots Mike Singer, left, and Shane Dover stand in front of the 117-foot P-3B NASA research aircraft on the tarmac at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)

  10. STS-57 OV-105's payload bay (PLB) with Earth observation of Namib Desert

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of the coast of the Namib Desert. This northeast-looking view shows the distinctive yellow, parallel dunes of the Namib Sand Sea in the foreground under OV-105's tail. The largest harbor on the Atlantic coast is Walvis Bay. A small piece of south African territory surrounded by the newly independent country, Walvis Bay is Namibia's major port. On the dune-free flats directly inland from Walvis Bay, large reserves of near-surface uranium have been discovered. The world's largest open-pit uranium mine, the Rossing Mine, has attracted workers from all parts of Namibia. Of special interest for this mission is the unusual occurrence of blowing dust offshore (orange patch over the sea). In what was a mission dominated by episodes of blowing dust, this is another example showing how windy the Earth is at present. This large view from a higher-than-usual altitude includes the large oval patch of the Etosha dry lake n

  11. Feasibility study for near-earth-object tracking by a piggybacked micro-satellite with penetrators

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Leung, W.; Yung, K. L.

    2010-05-01

    As of August 2007, over 5000 near-earth-objects (NEO) have been discovered. Some already represent a potential danger to the Earth while others might become hazards in the future. The Planetary Society organised in 2007 the "Apophis Mission Design Competition" in response to this potential threat with the objective to identify promising concepts to track NEOs; the asteroid 99942 Apophis was taken as the study case. This paper describes the "Houyi" proposal which was evaluated by the competition jury as an innovative approach to this problem. Instead of launching a large satellite for NEO tracking, this novel concept proposes a miniaturized satellite that is piggybacked onto a larger (scientific) mission. Such mission design would drastically reduce the costs for NEO surveillance. The presented scenario uses the ESA's SOLO mission as a design baseline for the piggyback option. This paper summarizes the architecture of this CubeSat towards Apophis and extends the previous study by focusing on the feasibility of a piggybacked mission in terms of propulsion requirements.

  12. Communicating Finnish Quietude: A Pedagogical Process for Discovering Implicit Cultural Meanings in Languages

    ERIC Educational Resources Information Center

    Berry, Michael; Carbaugh, Donal; Nurmikari-Berry, Marjatta

    2004-01-01

    This paper introduces a pedagogical approach to integrating intercultural communication into language learning. The focus is on the development of competence in discovering and interpreting cultural meanings when communicating in English as an international language. The analyses of data which students produced illustrates how discovering implicit…

  13. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  14. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  15. EVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Glaves, H. M.; Marelli, F.; Albani, M.

    2015-12-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Data providers will be also able to monitor user experiences and collect feedback through the VRE, improving their capacity to adapt to the changing requirements of their end-users. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary ES domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRC represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows.

  16. Discovering loose group movement patterns from animal trajectories

    USGS Publications Warehouse

    Wang, Yuwei; Luo, Ze; Xiong, Yan; Prosser, Diann J.; Newman, Scott H.; Takekawa, John Y.; Yan, Baoping

    2015-01-01

    The technical advances of positioning technologies enable us to track animal movements at finer spatial and temporal scales, and further help to discover a variety of complex interactive relationships. In this paper, considering the loose gathering characteristics of the real-life groups' members during the movements, we propose two kinds of loose group movement patterns and corresponding discovery algorithms. Firstly, we propose the weakly consistent group movement pattern which allows the gathering of a part of the members and individual temporary leave from the whole during the movements. To tolerate the high dispersion of the group at some moments (i.e. to adapt the discontinuity of the group's gatherings), we further scheme the weakly consistent and continuous group movement pattern. The extensive experimental analysis and comparison with the real and synthetic data shows that the group pattern discovery algorithms proposed in this paper are similar to the the real-life frequent divergences of the members during the movements, can discover more complete memberships, and have considerable performance.

  17. Comparing Volcanic Terrains on Venus and Earth: How Prevalent are Pyroclastic Deposits on Venus?

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, B. A.; Glaze, L. S.

    2012-01-01

    In the last several years, astronomers have discovered several exoplanets with masses less than 10 times that of the Earth [1]. Despite the likely abundance of Earth-sized planets, little is known about the pathways through which these planets evolve to become habitable or uninhabitable. Venus and Earth have similar planetary radii and solar orbital distance, and therefore offer a chance to study in detail the divergent evolution of two objects that now have radically different climates. Understanding the extent, duration, and types of volcanism present on Venus is an important step towards understanding how volatiles released from the interior of Venus have influenced the development of the atmosphere. Placing constraints on the extent of explosive volcanism on Venus can provide boundary conditions for timing, volumes, and altitudes for atmospheric injection of volatiles. In addition, atmospheric properties such as near-surface temperature and density affect how interior heat and volatiles are released. Radar image data for Venus can be used to determine the physical properties of volcanic deposits, and in particular, they can be used to search for evidence of pyroclastic deposits that may result from explosive outgassing of volatiles. For explosive volcanism to occur with the current high atmospheric pressure, magma volatile contents must be higher than is typical on Earth (at least 2-4% by weight) [2,3]. In, addition, pyroclastic flows should be more prevalent on Venus than convective plumes and material may not travel as far from the vent source as it would on Earth [3]. Areas of high radar backscatter with wispy margins that occur near concentric fractures on Sapho Patera [4] and several coronae in Eastern Eistla Regio [5] have been attributed to collapse of eruption columns and runout of rough materials.

  18. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be

  19. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  20. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal