Sample records for earth element enriched

  1. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  2. [Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation].

    PubMed

    Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang

    2015-11-01

    Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.

  3. Rubidium Isotope Composition of the Earth and the Moon: Evidence for the Origin of Volatile Loss During Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2016-12-01

    The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). There is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. In particular, eucrites are significantly enriched in 87Rb (up to several per mil) relative to chondrites. Similarly, lunar basalts are enriched in 87Rb compared to terrestrial basalts, by 200 ppm for 87Rb/85Rb. These data are the first measurements of a resolvable difference in Rb isotope composition between the Earth and the Moon. The variations in Rb isotope composition between the Earth and the Moon are consistent with Rb isotope fractionation due to evaporation. References: [1] Humayun & Clayton GCA 1995. [2] Paniello et al. Nature 2012. [3] Kato et al. Nat. Comm. 2015. [4] Wang and Jacobsen Nature in press.

  4. Positive anomalous concentrations of Pb in some gabbroic rocks of Afikpo basin southeastern Nigeria.

    PubMed

    Onwualu-John, J N

    2016-08-01

    Gabbroic rocks have intruded the sedimentary sequence at Ameta in Afikpo basin southeastern Nigeria. Petrographic and geochemical features of the rocks were studied in order to evaluate their genetic and geotectonic history. The petrographic results show that the rocks contain plagioclase, olivine, pyroxene, biotite, iron oxide, and traces of quartz in three samples. Major element characteristics show that the rocks are subalkaline. In addition, the rocks have geochemical characteristics similar to basaltic andesites. The trace elements results show inconsistent concentrations of high field strength elements (Zr, Nb, Th, Ta), moderate enrichment of large-ion lithophile elements (Rb, Sr, Ba) and low concentrations of Ni and Cr. Rare earth element results show that the rocks are characterized by enrichment of light rare earth elements, middle rare earth elements enrichment, and depletion of heavy rare earth elements with slight positive europium anomalies. Zinc concentrations are within the normal range in basaltic rocks. There are extremely high concentrations of Pb in three of the rock samples. The high Pb concentrations in some of these rocks could be as a result of last episodes of magmatic crystallization. The rocks intruded the Asu River Group; organic components in the sedimentary sequence probably contain Pb which has been assimilated into the magma at the evolutionary stage of the magma. Weathering of some rocks that contain galena could lead to an increase in the concentration of lead in the gabbroic rocks, especially when the migration and crystallization of magma take place in an aqueous environment. Nevertheless, high concentration of lead is hazardous to health and environment.

  5. Mineralogy and crystallization history of a highly differentiated REE-enriched hypabyssal rhyolite: Round Top laccolith, Trans-Pecos, Texas

    NASA Astrophysics Data System (ADS)

    O'Neill, L. Christine; Elliott, Brent A.; Kyle, J. Richard

    2017-09-01

    The Round Top hypabyssal rhyolite laccolith is a highly evolved magmatic system, enriched in incompatible elements including REE [Rare Earth Element(s)], U, Be, and F. The Round Top intrusion is part of a series of Paleogene intrusions emplaced as the Sierra Blanca Complex. These intrusions are situated within long-lived, complex tectonic regimes that have been subjected to regional compression and subduction, punctuated by extensional bimodal volcanism. The enrichment in the rhyolite that comprises Round Top is the result of the prolonged removal of compatible elements from the source magma chamber through the emplacement of earlier magmatic events. With the emplacement of each sequential laccolith, the F-rich source magma became more enriched in incompatible elements, with increasing HREE [Heavy Rare Earth Elements(s)] concentrations. The emplacement of Round Top as a laccolith (versus that of an extrusive rhyolitic flow) facilitated the retention of the volatile-rich vapor phase within the magma, forming ubiquitous REE-bearing minerals, mainly yttrofluorite and yttrocerite. The high temperature mineral-vapor phase alteration of the feldspar groundmass was essential to the formation of REE minerals, where the pervasive open pore space was occupied by the late-crystallizing minerals. These late-forming REE-bearing minerals also occur as crystals associated with other accessory and trace phases, as inclusions within other phases, along grain boundaries, and along fractures and within voids. The rhyolite at Round Top and other laccolith intrusions in the Sierra Blanca Complex represent a new sub-type of magmatic rare earth element hosting system.

  6. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  7. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less

  8. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  9. Hf and Nd Isotope Evidence for Production of an Incompatible Trace Element Enriched Crustal Reservoir in Early Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.; Lapen, T. J.

    2010-12-01

    The final significant stage of accretion of the Earth was likely a collision between proto-Earth and a Mars sized impactor that formed the Moon. This event is thought to have produced enough thermal energy to melt all or most of the Earth, with a consequent magma ocean (MO). During subsequent cooling, the Earth would have formed its protocrust and corresponding mantle lithosphere, consisting of solidified basalt-komatiitic melt, in combination with buoyant cumulates and late stage residual melts from the MO. Relative to the convecting mantle, portions of this protolithosphere are likely to have been enriched in incompatible trace elements (ITE) in sufficient quantities to contain a significant amount of the bulk Earth’s budget for rare earth elements, U, Th, and Hf. If the protolithosphere was negatively buoyant, it may have overturned at or near the final stages of MO crystallization and a significant portion of that material may have been transported into the deep mantle where it resided and remixed into the convecting mantle over Earth history [1,2]. If the protolithosphere remained positively buoyant, its crust would have likely begun to erode from surface processes, and subsequently recycled back into the mantle over time as sediment and altered crust, once a subduction mechanism arose. The Nd and Hf isotopic compositions of Earth’s earliest rocks support the idea that an early-formed ITE-enriched reservoir was produced. The maxima in 142Nd/144Nd for 3.85 to 3.64 Ga rocks from Isua, Greenland decreases from +20 ppm to +12 ppm relative to the present day mantle value, respectively [3]. This indicates mixing of an early-formed ITE enriched reservoir back into the convecting mantle. In addition, zircons from the 3.1 Ga Jack Hills conglomerate indicate that material with an enriched 176Lu/177Hf of ~0.02 and an age of 4.4 Ga or greater was present at the Earth’s surface over the first 2 Ga of Earth history, supporting the scenario of a positively buoyant, early-formed ITE-enriched reservoir [4]. This early-formed enriched ITE reservoir is indistinguishable in age and 176Lu/177Hf to those that formed in the Moon and Mars [5,6]. Hence all three terrestrial bodies must have undergone similar early differentiation and each formed and sustained their requisite early-formed ITE-enriched reservoirs at or near their surfaces. For all three terrestrial bodies, their early-formed ITE-enriched reservoirs appear to be the result of solidification of late stage residual liquids from their respective MO’s at or prior to 4.4 Ga. In Earth, mixing of an early-formed ITE-enriched reservoir back into the mantle likely occurred back into the convecting mantle at or before 3.9 Ga. For the Moon and Mars, the lack of plate tectonics preserved their early-formed ITE-enriched lithospheric reservoirs. [1] Tolstikhin and Hofmann, PEPI (2005) 148, 109. [2] Boyet and Carlson, Science (2005) 309, 576. [3] Bennett et al., Science (2007) 218, 1907. [3] Kemp et al., EPSL (2010) 296, 45. [5] Taylor et al. (2009) 279, 157. [6] Lapen et al., Science (2010) 328, 347.

  10. Health risk assessment of rare earth elements in cereals from mining area in Shandong, China.

    PubMed

    Zhuang, Maoqiang; Wang, Liansen; Wu, Guangjian; Wang, Kebo; Jiang, Xiaofeng; Liu, Taibin; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhang, Junli; Zhou, Jingyang; Zhao, Jinshan; Chu, Zunhua

    2017-08-29

    To investigate the concentrations of rare earth elements in cereals and assess human health risk through cereal consumption, a total of 327 cereal samples were collected from rare earth mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The medians of total rare earth elements in cereals from mining and control areas were 74.22 μg/kg and 47.83 μg/kg, respectively, and the difference was statistically significant (P < 0.05). The wheat had the highest rare earth elements concentrations (109.39 μg/kg and 77.96 μg/kg for mining and control areas, respectively) and maize had the lowest rare earth elements concentrations (42.88 μg/kg and 30.25 μg/kg for mining and control areas, respectively). The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes of rare earth elements through cereal consumption were considerably lower than the acceptable daily intake (70 μg/kg bw). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to rare earth elements on children.

  11. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei

    2006-08-01

    The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.

  12. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  13. Potassium isotopic evidence for a high-energy giant impact origin of the Moon.

    PubMed

    Wang, Kun; Jacobsen, Stein B

    2016-10-27

    The Earth-Moon system has unique chemical and isotopic signatures compared with other planetary bodies; any successful model for the origin of this system therefore has to satisfy these chemical and isotopic constraints. The Moon is substantially depleted in volatile elements such as potassium compared with the Earth and the bulk solar composition, and it has long been thought to be the result of a catastrophic Moon-forming giant impact event. Volatile-element-depleted bodies such as the Moon were expected to be enriched in heavy potassium isotopes during the loss of volatiles; however such enrichment was never found. Here we report new high-precision potassium isotope data for the Earth, the Moon and chondritic meteorites. We found that the lunar rocks are significantly (>2σ) enriched in the heavy isotopes of potassium compared to the Earth and chondrites (by around 0.4 parts per thousand). The enrichment of the heavy isotope of potassium in lunar rocks compared with those of the Earth and chondrites can be best explained as the result of the incomplete condensation of a bulk silicate Earth vapour at an ambient pressure that is higher than 10 bar. We used these coupled constraints of the chemical loss and isotopic fractionation of K to compare two recent dynamic models that were used to explain the identical non-mass-dependent isotope composition of the Earth and the Moon. Our K isotope result is inconsistent with the low-energy disk equilibration model, but supports the high-energy, high-angular-momentum giant impact model for the origin of the Moon. High-precision potassium isotope data can also be used as a 'palaeo-barometer' to reveal the physical conditions during the Moon-forming event.

  14. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis.

    PubMed

    Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N

    2018-01-01

    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composition of monazites from pegmatites in eastern Minas Gerais, Brazil

    USGS Publications Warehouse

    Murata, K.J.; Dutra, C.V.; da Costa, M.T.; Branco, J.J.R.

    1959-01-01

    Two zoned pegmatites in south-eastern Minas Gerais were sampled in detail for their content of monazite and xenotime and the monazite was analysed for certain of the rare-earth elements and thorium. The ratio of xenotime to monazite increases in both pegmatites from the wall toward the quartz core. The content of the less basic rare-earth elements and of thorium in monazite rises in the same direction. These variation trends suggest that during the crystallization of these pegmatites there was a fractionation of the elements leading to a more or less steady enrichment of the less basic rare-earth elements and of thorium in the residual fluids. One mode of explaining these observed effects postulates that the rare-earth elements and thorium were present in pegmatitic fluids as co-ordination complexes rather than as simple cations. ?? 1959.

  16. Evidence against a chondritic Earth.

    PubMed

    Campbell, Ian H; O'Neill, Hugh St C

    2012-03-28

    The (142)Nd/(144)Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry--that the composition of the silicate Earth is 'chondritic', meaning that it has refractory element ratios identical to those found in chondrites. The popular explanation for this and other paradoxes of mantle geochemistry, a hidden layer deep in the mantle enriched in incompatible elements, is inconsistent with the heat flux carried by mantle plumes. Either the matter from which the Earth formed was not chondritic, or the Earth has lost matter by collisional erosion in the later stages of planet formation.

  17. Constraints on the coupled thermal evolution of the Earth's core and mantle, the age of the inner core, and the origin of the 186Os/188Os “core signal” in plume-derived lavas

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2006-10-01

    The possibility that some mantle plumes may carry a geochemical signature of core/mantle interaction has rightly generated considerable interest and attention in recent years. Correlated 186Os- 187Os enrichments in some plume-derived lavas (Hawaii, Gorgona, Kostomuksha) have been interpreted as deriving from an outer core with elevated Pt/Os and Re/Os ratios due to the solidification of the Earth's inner core (c.f., [A.D. Brandon, R.J. Walker, The debate over core-mantle interaction, Earth Planet. Sci. Lett. 232 (2005) 211-225.] and references therein). Conclusive identification of a "core signal" in plume-derived lavas would profoundly influence our understanding of mantle convection and evolution. This paper reevaluates the Os-isotope evidence for core/mantle interaction by examining other geochemical constraints on core/mantle interaction, geophysical constraints on the thermal evolution of the outer core, and geochemical and cosmochemical constraints on the abundance of heat-producing elements in the core. Additional study of metal/silicate and sulfide/silicate partitioning of K, Pb, and other trace elements is needed to more tightly constrain the likely starting composition of the Earth's core. However, available data suggest that the observed 186Os enrichments in Hawaiian and other plume-derived lavas are unlikely to derive from core/mantle interaction. 1) Core/mantle interaction sufficient to produce the observed 186Os enrichments would likely have significant effects on other tracers such as Pb- and W-isotopes that are not observed. 2) Significant partitioning of K or other heat-producing elements into the core would produce a "core depletion" pattern in the Silicate Earth very different from that observed. 3) In the absence of heat-producing elements in the core, core/mantle heat flow of ˜ 6-15 TW estimated from several independent geophysical constraints suggests an inner core age (< ˜ 2.5 Ga) too young for the outer core to have developed a significant 186Os enrichment. Core/mantle thermal and chemical interaction remains an important problem that warrants future research. However, Os-isotopes may have only limited utility in this area due to the relatively young age of the Earth's inner core.

  18. Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate

    USDA-ARS?s Scientific Manuscript database

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...

  19. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    USDA-ARS?s Scientific Manuscript database

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  20. Complementary rare earth element patterns in unique achondrites, such as ALHA 77005 and shergottites, and in the earth

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Laul, J. C.

    1982-01-01

    Abundances of major, minor, and trace elements are determined in the Antarctic achondrite Allan Hills (ALHA) 77005 via sequential instrumental and radiochemical neutron activation analysis. The rare earth element (REE) abundances of ALHA 77005 reveal a unique chondritic normalized pattern; that is, the REEs are nearly unfractionated from La to Pr at approximately 1.0X chondrites, monotonically increased from Pr to Gd at approximately 3.4X with no Eu anomaly, nearly unfractionated from Gd and Ho and monotonically decreased from Ho to Lu at approximately 2.2X. It is noted that this unique REE pattern of ALHA 77005 can be modeled by a melting process involving a continuous melting and progressive partial removal of melt from a light REE enriched source material. In a model of this type, ALHA 77005 could represent either a crystallized cumulate from such a melt or the residual source material. Calculations show that the parent liquids for the shergottites could also be derived from a light REE enriched source material similar to that for ALHA 77005.

  1. Siderophile element constraints on the origin of the Moon

    PubMed Central

    Walker, Richard J.

    2014-01-01

    Discovery of small enrichments in 182W/184W in some Archaean rocks, relative to modern mantle, suggests both exogeneous and endogenous modifications to highly siderophile element (HSE) and moderately siderophile element abundances in the terrestrial mantle. Collectively, these isotopic enrichments suggest the formation of chemically fractionated reservoirs in the terrestrial mantle that survived the putative Moon-forming giant impact, and also provide support for the late accretion hypothesis. The lunar mantle sources of volcanic glasses and basalts were depleted in HSEs relative to the terrestrial mantle by at least a factor of 20. The most likely explanations for the disparity between the Earth and Moon are either that the Moon received a disproportionately lower share of late accreted materials than the Earth, such as may have resulted from stochastic late accretion, or the major phase of late accretion occurred prior to the Moon-forming event, and the putative giant impact led to little drawdown of HSEs to the Earth's core. High precision determination of the 182W isotopic composition of the Moon can help to resolve this issue. PMID:25114313

  2. RARE EARTH ELEMENTS IN FLY ASHES AS POTENTIAL INDICATORS OF ANTHROPOGENIC SOIL CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.

    2003-08-01

    Studies of rare earth element (REE) content of disposed fly ashes and their potential mobility were neglected for decades because these elements were believed to be environmentally benign. A number of recent studies have now shown that REE may pose a long-term risk to the biosphere. Therefore, there is a critical need to study the REE concentrations in fly ash and their potential mobilization and dispersal upon disposal in the environment. We analyzed the REE content of bulk, size fractionated, and density separated fractions of three fly ash samples derived from combustion of sub bituminous coals from the western Unitedmore » States and found that the concentrations of these elements in bulk ashes were within the range typical of fly ashes derived from coals from the North American continent. The concentrations of light rare earth elements (LREE) such as La, Ce, and Nd, however, tended towards the higher end of the concentration range whereas, the concentrations of middle rare earth elements (MREE) (Sm and Eu) and heavy rare earth elements (HREE) (Lu) were closer to the lower end of the observed range for North American fly ashes. The concentrations of REE did not show any significant enrichment with decreasing particle size, this is typical of nonvolatile lithophilic element behavior during the combustion process. The lithophilic nature of REE was also confirmed by their concentrations in heavy density fractions of these fly ashes being on average about two times more enriched than the concentrations in the light density fractions. Shale normalized average of REE concentrations of fly ashes and coals revealed significant positive anomalies for Eu and Dy. Because of these distinctive positive anomalies of Eu and Dy, we believe that fly ash contamination of soils can be fingerprinted and distinguished from other sources of anthropogenic REE inputs in to the environment.« less

  3. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p < 0.05) more enriched in mosses. Similar REE ratios were measured in soils, bedrock, lichens and mosses at each study sites, indicating a regional integration of atmospheric deposition by both biomonitors. Both TM signature and REE composition of mosses revealed that this biomonitor is highly influenced by throughfall composition, and reflect atmospheric deposition interaction with the forest canopy. This explained the higher enrichment measured in mosses for elements which concentration in deposition were influenced by the canopy, either due to leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  4. The cause and source of melting for the most recent volcanism in Tibet: A combined geochemical and geophysical perspective

    NASA Astrophysics Data System (ADS)

    Wei, Feixiang; Prytulak, Julie; Xu, Jiandong; Wei, Wei; Hammond, James O. S.; Zhao, Bo

    2017-09-01

    We investigate the youngest volcanic activity on the Tibetan Plateau by combining observations from petrologic, geochemical and seismic tomography studies. Recent (from 2.80 Ma to present) post-collisional potassium-rich lavas from the Ashikule Volcanic Basin (AVB) in northwestern Tibet are characterised by remarkably enriched light rare earth elements (LREE) relative to heavy rare earth elements (HREE), and enriched large ion lithophile element (LILE) relative to high field strength elements (HFSE). Strontium and neodymium isotopic compositions are surprisingly restricted, and show little evidence for mixing or crustal contamination, despite the thick crust upon which they are erupted. Geochemical characteristics indicate a homogeneous source, highly enriched in trace elements, which is most consistent with derivation from long-lived subcontinental lithospheric mantle (SCLM). P-wave anisotropy tomography documents a gap between the north-subducting Indian slab and south-subducting Tarim slab directly beneath the AVB. We propose that volcanism in northwestern Tibet is associated with the progressive closure of this gap, during which shear heating of the SCLM can generate localised melting, with deep-seated faults providing a mechanism for erupted lavas to escape large-scale crustal contamination and fractionation in magma reservoirs. Thus, shear heating may provide an explanation for the restricted range of radiogenic isotope compositions from a SCLM source that should be, by its nature, heterogeneous on a large scale.

  5. High-Mg subduction-related Tertiary basalts in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Morra, V.; Secchi, F. A. G.; Melluso, L.; Franciosi, L.

    1997-03-01

    The Oligo-Miocene volcanics (32-15 Ma), which occur in the Oligo-Miocene Sardinian Rift, were interpreted in the literature as an intracontinental volcanic arc built upon continental crust about 30 km thick. They are characterized by a close field association of dominantly andesites and acid ignimbrites, with subordinate basalts. In this paper we deal with the origin and evolution of recently discovered high-magnesia basalts aged ca. 18 Ma occurring in the Montresta area, northern Sardinia, relevant to the petrogenesis of the Cenozoic volcanics of Sardinia. The igneous rocks of the Montresta area form a tholeiitic, subduction-related suite. Major-element variation from the high-magnesia basalts (HMB) to high-alumina basalts (HAB) are consistent with crystal/liquid fractionation dominated by olivine and clinopyroxene. Proportions of plagioclase and titanomagnetite increase from HAB to andesites. Initial {87Sr }/{86Sr } ratios increase with differentiation from 0.70398 for the HMB to 0.70592 for the andesites. This suggests concomitant crustal contamination. The geochemical characteristics of the high-magnesia basalts are typical of subduction-related magmas, with negative Nb, Zr and Ti spikes in mantle-normalized diagrams. It is proposed that these high-magnesia basalts were produced by partial melting of a mantle source characterized by large-ion lithophile elements (LILE) enrichment related principally to dehydration of subducted oceanic crust. Chondrite-normalized rare earth elements (REE) patterns indicate that the lavas are somewhat enriched in light rare earth elements (LREE), with flat heavy rare earth elements (HREE) patterns. This evidence is consistent with a spinel-bearing mantle source. The sub-parallel chondrite-normalized patterns show enrichment with differentiation, with a greater increase of LREE than HREE. The occurrence of high-magnesia basalts at 18 Ma in Sardinia appears to be correlated with and favoured by pronounced extensional tectonics at that time.

  6. Petrogenesis of ore-bearing porphyry in non-subduction setting: a case study of the Eocene potassic intrusions in the western Yangtze Block

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Liao, Shi-Yong; Zhou, Qing; Zhang, Xin

    2018-05-01

    In the western Yangtze Block, abundant Eocene ( 38-34 Ma) potassic adakite-like intrusions and associated porphyry copper deposits are exposed in non-subduction setting, including Machangjing, Beiya, Binchuan, Habo and Tongchang intrusions. All these ore-bearing porphyries share many geochemical characteristics of adakite such as depletion in heavy rare earth elements (HREEs), enrichment in Sr and Ba, absence of negative Eu anomalies, high SiO2, Al2O3, Sr/Y, La/Yb and low Y, Yb contents. They also exhibit affinities of potassic rocks, e.g., alkali-rich, high K2O/Na2O ratios and enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs). Their Sr-Nd isotopic ratios are similar to coeval shoshonitic lamprophyres. Geochemical data indicate that they were probably produced by partial melting of newly underplated potassic rocks sourced from a modified and enriched lithospheric mantle. These underplated rocks have elevated oxygen fugacity, water and copper contents, with high metallogenic potential. We propose that all the studied potassic rocks were emplaced in a post-collisional setting, associated with the local removal of lithospheric mantle.

  7. Fast preconcentration of trace rare earth elements from environmental samples by di(2-ethylhexyl)phosphoric acid grafted magnetic nanoparticles followed by inductively coupled plasma mass spectrometry detection

    NASA Astrophysics Data System (ADS)

    Yan, Ping; He, Man; Chen, Beibei; Hu, Bin

    2017-10-01

    In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.

  8. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific.

    PubMed

    Deng, Yinan; Ren, Jiangbo; Guo, Qingjun; Cao, Jun; Wang, Haifeng; Liu, Chenhui

    2017-11-28

    Deep-sea sediments contain high concentrations of rare earth element (REE) which have been regarded as a huge potential resource. Understanding the marine REE cycle is important to reveal the mechanism of REE enrichment. In order to determine the geochemistry characteristics and migration processes of REE, seawater, porewater and sediment samples were systematically collected from the western Pacific for REE analysis. The results show a relatively flat REE pattern and the HREE (Heavy REE) enrichment in surface and deep seawater respectively. The HREE enrichment distribution patterns, low concentrations of Mn and Fe and negative Ce anomaly occur in the porewater, and high Mn/Al ratios and low U concentrations were observed in sediment, indicating oxic condition. LREE (Light REE) and MREE (Middle REE) enrichment in upper layer and depletion of MREE in deeper layer were shown in porewater profile. This study suggests that porewater flux in the western Pacific basin is a minor source of REEs to seawater, and abundant REEs are enriched in sediments, which is mainly caused by the extensive oxic condition, low sedimentation rate and strong adsorption capacity of sediments. Hence, the removal of REEs of porewater may result in widespread REE-rich sediments in the western Pacific basin.

  9. The Elements: A Model of Mindful Supervision

    ERIC Educational Resources Information Center

    Sturm, Deborah C.; Presbury, Jack; Echterling, Lennis G.

    2012-01-01

    Mindfulness, based on an ancient spiritual practice, is a core quality and way of being that can deepen and enrich the supervision of counselors. This model of mindful supervision incorporates Buddhist and Hindu conceptualizations of the roles of the five elements--space, earth, water, fire, air--as they relate to adhikara or studentship, the…

  10. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  11. Sub-Micrometer Scale Minor Element Mapping in Interplanetary Dust Particles: A Test for Stratospheric Contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Sutton, S. R.

    2004-01-01

    Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth s stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to approximately 30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth s atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (approximately 100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOFSIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the approximately 2 m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during stratospheric residence.

  12. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea.

    PubMed

    Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel

    2017-09-15

    Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (E MREE =0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    NASA Astrophysics Data System (ADS)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in crack that cross-cut the calcite filling the vesicles or the volcanic glass. They are also closely associated with Ni-Mg bearing phyllosilicates, which appear to nucleate from alteration of olivine and clinopyroxenes. Further investigations are done to evidence and confirm an anterior magmatic enrichment. On the basis of these observations, we believe that the anomalous enrichment observed in seafloor sediments could derive from abnormally-rich provinces corresponding to aerial basaltic formations from oceanic islands primarily enriched during weathering processes (Melleton et al., 2014). Melleton et al. (2014). Rare-earth elements enrichment of Pacific sea-floor sediments: the view from volcanic islands of Polynesia. In preparation.

  14. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia

    NASA Astrophysics Data System (ADS)

    McLennan, Scott M.; Taylor, S. R.; Eriksson, K. A.

    1983-07-01

    Archean clastic sedimentary rocks are well exposed in the Pilbara Block of Western Australia. Shales from turbidites in the Gorge Creek Group ( ca. 3.4 Ae) and shales from the Whim Creek Group ( ca. 2.7 Ae) have been examined. The Gorge Creek Group samples, characterized by muscovite-quartzchlorite mineralogy, are enriched in incompatible elements (K, Th, U, LREE) by factors of about two, when compared to younger Archean shales from the Yilgarn Block. Alkali and alkaline earth elements are depleted in a systematic fashion, according to size, when compared with an estimate of Archean upper crust abundances. This depletion is less notable in the Whim Creek Group. Such a pattern indicates the source of these rocks underwent a rather severe episode of weathering. The Gorge Creek Group also has fairly high B content (85 ± 29 ppm) which may indicate normal marine conditions during deposition. Rare earth element (REE) patterns for the Pilbara samples are characterized by light REE enrichment ( La N/Yb N ≥ 7.5 ) and no or very slight Eu depletion ( Eu/Eu ∗ = 0.82 - 0.99 ). A source comprised of about 80% felsic igneous rocks without large negative Eu-anomalies (felsic volcanics, tonalites, trondhjemites) and 20% mafic-ultramafic volcanics is indicated by the trace element data. Very high abundances of Cr and Ni cannot be explained by any reasonable provenance model and a secondary enrichment process is called for.

  15. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    PubMed

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin.

    PubMed

    Yessoufou, Arouna; Ifon, Binessi Edouard; Suanon, Fidèle; Dimon, Biaou; Sun, Qian; Dedjiho, Comlan Achille; Mama, Daouda; Yu, Chang-Ping

    2017-11-09

    Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were < 0.20 mg/kg DM in all samples. Pollution indices and enrichment factor indicated a strong to severe enrichment of the elements, mainly Ce and precious elements in both sediments and sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.

  17. Lateritic, supergene rare earth element (REE) deposits

    USGS Publications Warehouse

    Cocker, Mark D.

    2014-01-01

    Intensive lateritic weathering of bedrock under tropical or sub-tropical climatic conditions can form a variety of secondary, supergene-type deposits. These secondary deposits may range in composition from aluminous bauxites to iron and niobium, and include rare earth elements (REE). Over 250 lateritic deposits of REE are currently known and many have been important sources of REE. In southeastern China, lateritic REE deposits, known as ion-adsorption type deposits, have been the world’s largest source of heavy REE (HREE). The lateritized upper parts of carbonatite intrusions are being investigated for REE in South America, Africa, Asia and Australia, with the Mt. Weld deposit in Australia being brought into production in late 2012. Lateritic REE deposits may be derived from a wide range of primary host rocks, but all have similar laterite and enrichment profiles, and are probably formed under similar climatic conditions. The weathering profile commonly consists of a depleted zone, an enriched zone, and a partially weathered zone which overlie the protolith. Lateritic weathering may commonly extend to depths of 30 to 60 m. REE are mobilized from the breakdown of primary REE-bearing minerals and redeposited in the enriched zone deeper in the weathering horizon as secondary minerals, as colloids, or adsorbed on other secondary minerals. Enrichment of REE may range from 3 to 10 times that of the source lithology; in some instances, enrichment may range up to 100 times.

  18. A Geochemical View on the Interplay Between Earth's Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Chauvel, C.

    2017-12-01

    Over most of Earth history, oceanic and continental crust was created and destroyed. The formation of both types of crust involves the crystallization and differentiation of magmas producing by mantle melting. Their destruction proceeds by mechanical erosion and weathering above sea level, chemical alteration on the seafloor, and bulk recycling in subduction zones. All these processes enrich of some chemical element and deplete others but each process has its own effect on chemical elements. While the flux of material from mantle to crust is well understood, the return flux is much more complex. In contrast to mantle processes, erosion, weathering, chemical alteration and sedimentary processes strongly decouple elements such as the rare earths and high-field strength elements due to their different solubilities in surface fluids and mineralogical sorting during transport. Soluble elements such as strontium or uranium are quantitatively transported to the ocean by rivers and decoupled from less soluble elements. Over geological time, such decoupling significantly influences the extent to which chemical elements remain at the Earth's surface or find their way back to the mantle through subduction zones. For example, elements like Hf or Nd are retained in heavy minerals on continents whereas U and Sr are transported to the oceans and then in subduction zones to the mantle. The consequence is that different radiogenic isotopic systems give disparate age estimates for the continental crust; e.g, Hf ages could be too old. In subduction zones, chemical elements are also decoupled, due to contrasting behavior during dehydration or melting in subducting slabs. The material sent back into the mantle is generally enriched in non-soluble elements while most fluid-mobile elements return to the crust. This, in turn, affects the relationship between the Rb-Sr, Sm-Nd, Lu-Hf and U-Th-Pb isotopic systems and creates correlations unlike those based on magmatic processes. By quantifying the difference between isotopic arrays created by magmatic processes vs. surface and subduction processes, we can determine how crust recycling creates isotopic heterogeneities in the mantle.

  19. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  20. Behaviour of elements in soils developed from nephelinites at Mount Etinde (Cameroon): Impact of hydrothermal versus weathering processes

    NASA Astrophysics Data System (ADS)

    Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.

    2009-05-01

    The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and the impact of hydrothermal processes as well as atmospheric pollution in the case of lead.

  1. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  2. Rare earth element abundances in rocks and minerals from the Fiskenaesset Complex, West Greenland. [comparison with lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Henderson, P.; Fishlock, S. J.; Laul, J. C.; Cooper, T. D.; Conard, R. L.; Boynton, W. V.; Schmitt, R. A.

    1976-01-01

    The paper reports activation-analysis determinations of rare-earth-element (REE) and other trace-element concentrations in selected rocks, plagioclase, and mafic separates from the Fiskenaesset Complex. The REE abundances are found to be very low and atypical in comparison with other terrestrial anorthosites. The plagioclases are shown to be characterized by a deficiency in heavy RE elements relative to light ones and a positive Eu anomaly, while the mafic separates are enriched in heavy rare earths and have no Eu anomaly, except in one sample. It is found that the bulk and trace-element abundances of the plagioclases are similar to those observed in some lunar anorthosites, but the degree of Eu anomaly is less in the plagioclases. The data are taken as confirmation of the idea that fractionation processes were involved in the origin of the Complex, and it is concluded that the Complex may have been produced from a magma generated by partial melting of a garnet-bearing source.

  3. Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark

    NASA Astrophysics Data System (ADS)

    Schmitz, Birger; Andersson, Per; Dahl, Jeremy

    1988-01-01

    Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.

  4. Application of solid phase extraction procedures for rare earth elements determination in environmental samples.

    PubMed

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena

    2016-07-01

    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Volatile elements in and on lunar volcanic glasses: What do they tell us about lunar genesis?

    NASA Technical Reports Server (NTRS)

    Koeberl, C.

    1984-01-01

    There are good reasons to believe that lunar volcanic glasses originated from a deep interior source. The presence of a thin layer of surface correlated elements on these glasses may indicate that the Moon has some reservoirs that are enriched in volatiles. Since the glasses themselves do not show similar enrichment, the source should be of limited extent. Three scenarios are advanced for the origin of these elements. The mechanism for lunar volcanism differs from the mechanism for volcanism on Earth since the former produces bubbling and the latter explosive fountaining. From the condensation behavior of the volatile compounds, which leads to heterogeneous condensation, it is concluded that comparing element ratios of surface correlated elements gives little sense. It seems as if the volatile reservoirs are of rather limited extent and that they do not enlarge the volatile content of the bulk Moon significantly.

  6. Geological and Petrological Characteristics of Oligocene Magmatic Rocks in The Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Erenoglu, Oya

    2016-04-01

    Oligocene magmatic activity in the Biga Peninsula (NW-Anatolia) produced widespread volcano-plutonic complexes. The study region, where in north of the Evciler village in the middle of Biga Peninsula includes these igneous assemblages. In this study, the petrographic and geochemical characteristics of igneous rocks in the region were investigated as well as the geological locations. The magmatic rocks are classified as 6 different units using their lithostratigraphical properties. The volcanism in the region starts with basaltic andesite lava including basalt dykes in the Lower Oligocene. In the Upper Oligocene, the evolved magma by crustal contamination produced commonly dacitic and andesitic lavas. The volcanism continued with andesitic lavas which had significant alterations in the region during this period. Evciler pluton including granite and granodiorite composition with shallow intrusive, was located with the related volcanism at the same time. The volcanic products, i.e. andesitic and trachydacitic lavas, was completed in the interval between Upper Oligocene and Lower Miocene. The post-collisional Oligocene sequence is associated with calc-alkaline composition and it has middle, high-K. Trace and rare earth elements (REE) diagrams show the enrichment in both large-ion lithophile elements (LILE) and light rare earth elements (LREE) with respect to the high field strength elements (HFSE), and a significant increment in heavy rare earth element consumption (HREE). The features of major, trace and rare earth elements of plutonic and volcanic rocks and the compositional variations of Oligocene volcanic group indicate increasing amounts of partial melting, crustal contamination and/or assimilation. The Oligocene post-collisional volcanism in Biga Peninsula points out the lithospheric mantle source enriched by subduction which controlled by slab break-off and lithospheric delamination. Acknowledgement. This study was supported by Canakkale Onsekiz Mart University Scientific Research Project Coordination Unit (Project no: FBA-2015-566) Keywords: Biga Peninsula, oligocene, post-collisional volcanism, petrology

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitz, A.H.; Boynton, W.V.

    Six ureilites (ALHA77257, ALHA81101, ALH82130, PCA82506, Kanna, and Novo Urei) were analyzed using neutron activation analysis for Ca, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, REE, W, Re, Os, Ir, and Au. The authors examined bulk samples as well as acid-treated samples. In bulk samples the refractory siderophiles' concentrations range from approximately 0.1 to 1.0 times CI chondrites while the volatile siderophiles' concentrations range from approximately 0.1 to 1.0 times CI chondrites while the volatile siderophiles range from about 0.07 to 0.3 times CI chondrites. Rare earth elements (REEs) in ureilites are quite depleted and display light and heavymore » rare earth enrichments. The Antarctic meteorites display either much less pronounced v-shaped patterns or no enrichment in the light rare earths at all. In terms of the new trace-element results, ureilites do not fall into the coherent groups that other workers have defined by chemical or petrographic characteristics. Trace elements do provide additional constraints on the models for the petrogenesis of ureilites. In particular, the siderophile element abundances call for simplified models of chemical processing rather than the complex, multistage processing called for in silicate fractionation models. REE concentrations, on the other hand, imply multistage processing to produce the ureilites. None of the ureilite petrogenesis models extant account for the trace element data. These new data and the considerations of them with respect to the proposed ureilite petrogenesis models indicate that the direction of modeling should be toward contemplation of mixtures and how the components the authors observe in ureilites behave under such conditions.« less

  8. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  9. Origin of enormous trace metal enrichments in weathering mantles of Jurassic carbonates: evidence from Sr, Nd and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.

    2013-12-01

    Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm) and Cd (2.4ppm). The underlying limestone and marl show, compared to average world carbonates, enrichments in the same elements and trace element distribution patterns similar to the soil suggesting their close genetic relationship. Pb, Sr and Nd isotope data allow to identify three principal components in the soil: a silicate-rich phase at close to the surface, a strongly trace metal enriched component at the bottom of the soil profile and an anthropogenic, atmosphere- derived component detected in the soil leachates. The isotopic mixing curves defined by the soil samples point to the close genetic connection between upper and lowermost soil horizons. The Nd isotopic composition of the leachates of all soil horizons are in contrast to the untreated soil and residual soil samples very homogeneous suggesting that the leachable phases of the upper and lower soil horizons are genetically connected. The downward migration of the trace metals is stopped at this soil level due to the presence of important secondary calcite precipitations, smectite and Fe-oxide accumulations. Mass balance calculations indicate that the enrichment process goes along with a volume increase relative to the bottom soil horizons.

  10. Distribution and Geochemistry of Rare-Earth Elements in Rivers of Southern and Eastern Primorye (Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Chudaev, O. V.; Bragin, I. V.; A, Kharitonova N.; Chelnokov, G. A.

    2016-03-01

    The distribution and geochemistry of rare earth elements (REE) in anthropogenic, technogenic and natural surface waters of southern and eastern Primorye, Far East of Russia, are presented in this study. The obtained results indicated that most of REE (up to 70%) were transported as suspended matter, ratio between dissolved and suspended forms varing from the source to the mouth of rivers. It is shown that all REE (except Ce) in the source of the rivers are predominantly presented in dissolved form, however, the content of light and heavy REE is different. Short-term enrichment of light rare earth elements (LREE) caused by REE-rich runoff from waste dumps and mining is neutralized by the increase in river flow rate. Rivers in urban areas are characterized by high content of LREE in dissolved form and very low in suspended one.

  11. Origin and migration of trace elements in the surface sediments of Majuro Atoll, Marshall Islands.

    PubMed

    Ito, Lisa; Omori, Takayuki; Yoneda, Minoru; Yamaguchi, Toru; Kobayashi, Ryuta; Takahashi, Yoshio

    2018-07-01

    The sediments of Majuro Atoll, Marshall Islands, consist of bioclastic materials, including foraminifera and coral debris. The sedimentary depth profiles of elements showed that various elements including zinc (Zn) and copper (Cu) were enriched in the upper layers of the islands of Majuro Atoll. Carbon-14 dating revealed that the sedimentation of the upper layer was completed before 1670 and 542 cal BP in Laura and Calalen, respectively. The enriched elements could be categorized by their origins: (a) terrestrial elements transported as dust (aluminum (Al) and rare earth elements (REEs)); (b) anthropogenic elements (Zn and Cu); and (c) elements supplied by seabirds (phosphorus (P)). From the results of the total amount of Al supplied to sediments for ca. 2000 years, Al in Majuro Atoll was suggested to be airborne origin. The enrichment factors of the elements normalized to Al concentration of continental crust showed that REEs were also transported as dust, while Zn and Cu were mainly of anthropogenic origin. The speciation analysis by X-ray absorption near-edge structure (XANES) showed the presence of Zn-Cu alloys originated from industrial products. It was also revealed that Zn was enriched in the surface due to anthropogenic emission after urbanization on Majuro Atoll and fixed by carbonate and phosphate at the upper layer, which inhibits migration of Zn into the deeper layer and its release to the groundwater and costal water. Hence, the fixation of heavy metals at the surface prevents their exposure to aquatic organisms and residents via fresh groundwater in the island. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal.

    PubMed

    Brito, Pedro; Prego, Ricardo; Mil-Homens, Mário; Caçador, Isabel; Caetano, Miguel

    2018-04-15

    The distribution and sources of yttrium and rare-earth elements (YREE) in surface sediments were studied on 78 samples collected in the Tagus estuary (SW Portugal, SW Europe). Yttrium and total REE contents ranged from 2.4 to 32mg·kg -1 and 18 to 210mg·kg -1 , respectively, and exhibited significant correlations with sediment grain-size, Al, Fe, Mg and Mn, suggesting a preferential association to fine-grained material (e.g. aluminosilicates but also Al hydroxides and Fe oxyhydroxides). The PAAS (Post-Archean Australian Shale) normalized patterns display three distinct YREE fractionation pattern groups along the Tagus estuary: a first group, characterized by medium to coarse-grained material, a depleted and almost flat PAAS-normalized pattern, with a positive anomaly of Eu, representing one of the lithogenic components; a second group, characterized mainly by fine-grained sediment, with higher shale-normalized ratios and an enrichment of LREE relative to HREE, associated with waste water treatment plant (WWTP) outfalls, located in the northern margin; and, a third group, of fine-grained material, marked by a significant enrichment of Y, a depletion of Ce and an enrichment of HREE over LREE, located near an inactive chemical-industrial complex (e.g. pyrite roast plant, chemical and phosphorous fertilizer industries), in the southern margin. The data allow the quantification of the YREE contents and its spatial distribution in the surface sediments of the Tagus estuary, identifying the main potential sources and confirming the use of rare earth elements as tracers of anthropogenic activities in highly hydrodynamic estuaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Gallium isotopic evidence for the fate of moderately volatile elements in planetary bodies and refractory inclusions

    NASA Astrophysics Data System (ADS)

    Kato, Chizu; Moynier, Frédéric

    2017-12-01

    The abundance of moderately volatile elements, such as Zn and Ga, show variable depletion relative to CI between the Earth and primitive meteorite (chondrites) parent bodies. Furthermore, the first solar system solids, the calcium-aluminum-rich inclusions (CAIs), are surprisingly rich in volatile element considering that they formed under high temperatures. Here, we report the Ga elemental and isotopic composition of a wide variety of chondrites along with five individual CAIs to understand the origin of the volatile elements and to further characterize the enrichment of the volatile elements in high temperature condensates. The δ71Ga (permil deviation of the 71Ga/69Ga ratio from the Ga IPGP standard) of carbonaceous chondrites decreases in the order of CI >CM >CO >CV and is inversely correlated with the Al/Ga ratio. This implies that the Ga budget of the carbonaceous chondrites parent bodies were inherited from a two component mixing of a volatile rich reservoir enriched in heavy isotope of Ga and a volatile poor reservoir enriched in light isotope of Ga. Calcium-aluminum-rich inclusions are enriched in Ga and Zn compared to the bulk meteorite and are both highly isotopically fractionated with δ71Ga down to -3.56‰ and δ66Zn down to -0.74‰. The large enrichment in the light isotopes of Ga and Zn in the CAIs implies that the moderately volatile elements were introduced in the CAIs during condensation in the solar nebula as opposed to secondary processing in the meteorite parent body and supports a change in gas composition in which CAIs were formed.

  14. Petrography and geochemistry of the primary ore zone of the Kenticha rare metal granite-pegmatite field, Adola Belt, Southern Ethiopia: Implications for ore genesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash

    2017-10-01

    The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.

  15. A search for evidence of large body Earth impacts associated with biological crisis zones in the fossil record

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Gilmore, J. S.; Knight, J. D.

    1985-01-01

    The natural history of the Earth, how the present plant and animal species developed, how others completely died out, etc., was studied. The rock strata sampled and studied were at the time of deposition at sea bottom. It was found that, exactly at the stratigraphic level corresponding to the extinction, a thin clay layer was greatly enriched in the the rare element iridium. It was hypothesized that the excess irridium at the boundary came from a large steroid like object that hit the earth, and that the impact of this object threw up a dust cloud dense enough and long lasting enough to bring about the extinction of a wide variety of plants and animals, producing the unique break in in the fossil record, the cretaceous-tertiary boundary. The same iridium and platinum metals enrichement are found in a thin clay layer that corresponds with the boundary as difined by sudden radical changes in plant populations. The irridium enrichement is confirmed at other fresh water origin rites in the Raton Basin.

  16. Mineralogical and Geochemical Discrimination of the Occurrence and Genesis of Palygorskite in Eocene Sediments on the Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ye, Chengcheng; Yang, Yibo; Fang, Xiaomin; Hong, Hanlie; Zhang, Weilin; Yang, Rongsheng; Song, Bowen; Zhang, Zhiguo

    2018-03-01

    Palygorskite is a widely used indicator of semiarid to arid environments in paleoclimate studies. In this study, we present detailed mineralogical and geochemical investigations exploring the genesis of palygorskite found in Eocene fluvial sediment in the northern Qaidam Basin on the northeastern Tibetan Plateau. The presence of two types of palygorskite is revealed, based on their crystallinity characteristics and distinctive rare earth element (REE) patterns in the coexisting clay fraction. Well-crystallized palygorskite samples are characterized by remarkably negative Ce anomalies and obvious middle rare earth element enrichment. Poorly crystallized palygorskite samples generally exhibit positive Ce anomalies and less pronounced middle rare earth element enrichment, which resemble those of nonpalygorskite-bearing clay samples. Given the presence of an overall oxidized fluvial sedimentary environment, we attribute the well-crystallized palygorskite (which has textures comprising long, interwoven fibers) to direct precipitation (i.e., neoformation) occurring within a reducing environment during early/postdepositional processes while the poorly crystallized palygorskite (which is characterized by short, club-shaped single crystals) originates as catchment-delivered detritus. These poorly crystallized palygorskites occur mostly in 49.5-47.0 Ma and are accompanied by decreasing kaolinite content, increasing chlorite content, and abundant xerophytic spore-pollen from the Qaidam Basin, and its neighboring Xining Basin. Collectively, these evidences suggest that a less humid climate followed after the Early Eocene Climate Optimum.

  17. Evidence from coupled (Sm-147)-(Nd-143) and (Sm-146)-(Nd-142) systematics for very early (4.5-Gyr) differentiation of the earth's mantle

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    Evidence for early differentiation of the earth's mantle is presented based on measurements of Nd-143/Nd-144 and Nd-142/Nd-144 ratios in an approximately 3.8 Gyr-old supracrustal rock from Isua, West Greenland. Coupled (Sm-146,147)-(Nd-142,143) systematics suggest that the fractionation of Sm/Nd took place 4.44-4.54 Gyr ago, due to extraction of a light rare earth element-enriched primordial crust.

  18. Paleoenvironmental signals and paleoclimatic condition of the Early Maastrichtian oil shales from Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.

    2016-04-01

    Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.

  19. Critical Elements in Fly Ash from the Combustion of Bituminous Coal in Major Polish Power Plants

    NASA Astrophysics Data System (ADS)

    Bielowicz, Barbara; Botor, Dariusz; Misiak, Jacek; Wagner, Marian

    2018-03-01

    The concentration of critical elements, including such REE as Fe, Co, W, Zn, Cr, Ni, V, Mn, Ti, Ag, Ga, Ta, Sr, Li, and Cu, in the so-called fly ash obtained from the 9 Polish power plants and 1 thermal power station has been determined. The obtained values, compared with the global average concentration in bituminous coal ash and sedimentary rocks (Clarke values), have shown that the enrichment of fly ash in the specified elements takes place in only a few bituminous coal processing sites in Poland. The enrichment factor (EF) is only slightly higher (the same order of magnitude) than the Clarke values. The enrichment factor in relation to the Clarke value in the Earth's crust reached values above 10 in all of the examined ashes for the following elements: Cr, Ni, V, W, and, in some ash samples, also Cu and Zn. The obtained values are low, only slightly higher than the global average concentrations in sedimentary rocks and bituminous coal ashes. The ferromagnetic grains (microspheres) found in bituminous coal fly ashes seem to be the most economically prospective in recovery of selected critical elements. The microanalysis has shown that iron cenospheres and plerospheres in fly ash contain, in addition to enamel and iron oxides (magnetite and hematite), iron spinels enriched in Co, Cr, Cu, Mn, Ni, W, and Zn.

  20. Effects of organic ligands on fractionation of rare earth elements (REEs) in hydroponic plants: an application to the determination of binding capacities by humic acid for modeling.

    PubMed

    Ding, ShiMing; Liang, Tao; Zhang, ChaoSheng; Yan, JunCai; Zhang, ZiLi

    2006-12-01

    Previous studies have revealed the fractionation processes of rare earth elements (REEs) in hydroponic plants, with a heavy REE (HREE, the elements from Gd to Lu) enrichment in leaves. In this study, effects on the HREE enrichment in soybean leaves with additions of carboxylic acids (acetate, malate, citrate, NTA, EDTA and DTPA) and two soil humic acids (HAs) were investigated. REE speciation in carboxylic acid and HA solutions was simulated using Visual MINTEQ and Model V, respectively. The results showed that the effects caused by carboxylic acids were strongly dependent on the differences between their binding strengths for light REEs (LREEs, the elements from La to Eu) and those for HREEs. A good correlation existed between these effects and the changes of free REE ions in solutions. This relationship was also observed for the HA treatments, provided that the intrinsic equilibrium constants of REEs for cation-proton exchange with HA (i.e., pK(MHA)) in Model V were estimated using a free-energy relationship with the stability constants for REE complexation with lactic acid. It is suggested that this set of pK(MHA) values is more suitable for use in Model V for the simulation of REE complexation with HA.

  1. Baseline study on trace and rare earth elements in marine sediments collected along the Namibian coast.

    PubMed

    Orani, Anna Maria; Vassileva, Emilia; Wysocka, Irena; Angelidis, Michael; Rozmaric, Martina; Louw, Deon

    2018-06-01

    Namibia is a fast-growing country with extensive mineral extraction activities used in diamond, fluorspar, uranium, and metals production. To assess the impact of land based human activities on the Namibian coastal marine environment, 25 elements were analyzed in 22 surface sediments samples collected along the coast. After applying a variety of pollution assessment indices (Enrichment Factor, Igeo and Pollution Load Indexes) was concluded that As, Cd and Sb were considerably enriched in the sediments from several sites, while Cu, Pb and Zn showed very high enrichment near the Walvis Bay harbor. Pearson's correlation and Principal Component Analysis were used to investigate common metal sources. Additionally, the determination of Pb isotope ratios confirmed the contribution of land based human activities at Walvis Bay and Lüderitz as sources of pollution. The analysis of REEs did not reveal any important enrichment due to anthropogenic activities, but provides a needed baseline for further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.

    PubMed

    Santos, A J G; Mazzilli, B P; Fávaro, D I T; Silva, P S C

    2006-01-01

    Phosphogypsum is a waste produced by the phosphate fertilizer industry. Although phosphogypsum is mainly calcium sulphate dihydrate, it contains elevated levels of impurities, which originate from the source phosphate rock used in the phosphoric acid production. Among these impurities, radionuclides from 238U and 232Th decay series are of most concern due to their radiotoxicity. Other elements, such as rare earth elements (REE) and Ba are also enriched in the phosphogypsum. The bioavailability of radionuclides (226Ra, 210Pb and 232Th), rare earth elements and Ba to the surrounding aquatic system was evaluated by the application of sequential leaching of the phosphogypsum samples from the Brazilian phosphoric acid producers. The sequential extraction results show that most of the radium and lead are located in the "iron oxide" (non-CaSO4) fraction, and that only 13-18% of these radionuclides are distributed in the most labile fraction. Th, REE and Ba were found predominantly in the residual phase, which corresponds to a small fraction of the phosphate rock or monazite that did not react and to insoluble compounds such as sulphates, phosphates and silicates. It can be concluded that although all these elements are enriched in the phosphogypsum samples they are not associated with CaSO4 itself and therefore do not represent a threat to the surrounding aquatic environment.

  3. Geochemistry of the Neoproterozoic metabasic rocks from the Negele area, southern Ethiopia: Tectonomagmatic implications

    NASA Astrophysics Data System (ADS)

    Yihunie, Tadesse; Adachi, Mamoru; Yamamoto, Koshi

    2006-03-01

    Neoproterozoic metabasic rocks along with metasediments and ultramafic rocks constitute the Kenticha and Bulbul lithotectonic domains in the Negele area. They occur as amphibolite and amphibole schist in the Kenticha, and amphibole schist and metabasalt in the Bulbul domains. These rocks are dominantly basaltic in composition and exhibit low-K tholeiitic characteristics. They are slightly enriched in large ion lithophile (LIL) and light rare earth (LRE) elements and depleted in high field strength (HFS) and heavy rare earth (HRE) elements. They exhibit chemical characteristics similar to back-arc basin and island-arc basalts, but include a few samples with slightly higher Y, Zr and Nb contents. Initial Sr isotopic ratios and ɛNd values for the Kenticha metabasic rocks range from 0.7048 to 0.7051 and from 4.7 to 9.6 whereas for the Bulbul metabasic rocks they range from 0.7032 to 0.7055 and from -0.1 to 5.5, respectively. The trace elements and Sr-Nd isotope compositions of samples from the Kenticha and Bulbul domains suggest similar, but isotopically heterogeneous magma sources. The magma is inferred to have derived from depleted source with a contribution from an enriched mantle source component.

  4. Geochemistry of carbonatites of the Tomtor massif

    USGS Publications Warehouse

    Kravchenko, S.M.; Czamanske, G.; Fedorenko, V.A.

    2003-01-01

    Carbonatites compose sheet bodies in a 300-m sequence of volcanic lamproites, as well as separate large bodies at depths of >250-300 m. An analysis of new high-precision data on concentrations of major, rare, and rare earth elements in carbonatites shows that these rocks were formed during crystallization differentiation of a carbonatite magma, which resulted in enrichment of the later melt fractions in rare elements and was followed by autometasomatic and allometasomatic hydrothermal processes. Some independent data indicate that the main factor of ore accumulation in the weathered rock zone (also known as the "lower ore horizon" comprising metasomatized volcanics with interbedded carbonatites) was hydrothermal addition of Nb and REEs. The giant size of the Tomtor carbonatite-nepheline syenite massif caused advanced magma differentiation, extensive postmagmatic metasomatism and recrystallization of host rocks, and strong enrichment of carbonatites in incompatible rare and rare earth elements (except for Ta, Zr, Ti, K, and Rb) compared to the rocks of many other carbonatite massifs. We suggest that a wide range of iron contents in carbonatites-2 can be related to extensive magnetite fractionation at the magmatic stage in different parts of the huge massif. Copyright ?? 2003 by MAIK "Nauka/Interperiodica" (Russia).

  5. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.

    2007-01-01

    The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.

  6. [Rare earth elements contents and distribution characteristics in nasopharyngeal carcinoma tissue].

    PubMed

    Zhang, Xiangmin; Lan, Xiaolin; Zhang, Lingzhen; Xiao, Fufu; Zhong, Zhaoming; Ye, Guilin; Li, Zong; Li, Shaojin

    2016-03-01

    To investigate the rare earth elements(REEs) contents and distribution characteristics in nasopharyngeal carcinoma( NPC) tissue in Gannan region. Thirty patients of NPC in Gannan region were included in this study. The REEs contents were measured by tandem mass spectrometer inductively coupled plasma(ICP-MS/MS) in 30 patients, and the REEs contents and distribution were analyzed. The average standard deviation value of REEs in lung cancer and normal lung tissues was the minimum mostly. Light REEs content was higher than the medium REEs, and medium REEs content was higher than the heavy REEs content. REEs contents changes in nasopharyngeal carcinoma were variable obviously, the absolute value of Nd, Ce, Pr, Gd and other light rare earth elements were variable widely. The degree of changes on Yb, Tb, Ho and other heavy rare earth elements were variable widely, and there was presence of Eu, Ce negative anomaly(δEu=0. 385 5, δCe= 0. 523 4). The distribution characteristic of REEs contents in NPC patients is consistent with the parity distribution. With increasing atomic sequence, the content is decline wavy. Their distribution patterns were a lack of heavy REEs and enrichment of light REEs, and there was Eu , Ce negative anomaly.

  7. Tags to Track Illicit Uranium and Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haire, M. Jonathan; Forsberg, Charles W.

    2007-07-01

    With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution'more » tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)« less

  8. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation

    PubMed Central

    Kato, Chizu; Moynier, Frédéric

    2017-01-01

    The distribution and isotopic composition of volatile elements in planetary materials holds a key to the characterization of the early solar system and the Moon’s formation. The Moon and Earth are chemically and isotopically very similar. However, the Moon is highly depleted in volatile elements and the origin of this depletion is still debated. We present gallium isotopic and elemental measurements in a large set of lunar samples to constrain the origin of this volatile depletion. We show that while Ga has a geochemical behavior different from zinc, both elements show a systematic enrichment in the heavier isotopes in lunar mare basalts and Mg-suite rocks compared to the silicate Earth, pointing to a global-scale depletion event. On the other hand, the ferroan anorthosites are isotopically heterogeneous, suggesting a secondary distribution of Ga at the surface of the Moon by volatilization and condensation. The isotopic difference of Ga between Earth and the Moon and the isotopic heterogeneity of the crustal ferroan anorthosites suggest that the volatile depletion occurred following the giant impact and during the lunar magma ocean phase. These results point toward a Moon that has lost its volatile elements during a whole-scale evaporation event and that is now relatively dry compared to Earth. PMID:28782027

  9. Geochemistry of continental subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Hermann, Joerg

    2014-12-01

    The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements. At ultrahigh-pressure (UHP) metamorphic conditions, supercritical fluids may occur with variable compositions. The water component of these fluids primarily derives from structural hydroxyl and molecular water in hydrous and nominally anhydrous minerals at UHP conditions. While the breakdown of hydrous minerals is the predominant water source for fluid activity in the subduction factory, water released from nominally anhydrous minerals provides an additional water source. These different sources of water may accumulate to induce partial melting of UHP metamorphic rocks on and above their wet solidii. Silica is the dominant solute in the deep fluids, followed by aluminum and alkalis. Trace element abundances are low in metamorphic fluids at subsolidus conditions, but become significantly elevated in anatectic melts at supersolidus conditions. The compositions of dissolved and residual minerals are a function of pressure-temperature and whole-rock composition, which exert a strong control on the trace element signature of liberated fluids. The trace element patterns of migmatic leucosomes in UHP rocks and multiphase solid inclusions in UHP minerals exhibit strong enrichment of large ion lithophile elements (LILE) and moderate enrichment of light rare earth elements (LREE) but depletion of high field strength elements (HFSE) and heavy rare earth elements (HREE), demonstrating their crystallization from anatectic melts of crustal protoliths. Interaction of the anatectic melts with the mantle wedge peridotite leads to modal metasomatism with the generation of new mineral phases as well as cryptic metasomatism that is only manifested by the enrichment of fluid-mobile incompatible trace elements in orogenic peridotites. Partial melting of the metasomatic mantle domains gives rise to a variety of mafic igneous rocks in collisional orogens and their adjacent active continental margins. The study of such metasomatic processes and products is of great importance to understanding of the mass transfer at the slab-mantle interface in subduction channels. Therefore, the property and behavior of subduction-zone fluids are a key for understanding of the crust-mantle interaction at convergent plate margins.

  10. Mineralogical controls on mobility of rare earth elements in acid mine drainage environments.

    PubMed

    Soyol-Erdene, T O; Valente, T; Grande, J A; de la Torre, M L

    2018-08-01

    Rare earth elements (REE) were analyzed in river waters, acid mine waters, and extracts of secondary precipitates collected in the Iberian Pyrite Belt. The obtained concentrations of the REE in river water and mine waters (acid mine drainage - AMD) were in the range of 0.57 μg/L (Lu) and 2579 μg/L (Ce), which is higher than previously reported in surface waters from the Iberian Pyrite Belt, but are comparable with previous findings from AMD worldwide. Total REE concentrations in river waters were ranged between 297 μg/L (Cobica River) and 7032 μg/L (Trimpancho River) with an average of 2468 μg/L. NASC (North American Shale Composite) normalized REE patterns for river and acid mine waters show clear convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE. During the dissolution experiments of AMD-precipitates, heavy-REE and middle-REE generate the most enriched patterns in the solution. A small number of precipitates did not display MREE enrichment (an index Gd n /Lu n  < 1.0) in NASC normalized pattern and produced relatively lower REE concentrations in extracts. Additionally, very few samples, which mainly contained aluminum sulfates, e.g., pickeringite and alunogen, displayed light-REE enrichment relative to heavy-REE (HREE). In general, the highest retention of REE occurs in samples enriched in magnesium (epsomite or hexahydrite) and aluminum sulfates, mainly pickeringite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of enriched mid-ocean ridge basalts (E-MORB) erupted today at the southern end of the Explorer Ridge in northeastern Pacific Ocean. The isotopic similarity between the Middle-Late Triassic ambient mantle under Stikinia, and mantle presently tapped at the southern Explorer Ridge suggests that enriched domains in the northeastern Pacific mantle are long-lived (≥222 million years).

  12. Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska

    USGS Publications Warehouse

    Clift, P.D.; Draut, A.E.; Kelemen, P.B.; Blusztajn, J.; Greene, A.

    2005-01-01

    The Early Jurassic Talkeetna Volcanic Formation forms the upper stratigraphic level of an oceanic volcanic arc complex within the Peninsular Terrane of south-central Alaska. The section comprises a series of lavas, tuffs, and volcaniclastic debris-How and flow turbidite deposits, showing significant lateral facies variability. There is a general trend toward more volcaniclastic sediment at the top of the section and more lavas and tuff breccias toward the base. Evidence for dominant submarine, mostly mid-bathyal or deeper (>500 m) emplacement is seen throughout the section, which totals ???7 km in thickness, similar to modern western Pacific arcs, and far more than any other known exposed section. Subaerial sedimentation was rare but occurred over short intervals in the middle of the section. The Talkeetna Volcanic Formation is dominantly calc-alkatine and shows no clear trend to increasing SiO2 up-section. An oceanic subduction petrogenesis is shown by trace element and Nd isotope data. Rocks at the base of the section show no relative enrichment of light rare earth elements (LREEs) versus heavy rare earth elements (REES) or in melt-incompatible versus compatible high field strength elements (HFSEs). Relative enrichment of LREEs and HFSEs increases slightly up-section. The Talkeetna Volcanic Formation is typically more REE depleted than average continental crust, although small volumes of light REE-enriched and heavy REE-depleted mafic lavas are recognized low in the stratigraphy. The Talkeetna Volcanic Formation was formed in an intraoceanic arc above a north-dipping subduction zone and contains no preserved record of its subsequent collisions with Wrangellia or North America. ?? 2005 Geological Society of America.

  13. Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria.

    PubMed

    Ayedun, H; Arowolo, T A; Gbadebo, A M; Idowu, O A

    2017-06-01

    Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365-488 (69.5 ± 117)] µg L -1 than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14-232 (22.6 ± 41.1)] µg L -1 . Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO 3 2- (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.

  14. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    NASA Astrophysics Data System (ADS)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE-enriched carbonatites.

  15. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our conclusions on the impact of depositional setting and diagenetic remobilization and authigenic mineral formation on the REE system in the Marcellus Shale.

  16. The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Stracke, Andreas; Haase, Karsten M.

    2007-07-01

    The island of São Miguel, Azores consists of four large volcanic systems that exhibit a large systematic intra-island Sr-Nd-Pb-Hf isotope and trace element variability. The westernmost Sete Cidades volcano has moderately enriched Sr-Nd-Pb-Hf isotope ratios. In contrast, lavas from the easternmost Nordeste volcano have unusually high Sr and Pb and low Nd and Hf isotope ratios suggesting a long-term evolution with high Rb/Sr, U/Pb, Th/Pb, Th/U and low Sm/Nd and Lu/Hf parent-daughter ratios. They have trace element concentrations similar to those of the HIMU islands, with the exception of notably higher alkali element (Cs, Rb, K, Ba) and Th concentrations. The time-integrated parent-daughter element evolution of both the Sete Cidades and Nordeste source matches the incompatibility sequence commonly observed during mantle melting and consequently suggests that the mantle source enrichment is caused by a basaltic melt, either as a metasomatic agent or as recycled oceanic crust. Our calculations show that a metasomatic model involving a small degree basaltic melt is able to explain the isotopic enrichment but, invariably, produces far too enriched trace element signatures. We therefore favour a simple recycling model. The trace element and isotopic signatures of the Sete Cidades lavas are consistent with the presence of ancient recycled oceanic crust that has experienced some Pb loss during sub-arc alteration. The coherent correlation of the parent-daughter ratios (e.g. Rb/Sr, Th/U, U/Pb) and incompatible element ratios (e.g. Nb/Zr, Ba/Rb, La/Nb) with the isotope ratios in lavas from the entire island suggest that the Sete Cidades and Nordeste source share a similar genetic origin. The more enriched trace element and isotopic variations of Nordeste can be reproduced by recycled oceanic crust in the Nordeste source that contains small amounts of evolved lavas (˜ 1-2%), possibly from a subducted seamount. The rare occurrence of enriched source signatures comparable to Nordeste may be taken as circumstantial evidence that stirring processes in the Earth's mantle are not able to homogenise material within the size of seamounts over timescales of mantle recycling.

  17. Wind, Water, Fire, and Earth. Energy Lessons for the Physical Sciences.

    ERIC Educational Resources Information Center

    Watt, Shirley L., Ed.; And Others

    The current energy situation in the United States is a web of complicated and related elements. This document attempts to address some of these variables in presenting interdisciplinary energy lessons taken from instructional packets previously developed by the Project for an Energy-Enriched Curriculum (PEEC). The 19 physical science lessons…

  18. Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.; hide

    2013-01-01

    High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required

  19. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China

    USGS Publications Warehouse

    Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.

    2010-01-01

    The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.

  20. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    NASA Astrophysics Data System (ADS)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  1. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  2. Targeting heavy rare earth elements in carbonatite complexes

    NASA Astrophysics Data System (ADS)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are reviewed in terms of their grade, tonnage, rock type and the potential environmental impacts associated with their exploitation. [1] Wall et al. (2008), Can Mineral, 46, 861. [2] Do Cabo et al. (2011), Minmag, 75 (3), 770. [3] Zaitsev et al. (1998), Minmag, 62 (2), 225. [4] Dowman et al. (2011), abstract, Fermor conference, London. [5] Lottermoser (1990), Lithos, 24, 151

  3. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Parthiban, G.

    2011-01-01

    Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.

  4. The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.

    2015-11-01

    Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.

  5. Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Marquez, N.; Kasper, J.

    2012-04-01

    A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.

  6. Ti-rich komatiites from northern Norway

    NASA Astrophysics Data System (ADS)

    Barnes, Sarah-Jane; Often, Morten

    1990-06-01

    Komatiites of the Karasjok Greenstone Belt, northern Norway, show two unusual features: they have certain compositional differences compared with other komatiites, and they are largely volcaniclastic in origin. Their geological setting suggests that the komatiites were crupted into shallow water, thus permitting phreatomagmatic eruption, in a small ocean basin that opened in the Baltic Shield. The major oxides (except for TiO2), the trace elements Y, Sc, V, heavy rare earth elements (HREE), Cr, Co, Ni and the platinum group elements (PGE) cover similar ranges to those observed in other komatiites, but TiO2, Sm, Zr and Hf (Ti-associated elements, TAE) are enriched compared with abundances commonly reported for komatiites. Thus, the Karasjok komatiites have interelement ratios 2 to 3 times greater than chondritic between the TAE and the HREE, PGE, Sc, V, Y, Al (HRE-associated elements, HAE). The light rare earth elements (LREE), Ta and Th are enriched in some samples relative to Ti, Sm, Zr, and Hf, but are depleted in others. One group of rocks that is similar to the Karasjok komatiites both in terms of geological setting and geochemistry is the Baffin Bay picrites. The reason for the high concentrations of TAE in the Karasjok komatiites could be that they formed at lower degrees of partial melting than most komatiites. The greater-than-chondritic TAE/HAE ratios indicate that garnet was a residual phase during their formation, requiring that the melt formed at a pressure greater than 40 kb. A model involving decompression melting of a mantle plume rising in a rifting environment, can explain the main features of the Karasjok komatiites.

  7. A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia.

    PubMed

    Sugitani, K; Mimura, K; Takeuchi, M; Yamaguchi, T; Suzuki, K; Senda, R; Asahara, Y; Wallis, S; Van Kranendonk, M J

    2015-11-01

    The 3.4-Ga Strelley Pool Formation (SPF) at the informally named 'Waterfall Locality' in the Goldsworthy greenstone belt of the Pilbara Craton, Western Australia, provides deeper insights into ancient, shallow subaqueous to possibly subaerial ecosystems. Outcrops at this locality contain a thin (<3 m) unit of carbonaceous and non-carbonaceous cherts and silicified sandstones that were deposited in a shallow-water coastal environment, with hydrothermal activities, consistent with the previous studies. Carbonaceous, sulfide-rich massive black cherts with coniform structures up to 3 cm high are characterized by diverse rare earth elements (REE) signatures including enrichment of light [light rare earth elements (LREE)] or middle rare earth elements and by enrichment of heavy metals represented by Zn. The massive black cherts were likely deposited by mixing of hydrothermal and non-hydrothermal fluids. Coniform structures in the cherts are characterized by diffuse laminae composed of sulfide particles, suggesting that unlike stromatolites, they were formed dominantly through physico-chemical processes related to hydrothermal activity. The cherts yield microfossils identical to previously described carbonaceous films, small and large spheres, and lenticular microfossils. In addition, new morphological types such as clusters composed of large carbonaceous spheroids (20-40 μm across each) with fluffy or foam-like envelope are identified. Finely laminated carbonaceous cherts are devoid of heavy metals and characterized by the enrichment of LREE. This chert locally contains conical to domal structures characterized by truncation of laminae and trapping of detrital grains and is interpreted as siliceous stromatolite formed by very early or contemporaneous silicification of biomats with the contribution of silica-rich hydrothermal fluids. Biological affinities of described microfossils and microbes constructing siliceous stromatolites are under investigation. However, this study emphasizes how diverse the microbial community in Paleoarchean coastal hydrothermal environment was. We propose the diversity is at least partially due to the availability of various energy sources in this depositional environment including reducing chemicals and sunlight. © 2015 John Wiley & Sons Ltd.

  8. Recent Advances in the Separation of Rare Earth Elements Using Mesoporous Hybrid Materials.

    PubMed

    Hu, Yimu; Florek, Justyna; Larivière, Dominic; Fontaine, Frédéric-Georges; Kleitz, Freddy

    2018-05-27

    Over the past decades, the need for rare earth elements (REEs) has increased substantially, mostly because these elements are used as valuable additives in advanced technologies. However, the difference in ionic radius between neighboring REEs is small, which renders an efficient sized-based separation extremely challenging. Among different types of extraction methods, solid-phase extraction (SPE) is a promising candidate, featuring high enrichment factor, rapid adsorption kinetics, reduced solvent consumption and minimized waste generation. The great challenge remains yet to develop highly efficient and selective adsorbents for this process. In this regard, ordered mesoporous materials (OMMs) possess high specific surface area, tunable pore size, large pore volume, as well as stable and interconnected frameworks with active pore surfaces for functionalization. Such features meet the requirements for enhanced adsorbents, not only providing huge reactional interface and large surface capable of accommodating guest species, but also enabling the possibility of ion-specific binding for enrichment and separation purposes. This short personal account summarizes some of the recent advances in the use of porous hybrid materials as selective sorbents for REE separation and purification, with particular attention devoted to ordered mesoporous silica and carbon-based sorbents. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    PubMed

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  10. Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile.

    PubMed

    Mesías Monsalve, Stephanie; Martínez, Leonardo; Yohannessen Vásquez, Karla; Alvarado Orellana, Sergio; Klarián Vergara, José; Martín Mateo, Miguel; Costilla Salazar, Rogelio; Fuentes Alburquenque, Mauricio; Cáceres Lillo, Dante D

    2018-06-01

    Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM 2.5 ) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM 2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.

  11. Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: Evidence for anthropogenic Gd and In

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Tsutsumi, Makoto

    2000-12-01

    New data on the dissolved (<0.04 μm) rare earth elements (REEs) and In in the Japanese Ara, Tama, and Tone river-estuaries and Tokyo Bay are presented. Unique shale-normalized REE patterns with a distinct positive Gd anomalies and a strong heavy-REE enrichment were seen throughout the data. The dissolved Gd anomaly is caused by local anthropogenic input mainly due to recent use of Gado-pentetic acid as a medical agent for magnetic resonance imaging (MRI) in hospitals. The heavy-REE enrichment may be attributed to fractionation during weathering and transport in the upstream of the rivers, and only partially to removal of light- and middle-REE enriched river colloids by the use of a new ultrafiltration technique. Dissolved In concentrations in the Japanese rivers are extraordinarily high as compared to those in the pristine Chao Phraya river of Thailand reported elsewhere (Nozaki et al., in press). Like Gd, the high dissolved In in the study area can also be ascribed to recent use of In-containing organic compound, In(DTPA) 2- in medical diagnosis. Thus, in the highly populated and industrialized area, dissolved heavy metal concentrations in rivers and estuaries may be significantly perturbed by human activities and the fate of those anthropogenic soluble substances in the marine environment needs to be investigated further.

  12. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China

    PubMed Central

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417

  13. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2015-07-22

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.

  14. Tracking the source of the enriched martian meteorites in olivine-hosted melt inclusions of two depleted shergottites, Yamato 980459 and Tissint

    NASA Astrophysics Data System (ADS)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R. C.; Schmitt, A. K.; McKeegan, K. D.

    2015-05-01

    The apparent lack of plate tectonics on all terrestrial planets other than Earth has been used to support the notion that for most planets, once a primitive crust forms, the crust and mantle evolve geochemically-independent through time. This view has had a particularly large impact on models for the evolution of Mars and its silicate interior. Recent data indicating a greater potential that there may have been exchange between the martian crust and mantle has led to a search for additional geochemical evidence to support the alternative hypothesis, that some mechanism of crustal recycling may have operated early in the history of Mars. In order to study the most juvenile melts available to investigate martian mantle source(s) and melting processes, the trace element compositions of olivine-hosted melt inclusions for two incompatible-element-depleted olivine-phyric shergottites, Yamato 980459 (Y98) and Tissint, and the interstitial glass of Y98, have been measured by Secondary Ionization Mass Spectrometry (SIMS). Chondrite-normalized Rare Earth Element (REE) patterns for both Y98 and Tissint melt inclusions, and the Y98 interstitial glass, are characteristically light-REE depleted and parallel those of their host rock. For Y98, a clear flattening and upward inflection of La and Ce, relative to predictions based on middle and heavier REE, provides evidence for involvement of an enriched component early in their magmatic history; either inherited from a metasomatized mantle or crustal source, early on and prior to extensive host crystallization. Comparing these melt inclusion and interstitial glass analyses to existing melt inclusion and whole-rock data sets for the shergottite meteorite suite, defines mixing relationships between depleted and enriched end members, analogous to mixing relationships between whole rock Sr and Nd isotopic measurements. When considered in light of their petrologic context, the origin of these trace element enriched and isotopically evolved signatures represents either (1) crustal assimilation during the final few km of melt ascent towards the martian surface, or (2) assimilation soon after melt segregation, through melt-rock interaction with a portion of the martian crust recycled back into the mantle.

  15. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.

    2007-01-01

    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  16. Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow.

    PubMed

    Hong, Sungmin; Soyol-Erdene, Tseren-Ochir; Hwang, Hee Jin; Hong, Sang Bum; Hur, Soon Do; Motoyama, Hidaeki

    2012-11-06

    We report the first comprehensive and reliable time series for As, Mo, Sb, and Tl in the snowpack from Dome Fuji in the central East Antarctic Plateau. Our results show significant enrichment of these elements due to either anthropogenic activities or large volcanic eruptions during the past 50 years. With respect to the values reported from 1960 to 1964, we observed the maximum increases in crustal enrichment factors (EFs) for As (a factor of ~15), Mo (~4), Sb (~4), and Tl (~2) during the period between the 1970s and 1990s, reflecting the global dispersion of anthropogenic pollutants of these elements, even to the most remote areas on Earth. Such enrichments are likely related to emissions of trace elements from nonferrous metal smelting and fossil fuel combustion processes in South America, especially in Chile. A drastic decrease in the As concentration and its EF values was observed after the year 2000 in response to the introduction of environmental regulations in the 1990s to reduce As emissions from the copper industry, primarily in Chile. The observed decrease suggests that governmental regulations for pollution control are effective in reducing air pollution at both the regional and global level.

  17. Comment on "A non-primitive origin of near-chondritic Ssbnd Sesbnd Te ratios in mantle peridotites: Implications for the Earth's late accretionary history" by König S. et al. [Earth Planet. Sci. Lett. 385 (2014) 110-121

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2015-05-01

    The abundances and ratios of S, Se and Te in rocks from the Earth's mantle may yield valuable constraints on the partitioning of these chalcophile elements between the mantle and basaltic magmas and on the compositions of these elements in the primitive mantle (PM) (e.g. Wang and Becker, 2013). Recently, König et al. (2014) proposed a model in which the CI chondrite-like Se/Te of mantle lherzolites (Se /Te = 8 ± 2, 1σ) are explained by mixing of sulfide melts with low Se/Te with harzburgites containing supposedly residual sulfides with high Se/Te. In this model sulfide melts and platinum group element (PGE) rich telluride phases with low Se/Te are assumed to have precipitated during refertilization of harzburgites by basic melts to form lherzolites. Because of the secondary nature of these re-enrichment processes, the authors state that abundances and ratios of S, Se and Te in fertile lherzolites cannot reflect the composition of the PM.

  18. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump.

  19. Rare Earth and other Chemical Elements Accumulation in Vines of Fogo Island (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Marques, Rosa; Prudêncio, Maria Isabel; Rocha, Fernando; Dias, Maria Isabel; Franco, Dulce

    2017-04-01

    The Fogo Island is the fourth bigger island of the Cape Verde (central Atlantic Ocean). This archipelago is located 570 kilometres off the coast of West Africa, and is characterized by a semi-arid climate. The volcanic soils of the caldera of this island, with an active volcanism during historical times, have been used for viticulture. The study of uptake of chemical elements by vines - absorption and translocation to grapes - grown in soils developed on alkaline pyroclasts is the main goal of this work. The concentrations of 27 chemical elements in bark, leafs and grapes of two vines, as well as in the corresponding soils (< 2 mm) were determined by instrumental neutron activation analysis. Irradiations of milled samples and standards were made in the core grid of the Portuguese Research Reactor (CTN/IST, Bobadela). The distribution patterns of the enrichment factors (EF) in the different parts of the plants are similar for the two sampling sites. Significant EF were found for the majority of the chemical elements studied, in the several parts of the plants, particularly in grapes where Cr, As, Sb and U are accumulated (EF > 50). The bioavailable fraction of Cr and As in these soils may be due to the low percentage of iron oxides (particularly in the form of nanoparticles), which play an important role in the retention of these elements. The factors responsible for the phytoavailability of Sb in soils and its uptake by plants it's still poorly known. Although the Sb concentrations in earth's crust are low, higher concentrations of this element in soils may be related with hydrothermal and volcanic processes. Also, the temperature may influence the accumulation of Sb in plants, with an increase of the Sb uptake by plants at higher temperatures, due to an increased desorption rate of Sb from soil particles. Concerning U, its mobility and dispersion in soils is controlled by its oxidation state, its adsorption capacity in clay minerals or iron oxides, and the ability to form more or less soluble complexes. Although U concentrations in these volcanic soils are low, there is a fraction available for absorption and accumulation by grapes. Concerning the rare earth elements (REE), it should be noted that the light REE are not enriched in any part of the vines studied, and only the heavy REE are enriched in grapes (EF = 20-50); this can be explained by the preferential uptake of the heavy REE, after primary minerals breakdown and the formation of more soluble compounds. The significant accumulation of several chemical elements found in grapes of Fogo Island can be mainly explained by a geogenic origin.

  20. The geology and geochemistry of Isla Floreana, Galápagos: A different type of late-stage ocean island volcanism: Chapter 6 in The Galápagos: A natural laboratory for the earth sciences

    USGS Publications Warehouse

    Harpp, Karen S.; Geist, Dennis J.; Koleszar, Alison M.; Christensen, Branden; Lyons, John; Sabga, Melissa; Rollins, Nathan; Harpp, Karen S.; Mittelstaedt, Eric; d'Ozouville, Noémi; Graham, David W

    2014-01-01

    Isla Floreana, the southernmost volcano in the Galápagos Archipelago, has erupted a diverse suite of alkaline basalts continually since 1.5 Ma. Because these basalts have different compositions than xenoliths and older lavas from the deep submarine sector of the volcano, Floreana is interpreted as being in a rejuvenescent or late-stage phase of volcanism. Most lavas contain xenoliths, or their disaggregated remains. The xenolithic debris and large ranges in composition, including during single eruptions, indicate that the magmas do not reside in crustal magma chambers, unlike magmas in the western Galápagos. Floreana lavas have distinctive trace element compositions that are rich in fluid-immobile elements (e.g., Ta, Nb, Th, Zr) and even richer in fluid-mobile elements (e.g., Ba, Sr, Pb). Rare earth element (REE) patterns are light REE-enriched and distinctively concave-up. Neodymium isotopic ratios are comparable to those from Fernandina, at the core of the Galápagos plume, but Floreana has the most radiogenic Sr and Pb isotopic ratios in the archipelago. These trace element patterns and isotopic ratios are attributed to a mixed source originating within the Galápagos plume, which includes depleted upper mantle, plume material rich in TITAN elements (Ti, Ta, Nb), and recycled oceanic crust that has undergone partial dehydration in an ancient subduction zone. Because Floreana lies at the periphery of the Galápagos plume, melting occurs mostly in the spinel zone, and enriched components dominate; the Floreana recycled mantle component influence is detectable in volcanoes along the entire southern periphery of the archipelago as well. Floreana is the only Galápagos volcano known to have undergone late-stage volcanism. Here, however, the secondary stage activity is more compositionally enriched than the shield-building phase, in contrast to what is observed in Hawai‘i, suggesting that the mechanism driving late-stage volcanism may vary among ocean island provinces.

  1. Reconnaissance geology of the Qufar Quadrangle, sheet 27/41 D, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kellogg, K.S.

    1984-01-01

    The last major plutonic event in the area is the intrusion of the alkalic granite complexes at Jabal Aja and Jabal Sal ma about 580 Ma ago. Of particular note is a per alkalic border facies of the Jabal Aja complex that is associated with pegmatites enriched in thorium, niobium, and rare-earth elements. 

  2. Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants.

    PubMed

    Verplanck, Philip L; Furlong, Edward T; Gray, James L; Phillips, Patrick J; Wolf, Ruth E; Esposito, Kathleen

    2010-05-15

    A primary pathway for emerging contaminants (pharmaceuticals, personal care products, steroids, and hormones) to enter aquatic ecosystems is effluent from sewage treatment plants (STP), and identifying technologies to minimize the amount of these contaminants released is important. Quantifying the flux of these contaminants through STPs is difficult. This study evaluates the behavior of gadolinium, a rare earth element (REE) utilized as a contrasting agent in magnetic resonance imaging (MRI), through four full-scale metropolitan STPs that utilize several biosolids thickening, conditioning, stabilization, and dewatering processing technologies. The organically complexed Gd from MRIs has been shown to be stable in aquatic systems and has the potential to be utilized as a conservative tracer in STP operations to compare to an emerging contaminant of interest. Influent and effluent waters display large enrichments in Gd compared to other REEs. In contrast, most sludge samples from the STPs do not display Gd enrichments, including primary sludges and end-product sludges. The excess Gd appears to remain in the liquid phase throughout the STP operations, but detailed quantification of the input Gd load and residence times of various STP operations is needed to utilize Gd as a conservative tracer.

  3. Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: a new perspective.

    PubMed

    Delgado, Joaquín; Pérez-López, Rafael; Galván, Laura; Nieto, José Miguel; Boski, Tomasz

    2012-09-01

    Rare earth elements (REE) were analyzed in surface sediments from the Guadiana Estuary (SW Iberian Pyrite Belt). NASC (North American Shale Composite) normalized REE patterns show clearly convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE, indicating acid-mixing processes between fluvial waters affected by acid mine drainage (AMD) and seawater. However, REE distributions in the mouth (closer to the coastal area) show slightly LREE-enriched and flat patterns, indicating saline-mixing processes typical of the coastal zone. NASC-normalized ratios (La/Gd and La/Yb) do not discriminate between both mixing processes in the estuary. Instead, a new parameter (E(MREE)) has been applied to measure the curvature in the MREE segment. The values of E(MREE)>0 are indicative of acid signatures and their spatial distribution reveal the existence of two decantation zones from flocculation processes related to drought periods and flood events. Studying REE fractionation through the E(MREE) may serve as a good proxy for AMD-pollution in estuarine environments in relation to the traditional methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Carbonatite magmatism in northeast India

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  5. Rare earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, James C.; Berti, Debora; Hochella, Michael F.

    The Dean (Fire Clay) coal in Knox County, Kentucky, does not contain the megascopically-visible ash-fall tonstein present in most other sections of the coal bed. Like the Fire Clay tonstein, a low-ash portion of the coal is enriched in rare earth elements (>2400 ppm, on ash basis). In addition to kaolinite produced in the diagenesis of volcanic glass, transmission electron microscopy studies indicate the coal contains primary kaolinite, LaCeNdTh monazite, barium niobate, native gold, and FeNiCr spinels. The mineral assemblages, particularly the kaolinite-monazite association and its similarity to the tonsteins in coal to the east, demonstrate the coal was subjectmore » to the REE-enriched volcanic ash fall, apparently just at a more dilute level than at locations where the tonstein is present.« less

  6. Rare earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky

    DOE PAGES

    Hower, James C.; Berti, Debora; Hochella, Michael F.; ...

    2018-05-03

    The Dean (Fire Clay) coal in Knox County, Kentucky, does not contain the megascopically-visible ash-fall tonstein present in most other sections of the coal bed. Like the Fire Clay tonstein, a low-ash portion of the coal is enriched in rare earth elements (>2400 ppm, on ash basis). In addition to kaolinite produced in the diagenesis of volcanic glass, transmission electron microscopy studies indicate the coal contains primary kaolinite, LaCeNdTh monazite, barium niobate, native gold, and FeNiCr spinels. The mineral assemblages, particularly the kaolinite-monazite association and its similarity to the tonsteins in coal to the east, demonstrate the coal was subjectmore » to the REE-enriched volcanic ash fall, apparently just at a more dilute level than at locations where the tonstein is present.« less

  7. Spectroscopy and chemistry of the atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Gautier, Daniel; Owen, Tobias; Prinn, Ronald G.

    1991-01-01

    A comprehensive review of the chemistry and spectroscopy of the Uranian atmosphere is presented by means of earth-based, earth-orbital, and Voyager 2 observations covering the UV, visible, infrared, and radio wavelength regions. It is inferred from these observations, in concert with the average density of about 1.3 g/cu cm, that the Uranian atmosphere is enriched in heavy elements relative to solar composition. Pre-Voyager earth-based observations of CH4 bands in the visible region and Voyager radio occultation data imply a CH4/H2 volume mixing ratio of about 2 percent corresponding to an enrichment of approximately 24 times the solar value of 0.000835. In contrast to CH4, microwave observations indicate an apparent depletion of NH3 in the 155-to-200-K region of the atmosphere by 100 to 200 times relative to the solar NH3/H2 mixing ratio of -0.000174. It is suggested that the temporal and latitudinal variations deduced for the NH3/H2 mixing ratio in this region of the Uranian atmosphere are due to atmospheric circulation effects.

  8. Germanium Enrichments in Sedimentary Rocks in Gale Crater, Mars: Constraining the Timing of Alteration and Character of the Protolith

    NASA Technical Reports Server (NTRS)

    Berger, J. A.; Schmidt, M. E.; Gellert, R.; Campbell, J. L.; Boyd, N. I.; Elliott, B. E.; Fisk, M. R.; King, P. L.; Ming, D. W.; Perrett, G. M.; hide

    2015-01-01

    Rocks enriched in Ge have been discovered in Gale Crater, Mars, by the Alpha-particle X-ray spectrometer (APXS) on the Mars Science Lab (MSL) rover, Curiosity. The Ge concentrations in Gale Crater (commonly >50 ppm) are remarkably high in comparison to Earth, where Ge ranges from 0.5-4.0 ppm in igneous rocks and 0.2-3.3 ppm in siliciclastic sediment. Primary meteoritic input is not likely the source of high Ge because Ge/Ni in chondrites (approx.0.003) and irons (<0.04) is lower than in Gale rocks (0.08-0.2). Earth studies show Ge is a useful geochemical tracer because it is coherent with Si during magmatic processes and Ge/Si varies less than 20% in basalts. Ge and Si fractionate during soil/regolith weathering, with Ge preferentially sequestered in clays. Ge is also concentrated in Cu- and Zn-rich hydrothermal sulfide deposits and Fe- and Mnrich oxide deposits. Other fluid-mobile elements (K, Zn, Cl, Br, S) are also enriched at Gale and further constrain aqueous alteration processes. Here, we interpret the sediment alteration history and present a possible model for Ge enrichments at Gale involving fluid alteration of the protolith.

  9. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    USGS Publications Warehouse

    Downes, H.; Macdonald, R.; Upton, B.G.J.; Cox, K.G.; Bodinier, J.-L.; Mason, P.R.D.; James, D.; Hill, P.G.; Hearn, B.C.

    2004-01-01

    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzbugites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0??5121 (close to the host minette values) to 0??5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0??5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf as in the host minettes, and their Sr-Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere. ?? Oxford University Press 2004; all rights reserved.

  10. A snapshot of mantle metasomatism: Trace element analysis of coexisting fluid (LA-ICP-MS) and silicate (SIMS) inclusions in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Tomlinson, E. L.; Müller, W.; EIMF

    2009-03-01

    We have determined the trace element compositions of coexisting fluid (carbonate-K-chloride-H 2O) and single-phase mineral inclusions in peridotitic (Cr-diopside) and eclogitic (omphacite, garnet) inclusions in fibrous diamonds from the Panda kimberlite (Slave craton, Canada). These diamonds provide a unique insight into the nature of the metasomatic agent, the metasomatised minerals and the pre-metasomatic protolith. The fluid component is strongly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE). Co-existing peridotitic minerals record a melt extraction event (high Cr and Ni) in the protolith prior to the influx of the trapped metasomatic fluid. The silicate minerals are also strongly enriched in LREE. Calculated partition coefficients agree with experimentally determined values in the literature, despite the complex composition of the natural fluid. This indicates that the minerals have re-equilibrated with the metasomatic fluid. The trace element compositions of the mineral inclusions are comparable to many equivalent phases in monocrystalline diamonds. This suggests that the metasomatic fluid and the process recorded in these samples may also be responsible for the growth of some types of monocrystalline diamonds.

  11. Geophysical Framework of a Rare Earth Element Enriched Terrane, Mountain Pass, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Peacock, J.; Miller, D. M.; Miller, J. S.

    2016-12-01

    Carbonatite ore deposits continue to be the primary source for rare earth elements (REEs), however large viable REE ore deposits are uncommon. The Mountain Pass carbonatite deposit, located in the eastern Mojave Desert of California, is the largest economic deposit of light REEs in North America. A 1.417 Ga ultrapotassic suite (shonkinite, syenite, and granite) and a 1.375 Ga barite-bastnasite-rich carbonatite (sovite) ore deposit comprise the enclave of REE-enriched outcrops and dikes that occupy a narrow ( 3 km) zone of 1.7 Ga gneiss extending at least 10-km to the southeast from southern Clark Mountain. Modeling of gravity, magnetic, and magnetotelluric (MT) data reveals subsurface features that form the structural framework of the REE terrane. The carbonatite and ultrapotassic mafic suite is associated with a local gravity high that is superimposed on a 4 km-wide gravity terrace, likely related to less dense granitic gneiss basement. Although physical property data indicate that the intrusive suite and carbonatite are essentially and nonmagnetic, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high. This relationship suggests that they may have been preferentially emplaced along a zone of weakness or fault. The source of the magnetic high is 2-3 km below the surface and coincides with a relatively electrically conductive (3 orders of magnitude higher than surrounding rock) feature. MT data indicate that the western edge of the magnetic feature could be connected to a deeper ( 8 km) conductive feature related to possible intrusions and/or hydrothermal systems. The lack of a magnetic signature of the REE terrane can be explained by alteration of magnetite, given that the terrane lies within a broader alteration zone and observed magnetic low. If so, such an alteration event, capable of remobilizing rare earth elements, likely occurred during or after emplacement of the intrusive suite. Furthermore, an alteration event is consistent with local geology, high rare-earth element concentration, and unusual geochemistry of the carbonatite deposit and associated intrusive suite.

  12. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  13. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern south China sea

    NASA Astrophysics Data System (ADS)

    Wang, Shuhong; Zhang, Nan; Chen, Han; Li, Liang; Yan, Wen

    2014-10-01

    The grain size as well as some major and trace elements, including rare earth element (REE), for 273 surface sediment samples collected from the continental shelf of the northern South China Sea were analyzed in this study. The sediment types are mainly sandy silt and silt, making up 60% of the whole samples, and secondly are mud, sandy mud, muddy sand and silty sand, making up 28% of the whole samples, based on grain-size in which the Folk's classification was used. The total REE content (ΣREE) show a wide variation from 21 ppm to 244 ppm with an average value of 155 ppm, which similar to the average ΣREE of the China loess, but much different from that in deep-sea clay, showing a significant terrigenous succession. The REE contents in different sediment types vary greatly, mainly enriching in silt, sandy silt, mud and sandy mud. The REE distribution contours parallel to the coastal, presenting like strips and their contents gradually reduce with increasing distance from the coast. The high content of the western Pearl River Mouth, Shang/Xiachuan Islands and Hailing Bay might be regarded to the coastal current developed from the east to the west along to the Pearl River Mouth in the northern South China Sea. But the chondrite-normalized REE patterns in various sediment types have no difference, basically same as those of coastal rivers and upper crust. They all show relative enrichments in light rare earth element (LREE), noticeable negative Eu anomaly and no Ce anomaly, indicating that those sediments are terrigenous sediments and from the same source region. Further analysis suggest that the sedimentary environment in the study area is relatively stable and granite widely distributed in the South China mainland is the main source of REE, which are transported mainly by the Pearl River. The late diagenesis has little effect on the REE.

  14. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  15. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  16. A PILOT SEARCH FOR EVIDENCE OF EXTRASOLAR EARTH-ANALOG PLATE TECTONICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jura, M.; Klein, B.; Xu, S.

    Relative to calcium, both strontium and barium are markedly enriched in Earth's continental crust compared to the basaltic crusts of other differentiated rocky bodies within the solar system. Here, we both re-examine available archived Keck spectra to place upper bounds on n(Ba)/n(Ca) and revisit published results for n(Sr)/n(Ca) in two white dwarfs that have accreted rocky planetesimals. We find that at most only a small fraction of the pollution is from crustal material that has experienced the distinctive elemental enhancements induced by Earth-analog plate tectonics. In view of the intense theoretical interest in the physical structure of extrasolar rocky planets,more » this search should be extended to additional targets.« less

  17. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    NASA Astrophysics Data System (ADS)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  18. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron

    NASA Astrophysics Data System (ADS)

    Noll, P. D.; Newsom, H. E.; Leeman, W. P.; Ryan, J. G.

    1996-02-01

    In order to evaluate the processes responsible for the enrichments of certain siderophile/ chalcophile trace elements during the production of subduction-related magmas, representative lavas from seven subduction zones have been analyzed for Pb, As, Sb, Sn, W, Mo, Tl, Cu, and Zn by inductively coupled plasma-mass spectrometry (ICP-MS), radiochemical epithermal neutron activation analysis (RENA), and atomic absorption (AA). The siderophile/chalcophile elements are compared to the highly fluid-mobile element B, the light rare earth elements (LREEs), U, and Th in order to place constraints on their behavior in subduction zones. Boron, As, Sb, and Pb are all enriched in arc lavas and continental crustal rocks more so than expected assuming normal magmatic processes (melting and crystallization). Tin, W, and Mo show little evidence of enrichment. Correlations of Pb/Ce, As/Ce, and Sb/Ce with B/La are statistically significant and have high correlation coefficients (and, more importantly, slopes approaching one) suggesting that Pb, As, and Sb behave similarly to B (i.e., that they are fluid-mobile). In addition, across-arc traverses show that B/La, As/Ce, Pb/Ce, and Sb/Ce ratios decrease dramatically with distance towards the back-arc basin. W/Th, Tl/La, Sn/Sm, and Mo/Ce ratios and Cu and Zn concentrations have much less systematic across-arc variations and correlations with B/La are not as strong (and in some cases, not statistically significant) and the regression lines have much lower slopes. Mixing models between upper mantle, slab-derived fluid, and sediment are consistent with a fluid-derived component in the arcs displaying extra enrichments of B, Pb, As, and Sb. These observations imply efficient mobilization of B, Pb, As, Sb, and possibly Tl into arc magma source regions by hydrothermal fluids derived from metamorphic dehydration reactions within the slab. Tin, W, and Mo show little, if any, evidence of hydrothermal mobilization. Copper appears to be slightly enriched in arc lavas relative to mid-ocean ridge basalts (MORBs) whereas Zn contents of arc lavas, MORB, ocean island basalts (OIBs), and continental crustal samples are similar suggesting that the bulk partition coefficient for Zn is approximately equal to one. However, Zn contents of the upper mantle are lower than these reservoirs implying an enrichment of the source region in Zn prior to melting. These nonigneous enrichments have implications not only for arc magma genesis but also for continental crust formation and crust-mantle evolution. The mobility of Pb, As, Sb, and B in hot, reducing, acidic hydrothermal fluids may be greatly enhanced relative to the large-ion lithophile elements (LILEs; including U) as a result of HS -, H 2S, OH -, or other types of complexing. In the case of Pb, continued transport of Pb from subducted slabs into arc magma source regions throughout Earth history coupled with a U fluxing of the mantle a the end of the Archean may account for the depletion of Pb in the upper mantle, the low U/Pb of most arc volcanics and continental crustal rocks, and provide an explanation for the Pb- Paradox (Hofmann et al., 1986;McCulloch, 1993;Miller et al., 1994). Recycled slabs will then retain high U/Pb ratios upon entering the deep mantle and may eventually become incorporated into the source regions of many OIBs; some with HIMU (high 238U/ 204Pb) signatures.

  19. Geochemical constraints on provenance of the mid-Pleistocene red earth sediments in subtropical China

    NASA Astrophysics Data System (ADS)

    Hong, Hanlie; Wang, Chaowen; Zeng, Kefeng; Gu, Yansheng; Wu, Yuanbao; Yin, Ke; Li, Zhaohui

    2013-05-01

    The source of mid-Pleistocene red earth sediments in the middle to lower reaches of the Yangtze (Changjiang) River was investigated based on their geochemical characteristics. The Xuancheng and Jiujiang red earth sediments have similar major and trace element distribution patterns. Compared to the loess and paleosol deposits of the Chinese Loess Plateau, the upper continental crust (UCC), and the post-Archean Australian average shale (PAAS), the sediments display notable depletion of CaO, MgO, Na2O, and accumulation of TiO2, Al2O3, and Fe2O3(t). The trace element distribution patterns of the red earth sediments are also different from those of loess and the PAAS, but are similar to those of the loess deposits, except for lower values of mobile trace elements Sr, Ba, and Ni, and higher values of Zr and Y. The red earth samples have uniform La/Th ratios of ~ 2.8, compatible with those of the UCC, loess, and paleosol. They also have similar chondrite-normalized REE patterns, characterized by enriched LREE and relatively flat HREE profiles, and consistent negative Eu anomalies, similar to those of the UCC, the loess and paleosol, and the Yangtze deposits. These results suggest that the red earth sediments have been subject to considerable mixing prior to deposition and strong subsequent chemical weathering. The sediments have very uniform 143Nd/144Nd and 147Sm/144Nd ratios, this points to well-mixed and multi-recycled sediments. The 143Nd/144Nd and 87Sr/86Sr values of the red earth sediments match well with those of the deposits in the middle to lower reaches of the Yangtze River, but are different from those of the loess and paleosols. This suggests that the red earth sediments are derived from the drainage basins of the middle to lower Yangtze River and might have experienced more intense chemical weathering relative to the Yangtze deposits, as reflected by their higher Rb/Sr ratios, intense depletion of mobile elements and accumulation of immobile elements, as well as their well-developed net-like structure.

  20. Post-depositional redistribution processes and their effects on middle rare earth element precipitation and the cerium anomaly in sediments in the South Korea Plateau, East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Jeong, Kap-Sik; Cho, Jin Hyung; Lee, Jun Ho; Jang, Seok; Kim, Seong Ryul

    2014-03-01

    We sampled two box-core sediments from the slope of the eastern South Korea Plateau (SKP) in the East Sea (Sea of Japan) at water depths of 1400 and 1700 m. Two chemical fractions of extractable (hydroxylamine/acetic acid) and residual rare earth elements (REEs) together with Al, Ca, Fe, Mg, Mn, P, S, As, Mo, and U were analyzed to assess the post-depositional redistribution of REEs. Extractable Fe and Mn are noticeably abundant in the oxic topmost sediment layer (<3 cm). However, some trace elements (e.g., S, As, Mo, U) are more abundant at depth, where redox conditions are different. Analysis of upper continental crust (UCC)-normalized (La/Gd)UCC, (La/Yb)UCC, and (Ce/Ce*)UCC revealed that the extractable REE is characterized by middle REE (MREE) enrichment and a positive cerium (Ce) anomaly, different from the case of the residual fraction which shows slight enrichment in light REEs (LREEs) with no Ce anomaly. The extractable MREEs seem to have been incorporated into high-Mg calcite during reductive dissolution of Fe oxyhydroxides. In the top sediment layer, the positive Ce anomaly is attributed to Ce oxide, which can be mobilized in deeper oxygen-poor environments and redistributed in the sediment column. In addition, differential concentrations of Ce and other LREEs in pore water appear to result in variable (Ce/Ce*)UCC ratios in the extractable fraction at depth.

  1. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  2. Chemical element accumulation in tree bark grown in volcanic soils of Cape Verde-a first biomonitoring of Fogo Island.

    PubMed

    Marques, Rosa; Prudêncio, Maria Isabel; Freitas, Maria do Carmo; Dias, Maria Isabel; Rocha, Fernando

    2017-05-01

    Barks from Prosopis juliflora (acacia) were collected in 12 sites of different geological contexts over the volcanic Fogo Island (Cape Verde). Elemental contents of Ba, Br, Co, Cr, Fe, K, Na, Zn and some rare earth elements (REE)-La, Ce, Sm, Eu, Tb, Yb, and Lu, were obtained for biological samples and topsoils by using k 0 -standardized and comparative method of instrumental neutron activation analysis (INAA), aiming the evaluation of chemical elements uptake by acacia bark. This first biomonitoring study of Fogo Island showed that, in general, significant accumulations of trace elements present in high amounts in these soils occur. This can be partially explained by the semi-arid climate with a consequent bioavailability of chemical elements when rain drops fall in this non-polluted environment. REE enrichment factors (EFs) increase with the decrease of ionic radius. Heavy REE (HREE) are significantly enriched in bark, which agrees with their release after the primary minerals breakdown and the formation of more soluble compounds than the other REE, and uptake by plants. Among the potential harmful chemical elements, Cr appears to be partially retained in nanoparticles of iron oxides. The high EFs found in tree barks of Fogo Island are certainly of geogenic origin rather than anthropogenic input since industry and the use of fertilizers is scarce.

  3. Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2017-12-01

    The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some dikes in the titanium garnet facies suggest a magma melt trend toward the carbonation phase of a fractionated peridotite parent magma.

  4. Chemical composition of Earth, Venus, and Mercury.

    PubMed

    Morgan, J W; Anders, E

    1980-12-01

    Model compositions of Earth, Venus, and Mercury are calculated from the premise that planets and chondrites underwent four identical fractionation processes in the solar nebula. Because elements of similar properties stay together in these processes, five constraints suffice to define the composition of a planet: mass of the core, abundance of U, and the ratios K/U, Tl/U, and FeO/(FeO + MgO). Complete abundance tables, and normative mineralogies, are given for all three planets. Review of available data shows only a few gross trends for the inner planets: FeO decreases with heliocentric distance, whereas volatiles are depleted and refractories are enriched in the smaller planets.

  5. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Djanarthany, S.; Chêne, J.; Haddi, A.; Brass, A. M.; Poissonnet, S.; Farges, F.

    2005-10-01

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 °C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium.

  6. Generation of Silicic Melts in the Early Izu-Bonin Arc Recorded by Detrital Zircons in Proximal Arc Volcaniclastic Rocks From the Philippine Sea

    NASA Astrophysics Data System (ADS)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.; Arculus, R. J.; Ishizuka, O.; Shukle, J. T.

    2017-10-01

    A 1.2 km thick Paleogene volcaniclastic section at International Ocean Discovery Program Site 351-U1438 preserves the deep-marine, proximal record of Izu-Bonin oceanic arc initiation, and volcano evolution along the Kyushu-Palau Ridge (KPR). Pb/U ages and trace element compositions of zircons recovered from volcaniclastic sandstones preserve a remarkable temporal record of juvenile island arc evolution. Pb/U ages ranging from 43 to 27 Ma are compatible with provenance in one or more active arc edifices of the northern KPR. The abundances of selected trace elements with high concentrations provide insight into the genesis of U1438 detrital zircon host melts, and represent useful indicators of both short and long-term variations in melt compositions in arc settings. The Site U1438 zircons span the compositional range between zircons from mid-ocean ridge gabbros and zircons from relatively enriched continental arcs, as predicted for melts in a primitive oceanic arc setting derived from a highly depleted mantle source. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic melts that evolved toward more Th and U-rich compositions with time. Th, U, and light rare earth element enrichments beginning about 35 Ma are consistent with detrital zircons recording development of regional arc asymmetry and selective trace element-enriched rear arc silicic melts as the juvenile Izu-Bonin arc evolved.

  7. Condensation of refractory metals in asymptotic giant branch and other stellar environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwander, D.; Berg, T.; Schönhense, G.

    2014-09-20

    The condensation of material from a gas of solar composition has been extensively studied, but less so condensation in the environment of evolved stars, which has been mainly restricted to major compounds and some specific element groups such as the Rare Earth elements. Also of interest, however, are refractory metals like Mo, Ru, Os, W, Ir, and Pt, which may condense to form refractory metal nuggets (RMNs) like the ones that have been found in association with presolar graphite. We have performed calculations describing the condensation of these elements in the outflows of s-process enriched AGB stars as well asmore » from gas enriched in r-process products. While in carbon-rich environments (C > O), the formation of carbides is expected to consume W, Mo, and V (Lodders and Fegley), the condensation sequence for the other refractory metals under these conditions does not significantly differ from the case of a cooling gas of solar composition. The composition in detail, however, is significantly different due to the completely different source composition. Condensation from an r-process enriched source differs less from the solar case. Elemental abundance ratios of the refractory metals can serve as a guide for finding candidate presolar grains among the RMNs in primitive meteorites—most of which have a solar system origin—for confirmation by isotopic analysis. We apply our calculations to the case of the four RMNs found by Croat et al., which may very well be presolar.« less

  8. Rare earth patterns in shergottite phosphates and residues

    NASA Technical Reports Server (NTRS)

    Laul, J. C.

    1987-01-01

    Leaching experiments with 1M HCl on ALHA 77005 powder show that rare earth elements (REE) are concentrated in accessory phosphate phases (whitlockite, apatite) that govern the REE patterns of bulk shergottites. The REE patterns of whitlockite are typically light REE-depleted with a negative Eu anomaly and show a hump at the heavy REE side, while the REE pattern of apatite (in Shergotty) is light REE-enriched. Parent magmas are calculated from the modal compositions of residues of ALHA 77005, Shergotty, and EETA 79001. The parent magmas lack a Eu anomaly, indicating that plagioclase was a late-stage crystallizing phase and that it probably crystallized before the phosphates. The parent magmas of ALHA 77005 and Shergotty have similar REE patterns, with a subchondritic Nd/Sm ratio. However, the Sm/Nd isotopoics require a light REE-depleted source for ALHA 77005 (if the crystallization age is less than 600 Myr) and a light REE-enriched source for Shergotty. Distant Nd and Sr isotopic signatures may suggest different source regions for shergottites.

  9. Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China

    NASA Astrophysics Data System (ADS)

    Nie, Hu; Yang, Jianzhou; Zhou, Guangyan; Liu, Chuanzhou; Zheng, Jianping; Zhang, Wen-Xiang; Zhao, Yu-Jie; Wang, Hao; Wu, Yuanbao

    2017-11-01

    The Songshugou peridotite massif in the Qinling orogenic belt is one of the largest orogenic spinel peridotite bodies in central China, but its origin remains controversial and its age is poorly constrained. We have carried out an integrated study of major and trace element composition, mineral chemistry, platinum group elements (PGE), as well as Re-Os isotope systematics of 1 harzburgite and 12 dunites from the Songshugou peridotite massif. These samples contain high Mg# olivine (90.0-91.3) and Cr# spinel (83.4-96.0). The harzburgite and dunites are characterized by relatively low whole-rock Al2O3 (0.32-0.60 wt.%), CaO (0.26-1.57 wt.%), and Na2O (0.07-0.12 wt.%) concentrations. The studied samples have very low concentrations of middle and heavy rare earth elements and exhibit enrichments in iridium-group platinum-group elements (IPGE) relative to palladium-group PGE. The Songshugou peridotites exhibit variable enrichments of light rare earth elements, large ion lithophile elements, Re, Zr, and Hf, which resulted from reactions with melt after their isolation from the convecting mantle. Combined with previous results, our data suggest that the Songshugou peridotites are highly refractory mantle residues derived from a forearc mantle wedge. 187Os/188Os values of the studied samples vary from 0.12073 to 0.12390, and 187Re/188Os ratios are 0.005-0.081. The average Re-Os model ages (TMA) and maximum Re depletion model age (TRD) of the Songshugou peridotites are ca. 1.2-1.1 Ga, suggesting a tectonic affinity to the South China Block and that the peridotites formed during the assembly of the Rodinia supercontinent. The Songshugou peridotites were sourced from a mantle wedge above a subduction zone, and finally incorporated into the underlying continental lithosphere by exhumation.

  10. Fractionations of rare earth elements in plants and their conceptive model.

    PubMed

    Ding, ShiMing; Liang, Tao; Yan, JunCai; Zhang, ZiLi; Huang, ZeChun; Xie, YaNing

    2007-02-01

    Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.

  11. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty

    2004-07-01

    Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are derived from leaching of dust particles entrained in rain or fog droplets either in the atmosphere or during wet atmospheric deposition. The high trace metal enrichment factors require that most of the dust was physically removed before or during varnish formation. The remaining aqueous counterpart would be depleted in HFSEs and Th relative to the REEs, Co, Ni and Pb because the former are more insoluble and hence largely retained in the removed dust fraction. The high Ce/La ratios suggest that precipitation of trace metals may have been governed by equilibrium partitioning in an excess of wet atmospheric deposition. If varnishes are indeed derived from wet atmospheric deposition, they may provide a record of the aqueous component of atmospheric dust inputs to various environments.

  12. A tool to assure the geographical origin of local food products (glasshouse tomatoes) using labeling with rare earth elements.

    PubMed

    Bandoniene, Donata; Meisel, Thomas; Rachetti, Alessandra; Walkner, Christoph

    2018-05-16

    Trace element fingerprinting has been widely used for identification of provenance of regional food. In the case of the products from conventional agriculture, it is expected that the elemental composition will comply that of the commercially available substrate at the plants. Therefore, for products without direct relationship with the regional soil the region-specific differences in elemental composition are no longer recognisable. The idea of this work is labeling of tomatoes with rare earth elements (REE) in the ultra-trace range for food authentication. Labelling of the tomatoes was carried out either by watering the soil with Nd and Er spiked water or by adding these elements as solid oxides to the soil. In both cases enrichment of Nd and Er relative to the control group was detected in tomato fruits and leaves using ICP-MS. Tomato plants rapidly absorb the dissolved REE from the irrigation water, and watering for a short period just before ripeness is sufficient to induce REE labels. Labeling with trace amounts of REE could potentially be used to assure the provenance of tomatoes of local origin and separate these from products of foreign origin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Eocene slab breakoff of Neotethys as suggested by dioritic dykes in the Gangdese magmatic belt, southern Tibet

    NASA Astrophysics Data System (ADS)

    Ma, Xuxuan; Xu, Zhiqin; Meert, Joseph G.

    2016-04-01

    The Gangdese magmatic belt in southern Tibet demarcates an important boundary between the Indian and Eurasian plates. Due to its location and magmatic evolutionary history, it is key to understanding both the history of Neotethys closure and the Indo-Asian collisional process. This study presents new geochronological and geochemical data for dioritic dykes in the southern Gangdese magmatic belt in southern Tibet. U-Pb geochronological results reveal that the dykes were emplaced at ca. 41 Ma and thus broadly coeval with the 40-38 Ma Dazi volcanics and the 42-40 Ma Gaoligong-Tengliang basaltic dykes. Geochemically, these dykes are characterized by alkaline signature, high Mg# (57-63) and low TiO2 contents ( 0.9-1.0), showing notable enrichment of light rare earth elements relative to the heavy rare earth elements, enrichment of incompatible elements (i.e. Cs, Rb, Ba, Th and U), and depletion of high field strength elements (i.e. Nb, Ta and Ti). In addition, a large variation of zircon εHf(t) values (- 10 to + 13) was shown, implying heterogeneity of magma sources. A heterogeneous source is also suggested by the occurrence of xenocrysts in the dykes. These observations suggest that the magma source of the dykes was dominated by partial melting of lithospheric mantle and then subsequently contaminated by crustal material during ascent. In combination with other geological data in the region, we suspect that the slab slicing of the Neotethys played a key role in the formation of the lithospheric mantle-derived dioritic dykes and adakitic granite, asthenosphere-derived volcanics, basaltic dykes, as well as the recently reported strongly fractionated granites.

  14. Geochemistry and depositional environments of Paleocene-Eocene phosphorites: Metlaoui Group, Tunisia

    NASA Astrophysics Data System (ADS)

    Garnit, Hechmi; Bouhlel, Salah; Jarvis, Ian

    2017-10-01

    The Late Paleocene-Early Eocene phosphorites of the Metlaoui Group in Tunisia are a world-class phosphate resource. We review the characteristics of phosphorites deposited in three areas: the Northern Basins; Eastern Basins; and Gafsa-Metlaoui Basin. Comprehensive new bulk rock elemental data are presented, together with complementary mineralogical and mineral chemical results. Carbonate fluorapatite (francolite) constitutes the dominant mineral phase in the deposits. Phosphorite samples are enriched in Cd, Sr, U, rare-earth elements and Y, together with environmentally diagnostic trace elements that provide detrital (Cr, Zr), productivity (Cu, Ni, Zn) and redox (Mo, V) proxies. Suboxic bottom-water conditions predominated, with suboxic to anoxic porewaters accompanying francolite precipitation. Phosphorite deposition occurred under increasingly arid climate conditions, accompanying global Paleocene-Eocene warming. The Northern Basins show the strongest Tethys Ocean influence, with surface seawater rare-earth element signatures consistently developed in the phosphorites. Bed-scale compositional variation indicates relatively unstable environmental conditions and episodes of sediment redeposition, with varying detrital supply and a relatively wet local climate. Glauconitic facies in the Northern Basins and the more isolated evaporite-associated phosphorites in the dryer Eastern Basins display the greatest diagenetic influences. The phosphorite - organic-rich marl - diatom-bearing porcelanite facies association in the Gafsa-Metlaoui Basin represents the classic coastal upwelling trinity. Modified Tethyan waters occurred within the Basin during phosphorite deposition, with decreasing marine productivity from NW to SE evidenced by systematically falling enrichment factors for Cu, Ni, Cd and Zn in the phosphorites. Productivity declined in concert with increasing basin isolation during the deposition of the commercial phosphorite beds in the latest Paleocene to earliest Eocene. This isolation trend was temporarily reversed during an episode of maximum flooding associated with the earliest Eocene Paleocene-Eocene Thermal Maximum (PETM).

  15. Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment

    PubMed Central

    Taylor, G. Jeffrey; Wieczorek, Mark A.

    2014-01-01

    New estimates of the thickness of the lunar highlands crust based on data from the Gravity Recovery and Interior Laboratory mission, allow us to reassess the abundances of refractory elements in the Moon. Previous estimates of the Moon fall into two distinct groups: earthlike and a 50% enrichment in the Moon compared with the Earth. Revised crustal thicknesses and compositional information from remote sensing and lunar samples indicate that the crust contributes 1.13–1.85 wt% Al2O3 to the bulk Moon abundance. Mare basalt Al2O3 concentrations (8–10 wt%) and Al2O3 partitioning behaviour between melt and pyroxene during partial melting indicate mantle Al2O3 concentration in the range 1.3–3.1 wt%, depending on the relative amounts of pyroxene and olivine. Using crustal and mantle mass fractions, we show that that the Moon and the Earth most likely have the same (within 20%) concentrations of refractory elements. This allows us to use correlations between pairs of refractory and volatile elements to confirm that lunar abundances of moderately volatile elements such as K, Rb and Cs are depleted by 75% in the Moon compared with the Earth and that highly volatile elements, such as Tl and Cd, are depleted by 99%. The earthlike refractory abundances and depleted volatile abundances are strong constraints on lunar formation processes. PMID:25114309

  16. Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment.

    PubMed

    Taylor, G Jeffrey; Wieczorek, Mark A

    2014-09-13

    New estimates of the thickness of the lunar highlands crust based on data from the Gravity Recovery and Interior Laboratory mission, allow us to reassess the abundances of refractory elements in the Moon. Previous estimates of the Moon fall into two distinct groups: earthlike and a 50% enrichment in the Moon compared with the Earth. Revised crustal thicknesses and compositional information from remote sensing and lunar samples indicate that the crust contributes 1.13-1.85 wt% Al2O3 to the bulk Moon abundance. Mare basalt Al2O3 concentrations (8-10 wt%) and Al2O3 partitioning behaviour between melt and pyroxene during partial melting indicate mantle Al2O3 concentration in the range 1.3-3.1 wt%, depending on the relative amounts of pyroxene and olivine. Using crustal and mantle mass fractions, we show that that the Moon and the Earth most likely have the same (within 20%) concentrations of refractory elements. This allows us to use correlations between pairs of refractory and volatile elements to confirm that lunar abundances of moderately volatile elements such as K, Rb and Cs are depleted by 75% in the Moon compared with the Earth and that highly volatile elements, such as Tl and Cd, are depleted by 99%. The earthlike refractory abundances and depleted volatile abundances are strong constraints on lunar formation processes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. An impact of moss sample cleaning on uncertainty of analytical measurement and pattern profiles of rare earth elements.

    PubMed

    Dołęgowska, Sabina; Gałuszka, Agnieszka; Migaszewski, Zdzisław M

    2017-12-01

    The main source of rare earth elements (REE) in mosses is atmospheric deposition of particles. Sample treatment operations including shaking, rinsing or washing, which are made in a standard way on moss samples prior to chemical analysis, may lead to removing particles adsorbed onto their tissues. This in turn causes differences in REE concentrations in treated and untreated samples. For the present study, 27 combined moss samples were collected within three wooded areas and prepared for REE determinations by ICP-MS using both manual cleaning by shaking and triple rinsing with deionized water. Higher concentrations of REE were found in manually cleaned samples. The comparison of REE signatures and shale-normalized REE concentration patterns showed that the treatment procedure did not lead to fractionation of REE. All the samples were enriched in medium rare earth elements, and the δMREE factor remained practically unchanged after rinsing. Positive anomalies of Nd, Sm, Eu, Gd, Er and Yb were observed in both, manually cleaned and rinsed samples. For all the elements examined, analytical uncertainty was below 3.0% whereas sample preparation uncertainty computed with ANOVA, RANOVA, modified RANOVA and range statistics methods varied from 3.5 to 29.7%. In most cases the lowest s rprep values were obtained with the modified RANOVA method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Processes involved in the formation of magnesian-suite plutonic rocks from the highlands of the Earth's Moon

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Neal, Clive R.; Taylor, Lawrence A.; Halliday, Alex N.

    1995-01-01

    The earliest evolution of the Moon likely included the formation of a magma ocean and the subsequent development of anorthositic flotation cumulates. This primary anorthositic crust was then intruded by mafic magmas which crystallized to form the lunar highlands magnesian suite. The present study is a compilation of petrologic, mineral-chemical, and geochemical information on all pristine magnesian-suite plutonic rocks and the interpretation of this data in light of 18 'new' samples. Of these 18 clasts taken from Apollo 14 breccias, 12 are probably pristine and include four dunites, two norites, four troctolites, and two anorthosites. Radiogenic isotopic whole rock data also are reported for one of the 'probably pristine' anorthositic troctolites, sample 14303,347. The relatively low Rb content and high Sm and Nd abundances of 14303,347 suggest that this cumulate rock was derived from a parental magma which had these chemical characteristics. Trace element, isotopic, and mineral-chemical data are used to interpret the total highlands magnesian suite as crustal precipitates of a primitive KREEP (possessing a K-, rare earth element (REE)-, and P-enriched chemical signature) basalt magma. This KREEP basalt was created by the mixing of ascending ultramafic melts from the lunar interior with urKREEP (the late, K-, REE-, and P-enriched residuum of the lunar magma ocean). A few samples of the magnesian suite with extremely elevated large-ion lithophile elements (5-10x other magnesian-suite rocks) cannot be explained by this model or any other model of autometasomatism, equilibrium crystallization, or 'local melt-pocket equilibrium' without recourse to an extremely large-ion lithophile element-enriched parent liquid. It is difficult to generate parental liquids which are 2-4 x higher in the REE than average lunar KREEP, unless the liquids are the basic complement of a liquid-liquid pair, i.e., the so-called 'REEP-fraction,' from the silicate liquid immiscibility of urKREEP. Scarce age information on lunar rocks suggests that magnesian-suite magmatism was initiated at progressively more recent time from the northeast to the southwest on the lunar nearside from 4.45 to 4.25 Ga.

  19. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  20. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGES

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb 3+ could be effectively recovered usingmore » citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb 3+ by citrate. No reduction in Tb 3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  1. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Shun; Shi, Xue-Fa; Kao, Shuh-Ji; Liu, Yan-Guang; Lyu, Hua-Hua; Zou, Jian-Jun; Liu, Sheng-Fa; Qiao, Shu-Qing

    2013-06-01

    Thirty-eight sediment samples from 15 primary rivers on Taiwan were retrieved to characterize the rare earth element (REE) signature of fluvial fine sediment sources. Compared to the three large rivers on the Chinese mainland, distinct differences were observed in the REE contents, upper continental crust normalized patterns and fractionation factors of the sediment samples. The average REE concentrations of the Taiwanese river sediments are higher than those of the Changjiang and Huanghe, but lower than the Zhujiang. Light rare earth elements (LREEs) are enriched relative to heavy rare earth elements (HREEs) with ratios from 7.48 to 13.03. We found that the variations in (La/Lu)UCC-(Gd/Lu)UCC and (La/Yb)UCC-(Gd/Yb)UCC are good proxies for tracing the source sediments of Taiwanese and Chinese rivers due to their distinguishable values. Our analyses indicate that the REE compositions of Taiwanese river sediments were primarily determined by the properties of the bedrock, and the intensity of chemical weathering in the drainage areas. The relatively high relief and heavy rainfall also have caused the REEs in the fluvial sediments from Taiwan to be transported to the estuaries down rivers from the mountains, and in turn delivered nearly coincidently to the adjacent seas by currents and waves. Our studies suggest that the REE patterns of the river sediments from Taiwan are distinguishable from those from the other sources of sediments transported into the adjacent seas, and therefore are useful proxies for tracing the provenances and dispersal patterns of sediments, as well as paleoenvironmental changes in the marginal seas.

  2. Sources of Extraterrestrial Rare Earth Elements:To the Moon and Beyond

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; Krekeler, M. P. S.

    2017-08-01

    The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have <2500 years of reserves left, based on current demand, mining operations, and technologies. With an increasing population, exploration of potential extraterrestrial REE resources is inevitable, with the Earth's Moon being a logical first target. Following lunar differentiation at 4.50-4.45 Ga, a late-stage (after 99% solidification) residual liquid enriched in Potassium (K), Rare-earth elements (REE), and Phosphorus (P), (or "KREEP") formed. Today, the KREEP-rich region underlies the Oceanus Procellarum and Imbrium Basin region on the lunar near-side (the Procellarum KREEP Terrain, PKT) and has been tentatively estimated at preserving 2.2 × 10^8 km^3 of KREEP-rich lithologies. The majority of lunar samples (Apollo, Luna, or meteoritic samples) contain REE-bearing minerals as trace phases, e.g., apatite and/or merrillite, with merrillite potentially contributing up to 3% of the PKT. Other lunar REE-bearing lunar phases include monazite, yittrobetafite (up to 94,500 ppm yttrium), and tranquillityite (up to 4.6 wt % yttrium, up to 0.25 wt % neodymium), however, lunar sample REE abundances are low compared to terrestrial ores. At present, there is no geological, mineralogical, or chemical evidence to support REEs being present on the Moon in concentrations that would permit their classification as ores. However, the PKT region has not yet been mapped at high resolution, and certainly has the potential to yield higher REE concentrations at local scales (<10s of kms). Future lunar exploration and mapping efforts may therefore reveal new REE deposits. Beyond the Moon, Mars and other extraterrestrial materials are host to REEs in apatite, chevkinite-perrierite, merrillite, whitlockite, and xenotime. These phases are relatively minor components of the meteorites studied to date, constituting <0.6% of the total sample. Nonetheless, they dominate a samples REE budget with their abundances typically 1-2 orders of magnitude enriched relative to their host rock. As with the Moon, though phases which host REEs have been identified, no extraterrestrial REE resource, or ore, has been identified yet. At present extraterrestrial materials are therefore not suitable REE-mining targets. However, they are host to other resources that will likely be fundamental to the future of space exploration and support the development of in situ resource utilization, for example: metals (Fe, Al, Mg, PGEs) and water.

  3. Laser ablation ICP-MS and traditional micromorphological techniques applied to the study of different genetic horizons in thin sections: soil genesis and trace element distribution

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Barca, Donatella; de Rosa, Rosanna; Pulice, Iolanda; Vacca, Andrea

    2010-05-01

    This work focuses on an innovative methodological approach to investigate in situ chemical composition of trace and rare earth (REE) elements in discrete soil features from different soil horizons: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to clay coatings, pedogenic matrix and skeletal parent rock fragments in thin sections, coupled with traditional pedological investigations, specially clay mineralogy and micromorphology. Analyses were performed on 80 μm-thick sections obtained from undisturbed soil samples, which represent three reddish argillic (Bt) horizons from an Alfisol developed on late Pleistocene slope deposits and three brown organic-mineral (A) horizons from an Entisol formed on Holocene aggrading fluvial sediments in the Muravera area (southeast Sardinia, Italy). Validation of the LA-ICP-MS technique provides in situ accurate and reproducible (RSD 13-18%) analysis of low concentration trace elements in the studied soil samples (0.001-0.1 ppm). Our results showed a high reliability of this method on soil thin sections and revealed that concentrations of trace and rare earth elements in the different portions of a soil profile can be used to investigate their distribution, as a response to soil-forming processes. A general trend of increase of most trace elements from rock fragments to (both clayey and organic-rich) soil matrix, to clay coatings in argillic horizons is clearly highlighted. On this basis a prominent role of pedogenetic processes in element fractionation and distribution during weathering can be supposed. In particular, element adsorption onto reactive sites of organic matter and clay particles (and possibly Fe-oxyhydroxides) and clay illuviation appear the main pedogenetic processes able to promote element enrichment after their release from the weathering of primary minerals. As clay coatings exhibit the highest concentration of trace elements, and specifically of REEs, and represent the most mobile solid phase in the soil profile, this tool can be used as a reliable indicator of soil weathering after a preliminary assessment of illuvial clay pedofeatures. This feature is consistent with a progressively increasing time of soil development, testified by the older age of the Alfisol than the Entisol profile. Such a result is also supported by a comparison of trace element concentrations between the clay and the fine earth fractions of the bulk soil horizons performed with ICP-MS in solution, showing REE enrichment in the clays from the former soil. Moreover, trace element patterns show some discontinuous trends among soil features of different horizons, coherently with erosive and/or depositional discontinuities described in the field.

  4. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  5. A Multi-Proxy Paradigm in the Pursuit of Ocean Paleoredox

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Duan, Y.; Kendall, B.; Reinhard, C.; Severmann, S.; Lyons, T. W.

    2011-12-01

    The geologic record provides abundant evidence for variations in ocean oxygenation throughout Earth history. Expansion of ocean anoxic zones is expected in the future as a consequence of global climate change, with attendant effects on global nutrient inventories, carbon cycling and fluxes of trace greenhouse gases to the atmosphere. Therefore, studying ancient ocean redox variations not only teaches us about the history of the Earth system, but also provides insights into how the system may respond to analogous human perturbations. However, the extent, duration, causes, and consequences of most past variations are poorly understood. This problem motivates the development of paleoredox proxies, including novel stable isotope systems such as Mo, Fe, U and Tl. Experience with these emerging isotope systems demonstrates great promise but also many challenges. The Mo isotope system is illustrative. To first order, the geochemical cycling and isotope systematics of this element are straightforward, making it a useful proxy. However, critical unresolved issues include: (a) uncertainties in the ocean inputs through time; (b) ambiguities about fractionation mechanisms; (c) inadequate understanding of how modern analogs map to ancient systems. Similar challenges confront all the novel isotope systems. The way forward requires integration of multiple isotopic proxies, as well as information gleaned from careful analyses of element concentrations. For example, an episode of Mo enrichment in the 2.5 Ga Mt. McRae Shale is generally interpreted as resulting from buildup of Mo in seawater due to oxidative weathering. This enrichment is therefore thought to indicate a "whiff" of O2 in the environment prior to the Great Oxidation Event that began at 2.4 Ga. Molybdenum isotopes are consistent with this interpretation. However, Mo enrichment due to enhanced input from low-T hydrothermal sources in an anoxic regime cannot be completely excluded given the current state of knowledge of Mo isotope systematics from such sources. By considering sedimentary Fe enrichments together with Fe isotopes, we find that the Mo enrichment correlates with the telltale signature of a shelf-to-basin Fe redox "shuttle". Uranium isotopes also exhibit variations indicative of redox transformations. This multi-proxy dataset therefore paints a robust picture of trace metal redox cycling consistent with the "whiff" interpretation.

  6. LA-ICP-MS analysis of isolated phosphatic grains indicates selective rare earth element enrichment during reworking and transport processes

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2016-04-01

    Rare earth elements (REE) are a commonly used proxy to reconstruct water chemistry and oxygen saturation during the formation history of authigenic and biogenic phosphates in marine environments. In the modern ocean REE exhibit a distinct pattern with enrichment of heavy REE and strong depletion in Cerium. Studies of ancient phosphates and carbonates, however, showed that this 'modern' pattern is only rarely present in the geological past. Consequently, the wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry had to have been radically different in the earth's past. A wealth of studies has already shown that both early and late diagenesis can strongly affect REE signatures in phosphates and severely alter primary marine signals. However, no previous research was conducted on how alteration processes occurring prior to final deposition affect marine phosphates. Herein we present a dataset of multiple LA-ICP-MS measurements of REE signatures in isolated phosphate and carbonate grains deposited in a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene "Monterey event". The phosphates are represented by authigenic, biogenic and detrital grains emplaced in bioclastic grain- to packstones dominated by bryozoan and echinoderm fragments, as well as abundant benthic and planktic foraminifers. The results of 39 grain specific LA-ICP-MS measurements in three discrete rock samples reveals four markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Considering grain shape and REE patterns together indicate that authigenic, detrital and biogenic phosphates have distinct REE patterns irrespective of the sample. Our results show that the observed REE patterns in phosphates only broadly reflect water chemistry under certain well constrained circumstances of primary authigenesis. Are these conditions not met, REE patterns are more likely to reflect complex enrichment processes that likely already started to occur during reworking over geologically relatively short time frames. Similarities in the REE patterns of clearly detrital and biogenic phosphate further suggest that the often observed 'hat-shaped' pattern in biogenic phosphates can easily result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Finally, cluster analysis coupled with sedimentological considerations proved a valuable tool for the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.

  7. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments

    NASA Astrophysics Data System (ADS)

    Elderfield, H.; Hawkesworth, C. J.; Greaves, M. J.; Calvert, S. E.

    1981-04-01

    Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd /144Nd ratios in the nodules (˜0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.

  8. Characterization of airborne particles at a high-btu coal-gasification pilot plant.

    PubMed

    Davidson, C I; Santhanam, S; Stetter, J R; Flotard, R D; Gebert, E

    1982-12-01

    Airborne particles in fugitive emissions have been measured at a slagging fixed-bed coal-gasification pilot plant using lignite. Sampling was conducted during shutdown operations and opening of the gasifier following an aborted startup. Aerosol collected with a Sierra high-volume impactor was subjected to analysis by gas chromatography, mass spectrometry, and scanning electron microscopy; aerosol collected with an Andersen low-volume impactor was subjected to flameless atomic absorption analysis. The data show that the bulk of the trace organic material is associated with small particles: these data are similar to data on ambient air reported in the literature. Particle morphologies resemble those of fly ash from coal combustion, including smooth spheres, vesicular spheres, and crystalline material. Trace element size distributions are bimodal and resemble data for ambient air. Pb-containing particles are generally submicron, while particles containing Al, Fe, and other crustal species are mostly of supermicron size. Aluminum-based aerosol enrichment factors calculated from the lignite composition show that the composition of the aerosol resembles that of the coal, with the exception of modest enrichments of Mg, Na, As, and Pb in the submicron size range. Aerosol enrichment factors based on the earth's crustal composition are somewhat greater than those based on coal composition for several elements, suggesting potential errors in using crustal enrichment data to investigate chemical fractionation during aerosol formation.

  9. Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Hissler, Christophe; Stille, Peter

    2015-04-01

    Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil suggesting their close genetic relationships. Sr-Nd-Pb isotope data allow to identify four principal components in the soil: a silicate-rich pool at close to the surface, a leachable REE enriched pool at the bottom of the soil profile, the limestone facies on which the weathering profile developed and an anthropogenic, atmosphere-derived component detected in the soil leachates of the uppermost soil horizon. The leachable phases are mainly secondary carbonate-bearing REE phases such as bastnaesite. The isotope data and trace element distribution patterns indicate that at least four geological and environmental events impacted the chemical and isotopical compositions of the soil system since the Cretaceous.

  10. Experimental evidence for Nd-Sr decoupling during low-temperature (20-170oC) hydrothermal alteration of olivine and clinopyroxene

    NASA Astrophysics Data System (ADS)

    Frisby, C. P.; Bizimis, M.; Foustoukos, D.

    2011-12-01

    Serpentinization of abyssal peridotites represents a major reaction front between the hydrosphere and the mantle. While several studies have investigated the phase equilibria relationships that describe seawater - peridotite interaction at high temperature hydrothermal conditions (~400oC), there is limited data on the elemental mass exchange between seawater and ultramafic lithologies at temperatures similar to those expected at the flanks of hydrothermal vent sites. To better constrain seawater - peridotite elemental exchange alteration processes at low-temperatures, a series of experiments were conducted involving natural mantle olivine (Fo=90) and clinopyroxene coexisting with synthetic seawater enriched in elemental or isotopically enriched Sr, Ba, Nd, Sm, Gd, Dy, Yb, Pb, and U. The experiments were performed at temperatures from ambient to 170oC (at saturation vapor pressure), ranging from 15 minutes to 8 weeks and at water/rock mass ratios ~20. Our data shows strong decoupling between alkaline earth elements (Sr, Ba) and rare earth elements (REE). Overall, the REE are quantitatively removed from the solution to the mineral surface while Sr and Ba invariably remain in solution. In detail, we find that the rate of REE removal is proportional to temperature and inversely proportional to particle size distribution. For example at the 350-200um olivine grain size experiments 60% of REE removal occurred in 7 days at ambient temperature and in 6 hours at 100oC. No difference was observed on the removal rates between clinopyroxene and olivine. Additionally, we observe a fractionation of REE in solution where the HREE were removed at a faster rate than the LREE. The calculated apparent kDs for the experiments that approached steady state are similar to Fe-hydroxide scavenging experiments, and importantly show the tetrad effect in REE. We note in the experiments run with clinopyroxene and isotopically enriched seawater at 170oC, results indicate a simultaneous REE precipitation-dissolution process at the seawater/mineral interface, suggesting a bi-directional exchange between the rock and the solution. The decoupling between REE, and Sr implies that during low-temperature peridotite - seawater reaction, Nd may be preferentially deposited on the peridotite mineral surface while Sr, in the absence of carbonate precipitation, may not. The implications on the estimates of integrated water/rock mass ratios using bulk rock Sr-Nd isotopes in serpentinites will be discussed.

  11. Mobility of rare earth element in hydrothermal process and weathering product: a review

    NASA Astrophysics Data System (ADS)

    Lintjewas, L.; Setiawan, I.

    2018-02-01

    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  12. Chandra Reveals Rich Oxygen Supply

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This striking Chandra X-Ray Observatory image of supernova remnant SNR0103-72.6 reveals a nearly perfect ring about 150 light years in diameter surrounding a cloud of gas enriched in oxygen and shock-heated to millions of degrees Celsius. The ring marks the outer limits of a shock wave produced as material ejected in the supernova explosion collides with the interstellar gas. The size of the ring indicates that we see the supernova remnant as it was about 10,000 years after its progenitor star exploded. Located in the Small Magenellanic Cloud (SMC), SNR 0103-72.6 is about 190,000 light years from Earth. The x-rays take about 190,000 years to reach us from the SMC, so the supernova explosion occurred about 200,000 years ago, as measured on Earth. Scientists have know for years that oxygen and many other elements necessary for life are created in massive stars and dispersed in supernova explosions, but few remnants rich in these elements have been observed. This supernova remnant will hence become an important laboratory for studying how stars forge the elements necessary for life.

  13. Geochemical evolution of Jurassic diorites from the Bristol Lake region, California, USA, and the role of assimilation

    USGS Publications Warehouse

    Young, E.D.; Wooden, J.L.; Shieh, Y.-N.; Farber, D.

    1992-01-01

    Late Jurassic dioritic plutons from the Bristol Lake region of the eastern Mojave Desert share several geochemical attributes with high-alumina basalts, continental hawaiite basalts, and high-K are andesites including: high K2O concentrations; high Al2O3 (16-19 weight %); elevated Zr/TiO2; LREE (light-rare-earth-element) enrichment (La/YbCN=6.3-13.3); and high Nb. Pearce element ratio analysis supported by petrographic relations demonstrates that P, Hf, and Zr were conserved during differentiation. Abundances of conserved elements suggest that dioritic plutons from neighboring ranges were derived from similar parental melts. In the most voluminous suite, correlated variations in elemental concentrations and (87Sr/86Sr)i indicate differentiation by fractional crystallization of hornblende and plagioclase combined with assimilation of a component characterized by abundant radiogenic Sr. Levenberg-Marquardt and Monte Carlo techniques were used to obtain optimal solutions to non-linear inverse models for fractional crystallization-assimilation processes. Results show that the assimilated material was chemically analogous to lower crustal mafic granulites and that the mass ratio of contaminant to parental magma was on the order of 0.1. Lack of enrichment in 18O with differentiation is consistent with the model results. Elemental concentrations and O, Sr, and Nd isotopic data point to a hydrous REE-enriched subcontinental lithospheric source similar to that which produced some Cenozoic continental hawaiites from the southern Cordillera. Isotopic compositions of associated granitoids suggest that partial melting of this subcontinental lithosphere may have been an important process in the development of the Late Jurassic plutonic arc of the eastern Mojave Desert. ?? 1992 Springer-Verlag.

  14. Chondritic late accretion to Mars and the nature of shergottite reservoirs

    NASA Astrophysics Data System (ADS)

    Tait, Kim T.; Day, James M. D.

    2018-07-01

    Mars is considered to have formed as a planetary embryo that experienced extensive differentiation early in its history. Shergottite meteorites preserve evidence for this history, and for late accretion events that affected their mantle sources within Mars. Here we report the first coupled 187Re-187Os, 87Sr/86Sr, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) and major element abundance dataset for martian shergottites that span a range of MgO contents, from 6.4 to 30.3 wt.%. The shergottites range from picro-basalt to basaltic-andesite compositions, have enriched to depleted incompatible trace-element compositions, and define fractional crystallization trends, enabling the determination of HSE compatibility for martian magmatism in the order: Os > Ir ≥ Ru ≫ Pt ≥ Pd ≥ Re. This order of compatibility is like that defined previously for Earth and the Moon, but the fractionation of strongly compatible Os, Ir and Ru appears to take place at higher MgO contents in martian magmas, due to early onset of sulfide fractionation. In general, enriched shergottites have lower MgO contents than intermediate or depleted shergottites and have fractionated HSE patterns (Re + Pd + Pt > Ru + Ir + Os) and more radiogenic measured 87Sr/86Sr (0.7127-0.7235) and 187Os/188Os (0.140-0.247) than intermediate or depleted shergottite meteorites (87Sr/86Sr = 0.7010-0.7132; 187Os/188Os = 0.127-0.141). Osmium isotope compositions, corrected for crystallization age, define compositions that are implausibly unradiogenic in some enriched shergottites, implying recent mobilization of Re in some samples. Filtering for the effects of alteration and high Re/Os through crystal-liquid fractionation leads to a positive correlation between age-corrected Sr and Os isotope compositions. Mixing between hypothetical martian crustal and mantle reservoirs are unable to generate the observed Sr-Os isotope compositions of shergottites, which require either distinct and discrete long-term incompatible-element depleted and enriched mantle sources, or originate from hybridized melting of deep melts with metasomatized martian lithosphere. Using MgO-regression methods, we obtain a modified estimate of the bulk silicate Mars HSE composition of (in ng g-1) 0.4 [Re], 7.4 [Pd], 9.6 [Pt], 6.2 [Ru], 3.7 [Ir], 4 [Os], and a long-term chondritic 187Os/188Os ratio (∼0.1312). This result does not permit existing models invoking high-pressure and temperature partitioning of the HSE. Instead, our estimate implies 0.6-0.7% by mass of late accretion of broadly chondritic material to Mars. Our results indicate that Mars could have accreted earlier than Earth, but that disproportional accretion of large bodies and a relative constant flux of accretion of available materials in the first 50-100 Ma of Solar System led to the broad similarity in HSE abundances between Earth and Mars.

  15. Transfer of rare earth elements from natural metalliferous (copper and cobalt rich) soils into plant shoot biomass of metallophytes from Katanga (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Pourret, Olivier; Lange, Bastien; Jitaru, Petru; Mahy, Grégory; Faucon, Michel-Pierre

    2014-05-01

    The geochemical behavior of rare earth elements (REE) is generally assessed for the characterization of the geological systems where these elements represent the best proxies of processes involving the occurrence of an interface between different media. REE behavior is investigated according to their concentrations normalized with respect to the upper continental crust. In this study, the geochemical fingerprint of REE in plant shoot biomass of an unique metallicolous flora (i.e., Crepidorhopalon tenuis and Anisopappus chinensis) was investigated. The plants originate from extremely copper and cobalt rich soils, deriving from Cu and Co outcrops in Katanga, Democratic Republic of Congo. Some of the species investigated in this study are able to accumulate high amounts of Cu and Co in shoot hence being considered as Cu and Co hyperaccumulators. Therefore, assessing the behavior of REE may lead to a better understanding of the mechanisms of metal accumulation by this flora. The data obtained in this study indicate that REE uptake by plants is not primarily controlled by their concentration and speciation in the soil as previously shown in the literature (Brioschi et al. 2013). Indeed, the REE patterns in shoots are relatively flat whereas soils patterns are Middle REE enriched. In addition, it is worth noting that Eu enrichments occur in aerial parts of the plants. These positive Eu anomalies suggest that Eu3 + can form stable organic complexes replacing Ca2 + in several biological processes as in xylem fluids associated with the general nutrient flux. Therefore, is is possible that the Eu mobility in these fluids is enhanced by its reductive speciation as Eu2 +. Eventually, the geochemical behavior of REE illustrates that metals accumulation in aerial parts of C. tenuis and A. chinensis is mainly driven by dissolved complexation. Brioschi, L., Steinmann, M., Lucot, E., Pierret, M., Stille, P., Prunier, J., Badot, P., 2013. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143-163.

  16. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2017-04-01

    Rare earth elements (REEs) are commonly used proxies to reconstruct water chemistry and oxygen saturation during the formation of authigenic and biogenic phosphates in marine environments. In the modern ocean REEs exhibit a distinct pattern with enrichment of heavy REEs and strong depletion in cerium (Ce). The wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry has been very different in the Earth's past. However, both early and late diagenesis are known to affect REE signatures in phosphates altering primary marine signals. Herein we present a dataset of REE signatures in 38 grain specific LA-ICP-MS measurements of isolated phosphate and carbonate grains in three discrete rock samples. The phosphates mainly consist of authigenic phosphates and phosphatized microfossils that formed in a microbially mediated micro-milieu. In addition, isolated biogenic and reworked phosphatic grains are also present. The phosphates are emplaced in bioclastic grain- to packstones deposited on a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene Monterey event. The results reveal markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Grain shape and REE patterns together indicate that authigenic, biogenic and reworked phosphates have distinct REE patterns irrespective of the sample. Our study shows that while REE patterns in phosphates do reflect water chemistry during authigenesis, they are often already heavily altered during reworking, a process, which can occur in geologically negligible timespans. REE patterns are therefore more likely to reflect complex enrichment processes after their formation. Similarities in the REE patterns of reworked and biogenic phosphate further suggest that the frequently observed hat-shaped pattern in biogenic phosphates can result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Cluster analysis coupled with sedimentological and previously published geochemical data (bulk carbon isotope and X-ray fluorescence spectrometry) allowed the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.

  17. Detection of actinides and rare earths in natural matrices with the AGLAE new, high sensitivity detection set-up

    NASA Astrophysics Data System (ADS)

    Zucchiatti, Alessandro; Alonso, Ursula; Lemasson, Quentin; Missana, Tiziana; Moignard, Brice; Pacheco, Claire; Pichon, Laurent; Camarena de la Mora, Sandra

    2014-08-01

    A series of granite samples (Grimsel and Äspö) enriched by sorption with natU (10-3 M, 10-4 M, 10-5 M in solution) and La (10-3 M, 10-4 M in solution) has been scanned by PIXE over a surface of 1920 × 1920 mm2 together with non-enriched Grimsel and Äspö granites and a glass standard. An assessment of minimum detection limits, MDL's, for several elements has been performed with the use of standard materials. Due to mapping and the high sensitivity of the new AGLAE detection system, U levels around 30 ppm can be detected from the whole PIXE spectrum (one low energy detector and four summed filtered detectors) while U reach grains, inhomogeneously distributed over the surface can be clearly identified through the multi elemental maps and analyzed separately. Even the nominally enriched samples have La levels below the MDL, probably because precipitation of the element (and not adsorption) mostly took place, and precipitates were eliminated after surface cleaning carried out before PIXE analyses. A multi detector system that implies a PIXE detection solid angle much wider than in any other similar set-up (a factor of 2-5); a higher events selectivity, given by the possibility of filtering individually up to 4 PIXE detectors; a double RBS detector, the new Ion Beam Induced Luminescence (IBIL) spectrometry and gamma spectrometry. Full mapping capability in air, assisted by a powerful event by event reconstruction software. These features allow lower Minimum Detection Limits (MDL) which are highly beneficial to the analysis of cultural heritage objects, meaning generally a reduction of irradiation time. Paintings will then be studied without any damage to the pigments that have color change tendencies which is a major drawback of the previous system. Alternatively they could allow an increase in information collected at equal time, particularly considering the detector's fast response and therefore the potential for high beam currents when sample damage can be tolerated.This kind of set-up should be advantageous for the detection of elements that are present in a geological, archaeological or artistic samples to the level of a few tens ppm. This is true in particular for the rare earths which are relevant to the provenance attribution of various classes of cultural heritage objects (clays, glasses, …) and the actinides which are relevant in very specific and highly impacting dating problems and, more generally, critical environmental elements with special reference to the radionuclide mobility in deep geological formations hosting radioactive waste [2]. Geological materials are highly heterogeneous and consequently their retention of contaminants is heterogeneous as well. In this frame, the capabilities of the AGLAE set-up would allow an improved characterization of natural heterogeneous rock, detecting the presence of the elements of interest (actinides and rare earth) at concentration levels of tens of ppm. This provides a better definition of the initial system, avoiding biased interpretation of the retention properties of the material for the analysis of possible contamination. Additionally, if lower detection limits were achieved, new perspectives to evaluate retention of low solubility contaminants in a wider range of geochemical conditions would be opened.A glass standard and a series of reference granite samples (Grimsel and Äspö), either enriched by sorption with natU and La or kept natural, have been scanned by PIXE at the New-AGLAE detection system, to test measurement protocols and assess the MDL's allowed by the five detectors system.

  18. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    PubMed

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs <4). Most particles originate from the Rhone River. This has been confirmed by two different tracing procedures using rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  19. Geochemistry and mineralogy of Early Archean spherule beds, Baberton Mountain Land, South Africa: Evidence for origin by impact doubtful

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1993-09-01

    Spherule layers in the approximately 3.4 Ga Barberton Greenstone Belt, South Africa, have been interpreted as being the result of large asteroid or comet impacts on the early earth. This interpretation was based, among other arguments, on the enrichment of siderophile elements, especially the platinum group elements. We made a detailed mineralogical, petrological and geochemical study of spherule bed samples taken from drill cores and underground esposures at the Princeton, Mt. Morgan and Sheba gold mines, as well as surface localities. The macrostructure of each sample (from within different spherule layer units) shows evidence for multiple (more than five) events over about 30 cm. The mineralogy provides evidence for extensive hydrothermal and metasomatic alterations of the spherule beds. Geochemical analyses of alternating spherule, shale and chert layers show no correlation between the siderophile elements (e.g., Ir, Co, Ni and Au), contrary to that which would be expected if the siderophile elements had an extraterrestrial source. Furthermore, no significant variation in the content of the siderophile elements was detected between spherule layers and shale layers; however, siderophile element contents are high only in layers containing abundant sulphide minerals and having high As, Sb, Se and Cr contents. We suggest that complex mineralizations, similar to those that have formed the Barberton Archean gold deposits or the Bon Accord deposit, were responsible for the siderophile element enrichments in the spherule beds. Nowhere else in the world have such multiple (or even single) spherule beds been observed, and none of the numerous known impact craters (or the Cretaceous-Tertiary boundary) is associated with comparable spherule beds. Known impact debris usually contains less than 1% meteoritic component, if any at all, while Barberton spherules are anomalous in being extremely enriched compared to any known impact deposits.

  20. Magma genesis in the lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C. J.; Powell, M.

    1980-12-01

    143Nd/ 144Nd, 87Sr/ 86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [ 2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas. Along the arc 87Sr/ 86Sr ratios range from 0.7037 on St. Kitts, to 0.7041-0.7047 on Dominica, and 0.7039-0.7058 on Grenada [ 5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths. 143Nd/ 144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264-0.51308 on Grenada [ 5], and all these samples have relatively high 87Sr/ 86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and 87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.

  1. Thermal breeder fuel enrichment zoning

    DOEpatents

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, R.P.; Irifune, T.; Shimizu, N.

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110,more » 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as the product of melting of deeply recycled (subducted) Archean-age metasediments in the mantle transition zone [Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antartica: possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981-1001]. Here we report the results of phase equilibria experiments on two different natural sedimentary compositions (a high-grade metapelite with < 1 wt.% H{sub 2}O, and a marine 'mud' with 8 wt.% H{sub O}) at 16-23 GPa. In both materials, the high-pressure mineral assemblages contain {approx} 15-30 wt.% K-hollandite (KAlSi{sub 3}O{sub 8}), in addition to stishovite, garnet, an Al-silicate phase (kyanite or phase egg), and a Fe-Ti spinel (corundum). Ion microprobe analyses of K-hollandite for a range of trace elements reveal that this phase controls a significant proportion of the whole-rock budget of incompatible, large-ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, K, Pb, La, Ce and Th). Comparisons between the abundances and ratios of these elements in K-hollandite with those in EM-I type ocean-island basalts from Pitcairn Island and related seamounts, and with the Gaussberg lamproites, indicate the presence of deeply recycled, continent-derived sediments in these lavas sources. Our results suggest that the incompatible trace-element signature of EM-I OIB reservoirs in general and of the Gaussberg lamproites in particular can be attributed to recycling of K-hollandite-bearing continental sediments to transition zone depths.« less

  3. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe-Ni, whereas the corresponding highly siderophile elements remained sequestered by the surviving metal. The highly siderophile elements may have been introduced by a population of ~103 large (~1022 g) planetisimals, similar to those forming the lunar mare basins. ?? 1981.

  4. Geochemical and mineralogical constraints on the distribution and enrichment of the rare earth elements during pedogenesis and tropical weathering

    NASA Astrophysics Data System (ADS)

    Hardy, Liam; Smith, Martin; Moles, Norman; Marsellos, Antonios

    2015-04-01

    Current European manufacturing relies heavily on imports from the USA & China for unprocessed rare earth elements (REEs) and rare earth oxides (REOs). It has been suggested that the EU holds viable reserves of REEs that, with adequate research, could satisfy 10% of EU industrial demand, by the recycling of mine waste from bauxite production (red muds) alone (Deady, E. (BGS), 2014). Focus has been turned to the potential for Mount Weld type laterite deposits being exploited in the EU, but limited exploration and understanding of EU laterite (& paleo laterite) formations currently makes them unattractive to investment. Although previously researched, the full range of factors influencing the transition of rare earth (primarily lanthanide series, Y & Sc) elements between mineral and clay phases in allochthonous soils, saprolites and laterites is not fully understood, especially in present and Paleo-European environments (Herrington, Boni, Skarpelis, & Large, 2007) (Deady, E. (BGS), 2014) but several deposits globally are suggested to have formed at economically viable concentrations due to this secondary remobilisation & transition from mineral to clay phase and subsequent seasonal leaching and evaporation system, to form depositional buffer zones other than the soil base. (Hoatson, Jaireth, & Miezitis, 2011) (Berger, Janots, Gnos, Frei, & Bernier, 2014). This project intends to use new techniques in sequential extractions, ICP-MS, Quantitative XRD & SEM analysis to expand current knowledge around lateritic & allochtonous ore forming, & weathering processes. Heavy REE content and mineralogical variations in clays will be examined, with examples from a selection of profiles across Southern Europe (and potentially paleo soils from Scandinavia) to define the main influencing factors on REE concentration. Are the specific sites enriched simply by the nature of their source rock (protolith), by the soil formation (pedogenesis), or by biogenic & meteorological factors? These results will then be applied in targeted, environmentally focused exploration projects, and perhaps enhance techniques used industrially for the extraction of HREEs, for less environmentally damaging production in sensitive areas (with current research sites within national parks in Italy and Portugal; and in areas where it is believed more attention should be paid to environmental preservation, including Central Turkey and Southern China). It is hypothesised that: HREE content in tropical laterite formations is due primarily to the source rock's mineralogy, although it's distribution is a result of slower genesis and leaching as opposed to more common biogenetic pedogenesis. It is suggested this distribution initially forms banded horizontal enrichment zones according to protolith, but eventual separation of heavy and light REEs is controlled by clay-surface (the protolith's weathering style), solvent type, fluctuation and availability. It may be found, as in Fe-Ni laterite resources globally (Herrington, Boni, Skarpelis, & Large, 2007) (Eliopoulos, 2000), that high initial bedrock concentrations of REEs are not necessarily required if prolonged weathering continues to concentrate these elements/minerals over longer periods (although this has been found inversely in certain Turkish bauxites (Karadag˘, Peli, Ary, & Ayhan, 2008)). Regardless of eventual concentrations, identifying the argillic phase and the time scales required for clay REE hosting clay formation may broaden the European search for supergene enrichments to REE hosting marine shales, mineral sands and other sedimentary formations that have been long-term- weathered without major displacement.

  5. Rare earth element abundances in presolar SiC

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sablock, J.

    A trace element signature, a characteristic pattern of enrichment and depletion of trace elements, was determined for a group of siliciclastic-carbonate Oxfordian and Kimmeridgian sedimentary strata, collected from outcrops in western Montana, southeastern British Columbia and southern Alberta. The average values, by petrofacies, of 10 major and 18 trace elements were measured for 40 samples. These data were normalized to Upper Continental Crust (UCC), and plotted against averaged published values of graywackes from the same facies. The rare earth elements (REEs), as well as Ti, Zr, Nb and Y are considered immobile even through diagenesis, and at least low levelmore » metamorphism. So these elements should form a reliable part of the geochemical signature. Compared to UCC and average graywacke, Jurassic samples are very depleted in Zr, Nb and Y. Oxfordian samples have slightly higher rare earth element values, i.e. La, Ce and Nd, than either other Jurassic samples or average graywacke. The most likely source of REE values are garnets and tourmaline which occur as inclusions in monocrystalline quartz grains. This pattern, and petrological study, point to a sedimentary source area, deficient in feldspar, heavy minerals and rock fragments. The consistency of the signature throughout this time may indicate slow uplift of a widespread sedimentary source area, or could be an effect of greater mixing and shorter residence time of dissolved materials in an epeiric sea.« less

  7. Fine-Grained Rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 Meteorites: Their Origin and Modification

    NASA Technical Reports Server (NTRS)

    Hua, X.; Wang, J.; Buseck, P. R.

    2002-01-01

    Antarctic CM meteorites Allan Hills (ALH) 8 1002 and Lewis Cliff (LEW) 90500 contain abundant fine-grained rims (FGRs) that surround a variety of coarse-grained objects. FGRs from both meteorites have similar compositions and petrographic features, independent of their enclosed objects. The FGRs are chemically homogeneous at the 10 m scale for major and minor elements and at the 25 m scale for trace elements. They display accretionary features and contain large amounts of volatiles, presumably water. They are depleted in Ca, Mn, and S but enriched in P. All FGRs show a slightly fractionated rare earth element (REE) pattern, with enrichments of Gd and Yb and depletion of Er. Gd is twice as abundant as Er. Our results indicate that those FGRs are not genetically related to their enclosed cores. They were sampled from a reservoir of homogeneously mixed dust, prior to accretion to their parent body. The rim materials subsequently experienced aqueous alteration under identical conditions. Based on their mineral, textural, and especially chemical similarities, we conclude that ALH 8 1002 and LEW 90500 likely have a similar or identical source.

  8. Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho

    USGS Publications Warehouse

    Piper, D.Z.

    2001-01-01

    Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.

  9. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia

    NASA Astrophysics Data System (ADS)

    Kontonikas-Charos, Alkis; Ciobanu, Cristiana L.; Cook, Nigel J.; Ehrig, Kathy; Krneta, Sasha; Kamenetsky, Vadim S.

    2018-04-01

    Rare earth element (REE) fractionation trends in feldspars are reported from Olympic Dam (including Wirrda Well and Phillip's Ridge) and Cape Donington (Port Lincoln), for comparison with two other igneous-hydrothermal terranes within the eastern Gawler Craton: Moonta-Wallaroo and Hillside. The case studies were selected as they represent 1590 Ma Hiltaba Suite and/or 1845 - 1810 Ma Donington Suite granites, and, aside from Cape Donington, are associated with Mesoproterozoic iron-oxide copper gold (IOCG)-type mineralization. Both plagioclase and alkali feldspar were analyzed within selected samples with the purpose of constraining and linking changes in REE concentrations and fractionation trends in feldspars to local and whole-rock textures and geochemistry. Two unique, reproducible fractionation trends were obtained for igneous plagioclase and alkali feldspars, distinguished from one another by light rare earth element enrichment, Eu-anomalies and degrees of fractionation (e.g. La/Lu slopes). Results for hydrothermal albite and K-feldspar indicate that REE concentrations and fractionation trends are generally inherited from igneous predecessors, however in some instances, significant amounts of REE appear to have been lost to the fluid. These results may have critical implications for the formation of world-class IOCG systems, in which widespread alkali metasomatism plays a key role by altering the physical and chemical properties of the host rocks during early stages of IOCG formation, as well as trapping trace elements (including REE).

  10. Seventh Annual V. M. Goldschmidt Conference

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics considered include: Subduction of the Aseismic Cocos Ridge Displaced Magma Sources Beneath the Cordillera de Talamanca, Costa Rica; Topography of Transition Zone Discontinuities: A Measure of 'Olivine' Content and Evidence for Deep Cratonic Roots; Uranium Enrichment in Lithospheric Mantle: Case Studies from French Massif Central; Rare-Earth-Element Anomalies in the Decollement Zone of the nankai Accretionary Prism, Japan: Evidence of Fluid Flow?; Rare Earth Elements in Japanese Mudrocks: The Influence of Provenance; The Evolution of Seawater Strontium Isotopes in the Last Hundred Million Years: Reinterpretation and Consequences for Erosion and Climate Models; From Pat to Tats: The Lead Isotope Legacy in the Studies of the Continental Crust-Upper Mantle System; Geochronology of the Jack Hills Detrital Zircons by Precise Uranium-Lead Isotope-Dilution Analysis of Crystal Fragments; Iridium in the Oceans; The Helium-Heat-Lead Paradox; Control of Distribution Patterns of Heavy Metals in Ganga Plain Around Kanpur Region, India, by Fluvial Geomorphic Domains; Geochemical and Isotopic Features of Ferrar Magmatic Provience (Victoria Land, Antarctica); Rare Earth Elements in Marine Fine-Grained Sediments from the Northwestern Portuguese Shelf (Atlantic); Aspects of Arc Fluxes; General Kinetic Model for Dolomite Precipitation Rate with Application to the Secular History of Seawater Composition; High-Precision Uranium-series Chronology from Speleothems; Trace-Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones; Rainfall Variations in Southeastern Australia over the Last 500,000 Years from Speleothem Deposition; The Role of Water in High-Pressure Fluids; The Kinetic Conditions of Metamorphic Minearogenesis: Evidence from Minerals and Assemblages.

  11. The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone.

    PubMed

    Dai, Qili; Li, Liwei; Yang, Jiamei; Liu, Baoshuang; Bi, Xiaohui; Wu, Jianhui; Zhang, YuFen; Yao, Lin; Feng, Yinchang

    2016-09-01

    Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due to the unclear atmospheric signature of these elements and their adverse impact on human health and the environment. In this study, ambient particulate matter of different sizes was collected from one site in an integrated iron and steelmaking industrial zone (HG) and one urban background site with no direct industrial emissions (ZWY) during a 1-year sampling campaign in China. The total concentrations of REEs for TSP, PM10, and PM2.5 were 27.248, 14.989, 3.542 ng/m(3) in HG and 6.326, 5.274, 1.731 ng/m(3), respectively, in ZWY, which revealed the local influence of the steelmaking activities to the air quality. With respect to ZWY, the REEs in HG site are obviously fractionated in the coarser fraction, and LREEs account for more than 80 % of the total REE burden in all of the samples. Additionally, the REEs in HG and ZWY show a homogeneous trend with successively increased LREE/HREE ratios from the coarse particles to the fine particles. In our samples, La, Ce, Nd, and Sm are the most enriched rare earth elements, especially in the HG site. Moreover, ternary diagrams of LaCeSm indicate that the REEs in HG are potentially contributed by steelworks, carrier vehicles, coal combustion, and road dust re-suspension.

  12. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Pang, Chong-Jin; Wang, Xuan-Ce; Xu, Bei; Luo, Zhi-Wen; Liu, Yi-Zhi

    2017-08-01

    The role of fluids in the formation of the Permian-aged Xigedan and Mandula gabbroic intrusions in western Inner Mongolia was significant to the evolution of the Xing'an Mongolia Orogenic Belt (XMOB), and the active northern margin of the North China Craton (NCC). Secondary Ion Mass Spectroscopy (SIMS) U-Pb zircon geochronology establishes that the Xigedan gabbroic intrusion in the northern NCC was emplaced at 266 Ma, and is therefore slightly younger than the ca 280 Ma Mandula gabbroic intrusion in the XMOB. Along with their felsic counterparts, the mafic igneous intrusions record extensive bimodal magmatism along the northern NCC and in the XMOB during the Early to Middle Permian. The Mandula gabbroic rocks have low initial 87Sr/86Sr ratios (0.7040-0.7043) and positive εNd(t) (+6.2 to +7.3) and εHf(t) values (+13.4 to +14.5), resembling to those of contemporaneous Mandula basalts. These features, together with the presence of amphibole and the enrichment of large ion lithophile elements (LILE, e.g., Rb, Ba, U and Sr) and depletion of Nb-Ta suggest that the parental magmas of the Mandula mafic igneous rocks were derived from a depleted mantle source metasomatized by water-rich fluids. In contrast, the Xigedan gabbroic rocks are characterised by high 87Sr/86Sr ratios (0.7078-0.7080) and zircon δ18O values (5.84-6.61‰), but low εNd(t) (-9.3 to -10.2) and εHf(t) values (-8.76 to -8.54), indicative of a long-term enriched subcontinental lithosphere mantle source that was metasomatized by recycled, high δ18O crustal materials prior to partial melting. The high water contents (4.6-6.9 wt%) and arc-like geochemical signature (enrichment of fluid-mobile elements and depletion of Nb-Ta) of the parental magmas of the Xigedan gabbroic rocks further establish the existence of a mantle hydration event caused by fluid/melts released from hydrated recycled oceanic crust. Incompatible element modelling shows that 5-10% partial melting of an enriched mantle source by adding respectively 0.5% and 2% sediment melts and fluids, could have produced the parental magmas of the Xigedan gabbroic rocks. A range of geological evidence establishes an intracontinental origin for Late Paleozoic mafic igneous rocks along the northern NCC and in the XMOB, rather than a subduction-related setting. We therefore propose a deep-Earth water cycling process to account for mantle hydration and subsequent Late Paleozoic magmatism, supporting a geodynamic link between deep-Earth water cycling, and intracontinental magmatism and lithospheric extension.

  13. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.

  14. Mantle-derived trace element variability in olivines and their melt inclusions

    NASA Astrophysics Data System (ADS)

    Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura

    2018-02-01

    Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.

  15. Production and precipitation of rare earth elements in acidic to alkaline coal mine discharges, Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Stewart, B. W.; Capo, R. C.; Hedin, B. C.; Wallrich, I. L. R.; Hedin, R. S.

    2016-12-01

    Abandoned coal mine discharges are a serious threat to ground and surface waters due to their high metal content and often high acidity. However, these discharges represent a potential source of rare earth elements (REE), many of which are considered to be critical resources. Trace element data from 18 coal mine drainage (CMD) sites within the Appalachian Basin suggest CMD is enriched in total REE by 1-4 orders of magnitude relative to concentrations expected in unaffected surface or ground waters. When normalized to the North American Shale Composite (NASC), the discharges generally show a pattern of enrichment in the middle REE, including several identified as critical resources (Nd, Eu, Dy, Tb). In contrast, shale, sandstone and coal samples from Appalachian Basin coal-bearing units have concentrations and patterns similar to NASC, indicating that the REE in CMD are fractionated during interaction with rock in the mine pool. The highest total REE contents (up to 2800 mg/L) are found in low-pH discharges (acid mine drainage, or AMD). A precipitous drop in REE concentration in CMD with pH ≥6.6 suggests adsorption or precipitation of REE in the mine pool at circumneutral pH. Precipitated solids from 21 CMD active and passive treatment sites in the Appalachian Basin, including Fe oxy-hydroxides, Ca-Mg lime slurries, and Si- and Al-rich precipitates, are enriched in total REE content relative to the average CMD discharges by about four orders of magnitude. Similar REE trends in the discharges and precipitates, including MREE enrichment, suggest minimal fractionation of REE during precipitation; direct comparisons over multiple seasonal cycles are needed to confirm this. Although the data are limited, Al-rich precipitates generally have high REE concentrations, while those in iron oxy-hydroxides tend to be lower. Based on the area of mined coal in the Appalachian Basin, estimated infiltration rates, and the mean REE flux from discharges analyzed in this study and that of Cravotta and Brady (2015, Appl. Geochem. 62, 108-130), we estimate that coal mine drainage outflows in this region generate approximately 450 metric tons of dissolved REE per year, a portion of which could be targeted for resource recovery during CMD treatment.

  16. Development of the "rare-earth" hypothesis to explain the reasons of geophagy in Teletskoye Lake are kudurs (Gorny Altai, Russia).

    PubMed

    Panichev, Alexander M; Seryodkin, Ivan V; Kalinkin, Yuri N; Makarevich, Raisa A; Stolyarova, Tatiana A; Sergievich, Alexander A; Khoroshikh, Pavel P

    2017-12-18

    The mineral and chemical composition of the liquid and lithogenous substances, consumed by the wild ungulate animals, at the kudurs of the Teletskoye Lake, Gorny Altai, Russia, was studied. It was investigated that all examined kudurits are argillous-aleurolitic and get in the interval from 1 to 100 μm with the predominance of the fraction 10 μm. By the mineral composition, the lithogenous kudurits present the quartz-feldspathic-hydromicaceous-chloritic mineral formations with the large content of the quartz particles (20-43%) and sodium-containing plagioclases (albite, 15-32 wt%). The lithogenous kudurits are the products of the reconstitution of the metamorphic cleaving stones as a result of the glacier abrasive effect, subsequent its aqueous deposits and then eolation in the subaerial conditions. The fontinal waters consumed at the kudurs are subsaline chloride-hydrocarbonate-sodium and sulphated-hydrocarbonate-calcium types. It essentially differs by the increased content of rare-earth elements in reference to the lake water. The acid (HCl, pH-1) extracts from the kudurits more actively extract calcium (10-35% of the gross contents; sodium extracts at the level of 1-3%). The most fluent in the microelements composition are Cu, Be, Sr, Co, Cd, Pb, Sc, Y and rare-earth elements. The transit of all these elements into the dissoluted form fluctuates about 10% from the gross contents. The reason of geophagy is related to tendency of herbivores to absorb mineralized subsoils enriched by the biologically accessible forms of rare-earth elements, arisen as a result of vital activity of specific microflora.

  17. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium)more » from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.« less

  18. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses

    NASA Astrophysics Data System (ADS)

    Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.

    2000-03-01

    The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.

  19. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    PubMed

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Origin of peralkaline granites of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Radain, A. A. M.; Fyfe, W. S.; Kerrich, R.

    1982-01-01

    Small volumes of peralkaline granites were generated as the final phase of a Pan African calc-alkaline igneous event which built the Arabian Peninsula. The peralkaline granites are closely associated with trends or sutures related to ophiolites. Peralkaline rocks are chemically heterogeneous, with anomalous abundances of Zr (average 2,150 ppm±2,600 1σ), Y (200±190), and Nb (105±100), representing up to ten-fold enrichments of these elements relative to abundances in calc alkaline granite counterparts. Large enrichments of some rare earth elements and fluorine are also present. The peralkaline granites have scattered whole rock 18O values, averaging 8.7±0.6% in the Hadb Aldyaheen Complex and 10.7±1% in the Jabal Sayid Complex. Quartz-albite fractionations of 0.5 to 1.5% signify that the heavier whole rock δ-values probably represent the oxygen isotope composition of the peralkaline magma. Small variable enrichments of 18O, in conjunction with slightly elevated 87Sr/86Sr initial ratios relative to broadly contemporaneous calc alkaline granites, are both suggestive of a small degree of involvement of crustal, or crustal derived material in the peralkaline magmas. It is proposed that the peculiar magma genesis is associated with a relaxation event which followed continental collision and underthrusting of salt rich sediments.

  1. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China.

    PubMed

    Yuan, Ming; Liu, Chang; Liu, Wen-Shen; Guo, Mei-Na; Morel, Jean Louis; Huot, Hermine; Yu, Hong-Jie; Tang, Ye-Tao; Qiu, Rong-Liang

    2018-04-16

    The widespread use of rare earth elements (REEs) has resulted in problems for soil and human health. Phytolacca americana L. is a herbaceous plant widely distributed in Dingnan county of Jiangxi province, China, which is a REE mining region (ion absorption rare earth mine) and the soil has high levels of REEs. An investigation of REE content of P. americana growing naturally in Dingnan county was conducted. REE concentrations in the roots, stems, and leaves of P. americana and in their rhizospheric soils were determined. Results showed that plant REEs concentrations varied among the sampling sites and can reach 1040 mg/kg in the leaves. Plant REEs concentrations decreased in the order of leaf > root > stem and all tissues were characterized by a light REE enrichment and a heavy REE depletion. However, P. americana exhibited preferential accumulation of light REEs during the absorption process (from soil to root) and preferential accumulation of heavy REEs during the translocation process (from stem to leaf). The ability of P. americana to accumulate high REEs in the shoot makes it a potential candidate for understanding the absorption mechanisms of REEs and for the phytoremediation of REEs contaminated soil.

  2. The Origin of EM1 Signatures in Basalts From Tristan da Cunha and Gough

    NASA Astrophysics Data System (ADS)

    Stracke, A.; Willbold, M.; Hemond, C.

    2004-12-01

    A long-standing hypothesis is that enriched mantle 1 (EM-1)-type ocean island basalt (OIB) sources contain pelagic sediments. Pelagic sediments range in composition from clays to calcareous or siliceous oozes and encompass a wide range of chemical compositions [1]. For geochemical purposes the use of the term pelagic sediments is often restricted to a special group of pelagic sediments with distinctive enrichment of Rare Earth Elements (REE). The geochemical composition of such REE-enriched pelagic sediments, however, is by no means representative of the geochemical composition of pelagic sediments in general. The extremely high REE/non-REE element ratios in REE-enriched pelagic sediments (e.g. high Lu/Hf, Sm/Hf, La/Nb, La/Th, Eu/Ti, and Gd/Ti ratios) translate into high 176Hf/177Hf ratios for given 143Nd/144Nd ratios with time. OIB sources containing this special variety of REE-enriched pelagic sediment should therefore plot above the oceanic basalt array and mixing arrays with these sources are expected to have a shallow slope in a Hf-Nd isotope diagram. Here we present new Hf-Nd isotope and trace element data for EM-1-type OIB from Tristan da Cunha and Gough in the South Atlantic Ocean. The samples from Tristan have a small range in Hf-Nd isotopic composition and plot within the oceanic basalt array in a Hf-Nd isotope diagram. Samples from Gough form a trend with a slope slightly steeper than that of the ocean basalt array in a Hf-Nd isotope diagram. OIB in general have a very restricted range in Gd/Ti and Sm/Hf ratios, and high La/Nb are associated with low Lu/Hf ratios. In detail, samples from Tristan and Gough have the lowest Lu/Hf and highest La/Nb ratios. Thus from the combined Hf-Nd isotope and trace element composition of basalts from Tristan and Gough involvement of this special variety of (REE-enriched) pelagic sediments can be excluded. Similar observations are made, and thus similar arguments hold, for other EM-1-type localities (Walvis ridge [2] and Pitcairn island [3]). Due to the considerable spread in geochemical composition of pelagic or any other group of sediments (e.g. marine sediments with a higher proportion of terrigenous components), it is difficult to attribute characteristic elemental or isotopic signatures to certain groups of sediment. Moreover, subducting sediments are complex mixtures of different types of sediment [1]. Thus it is difficult to find unique evidence either in favor of or against the involvement of sediments in general at Tristan and Gough, or any other individual OIB locality. Also, it appears highly unlikely that sub-arc processing has an equalizing effect on the composition of different subducting sediments [4]. Associating the similar isotopic characteristics of certain OIB groups and/or mantle-end-members (e.g. EM-1) to recycled sediments is therefore also problematic. [1] Plank, T. and C. H. Langmuir, Chem. Geol., 145, 325-394, 1998. [2] Salters, V. J. M. and X. Li, Geochim. Cosmochim. Acta, 68, A554, 2004. [3] Eisele, J., M. Sharma, J. G. Galer, J. Blichert-Toft, C. W. Devey and A. W. Hofmann, Earth Plan. Sci. Lett., 196, 197-212, 2002. [4] Johnson, M. C. and T. Plank, Geochem., Geophys., Geosys., 1, pp. 29, 1999.

  3. Mineralogical and geochemical characterization of weathering profiles developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon Shear Zone (CSZ), West Cameroon

    NASA Astrophysics Data System (ADS)

    Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.

    2017-07-01

    The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and alkaline earths, and are thus highly mobile during weathering.

  4. Estimating the Submarine Groundwater Discharge Flux of Rare Earth Elements to the Indian River Lagoon, Fl, USA, Using the 1-D Vertical - Flow Equation

    NASA Astrophysics Data System (ADS)

    Chevis, D. A.; Johannesson, K. H.; Burdige, D.; Cable, J. E.; Martin, J. B.

    2013-12-01

    Understanding the sources and sinks of trace elements like the rare earth elements (REE) in the oceans has important implications for quantifying their global geochemical cycles, their application as paleoceanographic tracers, and in discerning the geochemical reactions that mobilize, sequester, and fractionate REEs in the environment. This understanding is critical for neodymium (Nd) because radiogenic Nd isotopes are commonly used in paleoceanographic studies over glacial-interglacial to million year time scales. The submarine groundwater discharge (SGD) flux of each REE for the Indian River Lagoon, Fl, USA, was calculated using a modified form of the 1-dimensional vertical-flow equation that accounts for diffusion, advection, and non-local mass transfer processes. The SGD REE flux is comprised of two sources: a near shore, heavy REE (HREE) enriched advective source chiefly composed of terrestrial SGD, and a light REE (LREE) and middle REE (MREE) enriched source that originates from reductive dissolution of Fe (III) oxides/hydroxides in the subterranean estuary. This SGD flux mixture of REE sources is subsequently transported by groundwater seepage and bioirrigation to the overlying lagoon water column. The total SGD flux of REEs reveals that the subterranean estuary of the Indian River Lagoon is a source for LREE and MREEs, and a sink for the HREEs, to the local coastal ocean. The calculated SGD flux of Nd presented in this study is estimated at 7.69×1.02 mmol/day, which is roughly equivalent to the effective local river flux to the Indian River Lagoon. Although our re-evaluated SGD flux of Nd to the Indian River Lagoon is lower than estimates in our previous work, it nonetheless represents a substantial input to the coastal ocean.

  5. Multiple enrichment of the Carpathian-Pannonian mantle: Pb-Sr-Nd isotope and trace element constraints

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Jeffrey M.; Wilson, Marjorie; Downes, Hilary

    1997-07-01

    Pb isotope compositions of acid-leached clinopyroxene and amphibole mineral separates from spinel peridotite mantle xenoliths entrained in Tertiary-Quaternary alkali basalts from the Carpathian-Pannonian Region of eastern Europe provide important constraints on the processes of metasomatic enrichment of the mantle lithosphere in an extensional tectonic setting associated with recent subduction. Principal component analysis of Pb-Sr-Nd isotope and rare earth element compositions of the pyroxenes is used to identify the geochemical characteristics of the original lithospheric mantle protolith and a spectrum of infiltrating metasomatic agents including subduction-related aqueous fluids and silicate melts derived from a subduction-modified mantle wedge which contains a St. Helena-type (HIMU) plume component. The mantle protolith is highly depleted relative to mid-ocean ridge basalt-source mantle with Pb-Nd-Sr isotope compositions consistent with an ancient depletion event. Silicate melt infiltration into the protolith accounts for the primary variance in the Pb-Sr-Nd isotope compositions of the xenoliths and has locally generated metasomatic amphibole. Infiltration of aqueous fluids has introduced radiogenic Pb and Sr without significantly perturbing the rare earth element signature of the protolith. The Pb isotope compositions of the fluid-modified xenoliths suggest that they reacted with aqueous fluids released from a subduction zone which had equilibrated with sediment derived from an ancient basement terrain. We propose a model for mantle lithosphere evolution consistent with available textural and geochemical data for the xenolith population. The Pb-Sr-Nd isotope compositions of both alkaline mafic magmas and rare, subduction-related, calc-alkaline basaltic andesites from the region provide important constraints for the nature of the asthenospheric mantle wedge and confirm the presence of a HIMU plume component. These silicate melts contribute to the metasomatism of the mantle lithosphere rather than being derived therefrom.

  6. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    USGS Publications Warehouse

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.

  7. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  8. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China

    NASA Astrophysics Data System (ADS)

    Wang, Qinxian; Lin, Zhijia; Chen, Duofu

    2014-05-01

    Marinoan cap carbonates have been suggested to be primarily deposited in glacial meltwater and upwelled seawater. However, elemental geochemistry evidence for this depositional model is lacking. Here, we report high-spatial-resolution measurements of major, trace and rare earth elements of the Doushantuo cap carbonates from the Jiulongwan section in the Yangtze Gorges area, South China. Our results show that: 1) the basal cap carbonates display slight MREE enrichment, weak positive La anomalies, near-chondritic Y/Ho ratios, and slight negative Ce anomalies; 2) the lower-middle cap carbonates show slight LREE depletion or MREE enrichment, weak positive La and Eu anomalies, supra-chondritic Y/Ho ratios, and slight negative Ce anomalies; 3) the upper-middle cap carbonates have consistent enrichment of P, Fe, and trace metals, slight LREE depletion, and weak positive Ce, La and Eu anomalies; and 4) the upper cap carbonates exhibit LREE enrichment, weak positive La and Eu anomalies, supra-chondritic Y/Ho ratios, and mild negative Ce anomalies. These findings indicate that the Doushantuo cap carbonates did not precipitate from normal contemporaneous seawater, rather, the basal cap carbonates were deposited in oxygenated, relatively pure deglacial meltwater; the lower-middle cap carbonates in oxygenated brackish water; the upper-middle cap carbonates in upwelled anoxic brine water; and the upper cap carbonates in oxygenated brackish water. Our depositional model is consistent with the proposed sequence of events after the meltdown of Marinoan glaciation by Shields (2005).

  9. A colossal impact enriched Mars' mantle with noble metals

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Mojzsis, S. J.

    2017-06-01

    Once the terrestrial planets had mostly completed their assembly, bombardment continued by planetesimals left over from accretion. Highly siderophile element (HSE) abundances in Mars' mantle imply that its late accretion supplement was 0.8 wt %; Earth and the Moon obtained an additional 0.7 wt % and 0.02 wt %, respectively. The disproportionately high Earth/Moon accretion ratio is explicable by stochastic addition of a few remaining Ceres-sized bodies that preferentially targeted Earth. Here we show that Mars' late accretion budget also requires a colossal impact, a plausible visible remnant of which is the emispheric dichotomy. The addition of sufficient HSEs to the Martian mantle entails an impactor of at least 1200 km in diameter to have struck Mars before 4430 Ma, by which time crust formation was well underway. Thus, the dichotomy could be one of the oldest geophysical features of the Martian crust. Ejected debris could be the source material for its satellites.

  10. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  11. Elemental and Sr-Nd isotopic geochemistry of the Uradzhongqi magmatic complex in western Inner Mongolia, China: A record of early Permian post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Qiao, Xueyuan; Li, Wenbo; Zhong, Richen; Hu, Chuansheng; Zhu, Feng; Li, Zhihua

    2017-08-01

    The magmatic complex in Uradzhongqi, Inner Mongolia, is located in the western segment of the northern margin of the North China Craton (NCC). The dominant components in the complex include syenogranite, monzogranite, granodiorite, diorite and gabbro. Mafic microgranular enclaves (MMEs) are common in syenogranite and granodiorite. Zircon U-Pb dating shows that the ages of these rocks range from 283 to 270 Ma, suggesting an early Permian emplacement. The syenogranite and monzogranite are peraluminous I-type granites, exhibiting conspicuous negative Eu anomaly, enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in high field strength elements (HFSE). The granodiorites, diorites and MMEs are metaluminous in composition, show high Al2O3, MgO and Fe2O3T contents and weak negative Eu anomaly, as well as LREE and LILE enrichment and HFSE depletion. The gabbros show weak positive Eu anomaly and slight REE differentiation. The Sr-Nd isotope compositions show that the source of mafic magma was depleted mantle (DM) with possible involvement of enriched mantle II (EM II), whereas the felsic magma was derived from the Archean lower crust. Petrographic observation and analytical results of mineralogy, geochronology, geochemistry and Sr-Nd isotopes indicate that the main petrogenesis of these magmatic rocks is the mixing of underplating mafic magma and felsic magma. Tectonically, the complex pluton was formed within a post-collisional regime, and the underplating in this area provides another piece of evidence for the vertical growth of the western segment of the northern margin of the NCC.

  12. Could the eucrite Graves Nunataks 98098 be Vesta's equivalent to Lunar KREEP?

    NASA Astrophysics Data System (ADS)

    Sarafian, A. R.; Marschall, H.; Nielsen, S.

    2013-12-01

    Basaltic eucrites, members of the HED achondrite clan, are thought to derive from the asteroid 4-Vesta [1]. Most eucrites show little compositional and petrographic variability, thus anomalous eucrite could provide key insights into differentiation processes that operated on Vesta. The eucrite Graves Nunataks (GRA) 98098 is an unbrecciated eucrite with cross cutting white tabular veins consisting of mainly equigranular tridymite and euhedral plagioclase with some pyroxene [2]. In addition, GRA has the second highest modal (volume) abundance of apatite in a eucrite studied thus far. The apatite is associated with the veins [2]. The GRA bulk rock composition is enriched in incompatible elements with concentrations ca. 3-5 times higher than in most basaltic eucrites [3]. Additionally, GRA has 10-20 times more Cl than any other analyzed eucritic apatite [2]. Here we measured the trace-element concentrations of plagioclase and pyroxene by laser ablation ICP-MS and the D/H ratio of the apatites by SIMS. In the domains of GRA cut by veins, the trace elements in plagioclase and pyroxene show an up to 15x enrichment in incompatible elements compared to other basaltic eucrites [4]. Here we report the first D/H measurement of any magmatic material from Vesta. The D/H of apatite in GRA is relatively light compared to vSMOW. Based on the high abundance of incompatible elements in GRA and the high Cl content found in apatites, Sarafian et al. [2] suggested that GRA could be akin to Lunar KREEP (lunar rocks enriched in K, REEs and P). With the additional evidence of enriched incompatible elements in plagioclase and pyroxene and the similarity in D/H compared to KREEP, it is likely that GRA was infiltrated by a late-stage melt enriched in incompatible elements, similar to Lunar KREEP. Further study is needed to determine if this late-stage melt formed in a similar manner as KREEP. 1. Consolmango, G.J. and M.J. Drake, Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 1977. 41: p. 1271-1282. 2. Sarafian, A.R., M.F. Roden, and A.E. Patiño Douce, The nature of volatiles in eucrites: Clues from apatite. Meteoritics and Planetary Science, 2013. in press. 3. Mittlefehldt, D.W. and M.M. Lindstrom, Geochemistry of eucrites: genesis of basaltic eucrites, and Hf and Ta as petrogenetic indicators for altered antarctic eucrites. Geochimica et Cosmochimica Acta, 2003. 67(10): p. 1911-1934. 4. Hsu, W. and G. Crozaz, Mineral chemistry and the petrogenesis of eucrites: I. Noncumulate eucrites. Geochimica et Cosmochimica Acta, 1996. 60(22): p. 4571-4591.

  13. Rare earth element-enriched yeast improved egg production and egg quality in laying hens in the late period of peak egg production.

    PubMed

    Cai, L; Nyachoti, C M; Hancock, J D; Lee, J Y; Kim, Y H; Lee, D H; Kim, I H

    2016-06-01

    The objective of this study was to determine the effects of rare earth element-enriched yeast (RY) on egg production, coefficient of total tract apparent digestibility (CTTAD), egg quality, excreta gas emission and excreta microbiota of laying hens. A total of 216 ISA brown laying hens of 52 weeks of age were used in a 5-week feeding trial and data were collected every week. Birds were randomly allotted to three dietary treatments each with six replicates and 12 hens per replicate. Each cage (38 cm width × 50 cm length × 40 cm height) contained one hen. Treatments consisted of corn-soya bean meal-based diet supplemented with 0, 500 or 1000 mg/kg of RY. From weeks 55 to 56, inclusion of RY linearly increased (p < 0.05) egg production. The CTTAD of nitrogen was increased (linear, p < 0.05) with increasing dietary level of RY. In week 55, yolk height and Haugh units were increased linearly (p < 0.05) with increasing dietary RY content. However, no significant effects were observed in terms of excreta emissions and excreta microbiota in laying hens. In conclusion, dietary supplementation with RY improved egg production and CTTAD of nitrogen and slightly improved egg quality in laying hens of the late period of peak egg production. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  14. Rare earth element fingerprints in Korean coastal bay sediments: Association with provenance discrimination

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Woo, Han Jun; Jang, Seok; Jeong, Kap-Sik; Jung, Hoi-Soo; Hwang, Ha Gi; Lee, Jun-Ho; Cho, Jin Hyung

    2016-09-01

    Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.

  15. Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: Their controls and origins

    NASA Astrophysics Data System (ADS)

    Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok

    2012-10-01

    Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.

  16. Chemistry of the older supracrustals of Archaean age around Sargur

    NASA Technical Reports Server (NTRS)

    Janardhan, A. S.; Shadaksharaswamy, N.; Capdevila, R.

    1988-01-01

    In the Archaeans of the Karnataka craton two stratigraphically distinct volcano-sedimentary sequences occur, namely the older supracrustals of the Sargur type and the younger Dharwar greenstones. The dividing line between these is the 3 by old component of the Peninsular gneiss. The trace and rare earth element chemistry of the Sargur metasediments show, in general, marked similarity to the Archaean sediments. The significant departures are in the nickel and chromium abundances. The REE data of the Sargur pelites of the Terakanambi region represented by Silli-gt-bio-feldspar schists and paragneisses show LREE enrichment and flat to depleted HREE pattern. Banded iron formations have very low REE abundance. They show slightly enriched LREE and flat to depleted HREE pattern. REE abundance in the Mn-horizons is comparable to that of the Archaean sediments. Mn-horizons show enriched LREE and flat HREE with anamolous Eu. REE patterns of these bands is well evolved and has similarities with PAAS.

  17. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy.

    PubMed

    Shiller, A M; Chan, E W; Joung, D J; Redmond, M C; Kessler, J D

    2017-09-04

    Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean.

  18. Collisional erosion and the non-chondritic composition of the terrestrial planets.

    PubMed

    O'Neill, Hugh St C; Palme, Herbert

    2008-11-28

    The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their geochemical incompatibility. In the extreme case, the Earth would only have half the chondritic abundances of the highly incompatible, heat-producing elements Th, U and K. Such an Earth model resolves several geochemical paradoxes: the depleted mantle occupies the whole mantle, is completely outgassed in (40)Ar and produces the observed (4)He flux through the ocean basins. But the lower radiogenic heat production exacerbates the discrepancy with heat loss.

  19. Geochemistry of Rock Samples Collected from the Iron Hill Carbonatite Complex, Gunnison County, Colorado

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.

  20. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.

    PubMed

    Markunas, Christina A; Johnson, Eric O; Hancock, Dana B

    2017-07-01

    Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10 -8 ) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits. SNPs were annotated using HaploReg for the eight functional elements across any tissue: DNase sites, expression quantitative trait loci (eQTL), sequence conservation, enhancers, promoters, missense variants, sequence motifs, and protein binding sites. In addition, tissue-specific annotations were considered for brain vs. blood. Disease/trait SNPs were compared to a control set of 4809 SNPs matched to the GWAS SNPs (N = 1639) on allele frequency, gene density, distance to nearest gene, and linkage disequilibrium at ~3:1 ratio. Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference  = 1.28 × 10 -6 vs. enhancers P TissueDifference  = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.

  1. An experimental study of the isotopic enrichment in Ar, Kr, and Xe when trapped in water ice

    NASA Technical Reports Server (NTRS)

    Notesco, G.; Laufer, D.; Bar-Nun, A.; Owen, T.

    1999-01-01

    The isotopic enrichment of argon, krypton, and xenon, when trapped in water ice, was studied experimentally. The isotopes were found to be enriched according to their (m1/m2)1/2 ratio. These enrichment factors could be useful for comparison among the uncertain cosmic or solar isotopic ratios, the hopeful in situ cometary ratio, and those in Earth's atmosphere, in the context of cometary delivery of volatiles to Earth.

  2. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico

    USGS Publications Warehouse

    Martiny, B.; Martinez-Serrano, R. G.; Moran-Zenteno, D. J.; MacIas-Romo, C.; Ayuso, R.A.

    2000-01-01

    In Western Oaxaca, Tertiary magmatic activity is represented by extensive plutons along the continental margin and volcanic sequences in the inland region. K-Ar age determinations reported previously and in the present work indicate that these rocks correspond to a relatively broad arc in this region that was active mainly during the Oligocene (~ 35 to ~ 25 Ma). In the northern sector of western Oaxaca (Huajuapan-Monte Verde-Yanhuitlan), the volcanic suite comprises principally basaltic andesite to andesitic lavas, overlying minor silicic to intermediate volcaniclastic rocks (epiclastic deposits, ash fall tuffs, ignimbrites) that were deposited in the lacustrine-fluvial environment. The southern sector of the volcanic zone includes the Tlaxiaco-Laguna de Guadalupe region and consists of intermediate to silicic pyroclastic and epiclastic deposits, with silicic ash fall tuffs and ignimbrites. In both sectors, numerous andesitic to dacitic hypabyssal intrusions (stocks and dikes) were emplaced at different levels of the sequence. The granitoids of the coastal plutonic belt are generally more differentiated than the volcanic rocks that predominate in the northern sector and vary in composition from granite to granodiorite. The studied rocks show large-ion lithophile element (LILE) enrichment (K, Rb, Ba, Th) relative to high-field-strength (HFS) elements (Nb, Ti, Zr) that is characteristic of subduction-related magmatic rocks. On chondrite-normalized rare earth element diagrams, these samples display light rare earth element enrichment (LREE) and a flat pattern for the heavy rare earth elements (HREE). In spite of the contrasting degree of differentiation between the coastal plutons and inland volcanic rocks, there is a relatively small variation in the isotopic composition of these two suites. Initial 87Sr/86Sr ratios obtained and reported previously for Tertiary plutonic rocks of western Oaxaca range from 0.7042 to 0.7054 and ??Nd values, from -3.0 to +2.4, and for the volcanic rocks, from 0.7042 to 0.7046 and 0 +2.6. The range of these isotope ratios and those reported for the basement rocks in this region suggest a relatively low degree of old crustal involvement for most of the studied rocks. The Pb isotopic compositions of the Tertiary magmatic rocks also show a narrow range [(206Pb/204Pb) = 18.67-18.75; (207Pb/204Pb) = 15.59-15.62; (208Pb/204Pb) = 38.44-38.59], suggesting a similar source region for the volcanic and plutonic rocks. Trace elements and isotopic compositions suggest a mantle source in the subcontinental lithosphere that has been enriched by a subduction component. General tectonic features in this region indicate a more active rate of transtensional deformation for the inland volcanic region than along the coastal margin during the main events of Oligocene magmatism. The lower degree of differentiation of the inland volcanic sequences, particularly the upper unit of the northern sector, compared to the plutons of the coastal margin, suggests that the differentiation of the Tertiary magmas in southern Mexico was controlled to a great extent by the characteristics of the different strain domains. (C) 2000 Elsevier Science B.V. All rights reserved.

  3. Direct dating and characterization of the Pope's Hill REE Deposit, Labrador

    NASA Astrophysics Data System (ADS)

    Chafe, A. N.; Hanchar, J. M.; Fisher, C.; Piccoli, P. M.; Crowley, J. L.; Dimmell, P. M.

    2012-12-01

    The Pope's Hill rare earth element (REE) trend (PHT) is located approximately 100 km southwest of Happy Valley-Goose Bay, along the Trans Labrador Highway, in central Labrador. Whole-rock geochemical analyses of the main REE-bearing unit indicate total rare earth element contents ranging from 1 to 22 weight percent (wt%) REE3+. The REE-enriched unit is hosted within a hydrothermally altered syenite, trending northeast and traceable for approximately 2.8km. Samples of ore, host rock, and country rock, were collected from throughout the trend in order to: 1) quantify which phases concentrate the REE and their abundances and distribution in the ore; and 2) use in situ LA-ICPMS and ID-TIMS U-Pb geochronology and in situ Sm-Nd isotopes using LA-MC-ICPMS in monazite from the ore and host rock to constrain the timing of mineralization and determine the source of the REE. These data will help develop predictive models for this type of mineral deposit elsewhere. The PHT is defined as the host syenite and REE-enriched segregations; two contrasting lithologies. The rare earth element minerals (REE) occur in millimeter- to centimeter-scale pods that are locally discontinuous. The REE are hosted in a variety of silicate, phosphate, carbonate, and niobate phases; with a majority hosted in allanite(-Ce), titanite(-Ce), monazite(-Ce), britholite(-Ce); and a minor percentage in REE-carbonates and fergusonite(-Nd). Both apatite and titanite occur in two different compositional forms that range in chemistry from end-member stoichiometric apatite and titanite to highly REE-enriched - apatite-britholite and titanite(-Ce), where chemical substitutions, such as Si4+ + REE3+ substitute for Ca2+ + P5+ in apatite and REE3+ + Fe3+ substitute for Ca2+ + Ti4+ in titanite in order to incorporate up to ~40 wt% REE2O3 in both minerals. The U-Pb geochronology indicate that allanite, titanite(-Ce), monazite and fergusonite crystallized from ~1060 to ~940 Ma, a period spanning ~120 Ma. Sm-Nd tracer isotope data from the same minerals indicate that the syenite and ore have initial Nd within a single ɛNd unit. This combined with their field relationship to the foliation and the microtextures observed in thin section suggests that the REE minerals experienced syndeformational growth from a hydrothermal fluid, acting on both host and ore, where REEs in aqueous hard ligand complexes became saturated in silicate, phosphate, carbonate, and niobate minerals through the changing T, P and chemical conditions brought on by deformation.

  4. Assessment of species-specific and temporal variations of major, trace and rare earth elements in vineyard ambient using moss bags.

    PubMed

    Milićević, Tijana; Aničić Urošević, Mira; Vuković, Gordana; Škrivanj, Sandra; Relić, Dubravka; Frontasyeva, Marina V; Popović, Aleksandar

    2017-10-01

    Since the methodological parameters of moss bag biomonitoring have rarely been investigated for the application in agricultural areas, two mosses, Sphagnum girgensohnii (a species of the most recommended biomonitoring genus) and Hypnum cupressiforme (commonly available), were verified in a vineyard ambient. The moss bags were exposed along transects in six vineyard parcels during the grapevine season (March‒September 2015). To select an appropriate period for the reliable 'signal' of the element enrichment in the mosses, the bags were simultaneously exposed during five periods (3 × 2 months, 1 × 4 months, and 1 × 6 months). Assuming that vineyard is susceptible to contamination originated from different agricultural treatments, a wide range of elements (41) were determined in the moss and topsoil samples. The mosses were significantly enriched by the elements during the 2-month bag exposure which gradually increasing up to 6 months, but Cu and Ni exhibited the noticeable fluctuations during the grapevine season. However, the 6-month exposure of moss bags could be recommended for comparative studies among different vineyards because it reflects the ambient pollution comprising unpredictable treatments of grapevine applied during the whole season. Although higher element concentrations were determined in S. girgensohnii than H. cupressiforme, both species reflected the spatio-temporal changes in the ambient element content. Moreover, the significant correlation of the element (Cr, Cu, Sb, and Ti) concentrations between the mosses, and the same pairs of the elements correlated within the species, imply the comparable use of S. girgensohnii and H. cupressiforme in the vineyard (agricultural) ambient. Finally, both the moss bags and the soil analyses suggest that vineyard represents a dominant diffuse pollution source of As, Cr, Cu, Ni, Fe, and V. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle, lower reaches and estuary of the Minjiang River, southeastern China

    NASA Astrophysics Data System (ADS)

    Zhu, Xuxu; Gao, Aiguo; Lin, Jianjie; Jian, Xing; Yang, Yufeng; Zhang, Yanpo; Hou, Yuting; Gong, Songbai

    2017-09-01

    With the aim of elucidating the spatial and seasonal behaviors of rare earth elements (REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3-785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations (ΣREE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow (SHF), normal flow (NF), low flow (LF) and high flow (HF) season, respectively. The R (L/M) and R (H/M) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEs-enrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fluctuate and positively correlate to salinity in estuary, probably because of the geochemical behavior differences between Y and Ho.

  6. Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts

    NASA Technical Reports Server (NTRS)

    Lowe, Donald R.; Byerly, Gary R.; Asaro, Frank; Kyte, Frank T.

    1989-01-01

    Beds of sand-sized spherules in the 3400-million-year-old Fig Tree Group, Barberton Greenstone belt, South Africa, formed by the fall of quenched liquid silicate droplets into a range of shallow- to deep-water depositional environments. The regional extent of the layers, their compositional complexity, and lack of included volcanic debris suggest that they are not products of volcanic activity. The layers are greatly enriched in iridium and other platinum group elements in roughly chondritic proportions. Geochemical modeling based on immobile element abundances suggests that the original average spherule composition can be approximated by a mixture of fractionated tholeiitic basalt, komatiite, and CI carbonaceous chondrite. The spherules are thought to be the products of large meteorite impacts on the Archean earth.

  7. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted hydrothermal sediments. The Trans-Mexican Volcanic Belt data confirm the two-step process of Pb enrichment in the arc lavas (and more generally in the continental crust). In the first step, hydrothermal processes at the East Pacific Rise preferentially transport Pb from the basaltic oceanic crust to surface sediments. In the second step, during subduction, these sediments are the main source of asthenospheric mantle-derived Pb to the lavas. Our data also confirm the importance of subduction contributions to the Quaternary Mexican arc, despite the >40 km thick continental crust. Ref: Hofmann et al. (1986) EPSL 79 p. 33-45.

  8. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas suggest that evolved calc-alkaline arc magmatism may extend to the late Eocene, at least 10 million years earlier than previously estimated. The crystallisation ages for intrusive rocks associated with mineralisation at Cobre Panama imply that the deposit formed in the early Oligocene, between a period of late Cretaceous to Eocene magmatism (ca. 66-42 Ma; Chagres-Bayano arc) and Cordilleran arc magmatism (22-7 Ma). Similarities in the timing of intrusive suite emplacement and the fingerprinting of magmatic fractionation processes between the Cobre Panama porphyry deposit and the Cerro Colorado porphyry deposit in western Panama (ca. 5.3 Ma) suggest that these features provide favourable geodynamic and geochemical prerequisites for the formation of porphyry deposits along the Panamanian magmatic arc during the Cenozoic.

  9. Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage

    NASA Astrophysics Data System (ADS)

    Wang, Shengdong; Zhang, Kexin; Song, Bowen; Li, Shucai; Li, Ming; Zhou, Jie

    2018-01-01

    The Niujuanzi ophiolitic mélange (NOM), located in the Beishan Orogenic Collage, marks the termination between the Huaniushan arc and Mingshui-Hanshan Massifs. The NOM is mainly composed of gabbros, diabases, plagiogranites, basalts, and greywacke. Two gabbros have ages of 433.8 ± 3.1 and 354.0 ± 3.3 Ma, two plagiogranites have ages of 429.8 ± 2 and 448.7 ± 2.0 Ma, and a diabase has an age of 433.4 ± 3.2 Ma. The gabbros and diabases are calc-alkaline and tholeiitic, with high Al2O3, CaO, and TiO2 contents and low FeOT contents. The gabbros have high Mg# values (49-82), while the diabases have relatively low Mg# values (46-61). The plagiogranites are calc-alkaline and metaluminous, with high SiO2 and Na2O contents and low Al2O3 and K2O contents. The gabbros and diabases are enriched in large iron lithophile elements and slightly depleted in high field strength elements relative to N-MORB and their trace element characteristics are similar to E-MORB. With respect to rare earth element (REE), they have slightly enriched LREEs relative to HREEs. The majority of the plagiogranite trace elements approximate those of the volcanic arc granite. The plagiogranites have obviously enriched LREEs relative to HREEs, with a slightly to strongly negative Eu anomaly, which is similar to ORG but distinct from volcanic arc and within plate granite. The NOM was formed from the Ordovician to the Carboniferous, representing the expansion period of the Niujuanzi Ocean. The gabbros, diabases, and plagiogranites were formed in a mid-ocean ridge environment. The gabbros and diabases were generated by different degrees of partial melting of the mantle, and the plagiogranites derived from both the crystallization differentiation of basaltic magma and the partial melting of amphibolites in the crust.

  10. Late Proterozoic diabase dikes of the New Jersey Highlands; a remnant of Iapetan rifting in the north-central Appalachians

    USGS Publications Warehouse

    Volkert, R.A.; Puffer, J.H.

    1995-01-01

    Diabase dikes of widespread occurrence intrude only middle Proterozoic rocks in the New Jersey Highlands. These dikes are enriched in TiO2, P2O5, Zr, and light rare earth elements, and have compositions that range from tholeiitic to alkalic. Dike descriptions, field relations, petrography, geochemistry, petrogenesis, and tectonic setting are discussed. The data are consistent with emplacement in a rift-related, within-plate environment and suggest a correlation with other occurrences of late Proterozoic Appalachian basaltic magmatism.

  11. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  12. Uranium, yttrium, and rare earth elements accumulation during the Cretaceous anoxic events in carbonaceous rocks in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Savelyeva, Olga; Philosofova, Tatyana; Bergal-Kuvikas, Olga; Savelyeva, Svetlana

    2017-04-01

    We have studied the carbonate-siliceous section of paleooceanic Albian-Cenomanian deposits on the Kamchatsky Mys peninsula (Eastern Kamchatka, Russia) [1].The section is represented by a rhythmic alternation of planktonic limestones and jaspers, accumulated in the open ocean environment. The rhythmicity can be attributed to climate variations that reflect a fluctuation of astronomical parameters (Milankovitch cycles) [2, 3].The section contains two beds enriched in organic carbon, corresponding to the two oceanic anoxic events - MCE and OAE2 [3]. The maximum content of organic matter in those beds reaches 68%. Our geochemical studies revealed an enrichment of the carbonaceous rocks in some major and trace elements including PGE, in comparison with the surrounding limestone and jasper [4].The accumulation of the ore elements in carbonaceous beds is caused by euxinic conditions during sedimentation.The content of uranium, yttrium, and rare earth elements in carbonaceous rocks is up to 60, 142 and 312 ppm respectively. Phosphate grains (bone detritus) with microinclusions of yttrium and uranium minerals were revealed in the carbonaceous rocks using the scanning electron microscope. These data prove the hypothesis of the sorbtion of U and Y by phosphate detritus from seawater. Microprobe analysis also showed an increased content of Cu, Zn, V in some pyrite framboids, which indicates that these elements are fixed in rocks by Fe-sulphide phase or organic matter under euxinic conditions. Our research may bring us closer to understanding the mechanism of syngenetic accumulation of metals in the black shales. This work was supported by the RFBR (No. 16-05-00546). [1] Palechek, T.N., Savelyev, D.P., Savelyeva, O.L. (2010) Stratigraphy and Geological Correlation 18, (1) 63-82. [2] Savelyeva, O.L. (2010). Vestnik Kraunts. Nauki o zemle 1 (15), 45-55 (in Russian). [3] Savelyev, D.P., Savelyeva, O.L., Palechek, T.N., Pokrovsky, B.G. (2012) Geophysical Research Abstracts, 14, EGU2012-1940. [4] Savelyeva, O., Palesskiy, S., Savelyev, D. (2015) Goldschmidt Abstracts, 2015. 2779.

  13. Composition of the low seismic velocity E' layer at the top of Earth's core

    NASA Astrophysics Data System (ADS)

    Badro, J.; Brodholt, J. P.

    2017-12-01

    Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer consistent with seismological observations.

  14. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various liquid-state differentiation mechanisms, or in other words a complex interaction of petrogenetic processes (CIPP types). Such rocks may also form by volatile-fluxed partial melting of the wallrocks, and subsequent mixing into the magma reservoir. Compositional ranges and averages for CLPD and CIPP obsidians are given. It is shown by analogy with well-documented, zoned ash-flow ruffs that obsidians fractionated by CIPP have very low Mg, P, Ba, and Sr contents, flat rare-earth-element patterns with extensive Eu anomalies, low K/Rb and Zr/Nb ratios, and relatively high Na2O/K2O ratios. There is, however, considerable compositional overlap between CLPD and CIPP obsidians. The effects of magma mixing, assimilation, and vapor-phase transport in producing compositional variations in the obsidians are briefly assessed. The geochemistry of the subalkalic silicic obsidians is described on an element-by-element basis, in order to provide a database for silicic magma compositions that will hopefully contribute to studies of granitic rocks. Attempts are also made to isolate the geochemical effects of tectonic environment and genetic mechanism for each element, by comparison with data from crystal-liquid equilibria-controlled systems, from ash-flow sheets zoned by CIPP, and from mixed-magma series. A final tabulation relates the complexities of obsidian geochemistry to all the tectonic and genetic variables.

  15. Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints

    NASA Astrophysics Data System (ADS)

    Graupner, Torsten; Klemd, Reiner; Henjes-Kunst, Friedhelm; Goldmann, Simon; Behnsen, Helge; Gerdes, Axel; Dohrmann, Reiner; Barton, Jay M.; Opperman, Rehan

    2018-02-01

    Rocks of the rare-earth element (REY)-enriched apatite deposit in the eastern part of the Schiel Alkaline Complex (SAC; Southern Marginal Zone, Limpopo Belt) were studied for their whole-rock and mineral chemistry, REY mineral distribution and geochronology. Apart from phoscorite (sensu lato), pyroxenite and various syenitic rock types with quite variable apatite contents display P-REY enrichments. Field observations, mineralogical composition as well as major and trace element chemistry of soils make it possible to constrain the distribution of the hidden P-REY-rich rock types in the apatite deposit. Uranium-lead ages of zircon from phoscorite (sensu lato) and syenite are in the range of 2.06-2.05 Ga. Samarium-neodymium (ɛNd(t) -8.6 to -6.0) and in part Rb-Sr (87Sr/86Sr(t) 0.70819-0.70859) isotope data for whole-rock samples and mineral separates indicate an origin from an isotopically enriched and slightly variable source. Fluorapatite, early allanite and titanite are the main REY carriers at Schiel. Fluorapatite dominates the REY budget of pyroxenite and phoscorite, whereas early allanite hosts most of the REY in syenite. Three apatite types are distinguished based on their occurrence in the rocks, REYtotal contents and colouration in cathodoluminescence microscopy. Magmatic apatite in pyroxenite and in phoscorite (sensu lato) as well as early stage type I/II apatite in syenitic rocks have moderate to high REYtotal abundances (up to 3.2 wt%) with the mineral enriched in light REE. Early ferriallanite-(Ce) is strongly enriched in light REE and shows very high REYtotal values (13.7-26.4 wt%), while late allanite has lower REYtotal concentrations (6.9-14.9 wt%). Titanite is abundant in most syenitic rocks (REYtotal 1.7-6.4 wt%); chevkinite-(Ce) occurs locally and contributes to an REY enrichment in contact aureoles between syenite and different lithologies. Apatite-enriched rocks in the SAC in part contain significantly higher REYtotal concentrations in apatite grains compared to those in apatite-mineralized pyroxenite, phoscorite and carbonatite from Phalaborwa.

  16. Geochemical features of sulfides from the Deyin-1 hydrothermal field at the southern Mid-Atlantic Ridge near 15°S

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Li, Huaiming; Zhai, Shikui; Yu, Zenghui; Cai, Zongwei

    2017-12-01

    In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15°S southern Mid-Atlantic Ridge (SMAR) were analyzed by the X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements (REE), their concentrations and related characteristic parameters exhibit significant variations (up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10 (st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.

  17. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  18. Late-stage magmatic outgassing from a volatile-depleted Moon.

    PubMed

    Day, James M D; Moynier, Frédéric; Shearer, Charles K

    2017-09-05

    The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ 66 Zn = -13.7‰), heavy Cl (δ 37 Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ 66 Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

  19. An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark W.

    2016-01-01

    A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.

  20. Chondrule heritage and thermal histories from trace element and oxygen isotope analyses of chondrules and amoeboid olivine aggregates

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Marrocchi, Yves

    2017-12-01

    We report combined oxygen isotope and mineral-scale trace element analyses of amoeboid olivine aggregates (AOA) and chondrules in ungrouped carbonaceous chondrite, Northwest Africa 5958. The trace element geochemistry of olivine in AOA, for the first time measured by LA-ICP-MS, is consistent with a condensation origin, although the shallow slope of its rare earth element (REE) pattern is yet to be physically explained. Ferromagnesian silicates in type I chondrules resemble those in other carbonaceous chondrites both geochemically and isotopically, and we find a correlation between 16O enrichment and many incompatible elements in olivine. The variation in incompatible element concentrations may relate to varying amounts of olivine crystallization during a subisothermal stage of chondrule-forming events, the duration of which may be anticorrelated with the local solid/gas ratio if this was the determinant of oxygen isotopic ratios as proposed recently. While aqueous alteration has depleted many chondrule mesostases in REE, some chondrules show recognizable subdued group II-like patterns supporting the idea that the immediate precursors of chondrules were nebular condensates.

  1. Exploration of dysprosium: the most critical element for Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  2. Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Griffin, W. L.; Ryan, C. G.

    1993-01-01

    In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.

  3. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea.

    PubMed

    Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A

    2015-06-15

    Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. First steps of integrated spatial modeling of titanium, zirconium, and rare earth element resources within the Coastal Plain sediments of the southeastern United States

    USGS Publications Warehouse

    Ellefsen, Karl J.; Van Gosen, Bradley S.; Fey, David L.; Budahn, James R.; Smith, Steven M.; Shah, Anjana K.

    2015-01-01

    The Coastal Plain of the southeastern United States has extensive, unconsolidated sedimentary deposits that are enriched in heavy minerals containing titanium, zirconium, and rare earth element resources. Areas favorable for exploration and development of these resources are being identified by geochemical data, which are supplemented with geological, geophysical, hydrological, and geographical data. The first steps of this analysis have been completed. The concentrations of lanthanum, yttrium, and titanium tend to decrease as distance from the Piedmont (which is the likely source of these resources) increases and are moderately correlated with airborne measurements of equivalent thorium concentration. The concentrations of lanthanum, yttrium, and titanium are relatively high in those watersheds that adjoin the Piedmont, south of the Cape Fear Arch. Although this relation suggests that the concentrations are related to the watersheds, it may be simply an independent regional trend. The concentration of zirconium is unrelated to the distance from the Piedmont, the equivalent thorium concentration, and the watershed. These findings establish a foundation for more sophisticated analyses using integrated spatial modeling.

  5. Rare earth element mobility in vesicular lava during low-grade metamorphism

    NASA Astrophysics Data System (ADS)

    Nyström, Jan Olov

    1984-12-01

    A geochemical comparison of basaltic relicts and spilitic domains from two burial metamorphosed flows in central Chile, of similar original composition and rich and poor in amygdules, respectively, demonstrates a relationship between initial vesicularity and rare earth element (REE) mobility. During spilitization the REE were partly leached from permeable parts of the flows and precipitated in voids, now amygdules and veinlets. The REE (excluding Eu) moved coherently in the highly amygdaloidal flow: spilitic domains and amygdules inherited the basaltic REE pattern. Besides being characterized by a positive Eu anomaly, epidotes separated from amygdules have a REE distribution which mimics that of the basalt; the absolute contents range widely, suggesting local and/or temporal REE variations in the metamorphic fluids. Pumpellyite differs by being strongly enriched in heavy REE. Similar ratios of Th, Hf and Ta in samples as contrasting as relict basalt and a geode are consistent with coherent leaching. Coherent mobility, when established for a rock system, can be used to elucidate, for example, whether minerals in cross-cutting veins were formed by local redistribution or from introduced material.

  6. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.

    1980-01-01

    Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.

  7. Continental shelves as potential resource of rare earth elements.

    PubMed

    Pourret, Olivier; Tuduri, Johann

    2017-07-19

    The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.

  8. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments

    NASA Astrophysics Data System (ADS)

    Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian

    2002-07-01

    Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.

  9. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    PubMed

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.

  10. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types

    NASA Astrophysics Data System (ADS)

    Beard, A. D.; Downes, H.; Hegner, E.; Sablukov, S. M.

    2000-03-01

    The Arkhangelsk kimberlite province (AKP) is situated in the north of the Baltic Shield within the buried southeastern portion of the Kola-Kuloi craton. It forms part of the extensive Devonian magmatic event of the northern Baltic Shield and Kola Peninsula. Two main groups of kimberlites can be distinguished within the province: (1) kimberlites from the diamondiferous Zolotitsa field that have geochemical and isotopic affinities with Group 2 kimberlites and lamproites; (2) diamond-poor Ti-Fe-rich kimberlites from other Arkhangelsk fields that have geochemical and isotopic affinities with Group 1 kimberlites. However, the Zolotitsa and Ti-Fe-rich kimberlites have mineralogical characteristics that are not typical for their respective assigned kimberlite group classifications. Both groups of Arkhangelsk kimberlites are apparently transitional to Group 1 kimberlites, Group 2 kimberlites and lamproites as they are defined elsewhere in the world. An associated kimberlite from the Mela Sill Complex has strong affinities with carbonatites. The low Al 2O 3, high Ni and Cr contents, and high Mg# in both groups of kimberlites indicate strongly depleted lherzolitic-harzburgitic mantle sources. Trace element patterns show a variable enrichment of incompatible elements and strong LREE enrichment. However, kimberlites from the Zolotitsa field have overall lower trace element abundances and less steep REE patterns, suggesting a higher degree of partial melt and/or a less enriched source compared to that of the Ti-Fe-rich kimberlites. A calciocarbonatite of the Mela Sill Complex has trace element and REE patterns typical of other carbonatites closely associated with kimberlites. 87Sr/ 86Sri and 143Nd/ 144Ndi isotope compositions of the Arkhangelsk kimberlites and carbonatite reveal that at least two mantle sources are required to explain the isotopic variation: (1) most of the Zolotitsa and Mela kimberlites and the Mela carbonatite are derived from an ancient enriched lithospheric source (EMI); (2) the Ti-Fe-rich kimberlites are derived from a plume-related asthenospheric mantle source with an isotopic composition close to Bulk Earth. Present-day Pb isotope compositions reveal that the Zolotitsa kimberlites have values close to Group 1 kimberlites. However, the Ti-Fe-rich kimberlites generally have slightly more radiogenic Pb isotope values.

  11. Vertical accumulation of potential toxic elements in a semiarid system that is influenced by an abandoned gold mine

    NASA Astrophysics Data System (ADS)

    Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto

    2013-09-01

    The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn concentrations in the sediment cores were related to the deposition of fine sediments and organic carbon.

  12. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  13. Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya G.; Russell, James K.

    2000-08-01

    We describe the mineralogical and chemical composition of the Northern Slave mantle as deduced from xenoliths of peridotite within the Jericho kimberlite, Northwest Territories. Our data set includes modal, major, trace and rare earth element compositions of bulk samples of spinel peridotite, low-T and high-T garnet peridotite and minor pyroxenite. Compared to primitive upper mantle, Jericho peridotite shows depletion in the major elements and enrichment in incompatible elements (except for HREE). The Slave mantle is also uniquely stratified. Older, depleted spinel peridotite extends to a depth of 80-100 km and is underlain by garnet peridotite which shows a gradual decrease in Mg# with depth to 200 km. The youngest layer of fertile garnet peridotite, enriched in clinopyroxene and garnet, is underlain by a pyroxenite-rich horizon at the base of the petrological lithosphere. The Northern Slave is further distinguished from the Kaapvaal and Siberian upper mantle by a marked vertical stratification in Mg#, lower abundances of orthopyroxene and higher abundances of clinopyroxene. In addition, a deeper layer of garnet peridotite below Jericho shows less depletion than low-T peridotite from other cratons. The Northern Slave peridotite results from a series of chemical events that include: (i) high-degree melting of pyrolite at P>3 Gpa for low-T peridotite and lower pressure melting for high-T peridotite, (ii) enrichment of low-T spinel peridotite in orthopyroxene, and (iii) pervasive metasomatic enrichment in alkali and LREE's by kimberlite-related fluids. The chemical stratification described for two of the three lithospheric domains of the Slave craton makes this craton an exception among cratons with commonly unstratified lithospheres. The gradual increase in fertility with depth below the Slave craton is related to age stratification and may have formed by incremental downward growth of mantle lithosphere with time, and/or later re-fertilization of deeper mantle horizons.

  14. Fate and transport of trace metals and rare earth elements in the Snake River, an AMD/ARD-impacted watershed. Montezuma, Colorado USA.

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Rue, G.

    2017-12-01

    Recent research in Snake River Watershed, located near the historic boomtown of Montezuma and adjacent the Continental Divide in the Colorado Rocky Mountains, has revealed the distinctive occurrence of rare earth elements (REE) at high concentrations. Here the weathering of the mineralized lithology naturally generates acid rock drainage (ARD) in addition to drainage recieved from abandoned mine adits throughout the area, results in aqueous REE concentrations three orders of magnitude higher than in most major rivers. The dominant mechanism responsible for this enrichment; their dissolution from secondary and accessory mineral stocks, abundant in REEs, promoted by the low pH waters generated from geochemical weathering of disseminated sulfide minerals. While REEs behave conservatively in acidic conditions, as well as in the presence of stabilizing ligands such as sulfate, downstream circumneutral inputs from pristine streams and a rising pH are resulting in observed fractional losses of heavy rare earth elements as well as partitioning towards colloidal and solid phases. These finding in combination with the established role of dissolved organic matter (DOM) in binding with both trace metals and REEs, suggest that competitive interactions, complexation, and scavenging are likely contributing to these proportional losses. However, outstanding questions yet remain regarding the effects of an increasing flux of trace metals as well as REEs from the Snake River Watershed into Dillon Reservoir, a major drinking water supply for the City of Denver, in part due to hydroclimatological drivers that are enhancing geochemical weathering and reducing groundwater recharge in alpine areas across the Colorado Rockies. Based on these findings also we seek to broaden this body of work to further investigate the behavior of rare earth elements (REE) in other aquatic environment as well the influence of trace metals, DOM, and pH in altering their reactivity and subsequent watershed transport.

  15. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Couëslan, Christopher; Yang, Panseok

    2016-04-01

    The composition of calcite and dolomite from several carbonatite complexes (including a large set of petrographically diverse samples from the Aley complex in Canada) was studied by electron-microprobe analysis and laser-ablation inductively-coupled-plasma mass-spectrometry to identify the extent of substitution of rare-earth and other trace elements in these minerals and the effects of different igneous and postmagmatic processes on their composition. Analysis of the newly acquired and published data shows that the contents of rare-earth elements (REE) and certain REE ratios in magmatic calcite and dolomite are controlled by crystal fractionation of fluorapatite, monazite and, possibly, other minerals. Enrichment in REE observed in some samples (up to ~2000 ppm in calcite) cannot be accounted for by coupled substitutions involving Na, P or As. At Aley, the REE abundances and chondrite-normalized (La/Yb)cn ratios in carbonates decrease with progressive fractionation. Sequestration of heavy REE from carbonatitic magma by calcic garnet may be responsible for a steeply sloping "exponential" pattern and lowered Ce/Ce* ratios of calcite from Magnet Cove (USA) and other localities. Alternatively, the low levels of Ce and Mn in these samples could result from preferential removal of these elements by Ce4+- and Mn3+-bearing minerals (such as cerianite and spinels) at increasing f(O2) in the magma. The distribution of large-ion lithophile elements (LILE = Sr, Ba and Pb) in rock-forming carbonates also shows trends indicative of crystal fractionation effects (e.g., concomitant depletion in Ba + Pb at Aley, or Sr + Ba at Kerimasi), although the phases responsible for these variations cannot be identified unambiguously at present. Overall, element ratios sensitive to the redox state of the magma and its complexing characteristics (Eu/Eu*, Ce/Ce* and Y/Ho) are least variable and in both primary calcite and dolomite, approach the average chondritic values. In consanguineous rocks, calcite invariably has higher REE and LILE levels than dolomite. Hydrothermal reworking of carbonatites does not produce a unique geochemical fingerprint, leading instead to a variety of evolutionary trends that range from light-REE and LILE enrichment (Turiy Mys, Russia) to heavy-REE enrichment and LILE depletion (Bear Lodge, USA). These differences clearly attest to variations in the chemistry of carbonatitic fluids and, consequently, their ability to mobilize specific trace elements from earlier-crystallized minerals. An important telltale indicator of hydrothermal reworking is deviation from the primary, chondrite-like REE ratios (in particular, Y/Ho and Eu/Eu*), accompanied by a variety of other compositional changes depending on the redox state of the fluid (e.g., depletion of carbonates in Mn owing to its oxidation and sequestration by secondary oxides). The effect of supergene processes was studied on a single sample from Bear Lodge, which shows extreme depletion in Mn and Ce (both due to oxidation), coupled with enrichment in Pb and U, possibly reflecting an increased availability of Pb2+ and (UO2)2+ species in the system. On the basis of these findings, several avenues for future research can be outlined: (1) structural mechanisms of REE uptake by carbonates; (2) partitioning of REE and LILE between cogenetic calcite and dolomite; (3) the effects of fluorapatite, phlogopite and pyrochlore fractionation on the LILE budget of magmatic carbonates; (4) the cause(s) of coupled Mn-Ce depletion in some primary calcite; and (5) relations between fluid chemistry and compositional changes in hydrothermal carbonates.

  16. Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens.

    PubMed

    Agnan, Y; Séjalon-Delmas, N; Probst, A

    2013-01-01

    Lichens have long been known to be good indicators of air quality and atmospheric deposition. Xanthoria parietina was selected to investigate past (sourced from a herbarium) and present-day trace metal pollution in four sites from South-West France (close to Albi). Enrichment factors, relationships between elements and hierarchical classification indicated that the atmosphere was mainly impacted by coal combustion (as shown by As, Pb or Cd contamination) during the early twentieth century, whereas more recently, another mixture of pollutants (e.g. Sb, Sn, Pb and Cu) from local factories and car traffic has emerged. The Rare Earth Elements (REE) and other lithogenic elements indicated a higher dust content in the atmosphere in the early twentieth century and a specific lithological local signature. In addition to long-range atmospheric transport, local urban emissions had a strong impact on trace element contamination registered in lichens, particularly for contemporary data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Rare earth elements in Hamersley BIF minerals

    NASA Astrophysics Data System (ADS)

    Alibert, Chantal

    2016-07-01

    Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.

  18. Geophysical Characterization of a Rare Earth Element Enriched Carbonatite Terrane at Mountain Pass, California Eastern Mojave Desert

    NASA Astrophysics Data System (ADS)

    Denton, Kevin M.

    Mountain Pass, California, located in the eastern Mojave Desert, hosts one of the world's richest rare earth element (REE) deposits. The REE-rich rocks occur in a 2.5 km- wide, north-northwest trending zone of Mesoproterozoic (1.4-1.42 Ga) stocks and dikes, which intrude a larger Paleoproterozoic (1.7 Ga) schist-gneiss terrane that extends 10 km southward from Clark Mountain to the Mescal Range. Several REE-enriched bodies make up the Mountain Pass intrusive suite including shonkinite, syenite, and granite comprising an ultrapotassic intrusive suite and the Sulphide Queen carbonatite body. Two-dimensional modeling of gravity, magnetic, and electrical resistivity data reveals that the Mountain Pass intrusive suite is associated with a local gravity high that is superimposed on a 4-km wide gravity terrace. Rock property data indicate that the Mountain Pass intrusive suite is unusually nonmagnetic at the surface (2.0 x 10-3 SI, n = 67). However, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high of unknown origin. The source of this unknown magnetic anomaly is 2-3 km below the surface and coincides with a body of rock having high electrical conductivity. Electrical resistivity models indicate that this unknown magnetic anomaly is several orders of magnitude more conductive (103 O•m) than the surrounding rock. Combined geophysical data suggest that the carbonatite and its associated ultrapotassic intrusive suite were preferentially emplaced along a northwest zone of weakness and/or a fault.

  19. Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica).

    PubMed

    Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto

    2015-11-01

    From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  1. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence of crustal contamination. ?? 1983.

  2. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1993-01-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  3. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot and, perhaps, mostly molten. The Giant Impact hypothesis for the origin of the Moon offers a tremendous input of thermal energy and the same could be true for core formation. And current solar system models favor the formation of a limited number of large (about 1000 km) planetesimals that, upon accreting to Earth, would cause great heating, being lesser versions of the Giant Impact. Several lines of geochemical evidence do not favor this hot early Earth scenario. (i) Terrestrial man-tle xenoliths are sometimes nearly chondritic in their major element compositions, suggesting that these rocks have never been much molten. Large degrees of partial melting probably promote differentiation rather than homogenization. (ii) Unlike the case of Mars, the continental crust probably did not form as a highly fractionated residual liquid from a magma ocean (about 99% crystallization), but, rather, formed in multiple steps. [The simplest model for the formation of continental crust is complicated: (a) about 10% melting of a primitive mantle, making basalt; (b) hydrothermal alteration of that basalt, converting it to greenstone; and (c) 10% partial melting of that greenstone, producing tonalite.] This model is reinforced by the recent observation from old (about 4.1 b.y.) zircons that the early crust formed from an undepleted mantle having a chondritic Lu/Hf ratio. (iii) If the mantle were once differentiated by a magma ocean, the mantle xenolith suite requires that it subsequently be homogenized. The Os isotopic compositions of fertile spinel lherzolites place constraints on the timing of that homogenization. The Os isotopic composition of spinel lherzolites approaches that of chondrites and correlates with elements such as Lu and Al. As Lu and Al concentrations approach those of the primitive mantle, Os isotopic compositions approach chondritic. The Re and Os in these xenoliths were probably added as a late veneer. Thus, the mantle that received the late veneer must have been nearly chondritic in terms of its major elements (excluding Fe). If the mantle that the veneer was mixed into was not al-ready homogenized, then Os isotopes should not correlate with incompatible elements such as Al. Consequently, either early differentiation of the mantle did not occur or the homogenization of this differentiation must have occurred before the late veneer was added. The timing of the late veneer is itself uncertain but presumably postdated core formation at about 4.45 b.y. and did not postdate the 3.8-3.9 b.y. late bombardment of the Moon. This timing based on siderophile elements is consistent with the Hf isotopic evidence cited above. If the Earth, Moon and Mars had magma oceans, the Earth subsequently rehomogenized whereas the Moon and Mars did not. The simplest solution to this observation is that homogenization of igneous differentiates was never necessary on Earth, either because the hypothetical magma ocean never occurred or because this event did not produce mantle differentiation.

  4. Mineral resource of the month: rare earth elements

    USGS Publications Warehouse

    ,

    2011-01-01

    The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.

  5. Volatile Content of the Mid-ocean Ridge Mantle Inferred from Off-axis Seamounts and Intra-transform Lavas

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Saal, A. E.; Hauri, E. H.; Nagle, A.; Forsyth, D. W.; Niu, Y.

    2011-12-01

    Off-axis seamounts and intra-transform lavas provide more direct geochemical information of the mantle than axial lavas. These smaller volumes of melts undergo lower extent of crystal fractionation and mixing compared to basalts erupting within the ridge axis due to a lack of long-lived magma chambers or along axis melt migration. Therefore, their study provide not only a more reliable approach to determine the volatile content of the intrinsic components forming the Earth's upper mantle, but also help constrain mantle convection, heterogeneity, and crustal recycling. Samples from the Quebrada-Discovery-Gofar (QDG) transform fault system (EPR 3°-5°S) and from northern EPR seamounts (5°-15° N) were collected during KN182-13 (R/V Knorr) and RAIT 02 (R/V Thomas Washington) expeditions, respectively. 159 submarine glasses were analyzed for major elements, trace elements, and volatile elements by triplicate analyses, as well as for Sr and Nd isotopes in a subset of samples. The QDG and northern EPR seamounts have similar trace element and isotopic composition that is consistent with melting of two-component mantle common to both regions. The degree of trace element enrichment (e.g. Th/La), isotopic composition, and depth of melt segregation (e.g. Sm/Yb) have a positive correlation and range from ultra depleted to relatively enriched compositions. In order to investigate the primary volatile content of submarine glasses we first considered shallow level processes, such as volatile degassing, sulfide saturation and interaction of melt with hydrothermally altered material. The vapor-melt equilibrium pressure (Dixon et al., 1995) indicates that the majority of the samples were super-saturated in CO2-H2O vapor at the pressure of eruption, which implies rapid magma ascent rate that prevented complete CO2 degassing. Samples that were sulfide saturated (Liu et al., 2007) and contaminated by seawater or seawater derived material (high Cl/K) were filtered out. F/Nd, Cl/K, and H2O/Ce ratios in our samples positively correlate with Th/La, Sm/Yb, and isotope ratios suggesting that the enriched mantle component is also enriched in volatile contents. S/Dy ratios are the exception, with relatively constant values in both enriched, and depleted basalts. Although it has been argued that correlation between Sr, Nd and Pb isotope ratios and fractionation corrected major element in seamount samples indicate different mantle lithologies under the mid-ocean ridges, we will show that such correlation might be an artifact of ignoring the effect of water during the correction for fractional crystallization. [1] Dixon et al. (1995) J. Pet., 36, 1607-1631. [2] Liu et al. (2007) Geochim Cosmochim Ac., 71, 1783-1799.

  6. Geochemical modeling of low melt-fraction anatexis in a peraluminous system: The Pena Negra complex (central Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bea, F.

    1991-07-01

    A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation models. Two of these assumemore » a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing Model shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower Fe/(Fe + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.« less

  7. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow.

    PubMed

    Grotti, M; Soggia, F; Ardini, F; Magi, E

    2011-09-01

    In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).

  8. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Williams-Jones, Anthony E.

    1996-06-01

    The middle-Proterozoic peralkaline pluton at Strange Lake, Quebec/Labrador, comprises hypersolvus to subsolvus phases which are unusually enriched in Zr, Y, REEs, Nb, Be, and F, as exotic alkali and alkaline-earth silicate minerals. The highest concentrations of these elements are in subsolvus granite, which underwent intense low temperature (≤200°C) hydrothermal alteration involving hematization and the replacement of alkali high-field strength element (HFSE) minerals by calcic equivalents. This alteration is interpreted to have been caused by meteoric or formational waters. High temperature (≥ 350°C) alteration, attributed to orthomagmatic fluids, is evident in other parts of the subsolvus granite by the replacement of arfvedsonite by aegirine. Comparisons of the chemical compositions of fresh and altered rocks indicate that rocks subjected to high temperature alteration were chemically unaffected, except for depletion in Zr, Y, and HREEs. These elements were appreciably enriched in rocks that underwent low temperature alteration. Other elements affected by low temperature alteration include Ca and Mg, which were added and Na, which was removed. Available data on HFSE speciation in aqueous fluids and the chemistry of the pluton, suggest that the HFSEs were transported as fluoride complexes. If this was the case, the low temperature fluid could not have been responsible for HFSE transport, because the high concentration of Ca and low solubility of fluorite would have buffered F - activity to levels too low to permit significant complexation. We propose that HFSE mineralization and accompanying alteration were the result of mixing, in the apical parts of the pluton, of a F-rich, essentially Ca-free orthomagmatic fluid containing significant concentrations of HFSEs, with an externally derived meteoric-dominated fluid, enriched in Ca as a result of interaction with calc-silicate gneisses and gabbros. According to this interpretation, the latter fluid was responsible for the exchange of Ca for alkalis, mainly Na, in HFSE-rich minerals and, by sharply reducing F - activity in the mixed fluid through fluorite precipitation and/or increasing pH, destabilised the HFSE-fluoride complexes, causing deposition of HFSE-bearing minerals. An important implication of this study is that major HFSE enrichment may be restricted to those rare cases where F-rich, Ca-free, metal leaching environments and Ca-rich depositional environments are juxtaposed.

  9. DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E.; Cowan, John J.

    2012-03-15

    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A Almost-Equal-To 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium ismore » predominantly produced in the main component of the r-process, along with the rare earth elements.« less

  10. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    PubMed

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes of 1309 ng m(-2) h(-1). This study demonstrated that a CRDS system can be used to measure GEM fluxes over Hg-enriched areas, with a conservative detection limit estimate of 32 ng m(-2) h(-1).

  11. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    USGS Publications Warehouse

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that enriched trace elements above were largely derived from mafic tuffs, in addition to a minor amount from the Kandian Oldland. ?? 2010 Elsevier B.V.

  12. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt

    NASA Astrophysics Data System (ADS)

    Park, Keunsu; Choi, Sung Hi; Cho, Moonsup; Lee, Der-Chuen

    2017-08-01

    Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine (Fo89.3-91.0), enstatite (Wo1-2En88-90Fs8-11), diopside (Wo45-50En45-51Fs4-6), and spinel (Cr# = 8.8-54.7). The peridotite residues underwent up to 25% partial melting in fertile mid-ocean-ridge basalt (MORB) mantle. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1010 °C, reflecting their lithospheric mantle origin. The rare earth element (REE) patterns in clinopyroxenes of the peridotites varied from light REE (LREE) depleted to spoon shaped to LREE enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in large-ion lithophile elements, Th and U together with slight fractionation in heavy REEs (HREEs) and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying well above the mantle array. The Lu-Hf and Sm-Nd model ages of residual clinopyroxenes yielded Early Proterozoic to Phanerozoic ages. No signature of Archean cratonic mantle was present. Therefore, Mt. Baekdu peridotite is residual lithospheric mantle that has undergone variable degrees of diachronous melt extraction and infiltration metasomatism involving subduction-related, fluid-bearing silicate melts. The predominance of Phanerozoic Hf model ages indicates that the lherzolites represent lithospheric mantle fragments newly accreted underneath the eastern NCC.

  13. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    NASA Astrophysics Data System (ADS)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  14. Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.

  15. Evaluating Volatility-controlled Isotope Fractionation During Planet Formation: Kinetics versus Equilibrium

    NASA Astrophysics Data System (ADS)

    Young, E. D.

    2017-12-01

    Recent advances in our ability to measure stable isotope ratios of light, rock-forming elements, including those for Zn, K, Fe, Si, and Mg, among others, has resulted in an emerging hypothesis that collisions among rocky planetesimals, planetary embryos, and/or proto-planets caused losses of moderately volatile elements (e.g., K) and "common" or moderately refractory elements (e.g., Mg and Si). The primary evidence is in the form of heavy isotope enrichments in rock-forming elements relative to the chondrite groups that are thought to be representative of planetary precursors. Equilibrium volatility-controlled isotope fractionation for planetesimal magma oceans might have occurred for bodies larger than 0.1% of an Earth mass (½ the mass of Pluto) as these bodies had sufficient gravity to overpower the escape velocities of hot gas at 2000K. Both Jean's escape and viscous drag hydrodynamic escape can obviate the escape velocity limit but will fractionate by mass, not by volatility. Equilibrium vapor/melt fractionation is qualitatively consistent with the greater disparity in 29Si/28Si between Earth and chondrites than in 25Mg/24Mg. However, losses of large masses of vapor are required to record the fractionation in the melts. We consider that if Earth was derived from E chondrite-like materials, the bulk composition of the Earth, assuming refractory Ca was retained, requires > 60% loss of Mg. This is a lot of vapor loss for a process relying on at least intermittent equilibrium, although it comports with the isotopic lever-rule requirements. Paradoxically, the alternative of evaporative loss of rock-forming elements requires less total mass loss. For example, the calculated Mg and Si isotopic compositions of residues resulting from evaporation of chondritic melts can fit the Mg and Si isotopic compositions of Earth, Mars, and angrites with varying background pressures and with total mass losses of near 5% or less. These mass losses are closer to, and even lower than, those suggested by Ca concentrations relative to CI chondrite. Equilibrium models achieve greater Si than Mg isotope fractionation by large mass losses while evaporation models produce this effect for small mass losses. Additional constraints involving other isotope systems as well as models for vapor loss can distinguish between the two scenarios.

  16. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.

    1989-01-01

    The abundance, P-T stability, solubility, and element-partitioning behavior of minerals such as rutile, garnet, sphene, apatite, zircon, zoisite, and allanite are critical variables in models for mass transfer from the slab to the mantle wedge in deep regions of subduction zones. The influence of these minerals on the composition of subduction-related magmas has been inferred (and disputed) from inverse modelling of the geochemistry of island-arc basalt, or by experiment. Although direct samples of the dehydration + partial-melting region of a mature subduction zone have not been reported from subduction complexes, garnet amphibolites from melanges of circumpacific and Caribbean blueschist terranes reflect high T (>600??C) conditions in shallower regions. Such rocks record geochemical processes that affected deep-seated, high-T portions of paleo-subduction zones. In the Catalina Schist, a subduction-zone metamorphic terrane of southern California, metasomatized and migmatitic garnet amphibolites occur as blocks in a matrix of meta-ultramafic rocks. This mafic and ultramafic complex may represent either slab-derived material accreted to the mantle wedge of a nascent subduction zone or a portion of a shear zone closely related to the slab-mantle wedge contact, or both. The trace-element geochemistry of the complex and the distribution of trace elements among the minerals of garnet amphibolites were studied by INAA, XRF, electron microprobe, and SEM. In order of increasing alteration from a probable metabasalt protolith, three common types of garnet amphibolite blocks in the Catalina Schist are: (1) non-migmatitic, clinopyroxene-bearing blocks, which are compositionally similar to MORB that has lost an albite component; (2) garnet-amphibolite blocks, which have rinds that reflect local interaction between metabasite, metaperidotite, and fluid; and (3) migmatites that are extremely enriched in Th, HFSE, LREE, and other trace elements. These trace-element enrichments are mineralogically controlled by rutile, garnet, sphene, apatite, zircon, zoisite, and allanite. Alkali and alkaline earth elements are much less enriched in the solid assemblage, and thus appear to be decoupled from the other elements in the inferred metasomatic process(es). The compositions of migmatitic garnet amphibolite blocks seem to complement that of "average" island-arc tholeiite. Trace-element metasomatism reflects fluid-solid, rather than melt-solid, interaction. The metasomatic effects indicate that H2O-rich fluid, perhaps with a significant component of Na-Al silicate and alkalis, carried Th, U, Sr, REE, and HFSE. Fractionations of LREE in migmatites resemble those of migmatitic metasedimentary rocks underlying the mafic and ultramafic complex. "Exotic" LREE deposited in allanite in migmatites could have been derived from fluids in equilibrium with subducted sediment. If the paleo-subduction zone represented by the mafic and ultramafic complex of the Catalina Schist had continued its thermal and fluid evolution, a selvage of similarly enriched rocks might have been generated along the slab-mantle wedge contact between ~30 and 85 km depth. Rocks affected by "subduction-zone metasomatism," although rarely recognized at the surface, could be volumetrically significant products of the initiation of subduction and may prove to be geochemical probes of convergent margins that approach the significance of xenoliths in the study of other magmatic environments. ?? 1989.

  17. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications

    NASA Astrophysics Data System (ADS)

    He, Haiyang; Li, Yalin; Wang, Chengshan; Zhou, Aorigele; Qian, Xinyu; Zhang, Jiawei; Du, Lintao; Bi, Wenjun

    2018-03-01

    The tectonic evolutionary history of the Lhasa and Qiangtang collision zones remains hotly debated because of the lack of pivotal magmatic records in the southern Qiangtang subterrane, central Tibet. We present zircon U-Pb dating, whole-rock major and trace-element geochemical analyses, and Sr-Nd isotopic data for the newly discovered Biluoco volcanic rocks from the southern Qiangtang subterrane, central Tibet. Zircon U-Pb dating reveals that the Biluoco volcanic rocks were crystallized at ca. 95 Ma. The samples are characterized by low SiO2 (50.26-54.53 wt%), high Cr (109.7-125.92 ppm) and Ni (57.4-71.58 ppm), and a high Mg# value (39-56), which plot in the magnesian andesites field on the rock classification diagram. They display highly fractionated rare earth element patterns with light rare earth element enrichment ([La/Yb]N = 21.04-25.24), high Sr/Y (63.97-78.79) and no negative Eu anomalies (Eu/Eu* = 0.98-1.04). The Biluoco volcanic rocks are depleted in Nb, Ta and Ti and enriched in Ba, Th, U and Pb. Moreover, the eight samples of Biluoco volcanic rocks display constant (87Sr/86Sr)i ratios (0.70514-0.70527), a positive εNd(t) value (2.16-2.68) and younger Nd model ages (0.56-0.62 Ga). These geochemical signatures indicate that the Biluoco volcanic rocks were most likely derived from partial melting of the mantle wedge peridotite metasomatized by melts of subducted slab and sediment in the subducted slab, invoked by asthenospheric upwelling resulting from the slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere. Identification of ca. 95 Ma Biluoco magnesian andesites suggests they were a delayed response of slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere at ca. 100 Ma.

  18. Geochemistry of K/T boundaries in India and contributions of Deccan volcanism

    NASA Technical Reports Server (NTRS)

    Bhandari, N.; Gupta, M.; Pandey, J.; Shukla, P. N.

    1988-01-01

    Three possible Cretaceous/Tertiary (K/T) boundary sections in the Indian subcontinent were studied for their geochemical and fossil characteristics. These include two marine sections of Meghalaya and Zanskar and one continental section of Nagpur. The Um Sohryngkew river section of Meghalaya shows a high iridium, osmium, iron, cobalt, nickel and chromium concentration in a 1.5 cm thick limonitic layer about 30 cm below the planktonic Cretaceous-Palaeocene boundary identified by the characteristic fossils. The Bottaccione and Contessa sections at Gubbio were also analyzed for these elements. The geochemical pattern at the boundary at the Um Sohryngkew river and Gubbio sections are similar but the peak concentrations and the enrichment factors are different. The biological boundary is not as sharp as the geochemical boundary and the extinction appears to be a prolonged process. The Zanskar section shows, in general, similar concentration of the siderophile, lithophile and rare earth elements but no evidence of enrichment of siderophiles has so far been observed. The Takli section is a shallow inter-trappean deposit within the Deccan province, sandwiched between flow 1 and flow 2. The geochemical stratigraphy of the inter-trappeans is presented. The various horizons of ash, clay and marl show concentration of Fe and Co, generally lower than the adjacent basalts. Two horizons of slight enrichment of iridium are found within the ash layers, one near the contact of flow 1 and other near the contact of flow 2, where iridium occurs at 170 and 260 pg/g. These levels are lower by a factor of 30 compared to Ir concentration in the K/T boundary in Meghalaya section. If the enhanced level of some elements in a few horizons of the ash layer are considered as volcanic contribution by some fractionation processes than the only elements for which it occurs are REE, Ir and possibly Cr.

  19. Sulfide in the core and the Nd isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.

    2016-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Carlson et al. Science 316, 1175 (2007) [3] Campbell& O'Neill Nature 483, 553 (2012) [4] Burkhardt Goldschmidt Ab. 429 (2015) [5] Wohlers &Wood, Nature 520, 337 (2015)

  20. An Enriched Shell Element for Delamination Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark

    2015-01-01

    A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.

  1. Constraints from Earth's heat budget on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Ferrachat, S.

    2006-12-01

    Recent years have seen an increase in the number of proposed models to explain Earth's mantle dynamics: while two end-members, pure layered convection with the upper and lower mantle convecting separately from each other, and pure, whole mantle convection, appear not to satisfy all the observations, several addition models have been proposed. These models include and attempt to characterize least one reservoir that is enriched in radiogenic elements relative to the mid-ocean ridge basalt (MORB) source, as is required to account for most current estimates of the Earth's heat budget. This reservoir would also be responsible for the geochemical signature in some ocean island basalts (OIBs) like Hawaii, but must be rarely sampled at the surface. Our current knowledge of the mass- and heat-budget for the bulk silicate Earth from geochemical, cosmochemical and geodynamical observations and constraints enables us to quantify the radiogenic heat enrichment required to balance the heat budget. Without assuming any particular model for the structure of the reservoir, we first determine the inherent trade-off between heat production rate and mass of the reservoir. Using these constraints, we then investigate the dynamical inferences of the heat budget, assuming that the additional heat is produced within a deep layer above the core-mantle boundary. We carry out dynamical models of layered convection using four different fixed reservoir volumes, corresponding to deep layers of thicknesses 150, 500 1000 and 1600 km, respectively, and including both temperature-dependent viscosity and an instrinsic viscosity jump between upper and lower mantle. We then assess the viability of these cases against 5 criteria: stability of the deep layer through time, topography of the interface, effective density profile, intrinsic chemical density and the heat flux at the CMB.

  2. Environmental control on concretion-forming processes: Examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician)

    NASA Astrophysics Data System (ADS)

    Dabard, Marie-Pierre; Loi, Alfredo

    2012-08-01

    Concretions of various compositions are common in the Paleozoic terrigenous successions of the north Gondwana margin. This study focuses on phosphatic (P) and siliceous (Si) concretions present in some successions of the Armorican Massif (NW France) and SW Sardinia (W Italy). It shows that they consist of mudstones, fine- to very fine-grained sandstones or shellbeds with a more or less abundant P-cement and form a continuum between a phosphatic end-member and a siliceous biogenic end-member. The P2O5 contents are ranging from 0.26% to 21.5% and are related to apatite. The SiO2 contents vary from 25% to 82% and are linked both to a terrigenous phase and to a biogenic silica phase. Concretions showing the lower P-contents (P2O5 < 1.5%) are often enriched in biogenic silica (SiO2/Al2O3 > 5). Comparison with the surrounding sediments shows that all the concretions are enriched in chlorite and in Middle Rare Earth Elements (Las/Gds: 0.12-0.72) and some of them in Y (up to 974 ppm), Rare Earth Elements (more than 300 ppm) and Sr (260-880 ppm). The concretions with highest biogenic silica concentrations are contained in the outer shelf sediments whereas the other concretions are present from the proximal part of the inner shelf to the outer shelf. A genetic model in two stages is proposed. During early diagenesis, the dissolution of shells and degradation of organic matter progressively enrich the pore water in dissolved Si, Ca and P. When the suboxic zone is reached, P-precipitation begins, leading to the formation of protoconcretions. In shallow environments, the relative permeability of sediments and the winnowing or reworking of the upper few centimetres by bottom currents allow for suboxic conditions to be maintained, leading to P-rich concretion formation. In deeper environments, the anoxic zone is reached more rapidly, thereby preventing extensive phosphogenesis. Nevertheless in the protoconcretions the early P-cement preserves pore spaces from compaction. In the presence of biogenic siliceous particles, the fluids are enriched in dissolved silica and diffuse towards the protoconcretions. Silica precipitation can thus occur later in the intergranular spaces.

  3. Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe, Cr, Co and V (experiment with the steel projectile). An enrichment of W and Mo in the shocked quartzes could not be observed. It is suggested that two types of geochemical mixing processes between projectile and target occur during the impact process: (i) After shock compression with formation of PDF in Qtz and diaplectic quartz glass, up to about 1 % of projectile matter is added to these phases without detectable fractionation between the meteoritic tracer elements (except W and Mo). We suggest that projectile material was introduced to shocked quartz from a metallic vapour phase, which was formed near the projectile-target interface. The lack of W and Mo enrichment in shocked target material probably results from the relatively high melting and boiling points of these elements. (ii) In addition heterogeneous melting of sandstone and projectile and subsequent mixing of both melts inter-element fractionation occurred according to the chemical properties of the elements. Fractionation processes similar to our type (ii) are known from natural impactites [3]. We acknowledge support by the German Science Foundation (DFG FOR 887)

  4. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halliday, A.N.

    2003-01-01

    Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6- in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce. ?? 2003 Elsevier Science Ltd.

  5. Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felicio Bruzzi

    2016-11-01

    Using the locally-enriched strategy to enrich a small/local part of the problem by generalized/extended finite element method (G/XFEM) leads to non-optimal convergence rate and ill-conditioning system of equations due to presence of blending elements. The local enrichment can be chosen from polynomial, singular, branch or numerical types. The so-called stable version of G/XFEM method provides a well-conditioning approach when only singular functions are used in the blending elements. This paper combines numeric enrichment functions obtained from global-local G/XFEM method with the polynomial enrichment along with a well-conditioning approach, stable G/XFEM, in order to show the robustness and effectiveness of the approach. In global-local G/XFEM, the enrichment functions are constructed numerically from the solution of a local problem. Furthermore, several enrichment strategies are adopted along with the global-local enrichment. The results obtained with these enrichments strategies are discussed in detail, considering convergence rate in strain energy, growth rate of condition number, and computational processing. Numerical experiments show that using geometrical enrichment along with stable G/XFEM for global-local strategy improves the convergence rate and the conditioning of the problem. In addition, results shows that using polynomial enrichment for global problem simultaneously with global-local enrichments lead to ill-conditioned system matrices and bad convergence rate.

  6. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    USGS Publications Warehouse

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for Sedimentary Geology).

  7. Rare earths in the Leadville Limestone and its marble derivates

    USGS Publications Warehouse

    Jarvis, J.C.; Wildeman, T.R.; Banks, N.G.

    1975-01-01

    Samples of unaltered and metamorphosed Leadville Limestone (Mississippian, Colorado) were analyzed by neutron activation for ten rare-earth elements (REE). The total abundance of the REE in the least-altered limestone is 4-12 ppm, and their distribution patterns are believed to be dominated by the carbonate minerals. The abundances of the REE in the marbles and their sedimentary precursors are comparable, but the distribution patterns are not. Eu is enriched over the other REE in the marbles, and stratigraphically upward in the formation (samples located progressively further from the heat source), the light REE become less enriched relative to the heavy REE. The Eu anomaly is attributed to its ability, unique among the REE, to change from the 3+ to 2+ oxidation state. Whether this results in preferential mobilization of the other REE or whether this reflects the composition of the pore fluid during metamorphism is unknown. Stratigraphically selective depletion of the heavy REE may be attributed to more competition for the REE between fluid and carbonate minerals in the lower strata relative to the upper strata. This competition could have been caused by changes in the temperature of the pore fluid or to the greater resistance to solution of the dolomite in the lower parts of the formation than the calcite in the upper parts. ?? 1975.

  8. An enriched finite element method to fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam

    2017-08-01

    In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.

  9. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei

    2018-04-01

    To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.

  10. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  11. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pete McGrail

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The raremore » earth element uptake testing was conducted at room temperature.« less

  12. Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion

    NASA Technical Reports Server (NTRS)

    Davis, A. M.; Grossman, L.; Allen, J. M.

    1978-01-01

    The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.

  13. 187Os-enriched domain in an Archean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Brügmann, Gerhard E.; Hofmann, Albrecht W.

    2001-04-01

    The Re-Os data on Archean komatiites from the Kostomuksha greenstone belt in the Baltic Shield are presented. This greenstone belt has been previously interpreted to represent a former oceanic plateau formed by the emplacement of an ancient plume head [Puchtel et al., Earth Planet. Sci. Lett. 155 (1998) 57-74]. Samples of flowtop breccia, spinifex-textured and cumulate komatiites and a chromite separate, all collected from the core of a 300 m deep diamond drill hole, yielded a Re-Os isochron with an age of 2795±40 Ma and an initial 187Os/188Os of 0.1117±0.0011 (γ187Os=+3.6±1.0). The high positive γ187Os(T) implies that the komatiites were derived from a mantle source with a time-integrated suprachondritic Re/Os ratio. Recycling of oceanic lithosphere to produce the enriched 187Os isotope signature is considered unlikely, as 15-25% crustal component is required to be incorporated into the plume source as early as 3.5-4.3 Ga. Such a substantial proportion of mafic material in the source would likely destroy the major and trace element characteristics of the komatiites. Our tentative interpretation is that the 187Os-enrichment in the Kostomuksha plume represents an outer core signature. If confirmed by the ongoing Pt-Os isotope studies, the results would provide evidence for the existence of whole-mantle convection in the late Archean, and might place constraints on the timing of core differentiation in the early Earth.

  14. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s-1, with a median of 18.4 L s-1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-??m pore-size filter) SO4 (34-2000), Fe (0.046-512), Mn (0.019-74), and Al (0.007-108) varied widely. Predominant metalloid elements were Si (2.7-31.3 mg L-1), B ( C > P = N = Se) were not elevated in the CMD samples compared to average river water or seawater. Compared to seawater, the CMD samples also were poor in halogens (Cl > Br > I > F), alkalies (Na > K > Li > Rb > Cs), most alkaline earths (Ca > Mg > Sr), and most metalloids but were enriched by two to four orders of magnitude with Fe, Al, Mn, Co, Be, Sc, Y and the lanthanide rare-earth elements, and one order of magnitude with Ni and Zn. The ochre samples collected at a subset of 10 sites in 2003 were dominantly goethite with minor ferrihydrite or lepidocrocite. None of the samples for this subset contained schwertmannite or was Al rich, but most contained minor aluminosilicate detritus. Compared to concentrations in global average shale, the ochres were rich in Fe, Ag, As and Au, but were poor in most other metals and rare earths. The ochres were not enriched compared to commercial ore deposits mined for Au or other valuable metals. Although similar to commercial Fe ores in composition, the ochres are dispersed and present in relatively small quantities at most sites. Nevertheless, the ochres could be valuable for use as pigment.

  15. N-MORB crust beneath Fuerteventura in the easternmost part of the Canary Islands: evidence from gabbroic xenoliths

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Vannucci, Riccardo; Tiepolo, Massimo

    2005-09-01

    Gabbro xenoliths reported in this paper were collected in northern Fuerteventura, the Canary Island located closest to the coast of Africa. The xenoliths are very fresh and consist of Ti-Al-poor clinopyroxene + plagioclase (An87-67) + olivine (Fo72-86) ± orthopyroxene. Clinopyroxene and orthopyroxene are constantly and markedly depleted in light rare earth elements (LREE) relative to heavy REE (HREE), as expected for cumulus minerals formed from highly refractory N-MORB-type melts. In contrast, whole-rock Primordial Mantle-normalized trace element patterns range from mildly S-shaped (mildly depleted in Pr-Sm relative to both the strongly incompatible elements Rb-La and the HREE) to enriched. Estimates show that the trace element compositions of the rocks and their minerals are compatible with formation as N-MORB gabbro cumulates, which have been infiltrated at various extents (≤1% to >5%) by enriched alkali basaltic melts. The enriched material is mainly concentrated along grain boundaries and cracks through mineral grains, suggesting that the infiltration is relatively recent, and is thus associated with the Canary Islands magmatism. Our data contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean. No evidence of continental material that might reflect attenuated continental crust in the area has been found. Gabbro xenoliths with REE and trace element compositions similar to those exhibited by the Fuerteventura gabbros are also found among gabbro xenoliths from the islands of La Palma (western Canary Islands) and Lanzarote. The compositions of the most depleted samples from these islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. The presence of N-MORB oceanic crust beneath Fuerteventura implies that the continent-ocean transition in the Canary Islands area must be relatively sharp, in contrast to the situation both further north along the coast of Morocco, and along the Iberian peninsula.

  16. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.

    PubMed

    Janssen, René P T; Verweij, Wilko

    2003-03-01

    Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands.

  17. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions.

    PubMed

    Bertram, Timothy H; Cochran, Richard E; Grassian, Vicki H; Stone, Elizabeth A

    2018-04-03

    Sea spray aerosol particles (SSA), formed through wave breaking at the ocean surface, contribute to natural aerosol particle concentrations in remote regions of Earth's atmosphere, and alter the direct and indirect effects of aerosol particles on Earth's radiation budget. In addition, sea spray aerosol serves as suspended surface area that can catalyze trace gas reactions. It has been shown repeatedly that sea spray aerosol is heavily enriched in organic material compared to the surface ocean. The selective enrichment of organic material complicates the selection of representative molecular mimics of SSA for laboratory or computational studies. In this review, we first provide a short introduction to SSA formation processes and discuss chemical transformations of SSA that occur in polluted coastal regions and remote pristine air. We then focus on existing literature of the chemical composition of nascent SSA generated in controlled laboratory experiments and field investigations. We combine the evidence on the chemical properties of nascent SSA with literature measurements of SSA water uptake to assess SSA molecular composition and liquid water content. Efforts to speciate SSA organic material into molecular classes and specific molecules have led to the identification of saccharides, alkanes, free fatty acids, anionic surfactants, dicarboxylic acids, amino acids, proteinaceous matter, and other large macromolecules. However to date, less than 25% of the organic mass of nascent SSA has been quantified at a molecular level. As discussed here, quantitative measurements of size resolved elemental ratios, combined with determinations of water uptake properties, provides unique insight on the concentration of ions within SSA as a function of particle size, pointing to a controlling role for relative humidity and the hygroscopicity of SSA organic material at small particle diameters.

  18. Petroleum formation during serpentinization: the evidence of trace elements

    NASA Astrophysics Data System (ADS)

    Szatmari, P.; Fonseca, T. C.; Miekeley, N. F.

    2002-05-01

    An organic source of petroleum formation is well attested by many biomarkers. This need not, however, exclude contribution from inorganic sources. During serpentinization, in the absence of free oxygen, oxidation of bivalent Fe to magnetite breaks up the water molecule, generating hydrogen and creating one of the most reducing environments near the Earth's surface (Janecky & Seyfried, 1986). Szatmari (1989) proposed that some petroleum forms at plate boundaries by Fischer-Tropsch-type synthesis over serpentinizing peridotites and suggested that Ni, an element rare in the continental crust but important in both petroleum and the mantle, may be indicative of such a source. Recently, Holm and Charlou (2001) observed hydrocarbon formation by Fischer-Tropsch-type synthesis over serpentinizing peridotites of the Mid-Atlantic Ridge. To test whether the relative amounts of other trace elements in petroleum are in agreement with a serpentinizing source, we analyzed by internally coupled plasma-mass spectroscopy (ICP-MS) 22 trace elements in 68 oils sampled in seven sedimentary basins throughout Brazil. We found that trace elements in the oils correlate well with mantle peridotites and reflects the process of hydrothermal serpentinization during continental breakup. Four groups may be distinguished. In serpentinites, trace elements of the first group, Ti, Cr, Mn, and Fe, are largely retained in low-solubility magnetite and other spinels formed during serpentinization or inherited from the original peridotites. In the oils, when normalized to mantle peridotites, these elements are at relatively low levels, about 10,000 times less than their abundances in mantle peridotites, reflecting their low availability from stable minerals. In contrast, trace elements of the second group, which includes V, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Ba, La, Ce, and Nd, pass during serpentinization mostly into serpentine minerals or solution. In the oils, when normalized to mantle peridotites, these elements are at higher levels than those of the first group, about 300 times less than their abundances in mantle peridotites, reflecting their higher availability during serpentinization. Within both groups, trace metal ratios and A/(A+B) type proportionalities in the oils are close to mantle peridotites. V behaves somewhat differently: in lacustrine sequences V contents in the oils are low and the ratios of V to other elements of the second group are mantle-like, whereas in marine sequences V and its ratios to other trace elements rise by orders of magnitude. Trace elements commonly enriched in formation fluids and hydrothermal brines (Rb, Sr, Ba, Cu, Zn), when normalized to mantle peridotites, are enriched in the oils by about 0.5 order of magnitude relative to other elements of the second group. The third group of elements includes S, Mo, and As. These elements occur in the oils at abundances similar to sea water and are, when normalized to mantle peridotites and Ni, enriched in the oils by several orders of magnitude, indicating sea water reacting with peridotites during sepentinization as their possible source. Finally trace elements of the fourth group, such as Pb and Ag, are enriched in the oils by several orders of magnitude relative to both mantle peridotites and sea water and were presumably mobilized from shales by hydrothermal fluids. References:Holm, N.G. and Charlou, J.L., 2001, EPSL 191, 1-8. Janecky, D.R. and Seyfried, W.E., 1986, Geochim. Cosmochim. Acta 50, 1357-1378. Szatmari, P., 1989, AAPG Bull. 73, 989-998.

  19. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  20. Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).

  1. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  2. Partition Coefficients at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Righter, K.; Drake, M. J.

    2003-12-01

    Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1104). Because these three groups encompass a wide range of partition coefficient values, they can be very useful in trying to determine the conditions under which metal may have equilibrated with the mantle (or a magma ocean). Because metal and silicate may equilibrate by several different mechanisms, such as at the base of a deep magma ocean, or as metal droplets descend through a molten mantle, partition coefficients can potentially shed light on which mechanism may be most important, thus linking the physics and chemistry of core formation. In this chapter, we summarize metal/silicate partitioning of siderophile elements and show how they may be used to understand planetary core formation.Once a planet is differentiated into core and mantle, a mantle will cool during convection, and can start in either a molten or solid state, depending upon the initial thermal conditions. If hot enough, minerals will crystallize from a molten mantle, and become entrained in the convecting melt, or eventually settle out at the bottom. The entrainment and settling process has been studied in detail (e.g., Tonks and Melosh, 1990), and is a potential mechanism for differentiation between the deep and shallow parts of Earth's mantle. The lithophile elements, those elements that have D(metal/silicate) <1, fall into many different subclasses and all hold information about the deep mineral structure of the mantle. Rare-earth elements (REEs) have proven to be useful: europium anomalies have helped elucidate the role of plagioclase in lunar crust formation (e.g., Schnetzler and Philpotts, 1971; Weill et al., 1974), and LREE/HREE depletion and enrichment are indicators of partial melting in the presence of garnet in the mantle. High-field-strength elements (HFSEs) - niobium, zirconium, tantalum, and hafnium - are all refractory and hence more resilient to fractionation processes such as volatility or condensation. They also have an affinity for ilmenite and rutile, and can explain differences between lunar and martian samples as well as features of Earth's continental crust ( Taylor and McLennan, 1985). Alkaline-earth and alkaline elements include rubidium, strontium, barium, potassium, caesium, and calcium, some of which are involved in radioactive decay couples, e.g., Rb-Sr and K-Ar. The latter is important in understanding the contribution of radioactive decay to planetary heat production, and potential deep sources of radiogenic argon (see Chapter 2.06). Rubidium and potassium are further useful as tracers of hydrous phases such as mica and amphibole. Possible fractionation of any of these elements from chondritic abundances (see Chapter 2.01) can be assessed with the knowledge of partition coefficients. In this chapter we summarize our understanding of mineral/melt fractionation of minor and trace elements at high pressures and temperatures and discuss the implications for mantle differentiation.

  3. Geochemistry of Groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, F. H.

    2003-12-01

    Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1104). Because these three groups encompass a wide range of partition coefficient values, they can be very useful in trying to determine the conditions under which metal may have equilibrated with the mantle (or a magma ocean). Because metal and silicate may equilibrate by several different mechanisms, such as at the base of a deep magma ocean, or as metal droplets descend through a molten mantle, partition coefficients can potentially shed light on which mechanism may be most important, thus linking the physics and chemistry of core formation. In this chapter, we summarize metal/silicate partitioning of siderophile elements and show how they may be used to understand planetary core formation.Once a planet is differentiated into core and mantle, a mantle will cool during convection, and can start in either a molten or solid state, depending upon the initial thermal conditions. If hot enough, minerals will crystallize from a molten mantle, and become entrained in the convecting melt, or eventually settle out at the bottom. The entrainment and settling process has been studied in detail (e.g., Tonks and Melosh, 1990), and is a potential mechanism for differentiation between the deep and shallow parts of Earth's mantle. The lithophile elements, those elements that have D(metal/silicate) <1, fall into many different subclasses and all hold information about the deep mineral structure of the mantle. Rare-earth elements (REEs) have proven to be useful: europium anomalies have helped elucidate the role of plagioclase in lunar crust formation (e.g., Schnetzler and Philpotts, 1971; Weill et al., 1974), and LREE/HREE depletion and enrichment are indicators of partial melting in the presence of garnet in the mantle. High-field-strength elements (HFSEs) - niobium, zirconium, tantalum, and hafnium - are all refractory and hence more resilient to fractionation processes such as volatility or condensation. They also have an affinity for ilmenite and rutile, and can explain differences between lunar and martian samples as well as features of Earth's continental crust ( Taylor and McLennan, 1985). Alkaline-earth and alkaline elements include rubidium, strontium, barium, potassium, caesium, and calcium, some of which are involved in radioactive decay couples, e.g., Rb-Sr and K-Ar. The latter is important in understanding the contribution of radioactive decay to planetary heat production, and potential deep sources of radiogenic argon (see Chapter 2.06). Rubidium and potassium are further useful as tracers of hydrous phases such as mica and amphibole. Possible fractionation of any of these elements from chondritic abundances (see Chapter 2.01) can be assessed with the knowledge of partition coefficients. In this chapter we summarize our understanding of mineral/melt fractionation of minor and trace elements at high pressures and temperatures and discuss the implications for mantle differentiation.

  4. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  5. Possible solar noble-gas component in Hawaiian basalts

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  6. Enrichment of intergalactic matter.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Siluk, R. S.

    1972-01-01

    The primordial gas out of which the Galaxy condensed may have been significantly enriched in heavy elements. A specific mechanism of enrichment is described, in which quasi-stellar sources eject enriched matter into the intergalactic medium. This matter is recycled through successive generations of these sources, and is progressively enriched. The enriched intergalactic matter is accreted by the protogalaxy and we find, for rates of mass ejection by quasi-stellar sources equal to about one solar mass per year in heavy elements, that this mechanism can account for the heavy-element abundances in the oldest Population II stars. Expressions are given for the degree of enrichment of the intergalactic gas as a function of redshift, and we show that our hypothesis implies that the present density of intergalactic gas must be at least a factor 3 larger than the mean density in galaxies at the present epoch.

  7. Rare earth elements: end use and recyclability

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  8. Geochemical characteristics of rare earth elements in the surface sediments from the Spratly Islands of China.

    PubMed

    Li, Jingxi; Sun, Chengjun; Zheng, Li; Yin, Xiaofei; Chen, Junhui; Jiang, Fenghua

    2017-01-30

    The geochemistry of rare earth elements (REE) in surface sediment from Cuarteron reef (N1), Johnson reef (N2), Hugh reef (N3), Gaven reef (N4), Fiery cross reef (N5), and Subi reef (N6) were firstly studied. The total REE abundance (∑REE) varied from 2.244μg·g -1 to 21.661μg·g -1 , with an average of 4.667μg·g -1 . The LREE/HREE was from 2.747 to 9.869, with an average of 3.687, which indicated that the light REE was evidently enriched. Fractionation was observed between LREE and HREE. Gd with a negative anomaly was also detected in all of the stations. The negative anomalies of δEu from 0.11 to 0.25, with an average of 0.22, and the positive anomalies of δCe from 1.38 to 3.86, with an average of 1.63. The REE individual correlation values with Ca, Mn, Mg, Sr were r Ca =-0.05, r Mn =0.26, r Mg =-0.14, and r Sr =0.08. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The record of mantle heterogeneity preserved in Earth's oceanic crust

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.

    2017-12-01

    Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.

  10. No Martian soil component in shergottite meteorites

    NASA Astrophysics Data System (ADS)

    Barrat, J. A.; Jambon, A.; Ferrière, L.; Bollinger, C.; Langlade, J. A.; Liorzou, C.; Boudouma, O.; Fialin, M.

    2014-01-01

    We report on the major and trace element geochemistry of the impact melts contained in some shergottite meteorites. It has been previously proposed that some of these impact melts formed from a mixture of the host rock and a Martian soil component (e.g., Rao et al., 1999) or from partially weathered portions of the host rock (Chennaoui Aoudjehane et al., 2012). Our results contradict both of these theories. Trace element abundances of a glass pod from the EETA 79001A meteorite are identical to those of the host lithology, and indicate that no additional component is required in this case. The impact melts in Tissint share the same trace element features as the host rock, and no secondary phases produced by Martian secondary processes are involved. The light rare earth enrichments displayed by two small samples of Tissint (Chennaoui Aoudjehane et al., 2012) are possibly the result of some contamination of small stones on desert soil before the recovery of the meteorites.

  11. New developments in understanding the r-process from observations of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2015-04-01

    In their atmospheres, old metal-poor Galactic stars retain detailed information about the chemical composition of the interstellar medium at the time of their birth. Extracting such stellar abundances enables us to reconstruct the beginning of the chemical evolution shortly after the Big Bang. About 5% of metal-poor stars with [Fe/H] < - 2 . 5 display in their spectrum a strong enhancement of neutron-capture elements associated with the rapid (r-) nucleosynthesis process that is responsible for the production of the heaviest elements in the Universe. This fortuity provides a unique opportunity of bringing together astrophysics and nuclear physics because these objects act as ``cosmic lab'' for both fields of study. The so-called r-process stars are thought to have formed from material enriched in heavy neutron-capture elements that were created during an r-process event in a previous generation supernova. It appears that the few stars known with this rare chemical signature all follow the scaled solar r-process pattern (for the heaviest elements with 56 <= Z <= 90 that is). This suggests that the r-process is universal - a surprising empirical finding and a solid result that can not be obtained from any laboratory on earth. While much research has been devoted to establishing this pattern, little attention has been given to the overall level of enhancement. New results will be presented on the full extent of r-process element enrichment as observed in metal-poor stars. The challenge lies in determining how the r-process material in the earliest gas clouds was mixed and diluted. Assuming individual r-process events to have contributed the observed r-process elements. We provide empirical estimates on the amount of r-process material produced. This should become a crucial constraint for theoretical nuclear physics models of heavy element nucleosynthesis.

  12. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  13. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil.

    PubMed

    de Campos, Francisco Ferreira; Enzweiler, Jacinta

    2016-05-01

    The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

  14. Rare Earth Elements | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    - Mineral Resources main content Rare Earth Elements Rare earth elements and the supply and demand of these deposits containing rare earth elements to meet the perceived future demand. High prices for rare earth earth element occurrences in the DGGS publications catalog. Department of Natural Resources, Division of

  15. Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856

    NASA Astrophysics Data System (ADS)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2017-08-01

    The origin of the incompatible trace element (ITE) characteristics of enriched shergottites has been critical for examining two contradicting scenarios to explain how these Martian meteorites form. The first scenario is that it reflects ITE enrichment in an early-formed mantle reservoir whereas the second scenario attributes it to assimilation of ancient Martian crust (∼4-4.5 Ga) by ITE-depleted magmas. Strongly differentiated shergottite magmas may yield added constraints for determining which scenario can best explain this signature in enriched shergottites. The meteorite Northwest Africa (NWA) 856 is a basaltic shergottite that, unlike many enriched shergottites, lacks olivine and has undergone extensive differentiation from more primitive parent magma. In similarity to other basaltic shergottites, NWA 856 is comprised primarily of compositionally zoned clinopyroxenes (45% pigeonite and 23% augite), maskelynite (23%) and accessory minerals such as ulvöspinel, merrillite, Cl-apatite, ilmenite, pyrrhotite, baddeleyite and silica polymorph. The CI-chondrite normalized rare earth element (REE) abundance patterns for its maskelynite, phosphates, and its whole rock are flat with corresponding light-REE depletions in clinopyroxenes. The 87Rb-87Sr and 147Sm-143Nd internal isochron ages are 162 ± 14 (all errors are ±2σ) Ma and 162.7 ± 5.5 Ma, respectively, with an initial εNdI = -6.6 ± 0.2. The Rb-Sr isotope systematics are affected by terrestrial alteration resulting in larger scatter and a less precise internal isochron age. The whole rock composition is used in MELTS simulations to model equilibrium and fractional crystallization sequences to compare with the crystallization sequence from textural observations and to the mineral compositions. These models constrain the depth of initial crystallization to a pressure range of 0.4-0.5 GPa (equivalent to 34-42 km) in anhydrous conditions at the Fayalite-Magnetite-Quartz buffer, and consistently reproduce the observed mineralogy throughout the sequence with progressive crystallization. The Ti/Al ratios in the clinopyroxenes are consistent with initial crystallization occurring at these depths followed by polybaric crystallization as the parent magma ascended to the surface. The REE abundances in the clinopyroxenes and maskelynite are consistent with progressive crystallization in a closed system. The new results for NWA 856 are combined with other shergottite data and are compared to mixing and assimilation and fractional crystallization (AFC) models using depleted shergottite magmas and ancient Martian crust as end-members. The models indicate that the range of REE abundances and ratios, when taken in isolation, can be successfully explained for all shergottites by crustal contamination. However, no successful crustal contamination model can explain the restricted εNdI of -6.8 ± 0.2 over the wide range of Mg# (0.65-0.25), and corresponding trace element variations from enriched shergottites to depleted shergottites. The findings indicate that the origin of the long-term ITE-enriched signature in enriched shergottites and the geochemical variability seen in shergottites is not a result of crustal contamination but instead reflects ancient mantle heterogeneity.

  16. Osmium isotope evidence for uniform distribution of s- and r-process components in the early solar system

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Rai, Vinai K.; Alexander, Conel M. O'D.; Lewis, Roy S.; Carlson, Richard W.; Shirey, Steven B.; Thiemens, Mark H.; Walker, Richard J.

    2007-07-01

    We have precisely measured Os isotopic ratios in bulk samples of five carbonaceous, two enstatite and two ordinary chondrites, as well as the acid-resistant residues of three carbonaceous chondrites. All bulk meteorite samples have uniform 186Os/ 188Os, 188Os/ 189Os and 190Os/ 189Os ratios, when decomposed by an alkaline fusion total digestion technique. These ratios are also identical to estimates for Os in the bulk silicate Earth. Despite Os isotopic homogeneity at the bulk meteorite scale, acid insoluble residues of three carbonaceous chondrites are enriched in 186Os, 188Os and 190Os, isotopes with major contributions from stellar s-process nucleosynthesis. Conversely, these isotopes are depleted in acid soluble portions of the same meteorites. The complementary enriched and depleted fractions indicate the presence of at least two types of Os-rich components in these meteorites, one enriched in Os isotopes produced by s-process nucleosynthesis, the other enriched in isotopes produced by the r-process. Presolar silicon carbide is the most probable host for the s-process-enriched Os present in the acid insoluble residues. Because the enriched and depleted components present in these meteorites are combined in proportions resulting in a uniform chondritic/terrestrial composition, it requires that disparate components were thoroughly mixed within the solar nebula at the time of the initiation of planetesimal accretion. This conclusion contrasts with evidence from the isotopic compositions of some other elements (e.g., Sm, Nd, Ru, Mo) that suggests heterogeneous distribution of matter with disparate nucleosynthetic sources within the nebula.

  17. Influence of precipitating light elements on stable stratification below the core/mantle boundary

    NASA Astrophysics Data System (ADS)

    O'Rourke, J. G.; Stevenson, D. J.

    2017-12-01

    Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically increases seismic velocity) growing to its present-day size while allowing enough precipitation to drive compositional convection below. Crucially, this modeling offers unique constrains on Earth's accretion and the light element composition of the core compared to degenerate estimates derived from bulk density and seismic measurements.

  18. Construction of protocellular structures under simulated primitive earth conditions

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Ogawa, Yoko; Kojima, Kiyotsugu; Ito, Masahiko

    1988-09-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructedin situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 °C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 °C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 °C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochromec also stabilized lipid-protein envelopes.

  19. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; McDougall, I.; Patterson, D.B.

    1993-02-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in [sup 20]Ne and [sup 21]Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high [sup 3]He/[sup 4]He ratios. The high [sup 20]Ne/[sup 22]Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume.more » The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO[sub 2] well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere.« less

  20. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry

    PubMed Central

    Bressac, Matthieu

    2016-01-01

    Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km2) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of ‘additionality’ (sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035263

  1. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry.

    PubMed

    Boyd, Philip W; Bressac, Matthieu

    2016-11-28

    Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km 2 ) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' ( sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  2. Rhenium - osmium heterogeneity of enriched mantle basalts explained by composition and behaviour of mantle-derived sulfides

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2010-12-01

    Analyses of enriched mantle (EM) -basalts, using lithophile element-based isotope systems have long provided evidence for discrete, but variable mantle reservoirs [1]. Upon partial melting, the isotopic fingerprint of each reservoir is imparted upon the partial melt produced. However, recent work involving the Re-Os isotope systematics of EM-basalts [2] suggests that it may not be so simple to delimit these previously well defined mantle reservoirs; the “mantle zoo” [3] may contain more reservoirs than previously envisaged. However, a simple model, with varying contributions from two populations of compositionally distinct mantle sulfides can readily account for the observed heterogeneities in Re-Os isotope systematics of such basalts without additional mantle reservoirs. Rhenium-osmium elemental and isotopic analyses of individual sulfide grains separated from spinel lherzolites from Kilbourne Hole, NM, USA demonstrate that two discrete populations of mantle sulfide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os], low [Re] with unradiogenic, typically sub-chondritic, 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulfides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic, 187Os/188Os ([Os] typically ≤ 1-2 ppm, 187Os/188Os ≤ 0.3729; this study). This population is thought to represent metasomatic sulfide (e.g. [4,5]). Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulfide ([Os] ≤ 37 ppm, this study). During the early stages of partial melting, supra-chondritic interstitial sulfides are mobilized and incorporated into the melt, adding their radiogenic 187Os/188Os signature. Only when sulfides armored within silicates are exposed to the melt through continued partial melting will enclosed sulfides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all the metasomatic sulfide, followed by (ii) the incorporation of small amounts of armored sulfide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs. References: [1] Zindler & Hart, (1986) Annu. Rev. Earth Planet. Sci. 14, 493-571. [2] Class et al. (2009) Earth Planet. Sci. Lett. 284, 219-227. [3] Stracke, et al. (2005) Geochem., Geophys., Geosys. 6, doi:10.1029/2004GC000824. [4] Burton et al., Earth Planet. Sci. Lett. (1999) 172, 311-322. [5] Alard et al., (2002) Earth Planet. Sci. Lett. 203, 651-663

  3. Loparite-(Ce) from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Konopleva, N. G.; Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Yakovenchuk, V. N.; Mikhailova, Yu. A.

    2017-12-01

    Data on the occurrence, morphology, anatomy, composition, and formation conditions of loparite-(Ce) in the Khibiny alkaline pluton are given. Loparite-(Ce), (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6, resulted from metasomatic alteration and assimilation of metamorphic host rocks at the contact with foyaite as well as foyaite on the contact with foidolite. This alteration was the highest in pegmatite, and albitite developed there. A decrease in temperature resulted in enrichment of the perovskite and tausonite endmembers in loparite-(Ce) owing to a decrease in the loparite and lueshite endmembers. La and Ce sharply predominate among rare earth elements in the composition of loparite-(Ce).

  4. Modelling the isotopic evolution of the Earth.

    PubMed

    Paul, Debajyoti; White, William M; Turcotte, Donald L

    2002-11-15

    We present a flexible multi-reservoir (primitive lower mantle, depleted upper mantle, upper continental crust, lower continental crust and atmosphere) forward-transport model of the Earth, incorporating the Sm-Nd, Rb-Sr, U-Th-Pb-He and K-Ar isotope-decay systematics. Mathematically, the model consists of a series of differential equations, describing the changing abundance of each nuclide in each reservoir, which are solved repeatedly over the history of the Earth. Fluxes between reservoirs are keyed to heat production and further constrained by estimates of present-day fluxes (e.g. subduction, plume flux) and current sizes of reservoirs. Elemental transport is tied to these fluxes through 'enrichment factors', which allow for fractionation between species. A principal goal of the model is to reproduce the Pb-isotope systematics of the depleted upper mantle, which has not been done in earlier models. At present, the depleted upper mantle has low (238)U/(204)Pb (mu) and (232)Th/(238)U (kappa) ratios, but Pb-isotope ratios reflect high time-integrated values of these ratios. These features are reproduced in the model and are a consequence of preferential subduction of U and of radiogenic Pb from the upper continental crust into the depleted upper mantle. At the same time, the model reproduces the observed Sr-, Nd-, Ar- and He-isotope ratios of the atmosphere, continental crust and mantle. We show that both steady-state and time-variant concentrations of incompatible-element concentrations and ratios in the continental crust and upper mantle are possible. Indeed, in some cases, incompatible-element concentrations and ratios increase with time in the depleted mantle. Hence, assumptions of a progressively depleting or steady-state upper mantle are not justified. A ubiquitous feature of this model, as well as other evolutionary models, is early rapid depletion of the upper mantle in highly incompatible elements; hence, a near-chondritic Th/U ratio in the upper mantle throughout the Archean is unlikely. The model also suggests that the optimal value of the bulk silicate Earth's K/U ratio is close to 10000; lower values suggested recently seem unlikely.

  5. Formation of early-middle Miocene red beds in the South China Sea: element geochemistry and mineralogy analysis

    NASA Astrophysics Data System (ADS)

    Lyu, X.; Liu, Z.

    2017-12-01

    The formation of oceanic red beds that usually present oxic and oligotrophic conditions with low sedimentation rate has been used to trace depositional paleoenvironment and paleoclimate change. Red beds overlying oceanic basalts were drilled at two adjacent Sites U1433 and U1434 of IODP Expedition 349 in the Southwest Subbasin of the South China Sea. The occurrence of early-middle Miocene red beds may indicate that at that time there was oxic and quiet marine environment in the deep South China Sea. To understand their formation of red-color, local depositional condition, and potential paleoceanographic significance, major elements (XRF), trace and rare earth elements (ICP-MS), Fe chemical speciation (modified sequential iron extraction procedure), and Fe oxic minerals (CBD and DRS) were analyzed. Geochemical and mineralogical data reveal that hematite and goethite are responsible for the reddish color and red beds were deposited under highly oxic, oligotrophic conditions with a little later hydrothermal influence in the South China Sea. Our results indicate that: (1) after treatment using the CBD procedure, the red samples presented a change in color to greenish, showing the iron oxides being responsible for the sediment color; (2) enriched Mn, depleted U, S enrichment factors, and negative Ce anomaly show that the water mass was pre-oxidized before transported to the study location; (3) low primary productivity was inferred from the lower P, Ba enrichment factors in red beds compared to non-red beds; (4) the excess Mo influx at the bottom may come from the later hydrothermal input; (5) the diverse Ca enrichment factors and correlations between Fe and Al suggest different allogenic sources for red beds at our two sites. We conclude that the red beds at Sites U1433 and U1434 despite their diverse sources both developed in externally oxidized water mass and low primary productivity conditions, and partially altered by hydrothermal fluids after their pelagic deposition. In the Miocene, the South China Sea was open to the western Pacific, and our study suggests an oxidized deepwater environment in the Pacific during the Miocene.

  6. Actualistic models of mantle metasomatism documented in a composite xenolith from Dish Hill, California

    USGS Publications Warehouse

    Nielson, J.E.; Budahn, J.R.; Unruh, D.M.; Wilshire, H.G.

    1993-01-01

    Major and trace-element whole rock and mineral variations in composite hornblendite-peridotite xenolith Ba-2-1, from Dish Hill, CA, are due to a single event of metasomatism in the mantle. The hornblendite is the crystallized selvage of a dike conduit charged with incompatible-element-enriched hydrous mafic magma. The magma infiltrated the refractory peridotite wallrock, reacted with its constituent minerals, and simultaneously deposited amphibole. The systematic data from this study show considerable variation in isotopic values and trace elements. These data provide insight into a mantle process that was defined previously from samples without context, lacking evidence about the number or source of metasomatic events. In the contact zone of Ba-2-1, peridotite is enriched in Fe, Ti, CO2) and H2O; clinopyroxene and amphibole also are enriched in Fe and Ti, but clinopyroxene appears slightly depleted in CaO. Compared to chondrites, peridotite, clinopyroxene, and probably amphibole are enriched in light rare earth (LREEcn) and other incompatible trace elements. Values of 87Sr 86Sr and 143Nd 144Nd in the contact zone are close to isotopic equilibrium with the dike. Whole rock and constituent clinopyroxene compositions change to those of refractory peridotite with distance from the contact. These compositional variations were modelled using Gresens' equation for whole-rock major and minor elements, and calculations for isotopic ratios and REEs, which emulate the effects of Chromatographic fractionation. The choice of endmembers was restricted to compositions actually present in mantle samples from Dish Hill. Model results indicate that: 1. (1) the variations can be explained as the result of a single metasomatic event, probably a single pulse of previously fractionated liquid; 2. (2) the ratio of total interacting liquid to peridotite was at least 1:3 by weight in the contact zone; and 3. (3) the composition of the metasomatic liquid changed progressively as it infiltrated beyond that zone. The small distance over which variations occur is due to the small amount of liquid that infiltrated. Only in the contact zone was peridotite wallrock saturated by a liquid composition similar to the dike. Comparison of the Ba-2-1 data with those of another xenolith from Dish Hill suggests that the compositional variations of mantle metasomatism result from both the compositional contrast between the metasomatizing liquid and wallrock and the relative abundances of each. Compositional and volumetric variations of mantle partial melts and their fractionates, and repeated events of melting and reaction in contiguous mantle, can create broad ranges of metasomatic "signatures" from the same process. ?? 1993.

  7. Preliminary study on multi-element profile mapping of crustal and mantle zircons by using Synchrotron Radiation X-ray Fluorescence (SR-XRF)

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Shyam, Badri; Siebel, Wolfgang; Schmitt, Axel; Akay, Erhan; Skinner, Lawrie

    2013-04-01

    Zircon (ZrSiO4) is a mineral of singular importance in the geosciences. Zircon microanalysis has greatly contributed to our understanding of key events in earth's history as certain radioactive heavy elements and their daughter products are well-preserved within the exceptionally stable inorganic matrix of the mineral. A prevailing notion in this field is that zircon, as a mineral, is predominantly a crustal mineral; this has been contested in the last few years with more reports of mantle-derived zircons (Siebel et al., 2009). Zircons enriched from different parts of the upper mantle to lower crust from Turkey (Hasozbek et al. 2010) and Germany (Siebel et al., 2009) will be presented in this study using SR-XRF mapping carried out at beamline 2-IDE at the Advanced Photon Source synchrotron facility (Argonne National Laboratory, USA). The high-resolution (5-10 µm) elemental maps were obtained with collimated and linearly polarized synchrotron radiation (10 to 17 keV) and possess the advantage of being a completely non-destructive technique. Elemental maps of various trace and rare-earth elements along the cross-section of the zircons reveal a zonation-related distribution, which may be used to reveal factors affecting the growth history and dynamics of the crystal formation. Further, abrupt changes in elemental distribution or concentration were found to correspond to faults or inclusions within the zircon crystal. If such observations are found to be applicable for a wide range of samples, elemental mapping with this technique may serve as an important qualitative diagnostic to locating µ-meter inclusions that may be challenging to identify using other techniques (ICP-MS LA, SHRIMP,…) Through these preliminary elemental profile mapping studies of crustal and mantle zircons using SR-XRF methods, we aim to highlight a relatively quick and promising analytical method that may be used to study various geological problems.

  8. Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment

    NASA Astrophysics Data System (ADS)

    Feng, Mu-hua; Ngwenya, Bryne T.; Wang, Lin; Li, Wenchao; Olive, Valerie; Ellam, Robert M.

    2011-10-01

    In order to understand the contribution of geogenic phosphorus to lake eutrophication, we have investigated the rate and extent of fluorapatite dissolution in the presence of two common soil bacteria ( Pantoea agglomerans and Bacillus megaterium) at T = 25 °C for 26 days. The release of calcium (Ca), phosphorus (P), and rare earth elements (REE) under biotic and abiotic conditions was compared to investigate the effect of microorganism on apatite dissolution. The release of Ca and P was enhanced under the influence of bacteria. Apatite dissolution rates obtained from solution Ca concentration in the biotic reactors increased above error compared with abiotic controls. Chemical analysis of biomass showed that bacteria scavenged Ca, P, and REE during their growth, which lowered their fluid concentrations, leading to apparent lower release rates. The temporal evolution of pH in the reactors reflected the balance of apatite weathering, solution reactions, bacterial metabolism, and potentially secondary precipitation, which was implied in the variety of REE patterns in the biotic and abiotic reactors. Light rare earth elements (LREE) were preferentially adsorbed to cell surfaces, whereas heavy rare earth elements (HREE) were retained in the fluid phase. Decoupling of LREE and HREE could possibly be due to preferential release of HREE from apatite or selective secondary precipitation of LREE enriched phosphates, especially in the presence of bacteria. When corrected for intracellular concentrations, both biotic reactors showed high P and REE release compared with the abiotic control. We speculate that lack of this correction explains the conflicting findings about the role of bacteria in mineral weathering rates. The observation that bacteria enhance the release rates of P and REE from apatite could account for some of the phosphorus burden and metal pollution in aquatic environments.

  9. Partitioning of Large-ion Lithophile Elements Between Aqueous Fluids and Melts: Role of Saline Fluids in Sub-arc Mantle

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Mibe, K.

    2014-12-01

    Chemical fractionation of slab-derived supercritical fluids can play an important role in elemental transfer from subducting slab to the mantle wedge and arc magmatism [1]. Recent findings of saline fluids from sub-arc mantle peridotite indicate that aqueous fluids in mantle wedge can contain 3.7 wt% NaCl in Ichinomageta, Northeast Japan arc [2] to 5.1 wt% NaCl in Pinatubo, Luzon arc [3]. It is, therefore, important to determine the effect of Cl on the trace element partitioning between aqueous fluids and melts. Synchrotron radiation X-ray fluorescence (XRF) analysis is conducted to know Rb, Sr, and Pb partitioning between aqueous fluids and melts [4]. There is a positive correlation between partition coefficients and pressure, as well as salinity. Two slab-derived components, melt and fluid components, are suggested to explain trace element characteristics of arc-basalts in the Mariana arc [5]. The fluid component is characterized by enrichment of alkali and alkali earth elements. Such features can be explained if the fluid component is a saline fluid, because alkali earth elements and Pb are much less mobile with Cl-free fluids than Cl-rich fluids [4]. We suggest that slab-derived components have compositional features consistent with a saline fluid and a melt, which can be formed through a separation of a slab-derived supercritical fluid [1]. Slab derived supercritical fluids contain Cl, and aqueous fluids inherit much of the Cl and some of the large-ion lithophile elements. [1] Kawamoto et al. 2012, Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. PNAS, pnas.org/content/109/46/18695 [2] Kumagai et al. Evolution of carbon dioxide bearing saline fluids in the mantle wedge beneath the Northeast Japan arc, CMP [3] Kawamoto et al. 2013, Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. PNAS, pnas.org/content/110/24/9663 [4] Kawamoto et al. 2014, Large ion lithophile elements delivered by saline fluids to the sub-arc mantle, EPS, earth-planets-space.com/content/66/1/61 [5] Pearce et al. 2005, Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. G-cubed, onlinelibrary.wiley.com/doi/10.1029/2004GC000895/full

  10. Production test IP-544-A, irradiation of 1.6% enriched thick walled single tube elements in KER-1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kratzer, W.K.; Wise, M.J.

    1962-12-12

    The objective of this production test is to authorize the irradiation of coextruded Zr-2 jacketed thick walled 1.6% enriched tubular elements in KER loops 1 and 2 to evaluate the swelling behavior of fuel elements at high uranium temperatures Coextruded Zr-2 jacketed 1.6% enriched tubular fuel elements 1.79 inch OD, 0.97 inch ID, and 12 inches long will be irradiated KER loops 1 and 2 to exposures no greater than 2500 MWD/T.

  11. Mixing in heterogeneous internally-heated convection

    NASA Astrophysics Data System (ADS)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low viscosity contrast limit, and as beta**(-4/3) in the large viscosity contrast limit. Our state-of-the-art experimental technique thus provides insights on chemical differentiation processes and on the evolution of mantle heterogeneities on both short and long time-scales.

  12. The genesis solar-wind sample return mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger C

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for manymore » elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously, including charge state distributions, velocities, and densities, all of which have been instrumental in characterizing the nature of the solar wind. However, these instruments have lacked the ability to make large dynamic range measurements of adjacent isotopes (i.e., {sup 17}O/{sup 16}O {approx} 2500) or provide the permil (tenths of percent) accuracy desirable for comparison with geochemical isotopic measurements. An accurate knowledge of the solar and solar-wind compositions helps to answer important questions across a number of disciplines. It aids in understanding the acceleration mechanisms of the solar wind, gives an improved picture of the charged particle environment near the photosphere, it constrains processes within the Sun over its history, and it provides a database by which to compare differences among planetary systems with the solar system's starting composition, providing key information on planetary evolution. For example, precise knowledge of solar isotopic and elemental compositions of volatile species in the Sun provides a baseline for models of atmospheric evolution over time for Earth, Venus, and Mars. Additionally, volatile and chemically active elements such as C, H, O, N, and S can tell us about processes active during the evolution of the solar nebula. A classic example of this is the oxygen isotope system. In the 1970s it was determined that the oxygen isotopic ratio in refractory inclusions in primitive meteorites was enriched {approx}4% in {sup 16}O relative to the average terrestrial, lunar, and thermally processed meteorite materials. In addition, all processed solar-system materials appeared to each have a unique oxygen isotopic composition (except the Moon and Earth, which are thought to be formed from the same materials), though differences are in the fraction of a percent range, much smaller than the refractory material {sup 16}O enrichment. Several theories were developed over the years to account for the oxygen isotope heterogeneity, each theory predicting a different solar isotopic composition and each invoking a different early solar-system process to produce the heterogeneity. Other volatiles such as C, N, and H may also have experienced similar effects, but with only two isotopes it is often impossible to distinguish with these elements between mass-dependent fractionation and other effects such as mixing or mass-independent fractionation. Table 1 provides a summary of the major measurement objectives of the Genesis mission. Determining the solar oxygen isotopic composition is at the top of the list. Volatile element and isotope ratios constitute six of the top seven priorities. A number of disciplines stand to gain from information from the Genesis mission, as will be discussed later. Based on the Apollo solar-wind foil experiment, the Genesis mission was designed to capture solar wind over orders of magnitude longer duration and in a potentially much cleaner environment than the lunar surface.« less

  13. Geochemistry of Snowball Earth glacial tillites from China and North America: implications for the bulk composition of the Neoproterozoic upper crust

    NASA Astrophysics Data System (ADS)

    Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.; Gao, S.; Hu, Z.; Zhou, L.

    2012-12-01

    In order to understand the differentiation of the Earth and growth of continents through time, it is critical to have reliable estimates for the average composition of the continental crust. Attempts to develop average compositional models for the upper continental crust have often relied upon the analysis of sediments and sedimentary rocks, based on the assumption that these provide natural averages of large crustal areas. Shales are among the most frequently used proxies, although some workers have also studied loess. The advantage of loess, especially that which is derived from glacial processes, is that it is typically produced by physical weathering alone and should lack the elemental fractionation produced by chemical weathering. Glacial tillites should also provide this advantage, and in addition, they should lack element fractionation caused by eolian particle sorting that is observed in loess. Here, we present new major and trace element data for glacial tillites from the Neoproterozoic, collected in southern China and the eastern U.S. Samples were collected from tillites of the Marinoan(?) Nantuo and Sturtian Gucheng Formations in Hubei Province, China (n = 21), and the Sturtian Konnarock Formation in the Appalachians of southwestern Virginia (n = 11). Values for the chemical index of alteration (Al2O3/Al2O3+K2O+Na2O+CaO) for these rocks are low, between 60 and 70 for most of the Chinese samples and 53 and 60 for all of the American ones, reflecting derivation from material that has experienced very little chemical weathering. The individual samples from the two localities show remarkable homogeneity, but their average compositions are distinct. The Chinese tillites match more closely the average upper crust composition of Rudnick and Gao (2003) than the Virginia ones, but the former still show a few major differences. Select soluble elements, such as Sr, Tl, and U, are depleted by as great a factor as ten, whereas other soluble elements, such as Li, Rb, and Cs, are either enriched or similar to the upper crustal model. By contrast, the Virginia tillites show major enrichment in the high field strength elements and rare earth elements, and depletion in the first row transition metals associated with mafic minerals (e.g., Ni, Cr, Sc, V). These tillites also show a stronger negative Eu anomaly. The difference between the Chinese and Virginia Neoproterozoic tillites likely reflects the different provenance of the Virginia samples, but in detail, the implications of this observation are unclear. The Virginia tillite chemistry is similar to local Neoproterozoic A-type granites in the Appalachians, but is also similar to the regionally extensive Grenvillian basement. This is an important distinction, as it goes to the question of whether or not the till represents the integration of a large area, as opposed to being primarily locally derived. In the case of the Chinese tillites, published detrital zircon and whole-rock Nd isotopic data suggests the provenance encompassed a large crustal area, strengthening their legitimacy as a proxy for the average upper crust.

  14. Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola)

    NASA Astrophysics Data System (ADS)

    Vinha, Manuela; Silva, M. G.; Cabral Pinto, Marina M. S.; Carvalho, Paula Cristina S.

    2016-03-01

    The mineralogy, texture, major, trace and rare earth elements, from recent sediment samples collected in the lower Catumbela River, were analysed in this study to characterize and discuss the factors controlling its geochemistry and provide data that can be used as tracers of Catumbela River inputs to the Angolan continental shelf. The sediments are mainly sands and silty-sands, but sandy-silt also occurs and the mineralogy is composed of quartz, feldspar, phyllosilicates, magnetite, ilmenite and also carbonates when the river crosses limestones and marls in the downstream sector. The hydraulic sorting originates magnetite-ilmenite and REE-enriched minerals placers. The mineralogy of the sediments is controlled by the source rocks and the degree of chemical weathering is lower than erosion. The texture is mainly controlled by location. There is enrichment in all the analysed trace elements in the fine grained, clay minerals and Fe-oxy-hydroxides rich sediments, compared to the coarse grained and quartz plus feldspar rich ones. The coarse grained sediments (without the placers) are impoverished in ΣREE when compared with UCC and NASC compositions, while the fine grained sediments have ΣREE contents similar to UCC and NASC. The placers have ΣREE contents up to 959.59 mg/kg. The source composition is the dominant factor controlling the REE geochemistry of the analysed sediments as there is no difference in the (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios in coarse and fine grained sediments. The sorting of magnetite, ilmenite, zircon, throrite, thorianite, rutile and titanite explain the HREE/LREE enriched patterns of the coarse grained sediments.

  15. Late Jurassic rhyolites from the Wuchagou region in the central Great Xing'an Range, NE China: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ji, Zheng; Ge, Wen-Chun; Yang, Hao; Wang, Qing-hai; Zhang, Yan-long; Wang, Zhi-hui; Bi, Jun-Hui

    2018-06-01

    We report geochronological, whole-rock geochemical, and zircon Hf isotopic data for Late Jurassic rhyolites in the central Great Xing'an Range of northeastern China, to determine their petrogenesis, source, and tectonic setting. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb ages indicate that the rhyolites previously mapped as the lower Permian Dashizhai Formation in the Wuchagou region formed during the Late Jurassic (162-154 Ma). Geochemically, these rhyolites belong to the mid- to high-K calc-alkaline series and show peraluminous characteristics and consistent correlations between major elements and SiO2. They are characterized by enrichments in large ion lithophile elements (LILEs; e.g., Rb and K) and light rare earth elements (LREEs), and depletions in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti) and heavy rare earth elements (HREEs). In situ Hf isotopic analyses of zircons from the rhyolites reveal relatively homogeneous Hf isotopic compositions, with εHf(t) values of +4.84 to +9.44, and two-stage model ages of 606-895 Ma. Based on their eruption ages, geochemical characteristics, and Hf isotopic compositions, we conclude that the magmas that formed the Late Jurassic rhyolites were produced during partial melting of a Neoproterozoic quartz-bearing amphibolite-facies mafic crust. These magmas subsequently underwent extensive fractional crystallization of plagioclase, hornblende, Ti-bearing phases, monazite, and apatite. Combined with previous data, our results demonstrate that the Late Jurassic volcanic rocks in the Great Xing'an Range were formed in a post-collisional extensional setting. The gravitational collapse of the orogenically thickened crust was caused by break-off of the subducted oceanic slab and upwelling of asthenosphere after closure of the Mongol-Okhotsk Ocean.

  16. Basaltic volcanism on the eucrite parent body - Petrology and chemistry of the polymict eucrite ALHA80102

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Drake, M. J.

    1985-01-01

    The polymict eucrite meteorite ALHA80102 is an unequilibrated breccia of basaltic and gabbroic clasts in a fragmental matrix. Clasts include basalts of many textural types, cumulate gabbro, black 'glass', and ferroan troctolite (plagioclase, silica, Fe-rich olivine, ilmenite, mesostasis). Ferroan troctolite has not been previously reported from eucrites or howardites; it is interpreted as the end-product of fractional crystallization of eucritic magmas. Bulk and trace element compositions (by electron microprobe and INAA) of clasts and matrix from ALHA80102 are similar to those of other eucrites; the meteorite contains clasts similar to Juvinas and to Stannern. A clast of cumulate eucrite gabbro is enriched in the light rare earths (La/Lu = 2XCI). This clast is interpreted as an unrepresentative sample of metamorphically equilibrated gabbro; LREE-enriched magmas need not be invoked. ALHA80102 is similar to other polymict eucrites from the Allan Hills and may be paired with ALHA76005, ALHA77302, and ALHA78040.

  17. Constraints on the Amount of deeply subducted Water from numerical Models in comparison with natural Samples

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, M.; Halama, R.

    2014-12-01

    The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.

  18. Ligand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters

    NASA Astrophysics Data System (ADS)

    Tang, Jianwu; Johannesson, Karen H.

    2010-12-01

    The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH 3COO -) or strong (i.e., CO32-) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as "truly" dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., "colloidal" HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).

  19. Recovering heavy rare earth metals from magnet scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  20. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    NASA Astrophysics Data System (ADS)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  1. Geochemistry and petrogenesis of lamproites, late cretaceous age, Woodson County, Kansas, U.S.A.

    USGS Publications Warehouse

    Cullers, R.L.; Ramakrishnan, S.; Berendsen, P.; Griffin, T.

    1985-01-01

    Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2O Al2O3 = 1.6-2.6), are ultrapotassic ( K2O Na2O = 9.6-150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2O CO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite. Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected. ?? 1985.

  2. Trace element diffusion and kinetic fractionation in wet rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Holycross, Megan E.; Watson, E. Bruce

    2018-07-01

    Piston-cylinder experiments were run to determine the chemical diffusivities of 21 trace elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Th and U) in hydrous rhyolitic melts at 1 GPa pressure and temperatures from 850 to 1250 °C. Diffusion couple glasses were doped with trace elements in low concentrations to characterize the diffusivities of all cations in a single experiment. Laser ablation ICP-MS was used to evaluate the trace element concentration gradients that developed in the silicate glasses. All calculated diffusion coefficients correspond to the temperature dependence D = D0exp(-Ea/RT). Rhyolite liquids contained either ∼4.1 wt% or ∼6.2 wt% dissolved H2O; separate Arrhenius relationships are produced for each melt composition. Trace element diffusivities in the melt with 6.2 wt% H2O are roughly two times higher than those in the less hydrous melt. Calculated trace element diffusion coefficients cover nearly two orders of magnitude at a given temperature. The high field strength elements are the slowest diffusers, followed by the transition metals and heavy rare earth elements. The light rare earth elements have the fastest diffusion rates in hydrous rhyolitic melt. The measured diffusion coefficients range down to values sufficiently low to preclude diffusive homogenization over geochemically realistic time scales in some cases. The substantial differences in the diffusivities of individual cations may result in fractionated trace element signatures in rhyolite melt pockets. A simple model is used to explore the potential for kinetic fractionation of REE during growth of an apatite crystal in a diffusive boundary layer locally saturated in P2O5. The faster-diffusing light REE are more efficiently transported away from the crystal interface than the slower-moving heavy REE. Diffusion effects will enrich the melt boundary layer in slow-moving HREE relative to the faster LREE. The kinetic fractionation of REE in the melt growth medium will result in a precipitated apatite crystal with a disequilibrium trace element composition.

  3. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry

    USGS Publications Warehouse

    Piper, D.Z.; Perkins, R.B.; Rowe, H.D.

    2007-01-01

    The geochemistry of deposition of the Meade Peak Member of the Phosphoria Formation (MPM) in southeast Idaho, USA, a world-class sedimentary phosphate deposit of Permian age that extends over 300,000 km2, is ascertained from its rare earth element (REE) composition. Ratios of REE:Al2O3 suggest two sources-seawater and terrigenous debris. The seawater-derived marine fraction identifies bottom water in the Phosphoria Sea as O2-depleted, denitrifying (suboxic) most of the time, and seldom sulfate-reducing (anoxic). This interpretation is supported by earlier research that showed progressively greater ratios in the marine sediment fraction of Cr:Ni>V:Ni???Mo:Ni, relative to their ratios in seawater; for which marine Cr, V, and Mo can have a dominantly O2-depleted bottom-water source and Ni a photic-zone, largely algal, source. The water chemistry was maintained by a balance between bacterial oxidation of organic matter settling through the water column, determined largely by primary productivity in the photic zone, and the flux of oxidants into the bottom water via advection of seawater from the open ocean. Samples strongly enriched in carbonate fluorapatite, the dominant REE host mineral, have variable Er/Sm, Tm/Sm, and Yb/Sm ratios. Their distribution may represent greater advection of seawater between the Phosphoria Sea and open ocean during deposition of two ore zones than a center waste and greater upwelling of nutrient-enriched water into the photic zone. However, the mean rate of deposition of marine Ni, a trace nutrient of algae, and PO43-, a limiting nutrient, indicate that primary productivity was probably high throughout the depositional history. An alternative interpretation of the variable enrichments of Er, Tm, and Yb, relative to Sm, is that they may reflect temporally variable carbonate alkalinity of open-ocean seawater in Permian time. A more strongly negative Ce anomaly for all phosphatic units than the Ce anomaly of modern pelletal phosphate is further indicative of an elevated O2 concentration in the Permo-Carboniferous open ocean, as proposed by others, in contrast to the depletion of O2 in the bottom water of the Phosphoria Sea itself. The oceanographic conditions under which the deposit accumulated were likely similar to conditions under which many sedimentary phosphate deposits have accumulated and to conditions under which many black shales that are commonly phosphate poor have accumulated. A shortcoming of several earlier studies of these deposits has resulted from a failure to examine the marine fraction of elements separate from the terrigenous fraction. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry

    NASA Astrophysics Data System (ADS)

    Piper, D. Z.; Perkins, R. B.; Rowe, H. D.

    2007-06-01

    The geochemistry of deposition of the Meade Peak Member of the Phosphoria Formation (MPM) in southeast Idaho, USA, a world-class sedimentary phosphate deposit of Permian age that extends over 300,000 km 2, is ascertained from its rare earth element (REE) composition. Ratios of REE:Al 2O 3 suggest two sources—seawater and terrigenous debris. The seawater-derived marine fraction identifies bottom water in the Phosphoria Sea as O 2-depleted, denitrifying (suboxic) most of the time, and seldom sulfate-reducing (anoxic). This interpretation is supported by earlier research that showed progressively greater ratios in the marine sediment fraction of Cr:Ni>V:Ni≫Mo:Ni, relative to their ratios in seawater; for which marine Cr, V, and Mo can have a dominantly O 2-depleted bottom-water source and Ni a photic-zone, largely algal, source. The water chemistry was maintained by a balance between bacterial oxidation of organic matter settling through the water column, determined largely by primary productivity in the photic zone, and the flux of oxidants into the bottom water via advection of seawater from the open ocean. Samples strongly enriched in carbonate fluorapatite, the dominant REE host mineral, have variable Er/Sm, Tm/Sm, and Yb/Sm ratios. Their distribution may represent greater advection of seawater between the Phosphoria Sea and open ocean during deposition of two ore zones than a center waste and greater upwelling of nutrient-enriched water into the photic zone. However, the mean rate of deposition of marine Ni, a trace nutrient of algae, and PO 43-, a limiting nutrient, indicate that primary productivity was probably high throughout the depositional history. An alternative interpretation of the variable enrichments of Er, Tm, and Yb, relative to Sm, is that they may reflect temporally variable carbonate alkalinity of open-ocean seawater in Permian time. A more strongly negative Ce anomaly for all phosphatic units than the Ce anomaly of modern pelletal phosphate is further indicative of an elevated O 2 concentration in the Permo-Carboniferous open ocean, as proposed by others, in contrast to the depletion of O 2 in the bottom water of the Phosphoria Sea itself. The oceanographic conditions under which the deposit accumulated were likely similar to conditions under which many sedimentary phosphate deposits have accumulated and to conditions under which many black shales that are commonly phosphate poor have accumulated. A shortcoming of several earlier studies of these deposits has resulted from a failure to examine the marine fraction of elements separate from the terrigenous fraction.

  5. New Martian Meteorite Is One of the Most Oxidized Found to Date

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Shafer, John T.; Brandon, Alan D.; Irving, Anthony J.

    2014-01-01

    As of 2013, about 60 meteorites from the planet Mars have been found and are being studied. Each time a new Martian meteorite is found, a wealth of new information comes forward about the red planet. The most abundant type of Martian meteorite is a shergottite; its lithologies are broadly similar to those of Earth basalts and gabbros; i.e., crustal igneous rocks. The entire suite of shergottites is characterized by a range of trace element, isotopic ratio, and oxygen fugacity values that mainly reflect compositional variations of the Martian mantle from which these magmas came. A newly found shergottite, NWA 5298, was the focus of a study performed by scientists within the Astromaterials Research and Exploration Science (ARES) Directorate at the Johnson Space Center (JSC) in 2012. This sample was found in Morocco in 2008. Major element analyses were performed in the electron microprobe (EMP) laboratory of ARES at JSC, while the trace elements were measured at the University of Houston by laser inductively coupled plasma mass spectrometry (ICPMS). A detailed analysis of this stone revealed that this meteorite is a crystallized magma that comes from the enriched end of the shergottite spectrum; i.e., trace element enriched and oxidized. Its oxidation comes in part from its mantle source and from oxidation during the magma ascent. It represents a pristine magma that did not mix with any other magma or see crystal accumulation or crustal contamination on its way up to the Martian surface. NWA 5298 is therefore a direct, albeit evolved, melt from the Martian mantle and, for its lithology (basaltic shergottite), it represents the oxidized end of the shergottite suite. It is thus a unique sample that has provided an end-member composition for Martian magmas.

  6. Provenance and paleoweathering reconstruction of the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China

    NASA Astrophysics Data System (ADS)

    Luo, Qingyong; Zhong, Ningning; Wang, Yannian; Ma, Ling; Li, Min

    2015-10-01

    This is the first study presenting major and trace elemental data from the Mesoproterozoic Hongshuizhuang Formation shales in Yanshan basin, North China, in order to reconstruct its provenance and chemical weathering history. The shales are strongly depleted in Na2O and Sr and enriched in Y and transition metal elements relative to upper continental crust. Low Zr concentrations and various discriminant plots (e.g., Th/Sc-Zr/Sc and Al2O3-TiO2-Zr) indicate insignificant mineral sorting or recycling of these shales. The rocks show light rare earth element (REE) enrichment (La/YbCN = 3.99-6.92), flat heavy REE, and significantly negative Eu anomalies (Euan = 0.57-0.68) in chondrite-normalized REE patterns, similar to post-Archean Australian average shales. The fairly uniform REE patterns and trace element ratios indicate that the Hongshuizhuang Formation shales were derived from a felsic source area with granodiorite as the dominant contributor. Mixing calculations suggest a mixture of 30 % granite porphyry, 5 % basalt, and 65 % granodiorite as the possible source of the shales, also supporting that granodiorite was the predominant source. Intense chemical weathering of the source terrain is indicated by high values of the premetasomatized chemical index of alteration, plagioclase index of alteration, Rb/Sr, a strong positive correlation between TiO2 and Al2O3, depletion of CaO, Na2O, and Sr, and mineral compositions. Such strong chemical weathering suggests a warm and wet paleoclimate, perhaps due to high atmospheric CO2 and CH4 concentrations, and a near-equatorial location of the North China Craton in the Columbia supercontinent at 1.4 Ga.

  7. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. ?? 1994.

  8. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: Deposit composition

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.

    1999-01-01

    This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved.

  9. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  10. The Origin of Fibrous Calcite Veins: Aragonite?

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; Bons, P. D.

    2005-12-01

    Truly fibrous calcite veins occur mainly in carbonaceous shales and are characterised by high length:width ratios of their fibres (>10). Previous studies on their Sr isotopic geochemistry (Elburg et al., 2002: Geol. Soc. London Spec. Publ. 200, 103-118; Hilgers and Sindern, 2005: Geofluids, in press) have shown that some of the material could be derived from the local wall rock. These studies also showed that the veins were always enriched in Sr compared to the calcite in the host rocks. Aragonite can contain significantly more Sr than calcite, while it also tends to have a fibrous crystal habit. It is therefore possible that the fibrous habit of these veins, which now consist of calcite, are a reflection of their initial aragonitic mineralogy, rather than of any special tectonic regime during their formation. This idea was investigated by analysing the major and trace element geochemistry of selected fibrous and non-fibrous calcite veins from Arkaroola (northern Flinders Ranges, Australia). The fibrous vein analysed for major elements contains less than 1% MgCO3, whereas calcite in the host rock, with which it is in Sr isotopic equilibrium, contains 18% MgCO3. Calcite can contain significant Mg, whereas the aragonitic structure cannot accomodate this ion, so this result is consistent with the idea of an original aragonitic mineralogy of the veins. The fibrous veins show an enrichment in the middle rare earth elements (REE) compared to the calcite in the host rock and blocky veins. In a Post-Archean Average Shale normalised diagram, Eu is more strongly enriched compared to its neighbouring elements in the fibrous veins, but not in the host calcite, blocky veins, or in the silicate fraction of the host rock, suggesting more reducing conditions during fibrous vein formation. This data cannot be used as direct evidence for the fibrous veins' aragonitic mineralogy. It does, however, show that significant differences exist between calcite in host rocks, blocky and fibrous calcite veins, and this data should be incorporated in any model explaining the origin of fibrous veins.

  11. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation

    USGS Publications Warehouse

    Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, Xudong

    2008-01-01

    The mineralogy and geochemistry of a superhigh-organic-sulfur (SHOS) coal of Late Permian age from the Yanshan Coalfield, Yunnan Province, southwestern China, have been studied using optical microscope, low-temperature ashing plus X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, a sequential chemical extraction procedure, and inductively coupled plasma mass spectrometry. The M9 Coal from the Yanshan Coalfield is a SHOS coal that has a total sulfur content of 10.12%-11.30% and an organic sulfur content of 8.77%-10.30%. The minerals in the coal consist mainly of high-temperature quartz, sanidine, albite, muscovite, illite, pyrite, and trace amounts of kaolinite, plagioclase, akermanite, rutile, and dawsonite. As compared with ordinary worldwide (bituminous coals and anthracite) and Chinese coals, the M9 Coal is remarkably enriched in B (268????g/g), F (841????g/g), V (567????g/g), Cr (329????g/g), Ni (73.9????g/g), Mo (204????g/g), and U (153????g/g). In addition, elements including Se (25.2????g/g), Zr (262????g/g), Nb (20.1????g/g), Cd (2.07????g/g), and Tl (2.03????g/g) are also enriched in the coal. Occurrence of high-temperature quartz, sanidine, muscovite, and illite in the M9 Coal is evidence that there is a volcanic ash component in the coal that was derived from acid volcanic ashes fallen into the swamp during peat accumulation. Occurrence of albite and dawsonite in the coal and strong enrichment of some elements, including F, S, V, Cr, Ni, Mo and U, are attributed to the influence by submarine exhalation which invaded along with seawater into the anoxic peat swamp. Abundances of lithophile elements, including rare earth elements, Nb, Y, Zr, and TiO2, indicate that the silicate minerals in the coal were derived from the northern Vietnam Upland to the south of the basin. ?? 2008 Elsevier B.V. All rights reserved.

  12. Geochemistry of subduction zone serpentinites: A review

    NASA Astrophysics Data System (ADS)

    Deschamps, Fabien; Godard, Marguerite; Guillot, Stéphane; Hattori, Kéiko

    2013-09-01

    Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zone geodynamics. Their presence and role in subduction environments are recognized through geophysical, geochemical and field observations of modern and ancient subduction zones and large amounts of geochemical database of serpentinites have been created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical data of abyssal, mantle wedge and exhumed serpentinites after subduction. The aim was to better understand the geochemical evolution of these rocks during their subduction as well as their impact in the global geochemical cycle. When studying serpentinites, it is essential to determine their protoliths and their geological history before serpentinization. The geochemical data of serpentinites shows little mobility of compatible and rare earth elements (REE) at the scale of hand-specimen during their serpentinization. Thus, REE abundance can be used to identify the protolith for serpentinites, as well as magmatic processes such as melt/rock interactions before serpentinization. In the case of subducted serpentinites, the interpretation of trace element data is difficult due to the enrichments of light REE, independent of the nature of the protolith. We propose that enrichments are probably not related to serpentinization itself, but mostly due to (sedimentary-derived) fluid/rock interactions within the subduction channel after the serpentinization. It is also possible that the enrichment reflects the geochemical signature of the mantle protolith itself which could derive from the less refractory continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous analyses have been carried out, notably using in situ approaches, to better constrain the behavior of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) incorporated in serpentine phases. The abundance of these elements provides information related to the fluid/rock interactions during serpentinization and the behavior of FME, from their incorporation to their gradual release during subduction. Serpentinites are considered as a reservoir of the FME in subduction zones and their role, notably on arc magma composition, is underestimated presently in the global geochemical cycle.

  13. Determining the physical and chemical processes behind four caldera-forming eruptions in rapid succession in the San Juan caldera cluster, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Curry, A. C.; Caricchi, L.; Lipman, P. W.

    2017-12-01

    A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.

  14. Evolution of supercritical fluid in deeply subducted continental crust: a case study of composite granite-quartz veins in the Sulu belt, China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wang, L.; Brown, M.

    2016-12-01

    Although fluid plays a key role in element transport and rock strength during subduction to and exhumation from ultrahigh pressure (UHP) metamorphic conditions, the source of supercritical fluid at P above the second critical endpoints (SCE) and the subsequent evolution are not well constrained. To provide insight into the evolution of supercritical fluid in continental subduction zones, we undertook an integrated study of composite granite-quartz veins in retrogressed and migmatitic UHP eclogite at General's Hill, N of Qingdao, in the central Sulu belt. The composite veins are irregularly distributed in the eclogite, which occurs as blocks within gneiss. The granite component is enriched in large ion lithophile elements and light rare earth elements but depleted in high field strength elements and heavy rare earth elements, indicating crystallization from a melt phase of crustal origin. Additionally, the granite contains high modal phengite (22-30 vol%) and clinozoisite/epidote (3-10 vol%), implying precipitation from a H2O-rich silicate melt. By contrast, the quartz component is dominated by SiO2 (99.10 wt%), and contains low total rare earth elements (ΣREE = 0.46 ppm), indicating precipitation from an aqueous fluid. The crystallization age of the composite veins is 221 ± 2 Ma, which is younger than the UHP metamorphism in the Sulu belt at ca 230 Ma, consistent with formation during exhumation. Initial 176Hf/177Hf ratios and δ18O values of metamorphic zircons from the composite veins, and Sr-Nd isotope compositions of the granites all lie between values for eclogite and gneiss, indicating a mixed source. Accordingly, we propose that a supercritical fluid generated from the gneiss and the included blocks of eclogite at P-T conditions above the SCE for both compositions became trapped in the eclogite during exhumation. At P below the SCE for the hydrous granite system, the mixed supercritical fluid separated into immiscible aqueous melt and aqueous fluid and crystallized as the composite veins. Thus, these vein systems provide information critical to understanding the evolution of supercritical fluid during exhumation and the partitioning of elements between hydrous granite and aqueous fluid. These data inform our understanding of crust-mantle interactions in continental subduction zones.

  15. Boron Enrichment in Martian Clay

    PubMed Central

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  16. Anthropophile elements in river sediments: Overview from the Seine River, France

    NASA Astrophysics Data System (ADS)

    Chen, Jiu-Bin; Gaillardet, Jérôme; Bouchez, Julien; Louvat, Pascale; Wang, Yi-Na

    2014-11-01

    In contrast to larger river systems that drain relatively pristine basins, little is known about the sediment geochemistry of rivers impacted by intense human activities. In this paper, we present a systematic investigation of the anthropogenic overprints on element geochemistry in sediments of the human-impacted Seine River, France. Most elements are fractionated by grain size, as shown by the comparison between suspended particulate matter (SPM) and riverbank deposits (RBD). The RBD are particularly coarse and enriched in carbonates and heavy minerals and thus in elements such as Ba, Ca, Cr, Hf, Mg, Na, REEs, Sr, Ti, Th, and Zr. Although the enrichment/depletion pattern of some elements (e.g., K, REEs, and Zr) can largely be explained by a binary mixture between two sources, other elements such as Ag, Bi, Cr, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sb, Sn, W, and Zn in SPM in Paris show that a third end-member having anthropogenic characteristics is needed to account for their enrichment at low water stage. These "anthropophile" elements, with high enrichment factors (EFs) relative to the upper continental crust (UCC), display a progressive enrichment downstream and different geochemical behaviors with respect to the hydrodynamic conditions (e.g., grain size) compared to elements having mainly a natural origin. Our findings emphasize the need for systematic studies of these anthropophile elements in other human-impacted rivers using geochemical normalization techniques, and stress the importance of studying the chemical variability associated with hydrodynamic conditions when characterizing riverine element geochemistry and assessing their flux to the ocean.

  17. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  18. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Zhou, Tao-fa; White, Noel C.; Zhang, Le-jun; Fan, Yu; Wang, Fang-yue; Chen, Xue-feng

    2018-03-01

    Xinqiao is a large copper-gold deposit and consists of two major mineralization types: stratabound and skarn. The skarn occurs along the contact between a quartz diorite intrusion and Carboniferous-Triassic limestone. Xinqiao has a strongly developed skarn zone, including endoskarn and exoskarn; the exoskarn is divided into proximal and distal exoskarn. We present systematic major, trace and rare earth element (REE) concentrations for garnets from the skarn zone, discuss the factors controlling the incorporation of trace elements into the garnets, and constrain the formation and evolution of the garnet from skarn zone in Xinqiao deposit. Grossular (Adr20-44Grs56-80) mostly occurs in endoskarn and has typical HREE-enriched and LREE-depleted patterns, with small Eu anomalies and low ∑REE. Garnets from the exoskarn show complex textures and chemical compositions. The composition of garnets range from Al-rich andradite (Adr63-81Grs19-47) to andradite (Adr67-98Grs2-33). Garnet in endoskarn has typical HREE-enriched and LREE-depleted patterns. Al-rich andradite in proximal skarn has small Eu anomalies and moderate ∑REE. Andradite from distal exoskarn shows strong positive Eu anomalies and has variable ∑REE. The U, Y, Fe and Al relationship with ∑REE shows that two mechanisms controlled incorporation of REE into the garnets: crystal chemistry (substitution and interstitial solid solution) mainly controlled in the endoskarn garnet (grossular) and the proximal exoskarn (Al-rich andradite), and fluid and rock chemistry (surface adsorption and occlusion) controlled REEs in the distal exoskarn. Furthermore, Al has a negative relationship with ∑REE indicating that REE3+ did not follow a coupled, YAG-type substitution into the garnets. Variations in textures and trace and rare earth elements of garnets suggest that the garnets in the endoskarn formed by slow crystal growth at low W/R ratios and near-neutral pH in a closed system during periods of diffusive metasomatism. The garnets in the exoskarn formed rapidly from externally derived fluids during advective metasomatism, and adsorption had a major control on the REE patterns in distal exoskarn. With the end of water-rock reaction, the contents of REE decreased in the hydrothermal fluid, and the system became nearly closed.

  19. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Corfu, Fernando; Chiaradia, Massimo; Stern, Robert J.; Ghorbani, Ghasem

    2014-12-01

    The poorly known Sabzevar-Torbat-e-Heydarieh ophiolite belt (STOB) covers a large region in NE Iran, over 400 km E-W and almost 200 km N-S. The Sabzevar mantle sequence includes harzburgite, lherzolite, dunite and chromitite. Spinel Cr# (100Cr/(Cr + Al)) in harzburgites and lherzolites ranges from 44 to 47 and 24 to 26 respectively. The crustal sequence of the Sabzevar ophiolite is dominated by supra-subduction zone (SSZ)-type volcanic as well as plutonic rocks with minor Oceanic Island Basalt (OIB)-like pillowed and massive lavas. The ophiolite is covered by Late Campanian to Early Maastrichtian (~ 75-68 Ma) pelagic sediments and four plagiogranites yield zircon U-Pb ages of 99.9, 98.4, 90.2 and 77.8 Ma, indicating that the sequence evolved over a considerable period of time. Most Sabzevar ophiolitic magmatic rocks are enriched in Large Ion Lithophile Elements (LILEs) and depleted in High Field Strength Elements (HFSEs), similar to SSZ-type magmatic rocks. They (except OIB-type lavas) have higher Th/Yb and plot far away from mantle array and are similar to arc-related rocks. Subordinate OIB-type lavas show Nb-Ta enrichment with high Light Rare Earth Elements (LREE)/Heavy Rare Earth Elements (HREE) ratio, suggesting a plume or subcontinental lithosphere signature in their source. The ophiolitic rocks have positive εNd (t) values (+ 5.4 to + 8.3) and most have high 207Pb/204Pb, indicating a significant contribution of subducted sediments to their mantle source. The geochemical and Sr-Nd-Pb isotope characteristics suggest that the Sabzevar magmatic rocks originated from a Mid-Ocean Ridge Basalt (MORB)-type mantle source metasomatized by fluids or melts from subducted sediments, implying an SSZ environment. We suggest that the Sabzevar ophiolites formed in an embryonic oceanic arc basin between the Lut Block to the south and east and the Binalud mountains (Turan block) to the north, and that this small oceanic arc basin existed from at least mid-Cretaceous times. Intraoceanic subduction began before the Albian (100-113 Ma) and was responsible for generating Sabzevar SSZ-related magmas, ultimately forming a magmatic arc between the Sabzevar ophiolites to the north and the Cheshmeshir and Torbat-e-Heydarieh ophiolites to the south-southeast.

  20. A nucleosynthetic origin for the Earth's anomalous (142)Nd composition.

    PubMed

    Burkhardt, C; Borg, L E; Brennecka, G A; Shollenberger, Q R; Dauphas, N; Kleine, T

    2016-09-15

    A long-standing paradigm assumes that the chemical and isotopic compositions of many elements in the bulk silicate Earth are the same as in chondrites. However, the accessible Earth has a greater (142)Nd/(144)Nd ratio than do chondrites. Because (142)Nd is the decay product of the now-extinct (146)Sm (which has a half-life of 103 million years), this (142)Nd difference seems to require a higher-than-chondritic Sm/Nd ratio for the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation and implies the formation of a complementary (142)Nd-depleted reservoir that either is hidden in the deep Earth, or lost to space by impact erosion. Whether this complementary reservoir existed, and whether or not it has been lost from Earth, is a matter of debate, and has implications for determining the bulk composition of Earth, its heat content and structure, as well as for constraining the modes and timescales of its geodynamical evolution. Here we show that, compared with chondrites, Earth's precursor bodies were enriched in neodymium that was produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher (142)Nd/(144)Nd ratios; after correction for this effect, the (142)Nd/(144)Nd ratios of chondrites and the accessible Earth are indistinguishable within five parts per million. The (142)Nd offset between the accessible silicate Earth and chondrites therefore reflects a higher proportion of s-process neodymium in the Earth, and not early differentiation processes. As such, our results obviate the need for hidden-reservoir or super-chondritic Earth models and imply a chondritic Sm/Nd ratio for the bulk Earth. Although chondrites formed at greater heliocentric distances and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth's bulk chemical composition.

  1. Production and recycling of oceanic crust in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-08-01

    Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.

  2. Trace-Element Evidence for an Aqueous Atmospheric Origin of Desert Varnish: implications for the aqueous atmospheric input flux into the ocean

    NASA Astrophysics Data System (ADS)

    Thiagarajan, N.; Lee, C.

    2003-12-01

    Desert varnish is a slow-growing dark patina commonly found on rock surfaces in arid environments. Varnishes consist of about 30% Mn and Fe oxides accompanied by oxides of Si, Al, Mg, K and Ca, which occur primarily in the form of clays. Although it is generally agreed that varnishes have an atmospheric origin, their exact formation mechanism remains highly debated. Two endmember hypotheses are gradual accumulation of wind-blown dust followed by diagenesis, and direct chemical precipitation of dissolved elements from atmospheric aerosols. To rule out one of these hypotheses, we investigated the trace-element systematics of varnishes, in particular, focusing on those elements that have contrasting solubilities in aqueous environments. If our trace element analyses are consistent with the varnishes being derived from dissolved atmospheric constituents then the data can be used to quantify the paleofluxes of the soluble fraction of atmospheric aerosols to various depositional environments. For example, this will have implications for the transport of metals to the ocean that are immediately biologically available. We collected varnishes deposited on smooth basaltic lava flow surfaces in the Cima Volcanic Field (Mojave Desert) and in Death Valley, California. The chosen lava flows retain original flow surface structure and are topographical highs; the effects of erosion are hence minimal. Varnishes were scraped off with a quartz rod to minimize trace element contamination and the trace element compositions were then determined by ICP-MS using an external synthetic standard for calibration. Our analyses show that the rare-earth elements (REEs), Co, Ni, and Pb are enriched 1.5 to 10 times relative to the upper continental crust (UCC) and that Nb, Ti, Ta, Hf, Th, Rb and Cs are depleted to varying degrees relative to UCC and the REEs. These fractionations can be explained by their differing chemical behaviors in aqueous environments. The extreme depletion in Rb and Cs reflect their high solubilities and tendency to be progressively leached out by rain water. Nb, Ti, Ta, Hf and Th are present only in detrital concentrations, reflecting their high insolublities and their probable depletion in the Fe- and Mn-rich components of the varnish. Co, Ni, Pb and Ce are soluble but readily coprecipitate with Mn oxides hence their 10-fold enrichments. Enrichments caused by diagenesis of dust accreted on the varnish substrate cannot achieve the 10-fold enrichments of some elements observed here, indicating that the aqueous component must be derived directly from the atmosphere. Remarkably, we find that ferro-manganese crusts produced by hydrogenous processes in the marine environment have trace-element abundance patterns nearly identical to those of varnishes. Relative to the upper continental crust, they are enriched in REEs, Co, Ni, and Pb, depleted in Nb, Ti, Ta, Hf, Th, Rb and Cs and are anomalously high in Ce. These unexpected similarities provide additional evidence that desert varnishes represent the direct precipitation of aqueous components in the atmosphere. It may be possible to estimate the aqueous atmospheric input of such trace elements as the REEs into the ocean. For example, multiplying the Nd/Fe and Nd/Mn ratios of the varnishes by estimates of modern day Fe and Mn wet deposition inputs to the ocean yields an oceanic input of 4 to 15 x 107 moles of Nd/year. This is slightly larger than the amount of dissolved Nd entering the oceans each year (2.4 x 106 moles/yr) via rivers, hence, there is a significant atmospheric input of REEs into the ocean in aqueous form.

  3. Late-stage magmatic outgassing from a volatile-depleted Moon

    PubMed Central

    Moynier, Frédéric; Shearer, Charles K.

    2017-01-01

    The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior. PMID:28827322

  4. Late-stage magmatic outgassing from a volatile-depleted Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Moynier, Frédéric; Shearer, Charles K.

    2017-09-01

    The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = -13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

  5. Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.; Perfit, M.R.

    1997-01-01

    Geochemical differences between island arc basalts (LAB) and ocean-floor basalts (mid-ocean ridge basalts; MORB) suggest that the large-ion lithophile elements (LILE) K, Ba, Rb and Cs are probably mobilized in subduction zone fluids and melts. This study documents LILE enrichment of eclogite, amphibolite, and epidote ?? garnet blueschist tectonic blocks and related rocks from melanges of two subduction complexes. The samples are from six localities of the Franciscan Complex, California, and related terranes of Oregon and Baja California, and from the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Most Franciscan blocks are MORB-like in their contents of rare earth elements (REE) and high field strength elements (HFSE); in contrast, most Samana blocks show an LAB signature of these elements. The whole-rock K2O contents of both groups range from 1 to 3 wt %; K, Ba, Rb, and Cs are all strongly intercorrelated. Many blocks display K/Ba similar to melasomatized transition zones and rinds at their outer margins. Some transition zones and rinds are enriched in LILE compared with host blocks; others are relatively depleted in these elements. Some LILE-rich blocks contain 'early' coarse-grained muscovite that is aligned in the foliation defined by coarse-grained omphacite or amphibole grains. Others display 'late' muscovite in veins and as a partial replacement of garnet; many contain both textural types. The muscovite is phengite that contains ???3??25-3??55 Si per 11 oxygens, and ???0??25-0??50 Mgper 11 oxygens. Lower-Si phengite has a significant paragonite component: Na per 11 oxygens ranges to ???0??12. Ba contents of phengite range to over 1 wt % (0??027 per 11 oxygens). Ba in phengite does not covary strongly with either Na or K. Ba contents of phengite increase from some blocks to their transition zones or rinds, or from blocks to their veins. Averaged KlBa ratios for phengite and host samples define an array which describes other subsamples of the block and other analyzed blocks. Phengite carries essentially all of the LILE in otherwise mafic eclogite, amphibolite, and garnet blueschist blocks that are enriched in these elements compared with MORE. It evidently tracks a distinctive type of LILE metasomatism that attends both high-T and retrograde subduction zone metamorphism. An obvious source for the LILE is a fluid in equilibrium with metasedimentary rocks. High-grade semipelitic schists from subduction complexes and subductable sediment display LILE values that resemble those seen in the most LILE-rich blocks. Modeling of Ba and Ti suggests that 1-40 wt % of phengite added to MORB can produce their observed LILE enrichment. Thus, the release of LILE from such rocks to fluids or melts in very high-T and -P parts of subduction zones probably depends critically on the stability and solubility relations of phengite, which is thought to be stable at pressures as high as 95-110 kbar at T= 750-1050??C.

  6. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.

  7. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  8. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    USGS Publications Warehouse

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  9. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.

    PubMed

    Wilson, A H; Shirey, S B; Carlson, R W

    2003-06-19

    Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.

  10. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments

    PubMed Central

    Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling

    2015-01-01

    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414

  11. Rare earth element contents of the Lusi mud: An attempt to identify the environmental origin of the hot mudflow in East Java - Indonesia

    NASA Astrophysics Data System (ADS)

    Agustawijaya, Didi Supriadi; Karyadi, Karyadi; Krisnayanti, Baiq Dewi; Sutanto, Sutanto

    2017-12-01

    The Sidoarjo mudflow in East Java, Indonesia, has been erupting since May 29th, 2006. The eruption has been known as the Lusi (lumpur Sidoarjo), which was previously considered as a remote seismic event consequence, but current geyser-like activities show an association with a geothermal phenomenon. A method of characterizing rare earth elements (REE) is commonly an effective tool for recognizing a geothermal system, and here it is adapted to particularly indicate the environmental origin of the Lusi mud. Results show that the Lusi hot mud is made of a porous smectite structure of a shale rock type, which becomes an ideal tank for trapping the REE, especially the light REE. Volcanic activities seem to be an important influence in the eruption; however, since there is a lack of significant isotopic evidences in the mobilization of the REE during the eruption, the chloride neutral pH water of the Lusi may hardly contain the REE. The moderate Ce and Eu anomalies found in the REE patterns of the mud strongly indicate a sea-floor basin as the most probable environment for the REE fractionation during the sedimentary rock formation, in which the weathering processes of volcanic rock origin enriched the Lusi shale with the REE.

  12. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxide composite.

    PubMed

    Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei

    2014-02-01

    A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. © 2013 Elsevier B.V. All rights reserved.

  13. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii

    NASA Astrophysics Data System (ADS)

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika

    2008-09-01

    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also produced and contribute to the metasomatic signature. The metasomatic component is best preserved at the margins of the plume, where low extents of melting of the metasomatized depleted mantle surrounding the plume are sampled during flexural uplift. Formation of carbonatite melts may provide a mechanism to transfer plume He to the margins of the plume.

  14. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    USGS Publications Warehouse

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled by first mixing primitive arc magma with enriched basaltic liquid derived either from garnet peridotite or metasomatized mantle, followed by fractionation of olivine, pyroxenes, plagioclase and spinel. ?? 1989.

  15. Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.

    2013-01-01

    New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.

  16. Sorption of the Rare Earth Elements and Yttrium (REE-Y) in calcite: the mechanism of a new effective tool in identifying paleoearthquakes on carbonate faults

    NASA Astrophysics Data System (ADS)

    Moraetis, Daniel; Mouslopoulou, Vasiliki; Pratikakis, Alexandros

    2015-04-01

    A new tool for identifying paleoearthquakes on carbonate faults has been successfully tested on two carbonate faults in southern Europe (the Magnola Fault in Italy and the Spili Fault in Greece): the Rare Earth Element and Yttrium (REE-Y) method (Manighetti et al., 2010; Mouslopoulou et al., 2011). The method is based on the property of the calcite in limestone scarps to absorb the REE and Y from the soil during its residence beneath the ground surface (e.g. before its exhumation due to earthquakes). Although the method is established, the details of the enrichment mechanism are poorly investigated. Here we use published data together with new information from pot-experiments to shed light on the sorption mechanism and the time effectiveness of the REE-Y method. Data from the Magnola and Spili faults show that the average chemical enrichment is ~45%, in REE-Y while the denudation rate of the enriched zones is ~1% higher every 400 years due to exposure of the fault scarp in weathering. They also show that the chemical enrichment is significant even for short periods of residence time (e.g., ~100 years). To better understand the enrichment mechanism, we performed a series of pot experiments, where carbonate tiles extracted from the Spili Fault were buried into soil collected from the hanging-wall of the same fault. We irrigated the pots with artificial rain that equals 5 years of rainfall in Crete and at temperatures of 15oC and 25oC. Following, we performed sorption isotherm, kinetic and pH-edge tests for the europium (Eu), the cerium (Ce) and the ytterbium (Yt) that occur in the calcite minerals. The processes of adsorption and precipitation in the batch experiments are simulated by the Mineql software. The pot experiments indicate incorporation of the REE and Y into the surface of the carbonate tile which is in contact with the soil. The pH of the leached solution during the rain application range from 7.6 to 8.3. Nutrient release like Ca is higher in the leached solution at lower temperature (15oC) probably due to higher calcite solubility (higher dissolved CO2(g) content) and to less adsorption capability of the soil in elevated temperatures. The isotherm sorption modeling showed that REE-(CO3)2 precipitation is the dominant mechanism in the incorporation of REE into calcite, while the kinetic tests showed instant REE sorption (within few hours). Our experiments show that pH>7.5 and temperatures ~25° C favor REE-Y sorption on calcite surface. Hence, due to the REE-Y fast interaction with carbonate scarp face and the low denudation rate due to later weathering, the REE-Y method is considered a reliable method for tracing paleoearthquakes along carbonate fault scarps when the scarp is in contact with soil at temperate climates. The resolution of identifying frequent paleoearthquakes with low residence time in contact with soil is also considered high. References Mouslopoulou, V., Moraetis, D., Fassoulas, C., 2011. Earth Planet. Sci. Lett. 309, 45-55. Manighetti, I., Boucher, E., Chauvel, A., Schlagenhauf, A., Benedetti, L., 2010. Terra Nova 22, 477-482.

  17. Chemical fractionation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    The sequence of condensation of minerals from a cooling gas of solar composition has been calculated from thermodynamic data over the pressure range 0.001-0.00001 atm, assuming that complete chemical equilibrium is maintained. The results suggest that the Ca-Al-rich inclusions Allende and other carbonaceous chondrites are aggregates of the highest temperature condensates. Complete condensation of these elements is followed, 100 deg later, by the onset of the crystallization of nickel-iron, forsterite and enstatite. Transport of Ca-Al-rich refractory condensates from one part of the nebula to another before the condensation of these lower-temperature phases may have been responsible for the refractory element fractionations between the different classes of chondrites and possibly for the inferred refractory element enrichment of the Moon. The temperature gap between the condensation temperatures of nickel-iron and forsterite increases with increasing total pressure. Because pressure and temperature probably increased with decreasing heliocentric distance in the solar nebula, Mercury may have accreted from a condensate assemblage having a higher metal/silicate ratio than Venus or Earth which may, in turn, have formed from less oxidized material than Mars.

  18. Rare earths and other trace elements in Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.; Korotev, R. L.; Ziege, K. E.

    1972-01-01

    REE and other trace elements have been determined in igneous rocks 14053, 14072, and 14310, in breccias 14063 and 14313, and in fines 14163. All materials analyzed have typical depletions of Eu except for feldspar fragments from the breccias and igneous fragments from 14063. Igneous rocks 14072 and 14053 have REE concentrations very similar to Apollo 12 basalts; 14310 has the highest REE concentrations yet observed for a large fragment of lunar basalt. The effects of crystallization of a basaltic liquid as a closed system on the concentrations of Sm and Eu in feldspar are considered. Small anorthositic fragments may have originated by simple crystallization from very highly differentiated basalt (KREEP) or by closed-system crystallization in a less differentiated starting material. Application of independent models of igneous differentiation to Sm and Eu in massive anorthosite 15415 and to Sm and Eu in lunar basalts suggests a common starting material with a ratio of concentrations of Sm and Eu about the same as that in chondrites and with concentrations of those elements about 15 times enriched over chondrites.

  19. Highly alkaline lavas in a Proterozoic rift zone: Implications for Precambrian mantle metasomatic processes

    NASA Astrophysics Data System (ADS)

    Gaonac'h, H.; Ludden, J. N.; Picard, C.; Francis, D.

    1992-03-01

    An occurrence of Proterozoic nephelinite and basanite lavas and pyroclastic rocks and associated phonolites indicates that the processes that generate modern alkaline magmas in intraplate settings were operative in the Early Proterozoic. These lavas occur near the top of a 1.9 Ga continental-margin sequence in the Cape Smith fold and thrust belt of northern Quebec. The lavas are classified as nephelinites, basanites, and phonolites on the basis of high field strength and rare earth element contents, although large ion lithophile elements, including alkalis, appear to have been strongly depleted by greenschist facies metamorphism and alteration. Certain major elements define trends consistent with low-pressure fractionation dominated by clinopyroxene, which is the only mafic phenocryst present in the lavas. The mafic and felsic lavas have identical 143Nd/144Nd ratios, consistent with consanguinity and a lack of contamination by older crust of the Superior province. Values for ɛNd (1.96 Ga) of +2 represent an enriched mantle source relative to +4 to +5 for the contemporaneous mid-oceanic-ridge basalt reservoir.

  20. Origin of heavy rare earth mineralization in South China

    PubMed Central

    Xu, Cheng; Kynický, Jindřich; Smith, Martin P.; Kopriva, Antonin; Brtnický, Martin; Urubek, Tomas; Yang, Yueheng; Zhao, Zheng; He, Chen; Song, Wenlei

    2017-01-01

    Heavy rare earth elements (HREE) are dominantly mined from the weathering crusts of granites in South China. Although weathering processes occur globally, no economic HREE resources of this type have yet been found outside China. Here, we report the occurrence of unidentified REE minerals in the granites from South Chinese deposits. They contain high levels of both HREE and light REE, but are strongly depleted in Ce, implying high oxidation state. These REE minerals show higher initial Nd isotope than primary REE-rich minerals (ɛNd(t)=0.9±0.8 versus −11.5±0.5). The mineralized weathering crusts inherited REE signature of the granites, but show more Ce depletion and more overall concentration of the REE. We propose, therefore, that highly oxidized, REE-rich fluids, derived from external, isotopically depleted sources, metasomatized the granites, which resulted in Ce depletion as Ce4+ and enrichment of the remaining REE, especially the HREE, contributing to formation of a globally important REE resource. PMID:28220784

  1. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Marriner, G. F.; Arndt, N. T.; Tarney, J.; Nivia, A.; Saunders, A. D.; Duncan, R. A.

    1996-04-01

    Gorgona Island, Colombia is remarkable not only because it contains the only Phanerozoic komatiites, but also because it has mafic to ultramafic lavas with a wide range of compositions, from moderately enriched to extremely depleted (relative to Bulk Earth). The komatiite flows are, in many respects similar to Archaean komatiites; they formed from MgO-rich (18%) liquids and have upper spinifex zones and lower cumulate zones. The cumulate zones of Archaean komatiites contain many solid grains, in contrast more than 90% of the olivine in the Gorgona cumulates is highly skeletal. This combined with the fact that the Gorgona cumulate zones are thinner than those in Archaean komatiites, suggests that the komatiite magma became strongly superheated en route to the surface. The komatiites have trace element contents intermediate between those of the basalts and the ultramafic tuffs. Some basalts have isotope compositions indicative of long-term enrichment in incompatible elements, whereas other basalts and ultramafic volcanics have isotopic signatures that imply corresponding depletion. It is apparent that the plume source region of the Gorgona magmas was markedly heterogeneous, with at least two source components contributing to the observed variation in composition. This heterogeneity may have resulted from the incorporation of different components into the plume source, or it may be the result of complex melting and melt extraction processes during the ascent of a heterogeneous plume. Despite earlier suggestions that there may have been a significant age gap between depleted komatiite and basalt flows and the enriched basalts, new 40Ar- 39Ar dating of basalts and gabbros are more consistent with all being generated at 87 Ma during formation of the Caribbean/Colombian plateau, possibly at the Galapagos hotspot.

  2. Geology, geochronology, and geochemistry of basaltic flows of the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra, central New Mexico

    USGS Publications Warehouse

    Maldonado, F.; Budahn, J.R.; Peters, L.; Unruh, D.M.

    2006-01-01

    The geochronology, geochemistry, and isotopic compositions of basaltic flows erupted from the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra volcanic centres in central New Mexico indicate that each of these lavas had unique origins and that the predominant mantle involved in their production was an ocean-island basalt type. The basalts from Cat Hills (0.11 Ma) and Cat Mesa (3.0 Ma) are similar in major and trace element composition, but differences in MgO contents and Pb isotopic values are attributed to a small involvement of a lower crustal component in the genesis of the Cat Mesa rocks. The Cerro Verde rock is comparable in age (0.32 Ma) to the Cat Hills lavas, but it is more radiogenic in Sr and Nd, has higher MgO contents, and has a lower La/Yb ratio. This composition is explained by the melting of an enriched mantle source, but the involvement of another crustal component cannot be disregarded. The Wind Mesa rock is characterized by similar age (4.01 Ma) and MgO contents, but it has enriched rare-earth element contents compared with the Cat Mesa samples. These are attributed to a difference in the degree of partial melting of the Cat Mesa source. The Mesita Negra rock (8.11 Ma) has distinctive geochemical and isotopic compositions that suggest a different enriched mantle and that large amounts of a crustal component were involved in generating this magma. These data imply a temporal shift in magma source regions and crustal involvement, and have been previously proposed for Rio Grande rift lavas. ?? 2006 NRC Canada.

  3. LREE Enrichments of Altered Alkaline Pyroclastics at Kuyubasi Region Burdur, SW Turkey

    NASA Astrophysics Data System (ADS)

    Budakoglu, Murat; Tugcan Unluer, Ali; Doner, Zeynep; Kocaturk, Huseyin; Sezai Kırıkoǧlu, M.

    2017-04-01

    ABSTRACT In the Kuyubasi region of Burdur, Bucak district, Inner Isparta Apex, SW Anatolia, Turkey, the investigation carried out for the potential in-situ enrichments of REE in highly altered alkaline tuffs originated from Golcuk volcano. This volcano is the most significant product of the widely known post collisional, Afyon-Isparta potassic-ultrapotassic volcanic province in southwestern Turkey. Partial melting of oceanic crust and subcontinental lithospheric mantle resulted in the formation of florocarbonates and pyrochlore group minerals which are responsible for the LREE enrichment in Golcuk volcanics. These extrusive rocks are mainly trachyandesites, augite-trachytes, porphyry trachytes and tephriphonolite dikes which are formed in several eruptive cycles. Pyroclastics from the last eruptions can be encountered in various locations beneath the Isparta apex. The pyroclastics in study area described as mafic crystal metatuffs which predominantly consist of calcic-plagioclase with clinopyroxene, K-feldspar, and quartz set in a hyalo-microcrystalline tuffaceous matrix of microcrystalline aggregates of kaolinized and sericitized feldspar, biotite, chlorite, quartz, and dusty iron oxide. The results indicate high values for the LREE elements such as La (251-369 ppm), Ce (412-660 ppm), Sc (45-48 ppm). The average ΣREE content of samples are 1012 ppm. These results are compatible with the samples from Golcuk Caldera which is located 30 km north of study area in terms of LREE contents (La and Ce values are 400-500 ppm and 500-600 ppm respectively). Key words: Rare earth elements (REE), Pyroclastic occurrences, Bucak region, Burdur, Southwest Turkey *This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) project. Principal Investigator (PI) of this ongoing TUBITAK, CAYDAG-114Y646 project is Prof.Dr. M. Sezai KIRIKOGLU.

  4. REE concentration processes in ion adsorption deposits: Evidence from Madagascar and China.

    NASA Astrophysics Data System (ADS)

    Smith, Martin; Estrade, Guillaume; Marquis, Eva; Goodenough, Kathryn; Nasun, Peter; Cheng, Xu; Kynicky, Jindrich

    2017-04-01

    Lateritic clay deposits, where the rare earth elements (REE) occur adsorbed to clay mineral surfaces, are the world's dominant supply of heavy REE (Gd-Lu). These deposits are currently only mined in China where there is a reported heavy REE enrichment, but other deposits are currently under exploration in Brazil, the Philippines and Madagascar. Concentration of REE within IADs has been proposed to be a dominantly supergene process, where easily degradable REE-minerals (e.g. REE-fluorcarbonates) break down and release REE that are then adsorbed to clay minerals resulting in HREE enrichment. Here we present data from the Ambohimirahavavy Complex, Madagascar, and compare them to data from mineralised profiles in China, with the aim of further constraining the formation and REE enrichment processes in ion adsorption deposits. Bulk rock total REE contents from Madagascar vary from 400-5000ppm, with the HREE varying from 10 to 20% of the TREE. Ammonium Sulphate leaches (designed to remove clay-adsorbed REE) of laterite show leachable TREE from 130-500ppm, with no preferential HREE adsorption. Within the sequential extraction procedure the reducible fraction (hydroxylammonium chloride leach) showed the highest REE, but this is largely attributable to Ce4+ in oxide layers. Analysis of laterite profiles show that the REE distribution is heterogeneous, with control from both bedrock heterogeneity, and the hydrological variation between pedolith and saprolith. Similar patterns are seen in Chinese profiles from Jiangxi province. X-ray diffraction shows the clay fraction in all sites is dominated by kaolinite and halloysite. These data are consistent with experimental data which show that kaolinite is only HREE selective in high ionic strength solutions (Coppin et al., 2002), and suggest that HREE enrichment in lateritic deposits may be a function of exceptional bed rock conditions. Petrographic investigation of the Zhaibei granite, immediately underlying HREE enriched weathering profiles in Jiangxi province has identified the presence of HREE-enriched secondary phases associated with carbonate-rich areas (Xu et al., In press). Neodymium isotope data from primary granitic minerals (ɛNd(t)=-11.5±0.5) contrasts dramatically with data from HREE-enriched minerals (ɛNd(t)=0.9±0.8) indicating that pre-weathering metasomatism from fluids derived from outside the granite system may be critical in the HREE enrichment process of mineralised laterites. This may be important in determining the viability of ion adsorption deposits as HREE resources. Coppin et al. (2002) Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 182, 57-68 Xu et al., (In press) Origin of heavy rare earth mineralization in South China. Nature Comms.

  5. Silicon isotopes in angrites and volatile loss in planetesimals

    PubMed Central

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  6. Lunar material resources: An overview

    NASA Technical Reports Server (NTRS)

    Carter, James L.

    1992-01-01

    The analysis of returned lunar samples and a comparison of the physical and chemical processes operating on the Moon and on the Earth provide a basis for predicting both the possible types of material resources (especially minerals and rocks) and the physical characteristics of ore deposits potentially available on the Moon. The lack of free water on the Moon eliminates the classes of ore deposits that are most exploitable on Earth; namely, (1) hydrothermal, (2) secondary mobilization and enrichment, (3) precipitation from a body of water, and (4) placer. The types of lunar materials available for exploitation are whole rocks and their contained minerals, regolith, fumarolic and vapor deposits, and nonlunar materials, including solar wind implantations. Early exploitation of lunar material resources will be primarily the use of regolith materials for bulk shielding; the extraction from regolith fines of igneous minerals such as plagioclase feldspars and ilmenite for the production of oxygen, structural metals, and water; and possibly the separation from regolith fines of solar-wind-implanted volatiles. The only element, compound, or mineral, that by itself has been identified as having the economic potential for mining, processing, and return to Earth is helium-3.

  7. Observationally Constraining Gas Giant Composition via Their Host Star Abundances

    NASA Astrophysics Data System (ADS)

    Teske, Johanna; Thorngren, Daniel; Fortney, Jonathan

    2018-01-01

    While the photospheric abundances of the Sun match many rock-forming elemental abundances in the Earth to within 10 mol%, as well as in Mars, the Moon, and meteorites, the Solar System giant planets are of distinctly non-stellar composition — Jupiter's bulk metallicity (inferred from its bulk density, measured from spacecraft data) is ∼ x5-10 solar, and Saturn is ∼ x10-20 solar. This knowledge has led to dramatic advances in understanding models of core accretion, which now match the heavy element enrichment of each of the Solar System's giant planets. However, we have thus far lacked similar data for exoplanets to use as a check for formation and composition models over a much larger parameter space. Here we present a study of the host stars of a sample of cool transiting gas giants with measured bulk metal fractions (as in Thorngren et al. 2016) to better constrain the relation Zplanet/Zstar — giant exoplanet metal enrichment relative to the host star. We add a new dimension of chemical variation, measuring C, O, Mg, Si, Ni, and well as Fe (on which previous Zplanet/Zstar calculations were based). Our analysis provides the best constraints to date on giant exoplanet interior composition and how this relates to formation environment, and make testable predictions for JWST observations of exoplanet atmospheres.

  8. Trace Element Abundances in Eucrite Basalts: Enrichment or Depletion?

    NASA Astrophysics Data System (ADS)

    Castle, N. R.

    2018-05-01

    It is not clear how incompatible trace element (ITE) variation in eucrite basalts originated. Here, mechanisms for relative ITE enrichment or depletion are experimentally evaluated in an attempt to reconcile the Stannern and main group eucrites.

  9. Geochemistry of a Tertiary sedimentary phosphate deposit: Baja California Sur, Mexico

    USGS Publications Warehouse

    Piper, D.Z.

    1991-01-01

    The San Gregorio Formation in Baja California Sur, a phosphate-enriched sedimentary unit of late Oligocene to early Miocene age, has been analyzed in two areas (La Purisima and San Hilario) for its chemical composition (major oxides, Cu, Cd, Cr, Co, V, and rare-earth elements - REE) and isotopic composition (??18O and ??13C). A detrital and a marine component were determined from major oxides. The detrital component consists of an unaltered volcanic-ash fraction and a terrigenous clay-silt fraction. The marine component, which accumulated initially as biogenic and hydrogenous material, is now present as opal-A, opal-CT, CaCO3, organic matter, and an authigenic phosphate fraction, mostly pelletal and composed of the carbonate-fluorapatite mineral francolite. The minor elements have been partitioned into these components by assuming a constant composition for the two detrital fractions. The composition of the marine component of minor elements can then be interpreted by assuming that the stoichiometry of the original accumulating organic matter was equal to that of modern plankton. The Cu and Cd contents in the marine component of all rocks require that the seawater-derived fractions of these two metals were supplied to the seafloor solely by organic matter. Enrichments of Cr and V at both sites required an additional marine input. On the basis of their geochemistry in the modern ocean, Cr and V could have precipitated, or been adsorbed, onto settling particles from an O2 minimum zone in which the O2 content was low enough to promote denitrification rather than oxygen respiration. An enrichment of the REE, now within the apatite fraction, resulted from their adsorption onto particulates also in the O2 minimum zone and to the dissolution and alteration of biogenic phases (predominantly silica) within the sediment. Co and Fe2O3 show no enrichment above a detrital contribution. The ??18O-values of apatites from the La Purisima site are heavier than those of apatites from the San Hilario site, whereas the ??13C-values show the opposite trend. One possible interpretation of these variations is that ??18O reflects seawater values and ??13C sediment pore water values. This interpretation suggests that upwelling rates and primary productivity within the water column were greater at La Purisima, an interpretation that is corroborated by a greater abundance of apatite measured in outcrop at La Purisima. The Ce anomalies of the phosphate-enriched samples also differ between the two sites, indicating that they also recorded water masses, similar to the ??18O-values. ?? 1991.

  10. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India.

    PubMed

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  11. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Fowler

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  12. Uniform Distribution of Yttrium and Heavy Rare Earth Elements in Round Top Mountain Rhyolite Deposit , Sierra Blanca Texas, USA: Data, Significance, and Origin

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E., Jr.; Clague, J. W.; Gorski, D.

    2014-12-01

    The Round Top Mountain peraluminous rhyolite, exposed at the surface in Sierra Blanca, Hudspeth County, west Texas, USA, is enriched in yttrium and heavy rare earth elements (YHREEs). Other potentially valuable elements in the deposit include Be, Li, U, Th, Sn, F, Nb, and Ta. Texas Rare Earth Resources Corp. proposes to extract the YHREEs from the host mineral variety yttrofluorite by inexpensive heap leaching with dilute sulfuric acid, which also releases some of the Be, Li, U, F, and Th from other soluble minor minerals. Data: Feldspars and quartz comprise 90-95% of the rhyolite, with pheonocrysts of up to 250 microns set in an aphanitic matrix that hosts the typically sub-micron target yttrofluorite. Reverse circulation cuttings from some 100 drill holes, two drill cores, and outcrop and trench observations suggest striking physical homogeneity through this billion-plus ton surface-exposed laccolith, about 1200 feet high and a mile in diameter (375 x 1600 m). Gray to pink, and other minor hues, color variation derives from magnetite—hematite redox reaction. Plots of Y, 13 REEs, U, Th, and Nb analyses from over 1500 samples collected from 64 drill holes (color codes in figure) exhibit remarkably little variation in the concentration of these elements with geographic position or depth within the laccolith. Importance: Uniform mineralization grades help insure against the mining production surprises often associated with vein deposits and heterogeneous open pit deposits. At Round Top, mine feedstock can be relatively constant over the life of the mine (multiple decades), so the mechanical mining process can be optimized early on and not need expensive alterations later. Likewise, the chemical and physical parameters of the heap leach can be perfected. The sensitive and expensive process of extraction of elements and element groups from the pregnant leach solution and purification also can be optimized. Origin: The remarkable homogeneity of the YHREE distribution through the laccolith suggest YHREE and associated mineralization from a late-stage fluorine vapor generated within the magma in situ, rather than from injection of a F-rich fluid from an external source. The micron-scale cavities that produce up to 5% original porosity in the rhyolite may be nano-analogues of the cavities associated with granite pegmatites.

  13. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina

    2015-03-01

    The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.

  14. Method for laser induced isotope enrichment

    DOEpatents

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  15. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  16. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  17. Geochemistry of rare earth elements in minesoils from São Domingos mining district (Iberian Pyrite Belt)

    NASA Astrophysics Data System (ADS)

    Delgado, Joaquin; Perez-Lopez, Rafael; Nieto, Jose Miguel; Ayora, Carles

    2010-05-01

    The São Domingos mine is one of the most emblematic mining districts in the lower part of the Guadiana River Basin (SW of Iberian Peninsula). It is located in Portugal (about 5 km from the Spanish border), in the northern sector of the Iberian Pyrite Belt (IPB), one of the largest metallogenetic provinces of massive sulphides in the world. Although mining activity has ceased at present, the large-scale exploitation of this deposit between the second half of the XIX century and the first half of the XX century, has favoured the production of enormous waste dumps, where oxidation of pyrite and associated sulphides is resulting in the production of acid mine drainage (AMD). Mining wastes, minesoils, and acid mine drainage have been analyzed for their major ions and rare earth elements (REE) with the aim of understanding the REE mobility during sulphide weathering so that lanthanoid series can be used both as a proxy for the extent of water-rock interaction and as a tool for identifying impacts of AMD on natural ecosystems. Chemical speciation of REE in extracts from minesoils indicates that REE sulphate complexes (mainly LnSO4+) are the primary aqueous form (60-90%), and free ionic species (Ln3+, 10-40%) are the next most abundant form of soil water-soluble fraction and controls the REE speciation model. The REE from this fraction have NASC-normalized patterns with middle-REE (MREE) enriched signature compared to the light-REE (LREE) and heavy-REE (HREE), showing convex MREE-signatures and convexity index values of +1.29 +/- 1.13. These results are consistent with the typical REE fractionation patterns reported for AMD. Poorly crystalline iron oxyhydroxysulphates act as a source of labile MREE by dissolution and/or desorption processes and could explain the MREE-enriched signatures in solution.

  18. Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals

    DOE PAGES

    Balboni, Enrica; Spano, T; Cook, N; ...

    2017-10-20

    We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less

  19. A Geochemical Analysis of Rare Earth Elements Associated with Significant Phosphate Deposits of West-Central Florida

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Owens, J. D.

    2017-12-01

    Rare earth elements (REEs) such as the lanthanide series as well as yttrium, uranium, and thorium are an important industrial resource for expanding technological sectors; therefore, demand and production will continue to increase. Increased market prices resulting in decreased demand has led to new exploration for REE mineral resources in North America. Phosphorite deposits are being investigated as a possible supply but the overall concentrations, depositional environments, and ages are relatively unexplored. Phosphorite is commonly associated with ocean floor sediment deposition and upwelling; however, it may also form in estuarine and supratidal zones with low wave activity, present along Florida's west coast. Interestingly, it seems that major ancient phosphorite deposits are often, if not always, associated with major icehouse conditions (widespread glaciations) and rarely observed during greenhouse conditions. By analyzing a set of sonic drill cores, spatiotemporal REE concentrations can be better constrained for a wide-age range of the Miocene-Pliocene aged Bone Valley Member of the Peace River Formation, the largest North American phosphate deposit. We present concentrations from a depth-transect of samples collected in West-Central Florida, showing the phosphatic sands and silts of the area are highly enriched sedimentary archives for REE, yielding concentrations up to 200 ppm for some REE. The weathering and transport of igneous and metamorphic minerals from the southern Appalachians to the Florida coast where a series of winnowing events occurred may explain the enrichment seen by our data. Sediment cores showing well-rounded quartz sands, dolomitic silts, teeth, bones, and marine fossils commonly found in a near shore depositional environment support this hypothesis. Previous analysis of phosphate grains, teeth, bones, and bulk sediment indicate REE are not associated with and/or sourcing from biogenic components, but rather entering the lattice structure of the phosphate grains through secondary diagenetic processes. Though concentrations do not reach values as high as other mining sources the relative ease of extraction from sedimentary deposits may make them a valuable source.

  20. Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Spano, T; Cook, N

    We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less

  1. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition

    PubMed Central

    Burkhardt, C.; Borg, L.E.; Brennecka, G.A.; Shollenberger, Q.R.; Dauphas, N.; Kleine, T.

    2016-01-01

    A long-standing paradigm assumes that the chemical and isotopic composition of many elements in the bulk silicate Earth are the same as in chondrites1–4. However, the accessible Earth has a greater 142Nd/144Nd than chondrites. Because 142Nd is the decay product of now-extinct 146Sm (t1/2= 103 million years5), this 142Nd difference seems to require a higher-than-chondritic Sm/Nd of the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation6 and implies the formation of a complementary 142Nd-depleted reservoir that either is hidden in the deep Earth6, or was lost to space by impact erosion3,7. Whether this complementary reservoir existed, and whether or not it has been lost from Earth is a matter of debate3,8,9, but has tremendous implications for determining the bulk composition of Earth, its heat content and structure, and for constraining the modes and timescales of its geodynamical evolution3,7,9,10. Here, we show that compared to chondrites, Earth’s precursor bodies were enriched in Nd produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher 142Nd/144Nd, and, after correction for this effect, the 142Nd/144Nd of chondrites and the accessible Earth are indistinguishable within 5 parts per million. The 142Nd offset between the accessible silicate Earth and chondrites, therefore, reflects a higher proportion of s-process Nd in the Earth, and not early differentiation processes. As such, our results obviate the need for hidden reservoir or super-chondritic Earth models, and imply a chondritic Sm/Nd for bulk Earth. Thus, although chondrites formed at greater heliocentric distance and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth’s bulk chemical composition. PMID:27629643

  2. Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA

    USGS Publications Warehouse

    Whitney, P.R.; Olmsted, J.F.

    1998-01-01

    Wollastonite ores and garnet-pyroxene skarns in the Willsboro-Lewis district, New York, USA were formed in a complex hydrothermal system associated with the emplacement of a large anorthosite pluton. Contact-metamorphic marbles were replaced by wollastonite, garnet, and clinopyroxene during infiltration metasomatism involving large volumes of water of chiefly meteoric origin. Rare earth elements (REE) in these rocks show large departures from the protolith REE distribution, indicative of substantial REE mobility. Three types of chondrite-normalized REE distribution patterns are present. The most common, found in ores and skarns containing andradite-rich garnet, is convex-up in the light REE (LREE) with a maximum at Pr and a positive Eu anomaly. Europium anomalies and Pr/Yb ratios are correlated with X(Ad) in garnet. This pattern (type C) results from uptake of REE from hydrothermal fluids by growing crystals of calcsilicate minerals, principally andradite, with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet X sites. The Eu anomaly results either from prior interaction of the fluids with plagioclase-rich, Eu-positive anorthositic rocks in and near the ore zone, or by enrichment of divalent Eu on growth surfaces of garnet followed by entrapment, or both. Relative enrichment in heavy REE (type H) occurs in ores and skarn where calcsilicates, including grossularitic garnet, in contact-metamorphic marble have been concentrated by dissolution of calcite. In most cases a negative Eu anomaly is inherited from the marble protolith. Skarns containing titanite and apatite exhibit high total REE, relative light REE enrichment, and negative Eu anomalies (type L). These appear to be intrusive igneous rocks (ferrodiorites or anorthositic gabbros) that have been converted to skarn by Ca metasomatism. REE, sequestered in titanite, apatite, and garnet, preserve the approximate REE distribution pattern of the igneous protolith. Post-ore granulite facies metamorphism homogenized zoned mineral grains without causing complete intergranular reequilibration and does not appear to have significantly affected the whole-rock REE distributions. These results demonstrate that extensive REE metasomatism can occur in hydrothermal systems at shallow to intermediate depths and that REE geochemistry may be useful in discerning the origin of skarns and skarn-related ore deposits.

  3. Geochemistry and origin of metamorphosed mafic rocks from the Lower Paleozoic Moretown and Cram Hill Formations of North-Central Vermont: Delamination magmatism in the western New England appalachians

    USGS Publications Warehouse

    Coish, Raymond; Kim, Jonathan; Twelker, Evan; Zolkos, Scott P.; Walsh, Gregory J.

    2015-01-01

    The Moretown Formation, exposed as a north-trending unit that extends from northern Vermont to Connecticut, is located along a critical Appalachian litho-tectonic zone between the paleomargin of Laurentia and accreted oceanic terranes. Remnants of magmatic activity, in part preserved as metamorphosed mafic rocks in the Moretown Formation and the overlying Cram Hill Formation, are a key to further understanding the tectonic history of the northern Appalachians. Field relationships suggest that the metamorphosed mafic rocks might have formed during and after Taconian deformation, which occurred at ca. 470 to 460 Ma. Geochemistry indicates that the sampled metamorphosed mafic rocks were mostly basalts or basaltic andesites. The rocks have moderate TiO2 contents (1–2.5 wt %), are slightly enriched in the light-rare earth elements relative to the heavy rare earths, and have negative Nb-Ta anomalies in MORB-normalized extended rare earth element diagrams. Their chemistry is similar to compositions of basalts from western Pacific extensional basins near volcanic arcs. The metamorphosed mafic rocks of this study are similar in chemistry to both the pre-Silurian Mount Norris Intrusive Suite of northern Vermont, and also to some of Late Silurian rocks within the Lake Memphremagog Intrusive Suite, particularly the Comerford Intrusive Complex of Vermont and New Hampshire. Both suites may be represented among the samples of this study. The geochemistry of all samples indicates that parental magmas were generated in supra-subduction extensional environments during lithospheric delamination.

  4. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the 40-m.y.-younger ore-bearing porphyritic granodiorite is sub-alkaline and peraluminous. They are enriched in LREEs and LILEs, depleted in HFSEs, and show weak negative Eu anomalies. They display εHf(t) values of captured or inherited zircons in the range of +8.5 to +10.0, and younger two-stage Hf model ages of 0.78 Ga and 0.86 Ga, similar to those of ca. 485 Ma tonalite. The ca. 445 Ma zircons have εHf(t) values of -2.1 to +9.9, with two-stage Hf model ages of 0.75-1.27 Ga. Moreover, they have relatively high oxygen fugacity than that of the precursor barren tonalite. The ca. 445 Ma magmas at Wangdian thus formed in a subduction setting, and incorporated melts from the subduction-modified lithosphere that had previously been enriched by additions of chalcophile and siderophile element-rich materials by the earlier magmatism and metasomatism during the Paleo Qilian-Qinling Ocean subduction event.

  5. Mid-Cretaceous transtension in the Canadian Cordillera: Evidence from the Rocky Ridge volcanics of the Skeena Group

    NASA Astrophysics Data System (ADS)

    Bassett, Kari N.; Kleinspehn, Karen L.

    1996-08-01

    The age relations, geochemistry, and sedimentology of the Rocky Ridge Formation of the Skeena Group are used to test competing tectonic reconstructions for the mid-Cretaceous Canadian Cordillera as well as the timing and location of the accretion of the Insular Superterrane. Pollen and macrofossil assemblages indicate that these intrabasinal basalts were erupted along the southern margin of the Bowser basin in the Early Albian to Early Cenomanian. Single-crystal fusion and step-heating 40Ar/39Ar dating of hornblendes in one basalt flow from the uppermost part of the formation yielded Middle Cenomanian ages of 94.3 ± 0.4, 95.6 ± 1.6, and 95.0 ± 1.6 Ma. Vesicular basalt flows interbedded with crystal-rich tuff breccias contain evidence for hot emplacement as pyroclastic flows. Individual eruptive centers are identified by their proximal facies, paleoflow indicators within the lava flows, paleoflow indicators within interbedded volcaniclastic fluvial deposits, geochemical differences, and geographic isolation of volcanic deposits. Major and trace-element geochemistry from 20 sampled lava flows indicates an alkali basalt composition for the volcanics. The basalts of the northern Rocky Ridge volcanic center show enrichment of light rare earth and large ion lithophile elements with strong negative Nb-Ta anomalies whereas the basalts of the southern Tahtsa Lake volcanic center show depletion to slight enrichment of light rare earth elements, slight enrichment of large ion lithophile elements with minimal negative Nb-Ta anomalies. The geochemistry combined with paleogeographic and regional tectonic reconstruction suggests a continental arc setting with intraarc extension. The presence of deeper marine facies to the west and the lack of a western sediment source in the Skeena Group indicate that the technically active Insular Superterrane was not west of the study area during mid-Cretaceous time. Thus we reconsider the Omineca Belt as the main axis of a mid-Cretaceous continental arc, placing the Intermontane Superterrane in the intraarc to forearc position with the Rocky Ridge volcanics erupted along the forearc side of the Omineca arc. Coeval regional strike-slip faulting and reconstructed oblique plate convergence suggest a transtensional setting for Rocky Ridge intraarc extension. An electronic supplement of Tables A1-A2 may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 95TC03496, Mid-Cretaceous transtension in the Canadian Cordillera: Evidence from the Rocky Ridge volcanics of the Skeena Group, Kari N. Bassett and Karen L. Kleinspehn). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009; $15.00. Payment must accompany order.

  6. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  7. The Evolution of Floreana Island, Galapagos: Mantle Metasomatism as a Control of Structural and Geochemical Variations

    NASA Astrophysics Data System (ADS)

    Koleszar, A. M.; Rollins, N. A.; Harpp, K. S.; Geist, D. J.

    2004-05-01

    Floreana, the 6th largest island in the Galapagos Archipelago, is situated ESE of the current proposed location of the hotspot, believed to be near Fernandina Island. Floreana is the most distant Galapagos volcano from the Galapagos Spreading Center and is located on 12 Ma lithosphere. Both normally- and reversely-polarized flows are present on Floreana, which emerged more than 1 Ma. The emergent shield is constructed of lava flows and >80 cinder cones. In the final stage of island building, approximately 0.3 Ma, the eruptive activity on Floreana became more explosive and produced the largest cinder cones on the island. Spatter ramparts, cinder cones, vents, and pit craters are arranged in at least 3 major parallel to sub-parallel alignments oriented N40E. The basalts of Floreana are notably alkalic, primitive, and highly enriched in incompatible trace elements (ITE). MgO concentrations in the lavas range from <8 wt% to >13 wt%, and many of the magmas are likely related by fractional crystallization of olivine and clinopyroxene. The volcano has erupted ultramafic xenoliths, which are observed predominantly in the older, reversely-polarized flows and cones. Floreana lavas have the greatest light REE enrichment observed in the archipelago and the most radiogenic Sr- and Pb- isotopic ratios, indicative of an ITE-enriched source. Elevated ratios of alkali and alkaline earth contents to those of high-field strength elements indicate contributions from metasomatic fluids to Floreana melts. Although the effects of metasomatism are apparent in most Floreana basalts, normally-polarized lavas may have been affected to a greater extent by the metasomatism than the older flows. Temporal-compositional trends in trace element concentrations also suggest that the depth of melt generation may have decreased slightly over the course of the island's formation. Floreana is distinct from the rest of the Galapagos Archipelago in its explosive history, abundant mantle xenoliths, extensive evidence for contributions from metasomatic fluids, and ITE-enriched composition of its mantle source. We propose that the ubiquitous metasomatic processes may be responsible for both the structural and geochemical anomalies observed on Floreana and may be the primary distinguishing characteristic of this end-member in Galapagos mantle plume compositions.

  8. The geophysical importance of bubbles in the sea

    NASA Technical Reports Server (NTRS)

    Cirpriano, R. J.

    1982-01-01

    Present knowledge of the mechanisms for production and enrichment and film drops by bursting bubbles is summarized, with particular emphasis on the unsolved problems. Sea salt is by far the major constituent cycled through the Earth's atmosphere each year. Bursting bubbles in the oceans appear to be primarily responsible. These salt particles play a role in the formation of maritime clouds, which in turn affect the Earth's radiation budget. Along with the salt are carried various chemical pollutants and potentially pathogenic microorganisms, often in highly enriched form.

  9. Petrology of the Rainy Lake area, Minnesota, USA-implications for petrotectonic setting of the archean southern Wabigoon subprovince of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Day, Warren C.

    1990-08-01

    The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63 49) and relatively flat rare-earth element (REE) patterns that range from 20 8 x chondrites (Ce/YbN=0.8 1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46 29) and high total REE abundances that range from 70 40 x chondrites (Ce/YbN=1.8 3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79 63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination.

  10. Petrology of the Rainy Lake area, Minnesota, USA-implications for petrotectonic setting of the archean southern Wabigoon subprovince of the Canadian Shield

    USGS Publications Warehouse

    Day, W.C.

    1990-01-01

    The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63-49) and relatively flat rare-earth element (REE) patterns that range from 20-8 x chondrites (Ce/YbN=0.8-1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46-29) and high total REE abundances that range from 70-40 x chondrites (Ce/YbN=1.8-3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79-63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination. ?? 1990 Springer-Verlag.

  11. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    PubMed

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.

  12. Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.

    PubMed

    Franz, Heather B; Kim, Sang-Tae; Farquhar, James; Day, James M D; Economos, Rita C; McKeegan, Kevin D; Schmitt, Axel K; Irving, Anthony J; Hoek, Joost; Dottin, James

    2014-04-17

    The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.

  13. Geochemical Diversity of the Mantle: 50 Years of Acronyms

    NASA Astrophysics Data System (ADS)

    Hart, S. R.

    2014-12-01

    50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both cases the spidergrams are "enriched" with peaks at Nb-Ta of 2x and 4x bulk silicate earth, respectively, but with quite different shapes. As is typical with OIB, the derived source compositions are incompatible with the isotopic signatures, requiring a fairly recent "enrichment" event (possibly auto-metasomatism).

  14. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants.

    PubMed

    Raclavská, Helena; Corsaro, Agnieszka; Hartmann-Koval, Silvie; Juchelková, Dagmar

    2017-12-01

    The management of an increasing amount of municipal waste via incineration has been gaining traction. Fly ash as a by-product of incineration of municipal solid waste is considered a hazardous waste due to the elevated content of various elements. The enrichment and distribution of 24 elements in fly ash from three wastes incinerators were evaluated. Two coarse (>100 μm and <100 μm) and five sub-sieve (12-16, 16-23, 23-34, 34-49, and 49-100 μm) particle size fractions separated on a cyclosizer system were analyzed. An enhancement in the enrichment factor was observed in all samples for the majority of elements in >100 μm range compared with <100 μm range. The enrichment factor of individual elements varied considerably within the samples as well as the sub-sieve particle size ranges. These variations were attributed primarily to: (i) the vaporization and condensation mechanisms, (ii) the different design of incineration plants, (iii) incineration properties, (iv) the type of material being incinerated, and (v) the affinity of elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Looking for Fossil Bacteria in Martian Materials

    NASA Technical Reports Server (NTRS)

    Westall, F.; Walsh, M. M.; Mckay, D. D.; Wentworth, S.; Gibson, E. K.; Steele, A.; Toporski, J.; Lindstrom, D.; Martinez, R.; Allen, C. C.

    1999-01-01

    The rationale for looking for prokaryote fossils in Martian materials is based on our present understanding of the environmental evolution of that planet in comparison to the history of the terrestrial environments and the development and evolution of life on Earth. On Earth we have clear, albeit indirect, evidence of life in 3.8 b.y.-old rocks from Greenland and the first morphological fossils in 3.3-3.5 b.y.-old cherts from South Africa and Australia. In comparison, Mars, being smaller, probably cooled down after initial aggregation faster than the Earth. Consequently, there could have been liquid water on its surface earlier than on Earth. With a similar exogenous and endogenous input of organics and life-sustaining nutrients as is proposed for the Earth, life could have arisen on that planet, possibly slightly earlier dm it did on Earth. Whereas on Earth liquid water has remained at the surface of the planet since about 4.4 b.y. (with some possible interregnums caused by planet-sterilising impacts before 3.8. b.y. and perhaps a number of periods of a totally frozen Earth, this was not the case with Mars. Although it is not known exactly when surficial water disappeared from the surface, there would have been sufficient time for life to have developed into something similar to the terrestrial prokaryote stage. However, given the earlier environmental deterioration, it is unlikely that it evolved into the eukaryote stage and even evolution of oxygenic photosynthesis may not have been reached. Thus, the impetus of research is on single celled life simnilar to prokaryotes. We are investigating a number of methods of trace element analysis with respect to the Early Archaean microbial fossils. Preliminary neutron activation analysis of carbonaceous layers in the Early Archaean cherts from South Africa and Australia shows some partitioning of elements such as As, Sb, Cr with an especial enrichment of lanthanides in a carbonaceous-rich banded iron sediment . More significantly, preliminary TOF-SIMS investigations of organics in the cherts reveals the presence of a biomarker, which appears to be a derivative of bacterial polymer, in the carbonaceous parts of the rocks. We conclude that a combination of morphological, isotope and biogeochemical methods can be used to successfully identify signs of life in terrestrial material, and that these methods will be useful in searching for signs of life in extraterrestrial materials.

  16. Biogeochemistry of the rare-earth elements with particular reference to hickory trees

    USGS Publications Warehouse

    Robinson, W.O.; Bastron, H.; Murata, K.J.

    1958-01-01

    Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.

  17. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  18. The elements of the Earth's magnetism and their secular changes between 1550 and 1915

    NASA Technical Reports Server (NTRS)

    Fritsche, H.

    1983-01-01

    The results of an investigation about the magnetic agents outside the Earth's surface as well as the Earth's magnetic elements for the epochs 1550, 1900, 1915 are presented. The secular changes of the Earth's magnetic elements during the time interval 1550 - 1900 are also included.

  19. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Chenery, Simon; Bland, David J.

    1996-12-01

    In spite of the major importance of monazite as a repository for the rare earths and Th in the continental crust, for U-Th-Pb geochronology, and as a possible form for high-level nuclear waste, very little work has been carried out so far on the behaviour of this mineral during fluid-rock events. This contribution describes two contrasting examples of the hydrothermal alteration of monazite. The first case comes from a sample of the Carnmenellis granite (Cornwall, Southwest England), chloritized at 284 ± 16°C, whereas the other occurs in the Skiddaw granite (Lake District, Northwest England), which underwent greisenization at 200 ± 30°C. An integrated study involving backscattered scanning electron microscopy, electron microprobe analyses, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) reveals that the chloritization event was characterized by the coupled substitution 2REE 3+ ⇌ Th 4+ + Ca 2+ in the altered parts of the monazite, thus leaving the P-O framework of the crystal untouched. In contrast, greisenization led to the coupled substitution REE 3+ + P 5+ ⇌ Th 4+ + Si 4+, and therefore involved a partial destruction of the phosphate framework. The resulting rare earth element patterns are quite different for these two examples, with a maximum depletion for Dy and Er in the altered parts of the Carnmenellis monazite, whereas the Skiddaw monazite shows a light rare earth depletion but an Yb and Er enrichment during alteration. This latter enrichment, accompanied by an increase in U but roughly unchanged Pb concentrations, probably resulted from a decrease in the size of the 9-coordinated site in monazite, thereby favouring the smaller rare earths. These contrasted styles of monazite alteration show that the conditions of fluid-rock interaction will not only affect the aqueous geochemistry of the lanthanides, actinides and lead, and the relative stability of the different minerals holding these elements. Variations in these conditions will also lead to various possible chemical exchanges between the crystalline phases and the hydrothermal fluids. The occurrence of common lead along penetrative cracks in the Carnmenellis monazite shows that only a leaching, prior to the U-Pb analyses of the whole-grain, will permit an accurate determination of the magmatic crystallization age. In contrast, for the Skiddaw case it may be possible to date the fluid-rock event by in situ 207Pb/ 206Pb geochronology. The observation that the altered parts of both monazite examples display Nd leaching and no significant Sm/Nd fractionation indicates that they should not affect the host whole-rock Nd isotopic signatures. Finally, it appears that monazite-like ceramics designed for the containment of high-level nuclear wastes will retain Th and the geochemically equivalent transuranic elements during fluid-rock events similar to those documented in this study but may release Nd, U and the corresponding radionuclides to the environment.

  20. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China

    NASA Astrophysics Data System (ADS)

    Song, Wenlei; Xu, Cheng; Smith, Martin P.; Kynicky, Jindrich; Huang, Kangjun; Wei, Chunwan; Zhou, Li; Shu, Qihai

    2016-11-01

    Carbonatites, usually occurring within intra-continental rift-related settings, have strong light rare earth element (LREE) enrichment; they rarely contain economic heavy REE (HREE). Here, we report the identification of Late Triassic HREE-Mo-rich carbonatites in the northernmost Qinling orogen. The rocks contain abundant primary HREE minerals and molybdenite. Calcite-hosted fluid inclusions, inferred to represent a magmatic-derived aqueous fluid phase, contain significant concentrations of Mo (~17 ppm), reinforcing the inference that these carbonatitic magmas had high Mo concentrations. By contrast, Late Triassic carbonatites in southernmost Qinling have economic LREE concentrations, but are depleted in HREE and Mo. Both of these carbonatite types have low δ26Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution for REE enrichment in their mantle sources. We propose that the carbonatites in the Qinling orogen were formed, at least in part, by the melting of a subducted carbonate-bearing slab, and that 10 Ma younger carbonatite magmas in the northernmost Qinling metasomatized the thickened eclogitic lower crust to produce high levels of HREE and Mo.

  1. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China.

    PubMed

    Song, Wenlei; Xu, Cheng; Smith, Martin P; Kynicky, Jindrich; Huang, Kangjun; Wei, Chunwan; Zhou, Li; Shu, Qihai

    2016-11-18

    Carbonatites, usually occurring within intra-continental rift-related settings, have strong light rare earth element (LREE) enrichment; they rarely contain economic heavy REE (HREE). Here, we report the identification of Late Triassic HREE-Mo-rich carbonatites in the northernmost Qinling orogen. The rocks contain abundant primary HREE minerals and molybdenite. Calcite-hosted fluid inclusions, inferred to represent a magmatic-derived aqueous fluid phase, contain significant concentrations of Mo (~17 ppm), reinforcing the inference that these carbonatitic magmas had high Mo concentrations. By contrast, Late Triassic carbonatites in southernmost Qinling have economic LREE concentrations, but are depleted in HREE and Mo. Both of these carbonatite types have low δ 26 Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution for REE enrichment in their mantle sources. We propose that the carbonatites in the Qinling orogen were formed, at least in part, by the melting of a subducted carbonate-bearing slab, and that 10 Ma younger carbonatite magmas in the northernmost Qinling metasomatized the thickened eclogitic lower crust to produce high levels of HREE and Mo.

  2. Airborne rotary separator study

    NASA Astrophysics Data System (ADS)

    Drnevich, R. F.; Nowobilski, J. J.

    1992-12-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle mission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. The purpose of this study was to evaluate various fuels and fuel combinations with the objective of minimizing the weight and increase the ready alert capability of the plane. Fuels will be used to provide energy as well as act as heat sinks for the on-board heat rejection system. Fuel energy was used to provide power for air separation as well as to produce refrigeration for liquefaction of oxygen enriched air, besides its primary purpose of vehicle propulsion. The heat generated in the cycle was rejected to the fuel and water which is also carried on board the vehicle.The fuels that were evaluated include JP4, methane, and hydrogen. Hydrogen served as a comparison to the JP4 and methane cases.

  3. Were micrometeorites a source of prebiotic molecules on the early Earth?

    PubMed

    Maurette, M; Brack, A; Kurat, G; Perreau, M; Engrand, C

    1995-03-01

    "Interplanetary Dust Particles" with sizes approximately 10 micrometers collected in the stratosphere (IDPs), as well as much larger "giant" micrometeorites retrieved from Antarctic ice melt water (AMMs), are mostly composed of unequilibrated assemblages of minerals, thus being related to primitive unequilibrated meteorites. Two independent evaluations of the mass flux of micrometeorites measuring approximately 50 micrometers to approximately 200 micrometers, recovered from either the Greenland or the Antarctic ice sheets have been reported (approximately 20,000 tons/a). A comparison with recent evaluation of the flux of meteorites reaching the Earth's surface (up to masses of 10,000 tons), indicates that micrometeorites represent about 99.5% of the extraterrestrial material falling on the Earth's surface each year. As they show carbon concentrations exceeding that of the most C-rich meteorite (Orgueil), they are the major contributors of extraterrestrial C-rich matter accreting to the Earth today. Moreover they are complex microstructured aggregates of grains. They contain not only a variety of C-rich matter, such as a new "dirty" magnetite phase enriched in P, S, and minor elements, but also a diversity of potential catalysts (hydrous silicates, oxides, sulfides and metal grains of Fe/Ni composition, etc.). They could have individually functioned on the early Earth, as "micro-chondritic-reactors" for the processing of prebiotic organic molecules in liquid water. Future progress requires the challenging development of meaningful laboratory simulation experiments, and a better understanding of the partial reprocessing of micrometeorites in the atmosphere.

  4. Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark

    NASA Astrophysics Data System (ADS)

    Zhao, Meixun; Bada, Jeffrey L.

    1989-06-01

    SINCE the discovery1 nearly a decade ago that Cretaceous/Tertiary (K/T) boundary layers are greatly enriched in iridium, a rare element in the Earth's crust, there has been intense controversy on the relationship between this Ir anomaly and the massive extinction of organisms ranging from dinosaurs to marine plankton that characterizes the K/T boundary. Convincing evidence suggests that both the Ir spike and the extinction event were caused by the collision of a large bolide (>10 km in diameter) with the Earth1-11. Alternative explanations claim that extensive, violent volcanism12-14 can account for the Ir, and that other independent causes were responsible for the mass extinctions15,16. We surmise that the collision of a massive extraterrestrial object with the Earth may have produced a unique organic chemical signature because certain meteorites, and probably comets, contain organic compounds which are either rare or non-existent on the Earth17. In contrast, no organic compounds would be expected to be associated with volcanic processes. Here we find that K/T boundary sediments at Stevns Klint, Denmark, contain both α-amino-isobutyric acid [AIB, (CH3)2CNH2COOH] and racemic isovaline [ISOVAL, CH3CH2(CH3)CNH2COOH], two amino acids that are exceedingly rare on the Earth but which are major amino acids in carbonaceous chondrites17,18. An extraterrestrial source is the most reasonable explanation for the presence of these amino acids.

  5. Real World of Industrial Chemistry: Technology of the Rare Earths.

    ERIC Educational Resources Information Center

    Kremers, Howard E.

    1985-01-01

    The 17 rare earth elements account for one-fifth of the 83 naturally occurring elements and collectively rank as the 22nd most abundant "element." Properties of these elements (including their chemical similarity), their extraction from the earth, and their uses are discussed. (JN)

  6. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of redox processes in the mantle.

  7. Titanium Isotopes Link the High 3He/4He Reservoir to Continent Formation

    NASA Astrophysics Data System (ADS)

    Millet, M. A.; Jackson, M. G.; Dauphas, N.; Burton, K. W.; Williams, H. M.; Kurz, M. D.; Doucelance, R.; Smithies, H.; Champion, D. C.; Nowell, G. M.

    2016-12-01

    Elevated 3He/4He ratios found in ocean island basalts (OIB) argue for the survival of an early-formed reservoir (>4.5 Ga) in the Earth's mantle [1]. However, its nature remains debated. A characteristic of high 3He/4He OIBs is their anomalous enrichment in Ti abundance relative to elements of similar incompatibility (Sm and Tb). Here we use a new geochemical tool, the stable isotopes of Titanium, to investigate the origin of Ti enrichment of high 3He/4He OIBs. Recent work [2] has shown that Ti isotopes are a powerful tracer of oxide-melt equilibrium in magmatic systems. Results show that primitive OIB samples from localities associated with low 3He/4He ratios (≤15 R/Ra) have δ49Ti values within error of the mantle (δ49Ti=0.005±0.005 [2]) and chondrite values (+0.004±0.010 [3]) regardless of their Ti anomaly (0.93He/4He ratios (>25R/Ra) display δ49Ti values ranging from mantle-like to enriched in light isotopes (up to -0.065‰±0.005) that are negatively correlated with their Ti/Ti* and uncorrelated to indices of magma differentiation. This indicates that i) elevated Ti/Ti* in high 3He/4He OIBs is a mantle source signature and ii) that the high 3He/4He reservoir is enriched in light isotopes of Ti relative to the BSE. This enrichment in light isotopes is balanced by the heavy δ49Ti values and negative Ti/Ti* of Archean Tonalite-Throndhjemite-Granodiorite samples (TTG) from the Pilbara and Yilgarn Craton (+0.20<δ49Ti<+0.40), a proxy for early-formed, juvenile continental crust. Given the chondritic composition of the Earth's mantle and the inability of the typical mantle lithologies to fractionate Ti isotopes, this implies that the Ti enrichment of the high 3He/4He mantle reservoir is linked to the recycling of residues of partial melting events in the presence of rutile (TiO2), a process that drove continent formation in the Archean and possibly earlier. In addition, since these residues cannot display elevated 3He/4He ratios, it requires the Ti-He signature of the high 3He/4He reservoir is due to recycling of entire slab packages. [1] Rizo et al., Science, 2016 [2] Millet et al., EPSL, 2016 [3] Greber et al., LPSC, 2016

  8. [Physiological effects of rare earth elements and their application in traditional Chinese medicine].

    PubMed

    Zhou, Jie; Guo, Lanping; Xiao, Wenjuan; Geng, Yanling; Wang, Xiao; Shi, Xin'gang; Dan, Staerk

    2012-08-01

    The process in the studies on physiological effects of rare earth elements in plants and their action mechanisms were summarized in the aspects of seed germination, photosynthesis, mineral metabolism and stress resistance. And the applications of rare earth elements in traditional Chinese medicine (TCM) in recent years were also overviewed, which will provide reference for further development and application of rare earth elements in TCM.

  9. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  10. Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily).

    PubMed

    Varrica, D; Aiuppa, A; Dongarrà, G

    2000-05-01

    Major and trace element concentrations were determined in two lichen species (Parmelia conspersa and Xanthoria calcicola) from the island of Vulcano and all around Mt. Etna. In both areas, the average concentrations of Al, Ca, Mg, Fe, Na, K, P and Ti are substantially greater than those of other elements. Several elements (Br, Pb, Sb, Au, Zn, Cu) resulted enriched with respect to the local substrates. The Br and Pb enrichment factors turned out to be the highest among those calculated in both areas. Data indicate that mixing between volcanic and automotive-produced particles clearly explains the range of Pb/Br shown by lichen samples. Sb is also enriched, revealing a geogenic origin at Vulcano and a prevailing anthropic origin at Mt. Etna. Distribution maps of the enrichment factors show a generalized enrichment of Au and Zn near Mt. Etna, whereas Cu appears to be enriched prevalently in the NE-SE area. The highest levels of Au and Cu at Vulcano occur E-SE from the craters, following the prevailing wind direction.

  11. Composition of island arcs and continental growth.

    NASA Technical Reports Server (NTRS)

    Jakes, P.; White, A. J. R.

    1971-01-01

    Island arc volcanism has contributed and is still contributing to continental growth, but the composition of island arcs differs from that of the upper continental crust in its lower abundance of Si, K, Rb, Ba, Sr and light rare earth elements. In their advanced stage of evolution, island arcs contain more than 80% of tholeiitic and 15% of ?island arc' calc-alkaline rocks with varied SiO2 contents. The larger proportion of tholeiitic rocks is in the lower crustal levels. The high stratigraphical levels of the island arcs are composed of tholeiitic plus calc-alkaline and/or high potash (shoshonitic) associations with higher abundances of K, Rb, Sr, and Ba. Stratification of the island arc crust is accentuated by another type of calc-alkaline volcanism (Andean type) originating at a late stage of arc evolution, probably by partial melting at the base of the crust. This causes enrichment of the upper crust in K, Rb, Ba and REE and accounts for upper crustal abundances of these elements as well as of SiO2.

  12. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  13. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado

    USGS Publications Warehouse

    Verplanck, P.L.; Taylor, Howard E.; Nordstrom, D. Kirk; Barber, L.B.

    2005-01-01

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceutical, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban wastewater.

  14. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado.

    PubMed

    Verplanck, Philip L; Taylor, Howard E; Nordstrom, D Kirk; Barber, Larry B

    2005-09-15

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceuticals, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban wastewater.

  15. Iron Hill (Powderhorn) carbonatite complex, Gunnison County, CO - A potential source of several uncommon mineral resources

    USGS Publications Warehouse

    Van Gosen, B. S.; Lowers, H.A.

    2007-01-01

    The Iron Hill (Powderhorn) carbonatite complex is a 31-kM2 (12-sq mile) alkalic intrusion located about 35 km (22 miles) south-southwest of Gunnison, CO. The intrusion has been well studied and described because of its classic petrology and architecture ofa carbonatite-alkalic complex. The complex is also noteworthy because it contains enrichments of titanium, rare earth elements, thorium, niobium (columbium), vanadium and deposits of vermiculite and nepheline syenite. In particular, the complex is thought to host the largest titanium and niobium resources in the United States, although neither has been developed. It may be economic to extract multiple resources from this complex with a well-coordinated mine and mill plan.

  16. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2014-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  17. Experimental mineral/liquid partition coefficients of the rare earth elements /REE/, Sc and Sr for perovskite, spinel and melilite

    NASA Technical Reports Server (NTRS)

    Nagasawa, H.; Schreiber, H. D.; Morris, R. V.

    1980-01-01

    Experimental determinations of the mineral/liquid partition coefficients of REE (La, Sm, Eu, Gd, Tb, Yb and Lu), Sc and Sr are reported for the minerals perovskite, spinel and melilite in synthetic systems. Perovskite concentrates light REE with respect to the residual liquid but shows no preference for heavy REE. Spinel greatly discriminates against the incorporation of REE, especially light REE, into its crystal structure. The partition of REE into melilite from a silicate liquid is quite dependent upon both the bulk melt and melilite solid-solution (gehlenite and akermanite components) compositions. As such, melilite can be enriched in REE or will reject REE with corresponding strong negative or strong positive Eu anomalies, respectively.

  18. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  19. Mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Madhavaraju, J.; Pacheco-Olivas, S. A.; González-León, Carlos M.; Espinoza-Maldonado, Inocente G.; Sanchez-Medrano, P. A.; Villanueva-Amadoz, U.; Monreal, Rogelio; Pi-Puig, T.; Ramírez-Montoya, Erik; Grijalva-Noriega, Francisco J.

    2017-07-01

    Clay mineralogy and geochemical studies were carried out on sandstone and shale samples collected from the Sierra San José section of the Morita Formation to infer the paleoclimate and paleoweathering conditions that prevailed in the source region during the deposition of these sediments. The clay mineral assemblages (fraction < 2 μm) of the Sierra San José section are composed of chlorite and illite. The abundance of illite and chlorite in the studied samples suggest that the physical weathering conditions were dominant over chemical weathering. Additionally, the illite and chlorite assemblages reflect arid or semi-arid climatic conditions in the source regions. K2O/Al2O3 ratio of shales vary between 0.15 and 0.26, which lie in the range of values for clay minerals, particularly illite composition. Likewise, sandstones vary between 0.06 and 0.13, suggesting that the clay minerals are mostly kaolinte and illite types. On the chondrite-normalized diagrams, sandstone and shale samples show enriched light rare earth elements (LREE), flat heavy rare earth elements (HREE) patterns and negative Eu anomalies. The CIA and PIA values and A-CN-K plot of shales indicate low to moderate degree of weathering in the source regions. However, the sandstones have moderate to high values of CIA and PIA suggesting a moderate to intense weathering in the source regions. The SiO2/Al2O3 ratios, bivariate and ternary plots, discriminant function diagram and elemental ratios indicate the felsic source rocks for sandstone and shale of the Morita Formation.

  20. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, T.; Taylor, G.J.; Keil, T.K.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear thatmore » the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.« less

  1. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks

    NASA Astrophysics Data System (ADS)

    Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.

    2018-07-01

    We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere similar to, or lower than, the modern one, thus requiring other processes than a high pN2 to keep the Earth's surface warm despite a fainter Sun. The nitrogen isotope composition of the atmosphere at 3.3 Ga was already modern-like, attesting to inefficient nitrogen escape to space since that time.

  2. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  3. Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth

    PubMed Central

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-01-01

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The 176Lu−176Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day 176Hf/177Hf and 176Lu/177Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess 176Hf due to the accelerated decay of 176Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu−Hf system. Herein we report the first, to our knowledge, high-precision Lu−Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial 176Hf/177Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess 176Hf and accurately represent the Lu−Hf system of the bulk Earth (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  4. A baseline record of trace elements concentration along the beach placer mining areas of Kanyakumari coast, South India.

    PubMed

    Simon Peter, T; Chandrasekar, N; John Wilson, J S; Selvakumar, S; Krishnakumar, S; Magesh, N S

    2017-06-15

    Trace element concentration in the beach placer mining areas of Kanyakumari coast, South India was assessed. Sewage and contaminated sediments from mining sites has contaminated the surface sediments. Enrichment factor indicates moderately severe enrichment for Pb, minor enrichment for Mn, Zn, Ni, Fe and no enrichment for Cr and Cu. The Igeo values show higher concentration of Pb ranging in the scale of 3-4, which shows strong contamination due to high anthropogenic activity such as mining and terrestrial influences into the coastal regions. Correlation coefficient shows that most of the elements are associated with each other except Ni and Pb. Factor analysis reveals that Mn, Zn, Fe, Cr, Pb and Cu are having a significant loading and it indicates that these elements are mainly derived from similar origin. The cluster analysis clearly indicated that the mining areas are grouped under cluster 2 and non-mining areas are clustered under group 1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Petrogenesis of the Baishan granite stock, Eastern Tianshan, NW China: Geodynamic setting and implications for potential mineralization

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Lu, WeiWei; Deng, Gang

    2017-11-01

    Located in a region rich in Cu-Ni and Mo mineralization, the Baishan granitic stock is barren for reasons that remain enigmatic. Whole rock elemental and Sr-Nd isotope analysis, major element analysis of a number of minerals, and zircon trace element, U-Pb and Hf isotope analysis were undertaken in order to reveal the petrogenesis of the granites. All granites show typical I-type characteristics including metaluminous to slightly peraluminous, calc-alkaline signatures with a strong depletion of Nb, Ta, Ti and P, enrichment of light rare earth elements and large ion lithophile elements (e.g., Cs, Rb, Th, U, K). In addition, a strong depletion in Ti and P, highly fractionated light rare earth element patterns and less fractionated heavy rare earth element patterns, and negative correlations between SiO2 and TiO2, Al2O3, MgO, FeOT, P2O5, Zr and Hf suggest significant fractional crystallization of amphibole, apatite, zircon and Ti-bearing minerals. Whole rock Sr-Nd and zircon Hf isotopic compositions show wide variations with (87Sr/86Sr)i values of 0.70358 to 0.70505, εNd (t) of 3.8 to 7.2, and εHf (t) of 2.4 to 12.2 indicating derivation from partial melting of juvenile lower crust with obvious addition of ancient crust. Zircon U-Pb ages indicate a formation age of 292 Ma, significantly older than the ore-forming granite porphyry and slightly older than the regional mafic-ultramafic, A-type and diabase magmatism of Eastern Tianshan. The granite stocks were likely derived during heating of ascending asthenospheric mantle above a mantle plume in the Early Permian. Mineral chemistry, saturation thermometry, mineral species and whole rock Fe2O3/FeO ratios indicate a crystallization temperature of > 980 to 665 °C, pressure of 1.6 kbar and oxygen fugacity of ≤ NNO for the granite stock. Comparing the geochemistry, magma source and crystallization environment for the Early Permian barren granite and Late Triassic ore-related granite porphyry, the low ratios of Sr/Y and low (La/Yb)N, and reduced oxidation state (≤ NNO) in the granitic stock are signatures of infertility for the Early Permian granite. This study implies high Mo mineralization potential for granitic rocks with high Sr/Y, (La/Yb)N and highly oxidized conditions.

  6. Rare Earth Element Concentration of Wyoming Thermal Waters Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quillinan, Scott; Nye, Charles; Neupane, Hari

    Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.

  7. Nuclear reactor composite fuel assembly

    DOEpatents

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  8. Composition of Atmospheric Dust from Qatar in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Al-Ansi, M.; Paul, B.; Nelson, A.; Turner, J.; Murray, J. W.; Alfoldy, B. Z.; Mahfouz, M. M. K.; Giamberini, M.

    2015-12-01

    Samples of atmospheric dust from Qatar have been collected and analyzed for major and trace elemental composition. Twenty-one samples were collected in 2014 and 2015 from Doha, Al Khor, Katara, Sealine, and Al Waab by a variety of techniques. Some samples were collected during the megastorms that occurred in April 2015. Back trajectories were determined for each sample using the NOAA HYSPLIT model over a 50 hour time interval. Our samples were about equally divided between northerly (n=12; northern Saudi Arabia, Kuwait or Iraq) and southerly (n=8; SE Saudi Arabia, United Arab Emirates and Oman) sources. One sample originated directly westward, in Saudi Arabia. Samples were microwave-assisted total acid digested (HF+HCl+HNO3) and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). There are only 12 out of 23 elements for which the Qatari dust was enriched relative to upper continental crust (UCC). Calcium was especially enriched at 400% relative to UCC. About 33% of the total sample mass was CaCO3, reflecting the composition of surface rocks in the source areas. Of the elements typically associated with anthropogenic activity, Ag, Ni and Zn were the most enriched relative to UCC, with enrichment factors of 182%, 233% and 209%, respectively. Others like Pb and V were not significantly enriched, with enrichment factors of 25% and 3%, respectively. The major elements Al, Mn and Fe were depleted relative to UCC because of the strong enrichment in CaCO3, with enrichment factors of -58%, -35% and -45% respectively. We separately averaged the samples with northern and southern origins to see if composition could be used to identify source. Only three elements had a statistical difference. Pb and Na were higher in the samples from the Se while Cr was higher in those from the north.

  9. Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Maletic, E. L.; Darrah, T.

    2017-12-01

    Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.

  10. 2nd International Symposium on Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering (REES-2015)

    NASA Astrophysics Data System (ADS)

    Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna

    2016-01-01

    The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to publication of this proceeding.

  11. Paleo-environmental conditions of the Early Cambrian Niutitang Formation in the Fenggang area, the southwestern margin of the Yangtze Platform, southern China: Evidence from major elements, trace elements and other proxies

    NASA Astrophysics Data System (ADS)

    Li, Jin; Tang, Shuheng; Zhang, Songhang; Xi, Zhaodong; Yang, Ning; Yang, Guoqiao; Li, Lei; Li, Yanpeng

    2018-06-01

    The Precambrian/Cambrian transition was a key time in Earth history, especially for marine biological evolution and oceanic chemistry. The redox-stratification with oxic shallow water and anoxic (even euxinic) deeper water in the Early Cambrian Yangtze Sea, which gradually became completely oxygenated, has been suggested as a possible trigger for the "Cambrian explosion" of biological diversity. However, for some areas in northern Guizhou where the exploration and research are lacking, identifying this pattern of redox-stratification by paleo-environmental analysis from borehole data is still in need. Here, we report a remarkable variation range in trace elements (Mo, V, U, Ni, Th, Co, Sc, Zn and Cu), molar Corg:P ratios and pyrite morphology from 27 core samples from one new drill hole (XY1, located in the Fenggang area, northern Guizhou) on the Yangtze Platform, South China. High levels of Ba (from 3242 ppm to 33,800 ppm) and total organic carbon (TOC; from 4% to 9.36%) in 15 core samples in the Lower Member (LM) of the Niutitang Formation indicated elevated primary productivity in the study area. Redox change was recorded based on enrichment factors (EFs) for RSTEs (Mo, U, and V), redox proxies (V/(V + Ni), Ni/Co, V/Sc and Th/U), Corg:P ratios and particle size of framboidal pyrite. These signatures demonstrate that the LM was deposited under anoxic conditions with sulfidic episodes, whereas the Upper Member (UM) of the Niutitang Formation was deposited under suboxic/oxic conditions with intermittently anoxic episodes. Mo/TOC ratios (from 3.72 to 39.86, mean 18.76) suggest weak-moderate water mass restriction. Mo-U covariation patterns (strong but variable enrichment of Mo and U; MoEF ranging from 31.45 to 257.97; UEF ranging from 4.68 to 39.07) in the LM show alternation of particulate shuttling and redox conditions occurred in the Early Cambrian Yangtze Sea, whereas Mo-U covariation patterns (moderate Mo enrichment but depletion or non-enrichment of U; mean MoEF: 7.29; mean UEF: 0.95) in the UM may indicate the combined influence of particulate shuttling and diagenetic diffusion of U via bioactivities, which result in low U values and an anoxic signature from frambiodal pyrite particle size (mean: 4.556 μm; median: 4.41 μm). Additionally, excess Ba (Baxs) concentration (33,800 ppm and 32,500 ppm) and association patterns of trace-metal enrichment in the LM indicate the existence of submarine hydrothermal events. In addition, during deposition of the UM, bioactivities indicated by Mo-U systematics and oxic conditions indicated by redox sensitive trace elements (RSTEs) and multiple-proxies, may be a cause of biological diversification recorded in the Early Cambrian. Finally, data in this record a progressive transition from anoxic bottom waters with euxinic episodes to overwhelming oxic conditions during Early Cambrian.

  12. Rare earth element distributions in the West Pacific: Trace element sources and conservative vs. non-conservative behavior

    NASA Astrophysics Data System (ADS)

    Behrens, Melanie K.; Pahnke, Katharina; Paffrath, Ronja; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2018-03-01

    Recent studies suggest that transport and water mass mixing may play a dominant role in controlling the distribution of dissolved rare earth element concentrations ([REE]) at least in parts of the North and South Atlantic and the Pacific Southern Ocean. Here we report vertically and spatially high-resolution profiles of dissolved REE concentrations ([REE]) along a NW-SE transect in the West Pacific and examine the processes affecting the [REE] distributions in this area. Surface water REE patterns reveal sources of trace element (TE) input near South Korea and in the tropical equatorial West Pacific. Positive europium anomalies and middle REE enrichments in surface and subsurface waters are indicative of TE input from volcanic islands and fingerprint in detail small-scale equatorial zonal eastward transport of TEs to the iron-limited tropical East Pacific. The low [REE] of North and South Pacific Tropical Waters and Antarctic Intermediate Water are a long-range (i.e., preformed) laterally advected signal, whereas increasing [REE] with depth within North Pacific Intermediate Water result from release from particles. Optimum multiparameter analysis of deep to bottom waters indicates a dominant control of lateral transport and mixing on [REE] at the depth of Lower Circumpolar Deep Water (≥3000 m water depth; ∼75-100% explained by water mass mixing), allowing the northward tracing of LCDW to ∼28°N in the Northwest Pacific. In contrast, scavenging in the hydrothermal plumes of the Lau Basin and Tonga-Fiji area at 1500-2000 m water depth leads to [REE] deficits (∼40-60% removal) and marked REE fractionation in the tropical West Pacific. Overall, our data provide evidence for active trace element input both near South Korea and Papua New Guinea, and for a strong lateral transport component in the distribution of dissolved REEs in large parts of the West Pacific.

  13. Timing of pyroxenite formation in supra-subduction Josephine Ophiolite, Oregon.

    NASA Astrophysics Data System (ADS)

    Hough, T.; Le Roux, V.; Kurz, M. D.

    2017-12-01

    The Josephine ophiolite is a partly dismembered ophiolite located in southern Oregon and northwestern California (USA). It displays a large ( 640 km2) mantle section that is mostly composed of depleted spinel harzburgite and lherzolite re-equilibrated at temperatures of 900 °C. In addition, the peridotite section of the ophiolite contains minor dunites and pyroxenite veins ranging from orthopyroxenites to clinopyroxenites. Using field, petrological and geochemical data, previous studies have shown that the peridotite experienced 10-20% of hydrous flux melting. In addition, clinopyroxene and orthopyroxene in harzburgites show variable degrees of light rare-earth element (LREE) enrichment, which suggests percolation and re-equilibration with small fractions of boninite melt. Overall, the trace element concentrations of pyroxenes indicate that the harzburgites experienced particularly high degrees of melting in the mantle wedge. We collected a number of orthopyroxenite and clinopyroxenite veins in the mantle section of the Josephine Ophiolite. Here we present the major and rare-earth element (REE) contents of pyroxene in 4 orthopyroxenites and 2 clinopyroxenites and calculate the major element and REE closure temperatures for individual veins. We show that individual pyroxenites record drastic variations in their degree of REE depletion, indicating that multiple generations of melts percolated the peridotite. The pyroxenite veins also record higher REE closure temperatures (>1200 ºC) compared to the surrounding peridotite, potentially indicating rapid cooling after emplacement. REE closure temperatures are also higher than major element closure temperatures. In parallel, we analyzed Sr isotopes by MC-ICPMS in pyroxene separates from 4 veins. Results indicate that the maximum age of emplacement of orthopyroxenite veins corresponds to the age of exhumation. Some clinopyroxenites may have formed during earlier melt percolation events. This study supports the idea that the composition of melts that percolate the mantle wedge can be highly variable and that orthopyroxenites may be the last type of veins to form in those environments.

  14. Two main and a new type rare earth elements in Mg alloys: A review

    NASA Astrophysics Data System (ADS)

    Kong, Linghang

    2017-09-01

    Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.

  15. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Pettke, Thomas; Cannaò, Enrico

    2015-11-01

    Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 103 PM (primitive mantle), ∼102 PM Tl, Ba, while Rb, B, Sr, Li, U concentrations are of the order of 101 PM, and alkalis are ∼2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.

  16. Hubble Admires a Youthful Globular Star Cluster

    NASA Image and Video Library

    2017-12-08

    Hubble sees an unusal global cluster that is enriching the interstellar medium with metals Globular clusters offer some of the most spectacular sights in the night sky. These ornate spheres contain hundreds of thousands of stars, and reside in the outskirts of galaxies. The Milky Way contains over 150 such clusters — and the one shown in this NASA/ESA Hubble Space Telescope image, named NGC 362, is one of the more unusual ones. As stars make their way through life they fuse elements together in their cores, creating heavier and heavier elements — known in astronomy as metals — in the process. When these stars die, they flood their surroundings with the material they have formed during their lifetimes, enriching the interstellar medium with metals. Stars that form later therefore contain higher proportions of metals than their older relatives. By studying the different elements present within individual stars in NGC 362, astronomers discovered that the cluster boasts a surprisingly high metal content, indicating that it is younger than expected. Although most globular clusters are much older than the majority of stars in their host galaxy, NGC 362 bucks the trend, with an age lying between 10 and 11 billion years old. For reference, the age of the Milky Way is estimated to be above 13 billion years. This image, in which you can view NGC 362’s individual stars, was taken by Hubble’s Advanced Camera for Surveys (ACS). Credit: ESA/Hubble& NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan

    USGS Publications Warehouse

    Zielinski, R.A.; Al-Hwaiti, M. S.; Budahn, J.R.; Ranville, J.F.

    2011-01-01

    Voluminous stockpiles of phosphogypsum (PG) generated during the wet process production of phosphoric acid are stored at many sites around the world and pose problems for their safe storage, disposal, or utilization. A major concern is the elevated concentration of long-lived 226Ra (half-life = 1,600 years) inherited from the processed phosphate rock. Knowledge of the abundance and mode-of-occurrence of radium (Ra) in PG is critical for accurate prediction of Ra leachability and radon (Rn) emanation, and for prediction of radiation-exposure pathways to workers and to the public. The mean (??SD) of 226Ra concentrations in ten samples of Jordan PG is 601 ?? 98 Bq/kg, which falls near the midrange of values reported for PG samples collected worldwide. Jordan PG generally shows no analytically significant enrichment (< 10%) of 226Ra in the finer (< 53 ??m) grain size fraction. Phosphogypsum samples collected from two industrial sites with different sources of phosphate rock feedstock show consistent differences in concentration of 226Ra and rare earth elements, and also consistent trends of enrichment in these elements with increasing age of PG. Water-insoluble residues from Jordan PG constitute <10% of PG mass but contain 30-65% of the 226Ra. 226Ra correlates closely with Ba in the water-insoluble residues. Uniformly tiny (< 10 ??m) grains of barite (barium sulfate) observed with scanning electron microscopy have crystal morphologies that indicate their formation during the wet process. Barite is a well-documented and efficient scavenger of Ra from solution and is also very insoluble in water and mineral acids. Radium-bearing barite in PG influences the environmental mobility of radium and the radiation-exposure pathways near PG stockpiles. ?? 2010 US Government.

  18. Microscale Characterization and Trace Element Distribution in Bacteriogenic Ferromanganese Coatings on Sand Grains from an Intertidal Zone of the East China Sea

    PubMed Central

    Yuan, Linxi; Sun, Liguang; Fortin, Danielle; Wang, Yuhong; Yin, Xuebin

    2015-01-01

    An ancient wood layer dated at about 5600 yr BP by accelerator mass spectrometry (AMS) 14C was discovered in an intertidal zone of the East China Sea. Extensive and horizontally stratified sediments with black color on the top and yellowish-red at the bottom, and some nodule-cemented concretions with brown surface and black inclusions occurred in this intertidal zone. Microscale analysis methods were employed to study the microscale characterization and trace element distribution in the stratified sediments and concretions. Light microscopy, scanning electron microscopy (SEM) and backscattered electron imaging (BSE) revealed the presence of different coatings on the sand grains. The main mineral compositions of the coatings were ferrihydrite and goethite in the yellowish-red parts, and birnessite in the black parts using X-ray powder diffraction (XRD). SEM observations showed that bacteriogenic products and bacterial remnants extensively occurred in the coatings, indicating that bacteria likely played an important role in the formation of ferromanganese coatings. Post-Archean Australian Shale (PAAS)-normalized middle rare earth element (MREE) enrichment patterns of the coatings indicated that they were caused by two sub-sequential processes: (1) preferentially release of Fe-Mn from the beach rocks by fermentation of ancient woods and colloidal flocculation in the mixing water zone and (2) preferential adsorption of MREE by Fe-Mn oxyhydroxides from the seawater. The chemical results indicated that the coatings were enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Ba, especially with respect to Co, Ni. The findings of the present study provide an insight in the microscale features of ferromanganese coatings and the Fe-Mn biogeochemical cycling during the degradation of buried organic matter in intertidal zones or shallow coasts. PMID:25786213

  19. Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth's mantle

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van Summeren, J.; van der Hilst, R. D.; van den Berg, A. P.; Vlaar, N. J.

    Seismic tomography is providing mounting evidence for large scale compositional heterogeneity deep in Earth's mantle; also, the diverse geochemical and isotopic signatures observed in oceanic basalts suggest that the mantle is not chemically homogeneous. Isotopic studies on Archean rocks indicate that mantle inhomogeneity may have existed for most of the Earth's history. One important component may be recycled oceanic crust, residing at the base of the mantle. We investigate, by numerical modeling, if such reservoirs may have been formed in the early Earth, before plate tectonics (and subduction) were possible, and how they have survived—and evolved—since then. During Earth's early evolution, thick basaltic crust may have sunk episodically into the mantle in short but vigorous diapiric resurfacing events. These sections of crust may have resided at the base of the mantle for very long times. Entrainment of material from the enriched reservoirs thus produced may account for enriched mantle and high-μ signatures in oceanic basalts, whereas deep subduction events may have shaped and replenished deep mantle reservoirs. Our modeling shows that (1) convective instabilities and resurfacing may have produced deep enriched mantle reservoirs before the era of plate tectonics; (2) such formation is qualitatively consistent with the geochemical record, which shows multiple distinct ocean island basalt sources; and (3) reservoirs thus produced may be stable for billions of years.

  20. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    NASA Astrophysics Data System (ADS)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  1. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    PubMed Central

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339

  2. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets.

    PubMed

    Li, Ling; Tirado, Angelica; Nlebedim, I C; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R R; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A; Paranthaman, M Parans

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3 , and the room temperature magnetic properties are: intrinsic coercivity H ci  = 688.4 kA/m, remanence B r  = 0.51 T, and energy product (BH) max  = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  3. Big area additive manufacturing of high performance bonded NdFeB magnets

    DOE PAGES

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; ...

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less

  4. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China.

    PubMed

    Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin

    2017-12-01

    The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg -1 , with an average of 115.9 mg kg -1 , which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.

  5. Big area additive manufacturing of high performance bonded NdFeB magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less

  6. Origin and timescale of volatile element depletion in crustal and mantle reservoirs

    NASA Astrophysics Data System (ADS)

    Moynier, Frederic; Day, James M. D.

    2014-05-01

    Volatile elements play a fundamental role in the evolution of planets. Understanding of how volatile budgets were set in planets, and how and to what extent planetary bodies became volatile-depleted during the earliest stages of Earth and Solar System formation remain poorly understood, however. It has been proposed that the depletion is due to incomplete condensation (volatile elements were not there in the first place, in which case the timing would have to be fast, <1Myr), or that planetary bodies lost volatile elements through evaporation (post-accretion volatilization). Volatilization is known to fractionate isotopes, thus comparing isotope ratios of volatile element between samples is a powerful tool for understanding the origin of volatile element abundance variations. For example, recent work has shown that lunar basalts are enriched in the heavier isotopes of Zn (~1 ‰ for 66Zn/64Zn) compared to chondrites, terrestrial and martian basalts. We will discuss these Zn isotopic data of crustal and mantle rocks, as well as other stable isotopic systems (e.g., Si) in relation with the giant impact theory of lunar origin, as well as the lunar magma ocean and expand to other parent bodies (e.g., angrites). The timescale of depletion in volatile elements of Solar System material is estimated by using radiogenic systems for which the parent and daughter elements have different volatility. Here we focus on the Rb-Sr and Mn-Cr isotopic systems and discuss the timescales and implications for the origin of volatile element depletion (solar nebula stage vs. planetary stage).

  7. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    NASA Astrophysics Data System (ADS)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as part of this study. Red muds from these deposits contain on average 900 ppm REE compared with typical values of <100 ppm to ~500 ppm REE in the bauxites. Extraction of REE from red muds has been shown to be feasible [5,7] although it is challenging due to the heterogeneous spatial distribution of REE in the primary bauxite deposits [8], an unclear understanding of the mobility of REE in red mud tailings ponds, and the need for development of appropriate processing methods. However, the resource potential of red muds in Europe is significant with approximately 3.5 Mt of bauxite ore extracted in 2012 [2], resulting in approximately 1.4 Mt of red mud from the production of alumina. In addition a large volume of stockpiled red muds exists from historical processing of bauxites, the total of which is not well constrained. Understanding the REE potential of both bauxites and red muds is integral to an assessment of European REE resources. References [1] European Commission, "Report on critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials". May 2014. [2] T. Brown, N. Idoine, E. Raycraft, R. Shaw, E. Deady, J. Rippingale, T. Bide, C. Wrighton, J. Rodley, "World Mineral Production 2008-12" British Geological Survey, Keyworth, Nottingham, 2014. [3] Z. Maksimović and G. Pantó, "Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits". In: A.P. Jones, F. Wall and C.T. Williams, Rare earth minerals, chemistry, origin and ore deposits, Chapter 10, pp. 257-279, 1996. [4] G. Bárdossy, "Karst Bauxites, Bauxite Deposits on Carbonate Rocks". Elsevier, 444pp, 1982. [5] M. Ochsenkühn-Petropoulou, T. Lyberopoulou, and G. Parissakis, "Direct determination of lanthanides, yttium and scandium in bauxites and red mud from alumina production", Analytica Chimica Acta, vol. 296, no. 3, pp. 305-313, October 1994. [6] É. Deady, E. Mouchos, K. Goodenough, B. Williamson and F. Wall. "Rare Earth Elements in Karst-Bauxites: a Novel Untapped European Resource?" ERES 1st European Rare Earth Resources conference, Milos, Greece, (5-6/09/2014). [7] A. Wagh and W. Pinnock, "Occurrence of scandium and rare earth elements in Jamaican bauxite waste", Economic Geology, vol. 82, no. 3, pp. 757-761, May 1987. [8] G. Mongelli, "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)", Chemical Geology, vol. 140, no. 1, pp. 69-79, June 1997. Additional resources: www.eurare.eu; www.redmud.org.

  8. Correlated microanalysis of zircon: Trace element, δ 18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains

    NASA Astrophysics Data System (ADS)

    Cavosie, Aaron J.; Valley, John W.; Wilde, Simon A.; E. I. M. F.

    2006-11-01

    The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ˜20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ 18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ 18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of La N > 1 and Pr N > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth's history.

  9. Evidence for a single impact at the Cretaceous-Tertiary boundary from trace elements

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Anders, Edward

    1988-01-01

    Not only meteoritic elements (Ir, Ni, Au, Pt metals), but also some patently non-meteoritic elements (As, Sb) are enriched at the K-T boundary. Eight enriched elements at 7 K-T sites were compared and it was found that: All have fairly constant proportions to Ir and Kilauea (invoked as an example of a volcanic source of Ir by opponents of the impact theory) has too little of 7 of these 8 elements to account for the boundary enrichments. The distribution of trace elements at the K-T boundary was reexamined using data from 11 sites for which comprehensive are available. The meteoritic component can be assessed by first normalizing the data to Ir, the most obviously extraterrestrial element, and then to Cl chondrites. The double normalization reduces the concentration range from 11 decades to 5 and also facilitates the identification of meteoritic elements. At sites where trace elements were analyzed in sub-divided samples of boundary clay, namely, Caravaca (SP), Stevns Klint (DK), Flaxbourne River (NZ) and Woodside Creek (NZ), Sb, As and Zn are well correlated with Ir across the boundary implying a common deposition mechanism. Elemental carbon is also enriched by up to 10,000 x in boundary clay from 5 K-T sides and is correlated with Ir across the boundary at Woodside Creek. While biomass would appear to be the primary fuel source for this carbon a contribution from a fossil fuel source may be necessary in order to account for the observed C abundance.

  10. Leaching behavior of rare earth elements in Fort Union lignite coals of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane

    Rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from amore » single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for rare earth element recovery. The abundance, distribution and modes of occurrence of the rare earth elements in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the rare earth elements. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high rare earth element levels exist both in lignite coals and associated sediments. The form of the rare earth elements in the clay materials is primarily as ultra-fine mineral grains. In the lignite coals, approximately 80-95% of the rare earths content is organically associated, primarily as coordination complexes.« less

  11. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    USGS Publications Warehouse

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base- and precious-metal-bearing, silica-Fe-oxide-barite deposit. Such deposits are commonly spatially and temporally associated with volcanogenic massive sulfide (VMS) ores. A plot of data for pathfinder elements shows a large hot spot at the northwestern margin of the field, which may mark a region where moderate to high temperature sulfide deposits are forming at depth; further exploration of the hydrothermal field to the northwest is warranted.

  12. Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa

    NASA Astrophysics Data System (ADS)

    Vatin-Perignon, N.; Poupeau, G.; Oliver, R. A.; La Venu, A.; Labrin, F.; Keller, F.; Bellot-Gurlet, L.

    1996-03-01

    Trace-element and REE data of glass and pumices of acidic tuffs and related fall deposits erupted in southern Peru and northern Bolivia between 20 and 0.36 Ma display typical characteristics of subduction related continental arc magmatism of the CVZ with strong LILE/HFSE enrichment and non enrichment of HREE and Y. Geochemical variations of these tuffs are linked to subduction processes and controlled by changes in tectonic regimes which occured with each Quechua tectonic pulse and affected the astenospheric wedge and both the dowgoing and the overriding lithospheres. During Neogene — Pleistocene times, tuffs erupted in northern Bolivia are typically enriched in Zr, Hf, Th, Ba, LREEs and other incompatible elements and incompatible /Yb ratios are much higher relative to those erupted from southern Peru, at a given SiO 2 content (65-67 wt. for dacites, 72-73 wt.% for rhyolites). {Zr}/{Hf} ratios increase eastward from 27 to 30 and {Ce}/{Yb N} ratios from 11 to 19 reflecting the variation of degree of wedge contribution. Fractionation of the LREE over the HREE and fractionation of incompatible elements may be due to their heterogeneous distribution in the magma source. More highly fractionated REE patterns of Bolivian tuffs than Peruvian tuffs are attributed to variable amounts of contamination of magmas by lower crust. After the Quechua compressional event at 7 Ma, {Sr}/{Y} ratios of tuffs of the same age, erupted at 150-250 km or 250-400 km from the Peru-Chile trench, increase from southern Peru to northern Bolivia. These differences may be attributed to the subduction of a swarm oceanic lithosphere under the Bolivian Alti-plano, leading to partial melting of the sudbucted lithosphere. New FT dating of obsidian fragments of the sillar of Arequipa at 2.42 ± 0.11 Ma. This tuff dates the last Quechua compressional upper Pliocene phase ( 2.5 Ma) and confirms that the sillar is not contemporaneous with the Toba 76 tuff or the Perez ignimbrite of northern Bolivia. Geochemical characteristics of tuffs erupted before and after this last compressional phase remained the same and provide evidence that the upper Miocene ( 7 Ma) compressional deformations played the most important role on the variability of the geochemical characteristics of the southern Peruvian and northern Bolivian tuffs.

  13. Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide.

    PubMed

    Westerhoff, Paul; Lee, Sungyun; Yang, Yu; Gordon, Gwyneth W; Hristovski, Kiril; Halden, Rolf U; Herckes, Pierre

    2015-08-18

    U.S. sewage sludges were analyzed for 58 regulated and nonregulated elements by ICP-MS and electron microscopy to explore opportunities for removal and recovery. Sludge/water distribution coefficients (KD, L/kg dry weight) spanned 5 orders of magnitude, indicating significant metal accumulation in biosolids. Rare-earth elements and minor metals (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) detected in sludges showed enrichment factors (EFs) near unity, suggesting dust or soils as likely dominant sources. In contrast, most platinum group elements (i.e., Ru, Rh, Pd, Pt) showed high EF and KD values, indicating anthropogenic sources. Numerous metallic and metal oxide colloids (<100-500 nm diameter) were detected; the morphology of abundant aggregates of primary particles measuring <100 nm provided clues to their origin. For a community of 1 million people, metals in biosolids were valued at up to US$13 million annually. A model incorporating a parameter (KD × EF × $Value) to capture the relative potential for economic value from biosolids revealed the identity of the 13 most lucrative elements (Ag, Cu, Au, P, Fe, Pd, Mn, Zn, Ir, Al, Cd, Ti, Ga, and Cr) with a combined value of US $280/ton of sludge.

  14. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina.

    PubMed

    Hissler, Christophe; Stille, Peter; Krein, Andreas; Geagea, Majdi Lahd; Perrone, Thierry; Probst, Jean-Luc; Hoffmann, Lucien

    2008-11-01

    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.

  15. The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism

    NASA Astrophysics Data System (ADS)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Rivalenti, Giorgio; Vannucci, Riccardo

    The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN=8-17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270)=0.7055-0.7093), low radiogenic Nd (ɛNd(270)=-1 to -3) and EMII-like Pb isotopes. Two pyroxenite - peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN 16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration 1.9 (Sr) to 7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) arelower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of ``carbonatite'' metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr=0.7-0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust.

  16. Evaluating Crustal Contamination Effects On The Lithophile Trace Element Budget Of Shergottites, NWA 856 As A Test Case

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Ferdous, J.; Peslier, A. H.

    2017-01-01

    The issue of whether crustal contamination has affected the lithophile trace element budget of shergottites has been a point of contention for decades. The evaluation has focused on the enriched shergottite compositions as an outcome of crustal contamination of mantle-derived parent magmas or, alternatively, the compositions of these stones reflect an incompatible trace element (ITE) enriched mantle source.

  17. Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy

    USGS Publications Warehouse

    Ayuso, R.A.; de Vivo, B.; Rolandi, G.; Seal, R.R.; Paone, A.

    1998-01-01

    Alkaline volcanism produced by Monte Somma-Vesuvius volcano includes explosive plinian and subplinian activity in addition to effusive lava flows. Pumice, scoria, and lava (150 samples) exhibit major- and trace-element gradients as a function of SiO2 (58.9-47.2 wt%) and MgO (0-7.8 wt%); Mg value are ???50. Internally gradational chemical groups or cycles are distinguished by age: (1) 25 000 to 14 000 yr B.P.; (2) 8000 yr B.P. to A.D. 79; and (3) A.D. 79 to 1944. A small number of lavas, dikes and scora were also analysed from the Somma formation (~ 35 000 to 25 000 yr B.P.). Within each group, contents of Na2O + K2O increas with decreasing MgO along distinct rocks. Nb/Y values are variable from 0.66 to 3.14 (at SiO2 ??? 50 wt%) generally in the range of alkaline and ultra-alkaline rocks. Variations in contents of some majro elements (e.g., P and Ti), and trace elements (e.g., Th, Nb, Ta, Zr, Hf, Pb, La, and Sc), as well as contrasting trends in ratios of various elements (e.g., Ta/Yb, Hf/U, Th/Ta, Th/Hf, Th/Yb, etc.) are also generally consistent with the group subdivisions. For example, Th/Hf increases from ??? 5 to ??? 10 with decreasing age for the Vesuvius system as a whole, yielding similar compositions in the least evolved rocks (low-silica, high-MgO, imcompatible element-poor) erupted at the end of each cycle. Internal variations within individual eruptions also systematically changed generally towards a common mafic composition at the end of each cycle, thus reflecting the dominanit volume in the magma chamber. At the start of a new eruptive cycle, the rocks are relatively enriched in incompatible elements; younger groups also contain higher abundances than other groups. N-MORB-normalized multielement diagrams exhibit selective enrichments of Sr, K, Rb, Th, and the light rare-earth elements; deep Nb and Ta negative anomalies commonly seen in rocks generated at orogenic margins are absent in the light rare-earth elements; deep Nb and Ta netgative anomalies commonly seen in rocks generated at orogenic margins are absent in our samples. Sr isotopic compositions are known to be variable within some of the units, in agreement with our data (87Sr/86Sr ~ 0.70699 to 0.70803) and with contributions from several isotopic components. Isotopic compositions for ??18O (7.3 to 10.2%), Pb for mineral separates and whole rocks (206Pb/204Pb ~ 18.947 to 19.178, 207Pb/204/Pb ~ 15.617 to 15.769, 208Pb/204Pb ~38.915 to 39.345), and Nd (143Nd ~ 0.51228 to 0.51251) also show variability. Oxygen isotope data show that pumices have higher ??18O values than cogenetic lavas, and that ??18O values and SiO2 are correlated. Radiogenic and stable isotope data plot within range of isotopic compositions for the Roman comagmatic province. Fractional crystallization cannot account for the radiogenic isotopic compositions of the Vesuvius magmas. We favor instead the combined effects of heterogeneous magma sources, together with isotopic exchange near the roof of the magma chamber. We suggest that metasomatized continental mantle lithosphere is the principal source of the magmas. This kind of enriched mantle was melted and reactivated in an area of continental extension (incipient rift setting) without direct reliance on contemporaneous subduction processes but possibly with input from mantle sources that resemble those that produce ocean island basalts.

  18. Provenance, Source Rock Characteristics And Paleoweathering Conditions Of The Nearshore Continental Sediments Off Pondicherry, South East Coast Of India

    NASA Astrophysics Data System (ADS)

    Natarajan, T.; Seshachalam, S.; Ponniah, J.; Varadhan, R.; M, S.

    2008-05-01

    Geochemical studies, comprising major elements and trace elements, including the Rare Earth Elements (REE), have been carried out on the modern sediments of inner continental shelf representing nearshore marine environments. Concentrations were normalized with Chondrite and PAAS show LREE enriched and flat HREE patterns with slight positive Eu anomaly which is due to the influence of feldspar rich source materials. The LREE enriched and flat HREE patterns with positive Eu anomaly have been considered as the typical character of post- Archaean Sediments. The La/Th ratio ranges from 1.66 to 8.84 with an average value of 4.09, which indicates a heterogenitic source for the sediments of the study area. The La-Th-Sc ternary plot suggests all the samples fall close to the field dominated by tonalite to granite and away from the basalt and komatiite compositions and appear to be derived from sources enriched in felsic components. The transition metal ratios such as Cr/V, Ni/CO and V/Ni indicate both Archaean and Post-Archaean nature to the sediments indicating that the sediments have been derived from heterogenitic sources. The ternary diagram plot of Th-Hf-Co and La-Th-Sc falls in the field of upper continental crust of post Archaean age. This clearly indicates the terrestrial source for the sediments from the nearby landmass. The data are slightly offset from the upper crustal composition away from the Hf apex. This is probably a result of Zircon concentration. Geochemical data have also helped in ascertaining the weathering trends. The Chemical Index of Alteration (CIA) has been used to quantify the degree of weathering. The calculated CIA values for sediments demonstrate both low CIA values of less than 50 percent (low silicate weathering) and intermediate CIA values (60-70 percent) indicating that the sediments are possibly the product of sedimentary and metasedimentary rocks that have undergone intermediate chemical weathering. On an A—CN—K diagram, the data fall closer to the trend parallel to Al2O3 (CaO*+Na2O) join, suggesting that the sediments represent weathered products from granite and charnockite.

  19. Evolution of the upper mantle beneath the southern Baikal rift zone: an Sr-Nd isotope study of xenoliths from the Bartoy volcanoes

    NASA Astrophysics Data System (ADS)

    Ionov, D. A.; Kramm, U.; Stosch, H.-G.

    1992-06-01

    Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.

  20. [Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].

    PubMed

    Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng

    2015-11-01

    In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha.

  1. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements

    NASA Astrophysics Data System (ADS)

    Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru

    2011-08-01

    World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.

  2. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition

    DOE PAGES

    Burkhardt, C.; Borg, L. E.; Brennecka, G. A.; ...

    2016-09-14

    A long-standing paradigm assumes that the chemical and isotopic compositions of many elements in the bulk silicate Earth are the same as in chondrites(1-4). But, the accessible Earth has a greater Nd-142/Nd-144 ratio than do chondrites. Because Nd-142 is the decay product of the now-extinct Sm-146 (which has a half-life of 103 million years(5)), this Nd-142 difference seems to require a higher-than-chondritic Sm/Nd ratio for the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation(6) and implies the formation of a complementary Nd-142-depleted reservoir that either is hiddenmore » in the deep Earth(6), or lost to space by impact erosion(3,7). Whether this complementary reservoir existed, and whether or not it has been lost from Earth, is a matter of debate(3,8,9), and has implications for determining the bulk composition of Earth, its heat content and structure, as well as for constraining the modes and timescales of its geodynamical evolution(3,7,9,10). We show that, compared with chondrites, Earth's precursor bodies were enriched in neodymium that was produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher Nd-142/Nd-144 ratios; after correction for this effect, the Nd-142/Nd-144 ratios of chondrites and the accessible Earth are indistinguishable within five parts per million. The Nd-142 offset between the accessible silicate Earth and chondrites therefore reflects a higher proportion of s-process neodymium in the Earth, and not early differentiation processes. Our results obviate the need for hidden-reservoir or super-chondritic Earth models and imply a chondritic Sm/Nd ratio for the bulk Earth. Although chondrites formed at greater heliocentric distances and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth's bulk chemical composition.« less

  3. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhardt, C.; Borg, L. E.; Brennecka, G. A.

    A long-standing paradigm assumes that the chemical and isotopic compositions of many elements in the bulk silicate Earth are the same as in chondrites(1-4). But, the accessible Earth has a greater Nd-142/Nd-144 ratio than do chondrites. Because Nd-142 is the decay product of the now-extinct Sm-146 (which has a half-life of 103 million years(5)), this Nd-142 difference seems to require a higher-than-chondritic Sm/Nd ratio for the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation(6) and implies the formation of a complementary Nd-142-depleted reservoir that either is hiddenmore » in the deep Earth(6), or lost to space by impact erosion(3,7). Whether this complementary reservoir existed, and whether or not it has been lost from Earth, is a matter of debate(3,8,9), and has implications for determining the bulk composition of Earth, its heat content and structure, as well as for constraining the modes and timescales of its geodynamical evolution(3,7,9,10). We show that, compared with chondrites, Earth's precursor bodies were enriched in neodymium that was produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher Nd-142/Nd-144 ratios; after correction for this effect, the Nd-142/Nd-144 ratios of chondrites and the accessible Earth are indistinguishable within five parts per million. The Nd-142 offset between the accessible silicate Earth and chondrites therefore reflects a higher proportion of s-process neodymium in the Earth, and not early differentiation processes. Our results obviate the need for hidden-reservoir or super-chondritic Earth models and imply a chondritic Sm/Nd ratio for the bulk Earth. Although chondrites formed at greater heliocentric distances and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth's bulk chemical composition.« less

  4. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence.

    PubMed

    Aouad, Georges; Stille, Peter; Crovisier, Jean-Louis; Geoffroy, Valérie A; Meyer, Jean-Marie; Lahd-Geagea, Majdi

    2006-11-01

    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. (87)Sr/(86)Sr and (143)Nd/(144)Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere.

  5. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  6. Analysis of soil samples from Gebeng area using NAA technique

    NASA Astrophysics Data System (ADS)

    Elias, Md Suhaimi; Wo, Yii Mei; Hamzah, Mohd Suhaimi; Shukor, Shakirah Abd; Rahman, Shamsiah Ab; Salim, Nazaratul Ashifa Abdullah; Azman, Muhamad Azfar; Hashim, Azian

    2017-01-01

    Rapid development and urbanization will increase number of residence and industrial area. Without proper management and control of pollution, these will give an adverse effect to environment and human life. The objective of this study to identify and quantify key contaminants into the environment of the Gebeng area as a result of industrial and human activities. Gebeng area was gazetted as one of the industrial estate in Pahang state. Assessment of elemental pollution in soil of Gebeng area base on level of concentration, enrichment factor and geo-accumulation index. The enrichment factors (EFs) were determined by the elemental rationing method, whilst the geo-accumulation index (Igeo) by comparing of current to continental crustal average concentration of element. Twenty-seven of soil samples were collected from Gebeng area. Soil samples were analysed by using Neutron Activation Analyses (NAA) technique. The obtained data showed higher concentration of iron (Fe) due to abundance in soil compared to other elements. The results of enrichment factor showed that Gebeng area have enrich with elements of As, Br, Hf, Sb, Th and U. Base on the geo-accumulation index (Igeo) classification, the soil quality of Gebeng area can be classified as class 0, (uncontaminated) to Class 3, (moderately to heavily contaminated).

  7. Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed)

    NASA Astrophysics Data System (ADS)

    Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François

    2014-04-01

    Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some aspects of the behavior of trace elements in soil solutions and in the soil profile but, also the competition between trace elements in complexation with DOC. The results of this study are important for the understanding of the mobility and the migration of pollutants (as heavy metals or radionuclides) as well as nutrients in natural ecosystems. WE PrN/YbN is constant between 3 and 16 cm depth whereas SS PrN/YbN slightly decreases from 0.80 at 5 cm depth to 0.74 at 10 cm depth. This results from Pr (LREE) enrichment in the soil solution of the upper soil compartment caused by vegetation controlled LREE recycling and/or atmospheric depositions (see above). WE PrN/YbN and SS PrN/YbN show similar depth dependent distributions including the enrichment at 30 cm depth. It results from Yb depletion at this depth and enrichment in the deeper soil compartment compared to Pr. Similar to Marsac et al. (2012, 2013) one might suggest that there is competition between Fe3+, Al3+ and REE for the binding with DOC. They have a high affinity with the same organic functional groups which is confirmed by the classification scheme (Fig. 8). The studies of Marsac et al. suggest that at acidic pH and low metal/DOC ratios, Fe3+and Al3+ compete more with HREE than LREE; moreover, at high metal/DOC ratios and acidic pH, Al3+ competes with LREE. The Fig. 13 showing the variations of WECEN for Al and Fe in function of WECEN LREE and HREE confirms Marsac et al.’s observations. The slope of the extrapolation line resulting from WECEN Al and HREE values remains rather unchanged for the OM depleted and enriched soil compartments; thus, the change in the metal/DOC ratio in the soil does not change the extraction behavior of Al and HREE. However, the WECEN Fe strongly increase compared to the corresponding HREE values in the OM enriched compartment pointing to the competition between Fe and HREE. Alternatively, one observes that the WECEN Fe and LREE values in the OM enriched compartment plot on the extrapolation line derived from OM depleted soil samples. Thus, in this case, the change in the metal/DOC ratio does not affect the extraction behavior of Fe and LREE. However, the WECEN values for Al and corresponding LREE of samples from the OM enriched soil compartment plot below the extrapolation line and point to the competition between Al and LREE. These results are also in agreement with the REE distribution pattern of the soil solutions from the same site which are at greater depth LREE depleted (Stille et al., 2009).

  8. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    NASA Astrophysics Data System (ADS)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  9. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.

  10. Trace elements in garnet reveal multiple fluid pulses in eclogite, Ring Mountain, CA

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Page, F. Z.; Lozier, E.; Feineman, M. D.; Zack, T.; Mertz-Kraus, R.

    2017-12-01

    Garnetite veins in a hornblende-eclogite block from Ring Mountain, CA, offer a unique opportunity to investigate the chemical composition of fluid interactions during mélange formation in subduction zones. Garnet occurs as matrix porphyroblasts (2-5 mm) and in 1-5 cm garnetite veins that are laterally continuous up to 10 m across the outcrop. Garnet at the vein edges is slightly larger (300-600 µm) than within the veins (5-50 µm), and records a protracted history of vein garnet growth. Major and trace element concentrations in garnet were determined using EPMA and LA-ICP-MS, respectively. Detailed rim-to-rim trace element traverses were performed using 12 µm spots at 15 µm spacing across one matrix garnet (2 mm) and three vein edge garnet grains (375-570 µm). Zoning in Mn, Ca, and rare earth elements (REE) reveal 5 distinct garnet growth zones. Zone 1, found only in matrix garnet cores, is characterized by decreasing Mn and increasing Ca and is interpreted to reflect prograde zoning. Zones 2-5 are found in the mantles and rims of matrix garnet, and comprise the entirety of vein garnet. Garnet growth in Zones 2-5 is likely heavily influenced by internally- and externally-derived fluids, based on texture and chemistry. One key fluid-related texture of Zones 2-5 is oscillatory birefringence zoning, likely the result of incorporation of small amounts of water into the garnet structure (i.e., hydrogrossular). Zones 2 and 3 are characterized by progressive enrichment in heavy to middle REE from Zone 2 outward into Zone 3. We attribute this to diffusion-limited uptake of REE, wherein the heaviest REE are incorporated first, followed by progressively lighter REE. Zone 3 is also characterized by a high-Mn annulus that appears decoupled from the trace elements. Zone 4 is characterized by a sudden drop in Ca and enrichment in MREE, particularly Dy and Tb, possibly due to epidote breakdown. Zone 5 is characterized by strong enrichment in Mn+REE, with high-HREE and high-MREE oscillatory zones. Oxygen isotope values (δ18O, VSMOW) in Zone 1 (matrix cores) and Zones 2-4 are consistently 10 ‰, indicating that the fluid source for Zones 2-4 is likely internally-derived, or derived from mélange of similar bulk composition. δ18O values for Zone 5 cluster at 7 ‰, which indicates the addition of an externally-derived fluid with low δ18O and high Mn+REE.

  11. How Reducing was the Late Devonian Ocean? The Role of Extensive Expansion of Anoxia in Marine Biogeochemical Cycles of Redox Sensitive Metals.

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jin, H.

    2017-12-01

    The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.

  12. Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: reflection of different metal sources.

    PubMed

    Koschinsky, Andrea; Kausch, Matteo; Borowski, Christian

    2014-04-01

    Hydrothermal vent mussels of the genus Bathymodiolus are ideally positioned for the use of recording hydrothermal fluxes at the hydrothermal vent sites they inhabit. Barium, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Pb, Sr, and U concentrations in tissue sections of Bathymodiolus mussels from several hydrothermal fields between 15°N and 9°S at the Mid-Atlantic Ridge were determined and compared to the surrounding fluids and solid substrates in the habitats. Elements generally enriched in hydrothermal fluids, such as Fe, Cu, Zn, Pb and Cd, were significantly enriched in the gills and digestive glands of the hydrothermal mussels. The rather small variability of Zn (and Mn) and positive correlation with K and earth alkaline metals may indicate a biological regulation of accumulation. Enrichments of Mo and U in many tissue samples indicate that particulate matter such as hydrothermal mineral particles from the plumes can play a more important role as a metal source than dissolved metals. Highest enrichments of Cu in mussels from the Golden Valley site indicate a relation to the ≥400 °C hot heavy-metal rich fluids emanating in the vicinity. In contrast, mussels from the low-temperature Lilliput field are affected by the Fe oxyhydroxide sediment of their habitat. In a comparison of two different sites within the Logatchev field metal distributions in the tissues reflected small-scale local variations in the metal content of the fluids and the particulate material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.

    2017-12-01

    An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal profiles by addition of <1% carbonated sediment-derived supercritical fluids/melts to depleted asthenospheric or subcontinental lithospheric mantle, and 2) 410 to 660 km, where PREMA-type mantle sources are generated, above slabs with average to cool thermal profiles, by addition of <1% carbonated eclogite ± sediment-derived supercritical fluids to depleted mantle.

  14. Permo-Triassic arc-like granitoids along the northern Lancangjiang zone, eastern Tibet: Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun

    2018-05-01

    Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence, the 263-232 Ma arc-like granitoids clearly indicate that final closure of the Paleo-Tethys ocean have not occurred until the end of the Triassic.

  15. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  16. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Lithospheric and Asthenospheric Contributions to Post-Collisional Volcanism in the Lesser Caucasus Mts (Armenia)

    NASA Astrophysics Data System (ADS)

    Sugden, P.; Savov, I. P.; Wilson, M.; Meliksetian, K.; Navasardyan, G.

    2017-12-01

    Continental collision zones remain the most enigmatic tectonic setting for volcanic activity on earth. The Lesser Caucasus Mts are host to widespread and unique intraplate volcanism, associated with the active Arabia-Eurasia continental collision. Volcanic products range from alkali basalts to rhyolites (including extensive ignimbrites), and occur as basaltic lava flow fields, large composite and shield volcanoes, and regions of distributed (mostly monogenetic) volcanism. Geomorphology, archaeology, and historical accounts suggest volcanic activity has extended in to the Holocene-historical period. The high quality of the exposures and the diversity of unaltered rock types makes Armenia an ideal natural laboratory for studying the sources of magmatism in an active continental collision zone. For the first time, we will present the mineral chemistry (ol, px, amph), whole rock major and trace element, and Sr-Nd isotope compositions of volcanic rocks from southernmost Armenia- namely the Gegham, Vardenis and Syunik volcanic highlands. We compare our dataset with the composition of post-collisional volcanic rocks elsewhere in the Arabia-Eurasia collision zone. Samples from S. Armenia are more mafic, more alkaline and more K2O rich. All volcanic rocks show negative HFSE anomalies and LILE and LREE enrichments reminiscent of continental volcanic arc settings. However, volcanic rocks in Southern Armenia are further enriched in some of the most incompatible trace elements, most notably LREE, Sr and P, and have higher La/Yb, Th/Yb, Ta/Yb, and more variable Th/Nb. Volcanic rocks from Eastern Anatolia and N. Armenia have Sr-Nd isotope compositions similar to those of the Mesozoic volcanic arc (87Sr/86Sr 0.7034-0.7045; 143Nd/144Nd 0.5128-0.5129), whereas samples from S. Armenia deviate towards more enriched compositions resembling a typical EM-I type reservoir (87Sr/86Sr 0.7041- 0.7047; 143Nd/144Nd 0.5127-0.5128). We argue that these distinctive geochemical characteristics result from the addition of an enriched lithospheric component to a ubiquitous subduction-modified baseline asthenospheric mantle. This EM-I like component may be characteristic for not only intraplate hotspot volcanoes but also to collisional and arc settings.

  18. Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements

    PubMed Central

    Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.

    2015-01-01

    Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229

  19. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C

    NASA Astrophysics Data System (ADS)

    Ayers, John C.; Peters, Timothy J.

    2018-02-01

    Hydrothermal zircon grains have trace element characteristics such as low Th/U, high U, and high rare earth element (REE) concentrations that distinguish them from magmatic, metamorphic, and altered zircon grains, but it is unclear whether these characteristics result from distinctive fluid compositions or zircon/fluid fractionation effects. New experiments aimed at measuring zircon/fluid trace element partition coefficients Dz/f involved recrystallizing natural Mud Tank zircon with low trace element concentrations in the presence of H2O, 1 m NaOH, or 1 m HCl doped with ∼1000 ppm of rare earth elements (REE), Y, U and Th and ∼500 ppm of Li, B, P, Nb, Ba, Hf, and Ta. Experiments were run for 168 h at 1.5 GPa, 800-1000 °C, and fO2 = NNO in a piston cylinder apparatus using the double capsule method. LA-ICP-MS analysis shows that run product zircon crystals have much higher trace element concentrations than in Mud Tank zircon starting material. Dz/f values were estimated from run product zircon analyses and bulk composition using mass balance. Most elements behave incompatibly, with median Dz/f being highest for Hf = 8 and lowest for B = 0.02. Addition of NaOH or HCl had little influence on Dz/f values. Dz/f for LREE are anomalously high, likely due to contamination of run product zircon with quenched solutes enriched in incompatible elements, so DLREE were estimated using lattice strain theory. Brice curves for +3 ions yield zircon/fluid DLu/DLa of ∼800-5000. A Brice curve fit to +4 ions yielded DCe4+ values. Estimated concentrations of Ce3+ and Ce4+ show that the average Ce4+/Ce3+ in zircon of 27 is much higher than in fluid of 0.02. Th and U show little fractionation, with median DTh/DU = 0.7, indicating that the low Th/U in natural hydrothermal zircon is inherited from the fluid. Natural fluid compositions estimated from measured Dz/f and published compositions of hydrothermal zircon grains from aplite and eclogite reflect the mineralogy of the host rock, e.g., fluid in equilibrium with eclogite garnet is depleted in heavy REE relative to middle REE, and has low Th/U.

  20. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    NASA Technical Reports Server (NTRS)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  1. How PNNL Extracts Rare Earth Elements from Geothermal Brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-07-12

    By looking at a problem at a nanoscale level, PNNL researchers are developing an economic way to extract valuable rare earth elements from geothermal fluids. This novel approach may help meet the high demand for rare earth elements that are used in many clean energy technologies.

  2. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions.

    PubMed

    Muramoto, Hiroki; Yagi, Shintaro; Hirabayashi, Keiji; Sato, Shinya; Ohgane, Jun; Tanaka, Satoshi; Shiota, Kunio

    2010-08-01

    Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome-wide DNA methylation modification status, as represented by the ESC-specific hypomethylation of tissue-dependent and differentially methylated regions (T-DMRs) of Pou5f1 and Nanog. Here, we conducted a genome-wide investigation of sequence characteristics associated with T-DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T-DMRs were predominantly present in SINE-rich/LINE-poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE-rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T-DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T-DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T-DMRs in ESCs, which is a novel aspect of the ESC-specific epigenomic information.

  3. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    NASA Technical Reports Server (NTRS)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, J.M.

    A high volume sampling system was developed for the collection of volcanic plume aerosols from an aircraft sampling platform. Concentrations of up to 30 elements on particles were determined simultaneously with gas-phase concentrations of S, Cl, and Br in the quiescent plumes of five active volcanoes: Mount St. Helens, US; Arenal and Poas, Costa Rica; Colima and El Chichon, Mexico. Volatile and chalcophilic elements were found to be highly enriched, relative to average crustal and bulk pyroclastic material, in the quiescent plumes of all volcanoes studied. Enriched volatile elements were found to be primarily associated with fine (less than ormore » equal to 3-..mu..m diam) particles, those expected to have the longest residence times in the atmosphere. Samples were also collected using the aircraft sampling system in background, mid-tropospheric air. Analysis of these samples revealed that many of the same elements that are enriched in volcanic plumes are also enriched in clean, relatively remote aerosols collected in the free troposphere (5-7 km). Concentrations of sulfates made in the North American free troposphere (280 ng/m/sup 3/) approach those measured at remote background sites.« less

  5. Recycling Seamounts: Implications for Mantle Source Heterogeneities

    NASA Astrophysics Data System (ADS)

    Madrigal, P.; Gazel, E.

    2016-12-01

    Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the mantle. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper mantle heterogeneity. Our evidence suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep mantle plume upwellings.

  6. An experimental investigation of fractionation by sputter deposition. [application to solar wind irradiation of lunar soil

    NASA Technical Reports Server (NTRS)

    Paruso, D. M.; Cassidy, W. A.; Hapke, B. W.

    1978-01-01

    Artificial glass targets composed of elements varying widely in atomic weight were irradiated at an angle of incidence of 45 deg by 2-keV hydrogen ions at a current density of .33 mA/sq cm, and sputtered atoms were caught on a molybdenum film. Analyses of the sputter-deposited films and unsputtered target glasses were carried out by electron microprobe. The backward-sputtered component was found to be enriched in elements of low atomic weight, while the forward-sputtered component was enriched in heavy atoms. These results indicate that at the lunar surface lighter elements and isotopes would tend to be ejected in backward directions, escaping directly through the openings which admit bombarding ions without first striking an adjacent grain surface; heavy elements and isotopes would be forward-sputtered deeper into the soil and be preferentially retained, contributing to the reported enrichments of heavy elements and isotopes. Additional results show that the binding energy of an element in its oxide form influences the sticking coefficient of a sputtered atom; elements of low binding energy are likely to desorb, while elements of high binding energy tend to stick to the first bounce surface.

  7. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  8. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the 40-m.y.-younger ore-bearing porphyritic granodiorite is sub-alkaline and peraluminous. They are enriched in LREEs and LILEs, depleted in HFSEs, and show weak negative Eu anomalies. They displayεHf(t) values of captured or inherited zircons in the range of +8.5 to +10.0, and younger two-stage Hf model ages of 0.78 Ga and 0.86 Ga, similar to those of ca. 485 Ma tonalite. The ca. 445 Ma zircons have εHf(t) values of −2.1 to +9.9, with two-stage Hf model ages of 0.75–1.27 Ga. Moreover, they have relatively high oxygen fugacity than that of the precursor barren tonalite. The ca. 445 Ma magmas at Wangdian thus formed in a subduction setting, and incorporated melts from the subduction-modified lithosphere that had previously been enriched by additions of chalcophile and siderophile element-rich materials by the earlier magmatism and metasomatism during the Paleo Qilian-Qinling Ocean subduction event.

  9. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  10. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  11. Secondary overprinting of S-Se-Te signatures in the Earth's mantle: Implications for the Late Veneer

    NASA Astrophysics Data System (ADS)

    Koenig, S.; Luguet, A.; Lorand, J.; Pearson, D.

    2013-12-01

    Sulphur, Selenium and Tellurium are both chalcophile and highly siderophile elements (HSE) with near-chondritic ratios and absolute abundances in the terrestrial mantle that exceed those predicted by core-mantle differentiation[1]. These 'excess' HSE abundances have been attributed to addition of ca. 0.5% of chondrite-like material that hit the Earth in its accretionary stage between 4 to 3.8 billion years ago after core-mantle differentiation (Late Veneer[2]). Therefore, like other HSE, S, Se and Te are considered potential tracers for the composition of the Late Veneer, provided that their bulk silicate Earth abundances are properly constrained. In contrast to ca. 250 ppm S, Se and Te are ultra-trace elements in the terrestrial mantle. Like all HSE, they are furthermore controlled by base metal sulphides (BMS) and micrometric platinum group minerals (PGMs)[3]. This strong control exerted by the host mineralogy and petrology on the S-Se-Te systematics at both the micro-scale and the whole-rock scale makes detailed mineralogical and petrological studies of BMS and PGM a pre-requisite to fully understand and accurately interpret the whole-rock signatures. Here we combine in-situ sulphide data and detailed mineralogical observations with whole-rock S-Se-Te-HSE signatures of both lherzolites and harburgites from different geodynamic settings. We demonstrate that the near-chondritic Se and Te signature of 'fertile' mantle rocks (Se/Te ≈9×5) is not a primitive signature of the Earth's mantle, but rather reflects strong enrichment in metasomatic HSE host phases, which erased previous pristine signatures. Consequently, current attempts to identify a potential Late Veneer composition are seriously flawed because, neither refertilisation/metasomatism nor true melt depletion (e.g. harzburgitic residues) have been taken into account for the Primitive Upper Mantle composition estimate[4]. Our combined whole rock and in-situ sulphide data indicate a refertilisation trend towards sub-chondritic Se/Te ratios (i.e. Se/Te < 2). On the other hand, harzburgites that preserve depletion signatures show suprachondritic Se/Te ratios (< 31). Altogether this shows that metasomatic enrichment of mantle rocks may lead to a systematic bias and hence underestimation of the current Se/Te estimate of the primitive mantle. The metasomatic origin of the reported S, Se and Te ratios in peridotites that reflect the control of metasomatic BMS and PGMs[5;6] furthermore show that not all whole rock signatures in the Earth's mantle that scatter around near-chondritic values are primary and hence challenge the simple conception that these features may readily solve the long-standing conundrum of the Late Veneer composition. Refs: [1] Rose-Weston et al. (2009) GCA 73, 4598-4615; [2] Kimura et al. (1974) GCA 38, 683-701; [3] Lorand and Alard (2010) 67, 4137-4151; [4] Wang and Becker (2013) Nature 499, 328-331; [5] König et al. (2012) GCA 86, 354-366; [6] König et al. (2013, in press), EPSL.

  12. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  13. The crust of the Moon as seen by GRAIL.

    PubMed

    Wieczorek, Mark A; Neumann, Gregory A; Nimmo, Francis; Kiefer, Walter S; Taylor, G Jeffrey; Melosh, H Jay; Phillips, Roger J; Solomon, Sean C; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Smith, David E; Watkins, Michael M; Williams, James G; Zuber, Maria T

    2013-02-08

    High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.

  14. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Petrogenesis of Neoarchean metavolcanic rocks in Changyukou, Northwestern Hebei: Implications for the transition stage from a compressional to an extensional regime for the North China Craton

    NASA Astrophysics Data System (ADS)

    Liou, Peng; Shan, Houxiang; Liu, Fu; Guo, Jinghui

    2017-03-01

    The 2.5 Ga metavolcanic rocks in Changyukou, Northwestern Hebei, can be classified into three groups based on major and trace elements: high-Mg basalts, tholeiitic basalts, and the calc-alkaline series (basaltic andesites-andesites and dacites-rhyolites). Both high-Mg basalts and tholeiitic basalts have negative anomalies of Nb, Zr, Ti and Heavy Rare Earth Elements (HREE) as well as enrichments of Sr, K, Pb, Ba and Light Rare Earth Elements (LREE) and show typical subduction zone affinities. The petrogenesis of high-Mg basalts can be ascribed to high-degree partial melting of an enriched mantle source in the spinel stability field that was previously enriched in Large Ion Lithophile Elements (LILE) and LREE by slab-derived hydrous fluids/melts/supercritical fluids, as well as the subsequent magma mixing processes of different sources at different source depths, with little or no influence of polybaric fractional crystallization. The flat HREE of tholeiitic basalts indicates they may also originate from the spinel stability field, but from obviously shallower depths than the source of high-Mg basalts. They may form at a later stage of the subduction process when rapid slab rollback leads to extension and seafloor spreading in the upper plate. We obtain the compositions of the Archean lower crust of the North China Craton based on the Archean Wutai-Jining section by compiling the average tonalite-trondhjemite-granodiorite (TTG) components, average mafic granulite components, and average sedimentary rock components. The modeling results show that the generation of high-Al basalts, basaltic andesites and andesites can be attributed to assimilation by high-Mg basalts (primary basalts) of relatively high-Al2O3 thickened lower crust and the subsequent crystallization of prevailing mafic mineral phases, while Al2O3-rich plagioclase crystallization is suppressed under high-pressure and nearly water-saturated conditions. Dacites and rhyolites may be the result of further fractional crystallization of basaltic andesites (high-Al basalts) and andesites. Mixing of magmas at various stages along the fractionation course of basaltic andesites (high-Al basalts) toward rhyolites promotes the trend of the calc-alkaline series. To reconcile the 2.55 to 2.5 Ga TTGs derived from overthickened crust, the 2.51 to 2.50 Ga calc-alkaline volcanic rocks derived from thickened crust, tholeiitic basalts representing low pressure and an extensional tectonic setting, 2493 Ma leucosyenogranites derived from overthickened crust, 2437 Ma biotite-monzogranites derived from slightly thinner crust than leucosyenogranites but still thickened, as well as the clockwise hybrid ITD and IBC P-T paths of the HP granulites and widespread extension and rifting setting within the NCC from 2300 Ma, we propose a model of an evolving subduction process. Among them, the composition of the 2.5 Ga Changyukou volcanic rocks and potassic granites as well as the clockwise hybrid ITD and IBC P-T paths of the HP granulites may reveal that the tectonic setting in Northwest Hebei was in a transition stage from a subduction-related compressional regime to an extensional regime related to plate rollback.

  16. The behavior and concentration of CO2 in the suboceanic mantle: Inferences from undegassed ocean ridge and ocean island basalts

    NASA Astrophysics Data System (ADS)

    Michael, Peter J.; Graham, David W.

    2015-11-01

    In order to better determine the behavior of CO2 relative to incompatible elements, and improve the accuracy of mantle CO2 concentration and flux estimates, we determined CO2 glass and vesicle concentrations, plus trace element contents for fifty-one ultradepleted mid-ocean ridge basalt (MORB) glasses from the global mid-ocean ridge system. Fifteen contained no vesicles and were volatile undersaturated for their depth of eruption. Thirty-six contained vesicles and/or were slightly oversaturated, and so may not have retained all of their CO2. If this latter group lost some bubbles during emplacement, then CO2/Ba calculated for the undersaturated group alone is the most reliable and uniform ratio at 98 ± 10, and CO2/Nb is 283 ± 32. If the oversaturated MORBs did not lose bubbles, then CO2/Nb is the most uniform ratio within the entire suite of ultradepleted MORBs at 291 ± 132, while CO2/Ba decreases with increasing incompatible element enrichment. Additional constraints on CO2/Ba and CO2/Nb ratios are provided by published estimates of CO2 contents in highly vesicular enriched basalts that may have retained their vesicles e.g., the Mid-Atlantic Ridge "popping rocks", and from olivine-hosted melt inclusions in normal MORBs. As incompatible element enrichment increases, CO2/Nb increases progressively from 283 ± 32 in ultradepleted MORBs to 603 ± 69 in depleted melt inclusions to 936 ± 132 in enriched, vesicular basalts. In contrast, CO2/Ba is nearly uniform in these sample suites at 98 ± 10, 106 ± 24 and 111 ± 11 respectively. This suggests that Ba is the best proxy for estimating CO2 contents of MORBs, with an overall average CO2/Ba = 105 ± 9. Atlantic, Pacific and Indian basalts have similar values. Gakkel Ridge has lower CO2/Ba because of anomalously high Ba, and is not included in our global averages. Using the CO2/Ba ratio and published compilations of trace elements in average MORBs, the CO2 concentration of a primary, average MORB is 2085+ 473/- 427 ppm, while primary NMORB magmas (> 500 km from ocean island hotspots) have 1840 ppm CO2. The annual flux of CO2 from mid-ocean ridges is 1.25 ± 0.16 × 1014 g/yr, with possible values as low as 0.93 and as high as 1.61 × 1014 g/yr. This amount is equivalent to approximately 0.3% of the anthropogenic addition of CO2 to Earth's atmosphere. NMORB mantle has 183 ppm CO2 (50 ppm C) based on simple melting models and 13% melting. More realistic estimates of incompatible element concentrations in the depleted mantle that are consistent with complex melting models yield much lower estimates for CO2 in the depleted mantle: around 60-130 ppm CO2, with large uncertainties that are more related to melting models than to CO2/Ba. CO2/Ba is not correlated with isotopic or trace element ratios, but there may be systematic regional mantle variations. Iceland melt inclusions and Gakkel Ridge MORBs have lower CO2/Ba ratios, showing that these regional high Ba anomalies are not accompanied by correspondingly high CO2 concentrations.

  17. Origin of the Permian-Triassic komatiites, northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Hanski, Eero; Walker, Richard J.; Huhma, Hannu; Polyakov, Gleb V.; Balykin, Pavel A.; Tran Trong Hoa; Ngo Thi Phuong

    Rare examples of Phanerozoic komatiites are found in the Song Da zone, NW Vietnam. These komatiites were erupted through continental crust and may belong to the SE extension of the Permo-Triassic Emeishan volcanic province located in SW China. They provide a good opportunity to study the source characteristics of starting plume magmas in a continental flood basalt province. Erupted on late-Permian carbonate rocks, the komatiitic rocks are interbedded with low-Ti olivine basalts. Basaltic komatiites display pyroxene spinifex textures, while more magnesian rocks (MgO up to 32 wt.%) are porphyritic, containing a single, cognate population of euhedral to elongated olivine phenocrysts with Fo up to 93.0%. This suggests a highly magnesian parental magma with 22-23 wt.% MgO. In terms of major and minor elements, the komatiites are similar to the ca. 89 Ma old Gorgona Island komatiites of Colombia. The Song Da komatiites are also strongly light-rare-earth-element- (LREE) depleted (CeN/YbN 0.30-0.62) and have unfractionated heavy rare earth element (HREE) patterns. The komatiites have high Os concentrations (up to 7.0 ppb), low but variable Re/Os ratios, and define an isochron with an age of 270+/-21 Ma, and an initial 188Os/187Os ratio of 0.12506+/- 0.00041 (γOs=+0.02+/-0.40). The Os isotopic systematics of the komatiites show no effects of crustal contamination. In contrast, their initial ɛNd values range from +3 to +8, reflecting varying but generally small degrees of contamination with Proterozoic sialic basement material. Associated low-Ti basalts have low initial ɛNd values (-0.8 to -7.5), high initial γOs values (>=15), flat or LREE-enriched REE patterns, and Nb-Ta depletion. These characteristics are also attributed to variable extents of crustal contamination.

  18. Mantle evolution in the Variscides of SW England: Geochemical and isotopic constraints from mafic rocks

    NASA Astrophysics Data System (ADS)

    Dupuis, Nicolle E.; Murphy, J. Brendan; Braid, James A.; Shail, Robin K.; Nance, R. Damian

    2016-06-01

    The geology of SW England has long been interpreted to reflect Variscan collisional processes associated with the closure of the Rhenohercynian Ocean and the formation of Pangea. The Cornish peninsula is composed largely of Early Devonian to Late Carboniferous volcanosedimentary successions that were deposited in pre- and syn-collisional basins and were subsequently metamorphosed and deformed during the Variscan orogeny. Voluminous Early Permian granitic magmatism (Cornubian Batholith) is broadly coeval with the emplacement of ca. 280-295 Ma lamprophyric dykes and flows. Although these lamprophyres are well mapped and documented, the processes responsible for their genesis and their relationship with regional Variscan tectonic events are less understood. Pre- to syn-collisional basalts have intra-continental alkalic affinities, and have REE profiles consistent with derivation from the spinel-garnet lherzolite boundary. εNd values for the basalts range from + 0.37 to + 5.2 and TDM ages from 595 Ma to 705 Ma. The lamprophyres are extremely enriched in light rare earth elements, large iron lithophile elements, and are depleted in heavy rare earth elements, suggesting a deep, garnet lherzolite source that was previously metasomatised. They display εNd values ranging from - 1.4 to + 1.4, initial Sr values of ca. 0.706, and TDM ages from 671 Ma to 1031 Ma, suggesting that metasomatism occurred in the Neoproterozoic. Lamprophyres and coeval granite batholiths of similar chemistry to those in Cornwall occur in other regions of the Variscan orogen, including Iberia and Bohemia. By using new geochemical and isotopic data to constrain the evolution of the mantle beneath SW England and the processes associated with the formation of these post-collisional rocks, we may be able to gain a more complete understanding of mantle processes during the waning stages of supercontinent formation.

  19. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    USGS Publications Warehouse

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  20. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    NASA Astrophysics Data System (ADS)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global samples of depleted mantle, i.e. harzburgites and diamond inclusion suites. The Tanzanian ultra-depleted garnets form interconnecting networks ('necklaces') around grains of orthopyroxene, which is of key importance to their origin. This close spatial relationship of garnet and orthopyroxene together with the major, trace and REE contents of the ultra-depleted garnets, are consistent with an origin by isochemical exsolution. The significance of ultra-depleted low-Cr garnets has not previously been recognised in global suites of mantle xenoliths or diamond inclusions: they appear to have been overlooked, primarily because of their unusual pre-metasomatic compositions. We believe they are rare because the low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but is not normally brought to the surface by ascending melts, which tend to metasomatise and preferentially sample their source regions. The modal abundance of garnet formed by isochemical exsolution from orthopyroxene in sub-cratonic mantle is unclear but may prove to be an important consideration in isopycnic models related to the long-term stability of the Earth's continental lithosphere, e.g. Lee et al. (2011). Gibson, S. A., McMahon, S. C., Day, J. A. & Dawson, J. B. (2013). Highly Refractory Lithospheric Mantle beneath the Tanzanian Craton: Evidence from Lashaine Pre-metasomatic Garnet-bearing Peridotites. J. Petrol. doi:10.1093/petrology/egt020 Stachel, T., Aulbach, A., Brey, G.P., Harris, J.W., Leost, I., Tappert, R. & Viljoen, K.S. (2004). The trace element composition of silicate inclusions in diamonds: a review. Lithos 77, 1-19 Lee, C.-T., Luffi, P. & Chin, E. J. (2011). Building and Destroying Continental Mantle. Annu. Rev. Earth Planet. Sci. 39, 59-90

Top