Sample records for earth explorer opportunity

  1. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  2. Search of exploration opportunity for near earth objects based on analytical gradients

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Cui, P. Y.; Luan, E. J.

    2008-01-01

    The problem of searching for exploration opportunity of near Earth objects is investigated. For rendezvous missions, the analytical gradients of performance index with respect to free parameters are derived by combining the calculus of variation with the theory of state-transition matrix. Then, some initial guesses are generated random in the search space, and the performance index is optimized with the guidance of analytical gradients from these initial guesses. This method not only keeps the property of global search in traditional method, but also avoids the blindness in the traditional exploration opportunity search; hence, the computing speed could be increased greatly. Furthermore, by using this method, the search precision could be controlled effectively.

  3. Exploration Opportunity Search of Near-earth Objects Based on Analytical Gradients

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Cui, Ping-Yuan; Luan, En-Jie

    2008-07-01

    The problem of search of opportunity for the exploration of near-earth minor objects is investigated. For rendezvous missions, the analytical gradients of the performance index with respect to the free parameters are derived using the variational calculus and the theory of state-transition matrix. After generating randomly some initial guesses in the search space, the performance index is optimized, guided by the analytical gradients, leading to the local minimum points representing the potential launch opportunities. This method not only keeps the global-search property of the traditional method, but also avoids the blindness in the latter, thereby increasing greatly the computing speed. Furthermore, with this method, the searching precision could be controlled effectively.

  4. Science opportunities in the human exploration of moon

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.; O'Handley, Douglas A.; Nash, Douglas B.

    1989-01-01

    Human exploration of the moon will open up science opportunities not only in lunar science, but also in astronomy and astrophysics, life science, solar and space physics, earth science, and even evolutionary biology. These opportunities may be categorized as those involving study of the moon itself, those in which the moon is used as a platform for investigations, and those conducted in transit between earth and the moon. This paper describes some of these opportunities, and calls on the science community to continue and expand its efforts to define the opportunities, and to work toward their inclusion in plans to return humans permanently to the moon.

  5. Human Exploration of Earth's Neighborhood and Mars

    NASA Technical Reports Server (NTRS)

    Condon, Gerald

    2003-01-01

    The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.

  6. EarthExplorer

    USGS Publications Warehouse

    Houska, Treva

    2012-01-01

    The EarthExplorer trifold provides basic information for on-line access to remotely-sensed data from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The EarthExplorer (http://earthexplorer.usgs.gov/) client/server interface allows users to search and download aerial photography, satellite data, elevation data, land-cover products, and digitized maps. Minimum computer system requirements and customer service contact information also are included in the brochure.

  7. Planetary exploration - Earth's new horizon /Twelfth von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    Planetary exploration is examined in terms of the interaction of technological growth with scientific progress and the intangibles associated with exploring the unknown. The field is limited to unmanned exploration of the planets and their satellites. A descriptive model of the endeavor, its activities and achievements in the past decade, a characterization of the current state of the art, and a look at some of the planetary mission opportunities for the next decade are presented. A case is made for the value to civilization of ongoing planetary exploration. The pioneering U.S. planetary explorers, Mars, Venus, and Jupiter, are discussed in the second part of the work. Launch velocity, navigation, the remote system, the earth base, and management technology are considered in the third part. Authorized near-term U.S. planetary projects and opportunities of the next decade are described in the last section.

  8. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities and Mars-to-Earth Return Opportunities 2009-2024

    NASA Technical Reports Server (NTRS)

    George, L. E.; Kos, L. D.

    1998-01-01

    This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009-2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.

  9. EarthScope Education and Outreach: Accomplishments and Emerging Opportunities

    NASA Astrophysics Data System (ADS)

    Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.

    2014-12-01

    EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through

  10. The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) List of Near-Earth Asteroids: Identifying Potential Targets for Future Exploration

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Barbee, B. W.; Mink, R. G.; Adamo, D. R.; Alberding, C. M.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Drake, B. G.; Friedensen, V. P.

    2012-10-01

    Introduction: Much attention has recently been focused on human exploration of near-Earth asteroids (NEAs). Detailed planning for deep space exploration and identification of potential NEA targets for human space flight requires selecting objects from the growing list of known NEAs. NASA therefore initiated the Near-Earth Object Human Space Flight Accessible Target Study (NHATS), which uses dynamical trajectory performance constraints to identify potentially accessible NEAs. Accessibility Criteria: Future NASA human space flight capability is being defined while the Orion Multi-Purpose Crew Vehicle and Space Launch System are under development. Velocity change and mission duration are two of the most critical factors in any human spaceflight endeavor, so the most accessible NEAs tend to be those with orbits similar to Earth’s. To be classified as NHATS-compliant, a NEA must offer at least one round-trip trajectory solution satisfying purposely inclusive constraints, including total mission change in velocity ≤ 12 km/s, mission duration ≤ 450 days (with at least 8 days at the NEA), Earth departure between Jan 1, 2015 and Dec 31, 2040, Earth departure C3 ≤ 60 km2/s2, and Earth return atmospheric entry speed ≤ 12 km/s. Monitoring and Updates: The NHATS list of potentially accessible targets is continuously updated as NEAs are discovered and orbit solutions for known NEAs are improved. The current list of accessible NEAs identified as potentially viable for future human exploration under the NHATS criteria is available to the international community via a website maintained by NASA’s NEO Program Office (http://neo.jpl.nasa.gov/nhats/). This website also lists predicted optical and radar observing opportunities for each NHATS-compliant NEA to facilitate acquisition of follow-up observations. Conclusions: This list of NEAs will be useful for analyzing robotic mission opportunities, identifying optimal round trip human space flight trajectories, and

  11. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  12. Skylab Explores the Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This book describes the Skylab 4 Earth Explorations Project. Photographs of the earth taken by the Skylab astronauts are reproduced here and accompanied by an analytical and explanatory text. Some of the geological and geographical topics covered are: (1) global tectonics - some geological analyses of observations and photographs from Skylab; (2)…

  13. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  14. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  15. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  16. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  17. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Falck, Robert D.; McGuire, Melissa L.

    2010-01-01

    The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity.

  18. A Low Risk Strategy for the Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Landis, Rob R.

    2011-01-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the U.S. Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human accessible targets. The majority of the NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing such a catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades. This initial step of a space-based NEO survey first is the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from 1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), 2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and 3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  19. Earth Explorer

    USGS Publications Warehouse

    ,

    2000-01-01

    The U.S. Geological Survey's (USGS) Earth Explorer Web site provides access to millions of land-related products, including the following: Satellite images from Landsat, advanced very high resolution radiometer (AVHRR), and Corona data sets. Aerial photographs from the National Aerial Photography Program, NASA, and USGS data sets.  Digital cartographic data from digital elevation models, digital line graphs, digital raster graphics, and digital orthophoto quadrangles. USGS paper maps Digital, film, and paper products are available, and many products can be previewed before ordering.

  20. Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEAs) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEAs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEAs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future

  1. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  2. Earth's Minimoons: Opportunities for Science and Technology.

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce T.; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Jones, Lynne; Urrutxua, Hodei

    2018-05-01

    Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated \\RH. Despite significant improvements in ground-based asteroid surveying technology in the past decade they have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-meter diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for 1) studying the dynamics of the Earth-Moon system, 2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, 3) rapid and frequent low delta-v missions to

  3. Understanding Divergent Evolution Among Earth-like Planets, the Case for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2001-11-01

    Venus was once considered to be Earth's twin because of its similar size, mass, and solar distance. Prevailing theories early in the 20th century alternately characterized it as a hot, lifeless desert or a cool, habitable swamp. Venus was therefore the target of intense scrutiny during the first three decades of the space age. Those studies found that although Venus and Earth apparently formed in similar parts of the solar nebula, sharing common inventories of refractory and volatile constituents, these two planets followed dramatically different evolutionary paths. While the Earth evolved into the only known oasis for life, Venus developed an almost unimaginably inhospitable environment for such an Earth-like planet. Some features of Venus can be understood as products of its location in the solar system, but other properties and processes governing the evolution and present state of its interior, surface, and climate remain mysterious or even contradictory. A more comprehensive understanding of these factors is clearly essential as NASA embarks on efforts to detect and then characterize Earth-like planets in other solar systems. As part of the National Research Council's effort to identify themes and priorities for solar system exploration over the next decade, an open community panel was formed to provide input on future Venus exploration. A comprehensive investigation of the processes driving the divergent evolution of Venus is emerging as the primary focus. In other words, why is Venus a failed Earth? From this theme, we will define specific measurement objectives, instrument requirements, and mission requirements. Priorities will then be based on a number of factors including the needs for simultaneous or correlative measurements, technology readiness, and available opportunities.

  4. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  5. Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEA) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, before sending human explorers to NEAs, robotic investigations of these bodies would be required to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Dr. Paul Abell discussed some of the physical characteristics of NEOs that will be relevant for EVA considerations, reviewed the current data from previous NEA missions (e.g., Near-Earth Asteroid Rendezvous (NEAR) Shoemaker and Hayabusa), and discussed why future robotic and human missions to NEAs are important from space exploration and planetary defense perspectives.

  6. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  7. Exploration Science Opportunities for Students within Higher Education

    NASA Astrophysics Data System (ADS)

    Bailey, Brad; Minafra, Joseph; Schmidt, Gregory

    2016-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on exploration science related to near-term human exploration targets, training the next generation of lunar scientists, and education and public outreach. As part of the SSERVI mission, we act as a hub for opportunities that engage the public through education and outreach efforts in addition to forming new interdisciplinary, scientific collaborations.SSERVI provides opportunities for students to bridge the scientific and generational gap currently existing in the planetary exploration field. This bridge is essential to the continued international success of scientific, as well as human and robotic, exploration.The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a

  8. Science exploration opportunities for manned missions to the Moon, Mars, Phobos, and an asteroid

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.; Plescia, Jeffrey; Cintala, Mark; Levine, Joel; Lowman, Paul; Mancinelli, Rocco; Mendell, Wendell; Stoker, Carol; Suess, Steven

    1989-01-01

    Scientific exploration opportunities for human missions to the Moon, Phobos, Mars, and an asteroid are addressed. These planetary objects are of prime interest to scientists because they are the accessible, terresterial-like bodies most likely to be the next destinations for human missions beyond Earth orbit. Three categories of science opportunities are defined and discussed: target science, platform science, and cruise science. Target science is the study of the planetary object and its surroundings (including geological, biological, atmospheric, and fields and particle sciences) to determine the object's natural physical characteristics, planetological history, mode of origin, relation to possible extant or extinct like forms, surface environmental properties, resource potential, and suitability for human bases or outposts. Platform science takes advantage of the target body using it as a site for establishing laboratory facilities and observatories; and cruise science consists of studies conducted by the crew during the voyage to and from a target body. Generic and specific science opportunities for each target are summarized along with listings of strawman payloads, desired or required precursor information, priorities for initial scientific objectives, and candidate landing sites. An appendix details the potential use of the Moon for astronomical observatories and specialized observatories, and a bibliography compiles recent work on topics relating to human scientific exploration of the Moon, Phobos, Mars, and asteroids. It is concluded that there are a wide variety of scientific exploration opportunities that can be pursued during human missions to planetary targets but that more detailed studies and precursor unmanned missions should be carried out first.

  9. Testing the Efficacy of Student Explorations of Earth Science Museum Exhibits

    NASA Astrophysics Data System (ADS)

    Kirkby, K.; Phipps, M.; Tzenis, C.; Morin, P. J.; Hamilton, P.

    2009-12-01

    With their rock and mineral displays, fossil exhibits and hands-on nature, museum exhibits are a proven resource for elementary and secondary earth science education. However, due to a number of obstacles this success has not been emulated at the undergraduate level. Self-guided student explorations of science museum exhibits appear to be an effective way to circumvent these obstacles and easily expand earth science programs to include museum resources and tap their potential. Preliminary testing of this concept as an extra credit option by the University of Minnesota and the Science Museum of Minnesota not only showed that students enthusiastically respond to such explorations, but that explorations can be remarkably effective in changing student understanding of science concepts. Previously, a number of factors discouraged the integration of museum resources into undergraduate programs. Museum displays geared towards the general public often lack the level of detailed information necessary to integrate them into undergraduate science curriculum. Consequently, without an experienced guide (such as the course instructor), exhibits are of limited use. The logistics of arranging class visits can be daunting and given the limited opportunities for class trips, earth science instructors justifiably tend to choose field over museum experiences. However, well-designed explorations of the exhibits allow students to guide themselves through the exhibits, on their own or with friends and family, greatly expanding the range of course experiences with minimal cost to the program infrastructure. Student response to the preliminary testing of an exploration of dinosaur and pterosaur displays was very encouraging. Nearly half the class, 84 out of 176 students, volunteered to travel the eight miles to the museum to complete an exploration of the fossil gallery. When asked their likeliness of recommending the experience to others on a scale of 1-10 with 1 being “I would not

  10. Robots Explore the Farthest Reaches of Earth and Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "We were the first that ever burst/Into that silent sea," the title character recounts in Samuel Taylor Coleridge s opus Rime of the Ancient Mariner. This famous couplet is equally applicable to undersea exploration today as surface voyages then, and has recently been applied to space travel in the title of a chronicle of the early years of human space flight ("Into That Silent Sea: Trailblazers of the Space Era, 1961-1965"), companion to the +n the Shadow of the Moon book and movie. The parallel is certainly fitting, considering both fields explore unknown, harsh, and tantalizingly inhospitable environments. For starters, exploring the Briny Deep and the Final Frontier requires special vehicles, and the most economical and safest means for each employ remotely operated vehicles (ROVs). ROVs have proven the tool of choice for exploring remote locations, allowing scientists to explore the deepest part of the sea and the furthest reaches of the solar system with the least weight penalty, the most flexibility and specialization of design, and without the need to provide for sustaining human life, or the risk of jeopardizing that life. Most NASA probes, including the historic Voyager I and II spacecraft and especially the Mars rovers, Spirit and Opportunity, feature remote operation, but new missions and new planetary environments will demand new capabilities from the robotic explorers of the future. NASA has an acute interest in the development of specialized ROVs, as new lessons learned on Earth can be applied to new environments and increasingly complex missions in the future of space exploration.

  11. Scientific Exploration of Near-Earth Objects via the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Korsmeyer, D. J.; Landis, R. R.; Lu, E.; Adamo (D.); Jones (T.); Lemke, L.; Gonzales, A.; Gershman, B.; Morrison, D.; hide

    2007-01-01

    The concept of a crewed mission to a Near-Earth Object (NEO) has been analyzed in depth in 1989 as part of the Space Exploration Initiative. Since that time two other studies have investigated the possibility of sending similar missions to NEOs. A more recent study has been sponsored by the Advanced Programs Office within NASA's Constellation Program. This study team has representatives from across NASA and is currently examining the feasibility of sending a Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). The ideal mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure for the Vision for Space Exploration (VSE) and Exploration Systems Architecture Study (ESAS) in the run up to the lunar sorties at the end of the next decade (approx.2020). Sending a human expedition to a NEO, within the context of the VSE and ESAS, demonstrates the broad utility of the Constellation Program s Orion (CEV) crew capsule and Ares (CLV) launch systems. This mission would be the first human expedition to an interplanetary body outside of the cislunar system. Also, it will help NASA regain crucial operational experience conducting human exploration missions outside of low Earth orbit, which humanity has not attempted in nearly 40 years.

  12. Earth Trek...Explore Your Environment.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This booklet for children emphasizes the exploration and protection of the environment. An introduction discusses the interaction between humankind and the environment, emphasizing that the earth is a closed system. Chapter 1, "Mission: Protect the Water," addresses human dependence on water, water pollution, and water treatment. Chapter…

  13. Challenges and Opportunities for Exploring Patient-Level Data

    PubMed Central

    Lopes, Pedro; Silva, Luis Bastião; Oliveira, José Luis

    2015-01-01

    The proper exploration of patient-level data will pave the way towards personalised medicine. To better assess the state of the art in this field we identify the challenges and uncover the opportunities for the exploration of patient-level data through the review of well-known initiatives and projects focusing on the exploration of patient-level data. These cover a broad array of topics, from genomics to patient registries up to rare diseases research, among others. For each, we identified basic goals, involved partners, defined strategies and key technological and scientific outcomes, establishing the foundation for our analysis framework with four pillars: control, sustainability, technology, and science. Substantial research outcomes have been produced towards the exploration of patient-level data. The potential behind these data will be essential to realise the personalised medicine premise in upcoming years. Hence, relevant stakeholders continually push forward new developments in this domain, bringing novel opportunities that are ripe for exploration. Despite last decade's translational research advances, personalised medicine is still far from being a reality. Patients' data underlying potential goes beyond daily clinical practice. There are miscellaneous challenges and opportunities open for the exploration of these data by academia and business stakeholders. PMID:26504779

  14. The Exploration of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Near-Earth objects (NEOs) are asteroids and comets with orbits that intersect or pass near that of our planet. About 400 NEOs are currently known, but the entire population contains perhaps 3000 objects with diameters larger than 1 km. These objects, thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets, are interesting and highly accessible targets for scientific research. They carry records of the solar system's birth and the geologic evolution of small bodies in the interplanetary region. Because collisions of NEOs with Earth pose a finite hazard to life, the exploration of these objects is particularly urgent. Devising appropriate risk-avoidance strategies requires quantitative characterization of NEOS. They may also serve as resources for use by future human exploration missions. The scientific goals of a focused NEO exploration program are to determine their orbital distribution, physical characteristics, composition, and origin. Physical characteristics, such as size, shape, and spin properties, have been measured for approximately 80 NEOs using observations at infrared, radar, and visible wavelengths. Mineralogical compositions of a comparable number of NEOs have been inferred from visible and near-infrared spectroscopy. The formation and geologic histories of NEOs and related main-belt asteroids are currently inferred from studies of meteorites and from Galileo and Near-Earth Asteroid Rendezvous spacecraft flybys of three main-belt asteroids. Some progress has also been made in associating specific types of meteorites with main-belt asteroids, which probably are the parent bodies of most NEOs. The levels of discovery of NEOs in the future will certainly increase because of the application of new detection systems. The rate of discovery may increase by an order of magnitude, allowing the majority of Earth-crossing asteroids and comets with diameters greater than 1 km to he discovered in the next decade. A

  15. Wave-Particle Interactions in the Earth's Radiation Belts: Recent Advances and Unprecedented Future Opportunities

    NASA Astrophysics Data System (ADS)

    Li, W.

    2017-12-01

    In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.

  16. Collaborative Business Models for Exploration: - The Expansion of Public-Private Partnerships to Enable Exploration and Improve the Quality of Life on Earth

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2012-01-01

    In May of 2007, The Space Life Sciences Strategy was published, launching a series of efforts aimed at driving human health and performance innovations that both meet space flight needs and benefit life on Earth. These efforts, led by the Space Life Science Directorate (SLSD) at the NASA Johnson Space Center, led to the development and implementation of the NASA Human Health and Performance Center (NHHPC) in October 2010. The NHHPC now has over 100 members including seven NASA centers; other federal agencies; some of the International Space Station partners; industry; academia and non-profits. The NHHPC seeks to share best practices, develop collaborative projects and experiment with open collaboration techniques such as crowdsourcing. Using this approach, the NHHPC collaborative projects are anticipated to be at the earliest possible stage of development utilizing the many possible public-private partnerships in this center. Two workshops have been successfully conducted in 2011 (January and October) with a third workshop planned for the spring of 2012. The challenges of space flight are similar in many respects to providing health care and environmental monitoring in challenging settings on the earth. These challenges to technology development include the need for low power consumption, low weight, in-situ analysis, operator independence (i.e., minimal training), robustness, and limited resupply or maintenance. When similar technology challenges are identified (such as the need to provide and monitor a safe water supply or develop a portable medical diagnostic device for remote use), opportunities arise for public-private partnerships to engage in co-creation of novel approaches for space exploration and health and environmental applications on earth. This approach can enable the use of shared resources to reduce costs, engage other organizations and the public in participatory exploration (solving real-world problems), and provide technologies with multiple uses

  17. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and

  18. Synergistic Activities of Near-Earth Object Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to near-Earth asteroids by 2025. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. Information obtained from a human investigation of a NEO, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEO missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEOs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEOs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future international deep space exploration architectures and has potential benefits for future exploration of other destinations beyond low-Earth orbit.

  19. GEOG 342: Exploring the Virtual Earth

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Sfraga, M.

    2007-12-01

    First attributed to Eratosthenes around 200 BC, the word "geography" is derived from Greek words meaning "Earth" and "to describe". It describes the study of our planets, its features, inhabitants, and phenomena. The term "neogeography" put simply is new geography; where new refers to more than just practices that are new in usage. Methodologies of neogeography tend toward the intuitive, personal, artistic or even absurd, and general don't confirm to traditional protocols and boundaries. Mapping and spatial technologies such as Geobrowsers are typical of the tools used by neogeographers. Much of the success of Geobrowsers can be attributed to the fact that they use the methods and technologies of neogeography to provide a better understanding of traditional topics of Geography. The Geography program at the University of Alaska Fairbanks is embracing these new methodologies by offering a new class that explores the world around us through the use of Geobrowsers and other Web 2.0 technologies. Students will learn to use Keyhole Markup Language (KML), Google Maps API, SketchUp and a range of Virtual Globes programs, primarily through geospatial datasets from the Earth Sciences. A special focus will be given to datasets that look at the environments and natural hazards that make Alaska such a unique landscape. The role of forums, wikis and blogs in the expansion of the Geoweb will be explored, and students will be encouraged to be active on these websites. Students will also explore Second Life, the concept of which will be introduced through the class text, Neal Stephenson's "Snow Crash". The primary goal of the class is to encourage students to undertake their own explorations of virtual Earths, in order to better understand the physical and social structure of the real world.

  20. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload

  1. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  2. Strategic Implications of Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2011-01-01

    The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning.

  3. Near earth tracking/data exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Robert

    1990-01-01

    The future challenges facing NASA's data acquisition program are examined, with emphasis on the near-earth exploration activity and the associated data systems. It is noted that the process that is being followed is an evolutionary one: new technologies are being gradually integrated into currently operating systems. For example, advanced handling is already being introduced into such programs as the Space Telescope and the Gamma Ray Source Observatory System.

  4. Exploring the Earth Using Deep Learning Techniques

    NASA Astrophysics Data System (ADS)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Research using deep neural networks have significantly matured in recent times, and there is now a surge in interest to apply such methods to Earth systems science and the geosciences. When combined with Big Data, we believe there are opportunities for significantly transforming a number of areas relevant to researchers and policy makers. In particular, by using a combination of data from a range of satellite Earth observations as well as computer simulations from climate models and reanalysis, we can gain new insights into the information that is locked within the data. Global geospatial datasets describe a wide range of physical and chemical parameters, which are mostly available using regular grids covering large spatial and temporal extents. This makes them perfect candidates to apply deep learning methods. So far, these techniques have been successfully applied to image analysis through the use of convolutional neural networks. However, this is only one field of interest, and there is potential for many more use cases to be explored. The deep learning algorithms require fast access to large amounts of data in the form of tensors and make intensive use of CPU in order to train its models. The Australian National Computational Infrastructure (NCI) has recently augmented its Raijin 1.2 PFlop supercomputer with hardware accelerators. Together with NCI's 3000 core high performance OpenStack cloud, these computational systems have direct access to NCI's 10+ PBytes of datasets and associated Big Data software technologies (see http://geonetwork.nci.org.au/ and http://nci.org.au/systems-services/national-facility/nerdip/). To effectively use these computing infrastructures requires that both the data and software are organised in a way that readily supports the deep learning software ecosystem. Deep learning software, such as the open source TensorFlow library, has allowed us to demonstrate the possibility of generating geospatial models by combining information from

  5. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    NASA Technical Reports Server (NTRS)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  6. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  7. Science in Exploration: From the Moon to Mars and Back Home to Earth

    NASA Technical Reports Server (NTRS)

    Garvin, James B.

    2007-01-01

    have its first mobile analytical laboratory operating on the surface of Mars (Mars Science Laboratory) in search of potentially subtle expressions of past life or at least of life-hospitable environments. Meanwhile back here on Planet Earth, NASA will be continuing to implement an increasingly comprehensive program of robotic missions that address major issues associated with global climate variability, and the "state variables" that affect the quality of human life on our home planet. Ultimately, the fmits of NASA's emergent program of Exploration (VSE) will provide never-beforepossible opportunities for scientific leadership and advancement, culminating in a new state of awareness from which to better plan for the sustainability of life on Earth and for extending Earth life to the Moon and eventually to Mars. As NASA nears its 50th anniversary, the unimaginable and unexpected wealth of strategic knowledge its missions have generated about Earth, the Universe, and our local Solar System boggles the mind and serves as a legacy of knowledge for Educators to inspire future generations.

  8. Asteroid exploration and utilization: The Hawking explorer

    NASA Technical Reports Server (NTRS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  9. Asteroid exploration and utilization: The Hawking explorer

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-12-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  10. Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.

    2006-01-01

    According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.

  11. Recent Results From the Opportunity Rover's Exploration of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Squyres, S. W.; Gellert, R.; Mittlefehldt, D. W.

    2014-01-01

    The Mars Exploration Rover Opportunity is beginning its 11th year of exploration and as of sol 3535 (1/3/14 UTC) has traversed 38,729 m (based on wheel turns) across the plains of Meridiani and the rim of the approx. 22 km wide Noachian Endeavour Crater. Opportunity has investigated ancient sulfate-rich sand-stones (Burns formation) that dominate the plains and formed in ancient playa and dune environments, characterized impact breccias (Shoemaker formation) and their aqueous alteration on Endeavour's Cape York rim segment, and investigated extensive aqueous alteration of rocks on Cape York's Matijevic Hill that stratigraphically underlie Shoemaker formation and predate the Endeavour-forming event. In this abstract results from Opportunity's recent exploration of Endeavour's rim are covered, focusing on comparing what was found on Matijevic Hill with observations acquired on Murray Ridge, where Opportunity will spend its sixth winter at Cook Haven.

  12. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    NASA Astrophysics Data System (ADS)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  13. ISECG Mission Scenarios and Their Role in Informing Next Steps for Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric

    2011-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human

  14. Biological Life Support Technologies: Commercial Opportunities

    NASA Technical Reports Server (NTRS)

    Nelson, Mark (Editor); Soffen, Gerald (Editor)

    1990-01-01

    The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.

  15. Human Exploration of Near-Earth Asteroids and Sample Collection Considerations

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. Subsequently, the U.S. presidential administration directed NASA on April 15, 2010 to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Sample Science Benefits: Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a

  16. Paving the Path for Human Space Exploration: The Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hansen, Lauri

    2016-01-01

    Lauri Hansen, Director of Engineering at NASA Johnson Space Center will discuss the challenges of human space exploration. The future of human exploration begins with our current earth reliant missions in low earth orbit. These missions utilize the International Space Station to learn how to safely execute deep space missions. In addition to serving as an exploration test bed and enabling world class research, the International Space Station enables NASA to build international and commercial partnerships. NASA's next steps will be to enable the commercialization of low earth orbit while concentrating on developing the spacecraft and infrastructure necessary for deep space exploration and long duration missions. The Orion multi-purpose crew vehicle and the Space Launch System rocket are critical building blocks in this next phase of exploration. There are many challenges in designing spacecraft to perform these missions including safety, complex vehicle design, and mass challenges. Orion development is proceeding well, and includes a significant partnership with the European Space Agency (ESA) to develop and build the Service Module portion of the spacecraft. Together, NASA and ESA will provide the capability to take humans further than we have ever been before - 70,000 km past the moon. This will be the next big step in expanding the frontiers of human exploration, eventually leading to human footprints on Mars.

  17. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    NASA Astrophysics Data System (ADS)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  18. Adventures in near-Earth object exploration.

    PubMed

    Asphaug, Erik

    2006-06-02

    Asteroids, because of the hazard they pose to Earth, are compelling targets for robotic and human space exploration. Yet because of their exotic low-gravity environment, simply landing on an asteroid appears to be much more challenging than we had appreciated 5 or 10 years ago. Thanks to a bold new mission from Japan that has made the first asteroid sample return attempt, this goal is now within our reach.

  19. Scientific Opportunities with ispace, a Lunar Exploration Company

    NASA Astrophysics Data System (ADS)

    Acierno, K. T.

    2016-11-01

    This presentation introduces ispace, a Tokyo-based lunar exploration company. Technology applied to the Team Hakuto Google Lunar XPRIZE mission will be described. Finally, it will discuss how developing low cost and mass efficient rovers can support scientific opportunities.

  20. Decadal opportunities for space architects

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2012-12-01

    A significant challenge for the new field of space architecture is the dearth of project opportunities. Yet every year more young professionals express interest to enter the field. This paper derives projections that bound the number, type, and range of global development opportunities that may be reasonably expected over the next few decades for human space flight (HSF) systems so those interested in the field can benchmark their goals. Four categories of HSF activity are described: human Exploration of solar system bodies; human Servicing of space-based assets; large-scale development of space Resources; and Breakout of self-sustaining human societies into the solar system. A progressive sequence of capabilities for each category starts with its earliest feasible missions and leads toward its full expression. The four sequences are compared in scale, distance from Earth, and readiness. Scenarios hybridize the most synergistic features from the four sequences for comparison to status quo, government-funded HSF program plans. Finally qualitative, decadal, order-of-magnitude estimates are derived for system development needs, and hence opportunities for space architects. Government investment towards human planetary exploration is the weakest generator of space architecture work. Conversely, the strongest generator is a combination of three market drivers: (1) commercial passenger travel in low Earth orbit; (2) in parallel, government extension of HSF capability to GEO; both followed by (3) scale-up demonstration of end-to-end solar power satellites in GEO. The rich end of this scale affords space architecture opportunities which are more diverse, complex, large-scale, and sociologically challenging than traditional exploration vehicle cabins and habitats.

  1. Goals for Near-Earth-Object Exploration Examined

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-09-01

    With Japan's Hayabusa space probe having returned a sample of the Itokawa asteroid this past June, and with NASA's Deep Impact spacecraft impactor having successfully struck comet Tempel 1 in 2006, among other recent missions, the study of near-Earth objects (NEOs) recently has taken some major steps forward. The recent discovery of two asteroids that passed within the Moon's distance of Earth on 8 September is a reminder of the need to further understand NEOs. During NASA's Exploration of Near-Earth Objects (NEO) Objectives Workshop, held in August in Washington, D. C., scientists examined rationales and goals for studying NEOs. Several recent documents have recognized NEO research as important as a scientific precursor for a potential mission to Mars, to learn more about the origins of the solar system, for planetary defense, and for resource exploitation. The October 2009 Review of Human Space Flight Plans Committee report (known as the Augustine report), for example, recommended a “flexible path ” for human exploration, with people visiting sites in the solar system, including NEOs. The White House's National Space Policy, released in June, indicates that by 2025, there should be “crewed missions beyond the moon, including sending humans to an asteroid.” In addition, NASA's proposed budget for fiscal year 2011 calls for the agency to send robotic precursor missions to nearby asteroids and elsewhere and to increase funding for identifying and cataloging NEOs.

  2. The Denali EarthScope Education Partnership: Creating Opportunities for Learning About Solid Earth Processes in Alaska and Beyond.

    NASA Astrophysics Data System (ADS)

    Roush, J. J.; Hansen, R. A.

    2003-12-01

    The Geophysical Institute of the University of Alaska Fairbanks, in partnership with Denali National Park and Preserve, has begun an education outreach program that will create learning opportunities in solid earth geophysics for a wide sector of the public. We will capitalize upon a unique coincidence of heightened public interest in earthquakes (due to the M 7.9 Denali Fault event of Nov. 3rd, 2002), the startup of the EarthScope experiment, and the construction of the Denali Science & Learning Center, a premiere facility for science education located just 43 miles from the epicenter of the Denali Fault earthquake. Real-time data and current research results from EarthScope installations and science projects in Alaska will be used to engage students and teachers, national park visitors, and the general public in a discovery process that will enhance public understanding of tectonics, seismicity and volcanism along the boundary between the Pacific and North American plates. Activities will take place in five program areas, which are: 1) museum displays and exhibits, 2) outreach via print publications and electronic media, 3) curriculum development to enhance K-12 earth science education, 4) teacher training to develop earth science expertise among K-12 educators, and 5) interaction between scientists and the public. In order to engage the over 1 million annual visitors to Denali, as well as people throughout Alaska, project activities will correspond with the opening of the Denali Science and Learning Center in 2004. An electronic interactive kiosk is being constructed to provide public access to real-time data from seismic and geodetic monitoring networks in Alaska, as well as cutting edge visualizations of solid earth processes. A series of print publications and a website providing access to real-time seismic and geodetic data will be developed for park visitors and the general public, highlighting EarthScope science in Alaska. A suite of curriculum modules

  3. Satellite View of Opportunity Journey around Victoria Crater

    NASA Image and Video Library

    2007-01-23

    Three years after embarking on a historic exploration of the red planet and six miles away from its landing site, NASA's Mars Exploration Rover Opportunity is traversing "Victoria Crater" ridge by ridge, peering at layered cliffs in the interior. To identify various alcoves and cliffs along the way, science team members are using names of places visited by the 16th-century Earth explorer Ferdinand Magellan and his crew aboard the ship Victoria, who proved the Earth is round. (All names are unofficial unless approved by the International Astronomical Union.) This orbital view of "Victoria Crater" was taken by NASA's Mars Reconnaissance Orbiter. http://photojournal.jpl.nasa.gov/catalog/PIA09116

  4. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    NASA Astrophysics Data System (ADS)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration

  5. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; hide

    2012-01-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration

  6. Exploring the Earth System through online interactive models

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.

    2013-12-01

    Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that

  7. Human Exploration of Near-Earth Objects Accessibility Study

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Drake, Bret; Friedensen, Victoria; Mazanek, Dan

    2011-01-01

    Key questions addressed: How short can the trip times be reduced in order to reduce crew exposure to the deep-space radiation and microgravity environment? Are there options to conduct easy, early missions?. What is the affect of infusion of advanced propulsion technologies on target availability When do the departure opportunities open up, how frequent and how long are they? How many launches are required to conduct a round trip human mission to a NEA? And, based on the above, how many Near-Earth Asteroids are available

  8. Continental Drilling to Explore Earth's Sedimentary, Paleobiological, and Biogeochemical Record

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew; Soreghan, Gerilyn

    2013-07-01

    A workshop to promote research using continental scientific drilling to explore the Earth's sedimentary, paleobiological, and biogeochemical record was held in Norman, Okla. The workshop, funded by the U.S. National Science Foundation (NSF), was intended to encourage U.S.-based scientists to take advantage of the exceptional capacity of unweathered, continuous sediment cores to serve as archives of the Earth's history.

  9. Human and Robotic Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2010-01-01

    A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the

  10. Exploring Spaceship Earth

    ERIC Educational Resources Information Center

    McInnis, Noel F.

    1973-01-01

    Describes various activities to understand the nature of the earth as a spaceship and its impact on human life. A figure depicting a holocoenotic environmental complex is given which can be used to illustrate various interacting forces on earth. (PS)

  11. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  12. Virtual Exploration of Earth's Evolution

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  13. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  14. Innovations in mission architectures for exploration beyond low Earth orbit

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.; Joosten, B. J.; Lo, M. W.; Ford, K. M.; Hansen, R. J.

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  15. Near-Earth Asteroid Scout

    NASA Technical Reports Server (NTRS)

    McNutt, Leslie; Johnson, Les; Clardy, Dennon; Castillo-Rogez, Julie; Frick, Andreas; Jones, Laura

    2014-01-01

    Near-Earth Asteroids (NEAs) are an easily accessible object in Earth's vicinity. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a mission concept, tentatively called 'NEA Scout,' utilizing a low-cost CubeSats platform in response to the current needs for affordable missions with exploration science value. The NEA Scout mission concept would be a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV).

  16. Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities

    ERIC Educational Resources Information Center

    White, Jonathan R.

    2017-01-01

    Computer-assisted language learning (CALL) has greatly enhanced the realm of online social interaction and behavior. In language classrooms, it allows the opportunity for students to enhance their learning experiences. "Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities" is an ideal…

  17. Lunar Exploration and Science Opportunities in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future

  18. The Earth and Environmental Systems Podcast, and the Earth Explorations Video Series

    NASA Astrophysics Data System (ADS)

    Shorey, C. V.

    2015-12-01

    The Earth and Environmental Systems Podcast, a complete overview of the theoretical basics of Earth Science in 64 episodes, was completed in 2009, but has continued to serve the worldwide community as evidenced by listener feedback (e.g. "I am a 65 year old man. I have been retired for awhile and thought that retirement would be nothing more than waiting for the grave. However I want to thank you for your geo podcasts. They have given me a new lease on life and taught me a great deal." - FP, 2015). My current project is a video series on the practical basics of Earth Science titled "Earth Explorations". Each video is under 12 minutes long and tackles a major Earth Science concept. These videos go beyond a talking head, or even voice-over with static pictures or white-board graphics. Moving images are combined with animations created with Adobe After Effects, and aerial shots using a UAV. The dialog is scripted in a way to make it accessible at many levels, and the episodes as they currently stand have been used in K-12, and Freshman college levels with success. Though these videos are made to be used at this introductory level, they are also designed as remedial episodes for upper level classes, freeing up time given to review for new content. When completed, the series should contain close to 200 episodes, and this talk will cover the full range of resources I have produced, plan to produce, and how to access these resources. Both resources are available on iTunesU, and the videos are also available on YouTube.

  19. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  20. Explorers Program Management

    NASA Technical Reports Server (NTRS)

    Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)

    2001-01-01

    The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.

  1. New meters open new business opportunities for Blue Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashaw, R.

    1996-07-01

    Competition in the electric utility industry isn`t a concern only for the big boys. Small utilities, too, are giving increasing attention to measures that will improve their competitiveness through paring costs and improving service. Blue Earth, Minn., Light and Water Department, with approximately 2,200 electric meters, is a prime example of a small utility that thinks big. {open_quotes}We conducted a customer survey to determine what our customers want from us in terms of service,{close_quotes} said General Manager Jeffrey Jansen. {open_quotes}To meet those needs we`ve begun to sell a new fiberglass, high-efficiency electric water heater; offer rent or purchase of uninterruptiblemore » power systems to provide back-up for sensitive electronics if an outage occurs; and we`re even selling bottled water. We`re also going to offer budget billing as of August 1, because our customers wanted that option.{close_quotes} Recognizing that providing excellent customer service is only part of the competitiveness equation, Blue Earth has also looked for ways to cut costs. Its latest effort has been the implementation of a new hand-held meter reading system, which Jansen expects to provide substantial savings, and offer opportunities for adding new services in the future.« less

  2. Sagan Lecture: Spirit, Opportunity, and the Exploration of the Red Planet

    NASA Astrophysics Data System (ADS)

    Squyres, S.

    2005-12-01

    In January of 2004, twin robotic explorers named Spirit and Opportunity landed on Mars. Expected to last for 90 days, the two rovers have now been exploring the martian surface for more than a year and a half. Their objective is to search for evidence of past water on Mars, and to determine if Mars ever had conditions that would have been suitable for life. Spirit landed in Gusev Crater, a large impact crater in the southern highlands of Mars. Finding only basaltic lava on the crater floor, Spirit drove almost three kilometers to the base of the Columbia Hills, a small mountain range to the east of the landing site. There Spirit has ascended Husband Hill, the highest summit in the range, and has found strong evidence that the rocks there were modified long ago by water. Opportunity landed on Meridiani Planum, a smooth plateau near the martian equator, coming to rest in a small impact feature named Eagle Crater. Within Eagle Crater, Opportunity found compelling evidence for long-ago water on Mars. This evidence included 'blueberries': small concretions rich in hematite that precipitated from liquid water. It also included rocks that are made largely of sulfate salts, deposited when water evaporated away, and rocks that preserve ancient ripples that formed billions of years ago as water flowed over sand on Mars. The conditions long ago at Eagle Crater may have been suitable for some simple forms of life. Whether life could have developed there, however, is a much more difficult question. After leaving Eagle Crater, Opportunity drove eastward to Endurance Crater, a much larger crater that allowed access to deeper and older rocks which also proved to be blueberry-laden sulfate-rich sediments. Since leaving Endurance Crater, Opportunity has explored southward, driving more than five kilometers across the martian surface. The talk will provide an up-to-date summary of the mission of Spirit and Opportunity, from their initial conception through their launch, landing, and

  3. The impact of earth resources exploration from space

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1976-01-01

    Remote sensing of the earth from satellite systems such as Landsat, Nimbus, and Skylab has demonstrated the potential influence of such observations on a number of major human concerns. These concerns include the management of food, water and fiber resources, the exploration and management of mineral and energy resources, the protection of the environment, the protection of life and property, and improvements in shipping and navigation.

  4. Powering the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Miley, Steven C.

    2009-01-01

    This viewgraph presentation reviews NASA's future of science and space exploration. The topics include: 1) NASA's strategic goals; 2) NASA around the Country; 3) Marshall's History; 4) Marshall's Missions; 5) Marshall Statistics: From Exploration to Opportunity; 6) Propulsion and Transportation Systems; 7) Life Support systems; 8) Earth Science; 9) Space Science; 10) NASA Innovation Creates New Jobs, Markets, and Technologies; 11) NASA Inspires Future Generations of Explorers; and 12) Why Explore?

  5. Architectures for Human Exploration of Near Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2011-01-01

    The presentation explores human exploration of Near Earth Asteroid (NEA) key factors including challenges of supporting humans for long-durations in deep-space, incorporation of advanced technologies, mission design constraints, and how many launches are required to conduct a round trip human mission to a NEA. Topics include applied methodology, all chemical NEA mission operations, all nuclear thermal propulsion NEA mission operations, SEP only for deep space mission operations, and SEP/chemical hybrid mission operations. Examples of mass trends between datasets are provided as well as example sensitivity of delta-v and trip home, sensitivity of number of launches and trip home, and expected targets for various transportation architectures.

  6. Market Driven Space Exploration

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2004-02-01

    Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.

  7. Scientific Exploration of Near-Earth Objects via the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Korsmeyer, D. J.; Landis, R. R.; Lu, E.; Adamo, D.; Jones, T.; Lemke, L.; Gonzales, A.; Gershman, B.; Morrison, D.; hide

    2007-01-01

    The concept of a crewed mission to a near-Earth object (NEO) has been previously analyzed several times in the past. A more in depth feasibility study has been sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the ability of a Crew Exploration Vehicle (CEV) to support a mission to a NEO. The national mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day mission, which would include a 7 to 14 day stay for proximity operations at the target NEO.

  8. Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.

    2016-12-01

    The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information

  9. EarthInquiry: Using On-Line Data to Help Students Explore Fundamental Concepts in Geoscience

    NASA Astrophysics Data System (ADS)

    Alfano, M.; Keane, C. M.; Ridky, R. W.

    2002-12-01

    Using local case studies to learn about earth processes increases the relevance of science instruction. Students are encouraged to think about how geological processes affect their lives and experiences. Today, with many global data sets available on-line, instructors have unprecedented opportunities to bring local data into the classroom. However, while the resources are available, using on-line data presents a particular set of challenges. Access and entry to web sites frequently change and data format can be unpredictable. Often, instructors are faced with non-functional web sites on the day, or week, that they plan to assign a given activity. The American Geological Institute, with the participation of numerous geoscience professors, has developed EarthInquiry, a series of activities that utilize the abundant real-time and archived geoscience data available on-line. These modules are developed primarily for introductory college students. EarthInquiry modules follow a structured format, beginning with familiar examples at the global and national level to introduce students to the on-line data and the EarthInquiry web site. The web site offers detailed and up-to-date instructions on how to access the data, cached copies of sample data that can be used to complete each activity in the event of a network outage, and an assessment activity that helps students determine how well they have achieved an understanding of key concepts. The EarthInquiry booklet contains a series of engaging questions that allow students to solve problems in a scientific manner. As students gain content understanding and confidence in the requisite analysis, they examine the presented material at a more local level. In one activity, students explore the recurrence interval of a local stream. In other activities, they investigate the mineral resources and earthquake histories of their state. All modules are developed with the intent of building an appropriate cognitive foundation, while

  10. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  11. Deep Space Gateway Science Opportunities

    NASA Technical Reports Server (NTRS)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  12. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  13. Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Condon, Gerald; Williams, Jacob

    2012-01-01

    The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.

  14. The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) List of Near-Earth Asteroids: Identifying Potential Targets for Future Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Barbee, B. W.; Mink, R. G.; Alberding, C. M.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs [1, 2], and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system [3]. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010 [4]. Detailed planning for such deep space exploration missions and identifying potential NEAs as targets for human spaceflight requires selecting objects from the ever growing list of newly discovered NEAs. Hence NASA developed and implemented the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Target Study (NHATS), which identifies potential candidate objects on the basis of defined dynamical trajectory performance constraints.

  15. CarbonSat: ESA's Earth Explorer 8 Candidate Mission

    NASA Astrophysics Data System (ADS)

    Meijer, Y. J.; Ingmann, P.; Löscher, A.

    2012-04-01

    The CarbonSat candidate mission is part of ESA's Earth Explorer Programme. In 2010, two candidate opportunity missions had been selected for feasibility and preliminary definition studies. The missions, called FLEX and CarbonSat, are now in competition to become ESA's eighth Earth Explorer, both addressing key climate and environmental change issues. In this presentation we will provide a mission overview of CarbonSat with a focus on science. CarbonSat's primary mission objective is the quantification and monitoring of CO2 and CH4 sources and sinks from the local to the regional scale for i) a better understanding of the processes that control carbon cycle dynamics and ii) an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.) in the context of international treaties. A second priority objective is the monitoring/derivation of CO2 and CH4 fluxes on regional to global scale. These objectives will be achieved by a unique combination of frequent, high spatial resolution (2 x 2 km2) observations of XCO2 and XCH4 coupled to inverse modelling schemes. The required random error of a single measurement at ground-pixel resolution is of the order of between 1 and 3 ppm for XCO2 and between 9 and 17 ppb for XCH4. High spatial resolution is essential in order to maximize the probability for clear-sky observations and to identify flux hot spots. Ideally, CarbonSat shall have a wide swath allowing a 6-day global repeat cycle. The CarbonSat observations will enable CO2 emissions from coal-fired power plants, localized industrial complexes, cities, and other large emitters to be objectively assessed at a global scale. Similarly, the monitoring of natural gas pipelines and compressor station leakage will become feasible. The detection and quantification of the substantial geological greenhouse gas emission sources such as seeps, volcanoes and mud volcanoes will be achieved for the first time. CarbonSat's Greenhouse Gas instrument will

  16. Earth cloud, aerosol, and radiation explorer optical payload development status

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  17. New Age for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  18. Opportunity's Second Martian Birthday at Cape Verde

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A promontory nicknamed 'Cape Verde' can be seen jutting out from the walls of Victoria Crater in this approximate true-color picture taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity. The rover took this picture on martian day, or sol, 1329 (Oct. 20, 2007), more than a month after it began descending down the crater walls -- and just 9 sols shy of its second Martian birthday on sol 1338 (Oct. 29, 2007). Opportunity landed on the Red Planet on Jan. 25, 2004. That's nearly four years ago on Earth, but only two on Mars because Mars takes longer to travel around the sun than Earth. One Martian year equals 687 Earth days.

    The overall soft quality of the image, and the 'haze' seen in the lower right portion, are the result of scattered light from dust on the front sapphire window of the rover's camera.

    This view was taken using three panoramic-camera filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet).

  19. NEEMO 15: Evaluation of Human Exploration Systems for Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Gernhardt, Michael L.

    2011-01-01

    The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on near-Earth Asteroid (NEA) exploration techniques evaluation. It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of "far field survey" approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of scientific objectives developed by the science team based on review and discussion of previous related marine science research including previous marine science saturation missions conducted at the Aquarius habitat. AUV data was used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the "near field survey" approach that is expected to be performed by a multi mission space exploration vehicle (MMSEV) during a human mission to a NEA before conducting extravehicular activities (EVA)s. In addition to the science objectives that were pursued, the NEEMO 15 science traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the "near field survey" in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crewmembers, tools, and equipment that could be used to perform

  20. Low cost missions to explore the diversity of near Earth objects

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Delamere, Alan

    1992-01-01

    We propose a series of low-cost flyby missions to perform a reconnaissance of near-Earth cometary nuclei and asteroids. The primary scientific goal is to study the physical and chemical diversity in these objects. The mission concept is based on the Pegasus launch vehicle. Mission costs, inclusive of launch, development, mission operations, and analysis are expected to be near $50 M per mission. Launch opportunities occur in all years. The benefits of this reconnaissance to society are stressed.

  1. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  2. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    NASA Astrophysics Data System (ADS)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  3. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    NASA Astrophysics Data System (ADS)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  4. Telerobotics for Human Exploration: Enhancing Crew Capabilities in Deep Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence

    2013-01-01

    Future space missions in Earth orbit, to the Moon, and to other distant destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible or efficient for humans to perform manually. Telerobots, however, can complement human explorers, performing work under remote control from Earth, orbit or nearby habitats. A central challenge, therefore, is to understand how humans and remotely operated robots can be jointly employed to maximize mission performance and success. This presentation provides an overview of the key issues with using telerobots for human exploration.

  5. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  6. The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth

    NASA Astrophysics Data System (ADS)

    Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

    2012-03-01

    What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

  7. Exploring the hidden interior of the Earth with directional neutrino measurements.

    PubMed

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.

  8. What an option is worth for an exploration opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKay, J.A.; Lerche, I.

    1995-12-25

    The reason that a corporation might want to take an option on an opportunity is to wait until more information becomes available before committing to the decision to drill. For instance, in a situation where an opportunity is one of the first prospects in a new play trend, there is often very little known (as opposed to surmised) about the potential gain, and the chances of success are also often poorly determined. Thus, until the estimates of costs, gains, and success chances are firmed up in the future by drilling information from other operators, the corporation would prefer to holdmore » off on the decision to drill a particular prospect. Recently Dixit and Pindyck have persuasively argued qualitatively that an options approach should be taken to capital investment in any business field because, opportunities are options--rights but not obligations to take some action in the future and, as soon as you begin thinking of investment opportunities as options, the premise (that investment decisions can be reversed if conditions change or, if they cannot be reversed, that they are now-or-never propositions) changes. Irreversibility, uncertainty, and the choice of timing alter the investment decision in critical ways. From an oil industry perspective Dixit and Pindyck eloquently provide the rationale for considering an option position rather than dealing only with net present value considerations. The ability to calculate the worth of an option to a hydrocarbon exploration opportunity is what this article is about.« less

  9. Scientific Results of the Mars Exploration Rovers Spirit and Opportunity

    NASA Astrophysics Data System (ADS)

    Banerdt, W. B.

    2006-08-01

    NASA's Mars Exploration Rover project launched two robotic geologists, Spirit and Opportunity, toward Mars in June and July of 2003, reaching Mars the following January. The science objectives for this mission are focused on delineating the geologic history for two locations on Mars, with an emphasis on the history of water. Although they were designed for a 90-day mission, both rovers have lasted more than two years on the surface and each has covered more than four miles while investigating Martian geology. Spirit was targeted to Gusev Crater, a 300-km diameter impact basin that was suspected to be the site of an ancient lake. Initial investigations of the plains in the vicinity of the landing site found no evidence of such a lake, but were instead consistent with unaltered (by water) basaltic plains. But after a 3-km trek to an adjacent range of hills it found a quite different situation, with abundant chemical and morphological evidence for a complex geological history. Opportunity has been exploring Meridiani Planum, which was known from orbital data to contain the mineral hematite, which generally forms in the presence of water. The rocks exposed in Meridiani are highly chemically altered, and appear to have been exposed to significant amounts of water. By descending into the 130-m diameter Endurance Crater, Opportunity was able to analyze a 10-m vertical section of this rock unit, which showed significant gradations in chemistry and morphology.

  10. "Tormenta Espacial" - Exploring The Sun-earth Connection With A Spanish-language Planetarium Show

    NASA Astrophysics Data System (ADS)

    Elteto, Attila; Salas, F.; Duncan, D.; Traub-Metlay, S.

    2007-10-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - "Space Storm” - into "Tormenta Espacial". This show explores the Sun-Earth connection and explains how solar activity affects technology and life on Earth. Solar scientists from NOAA's Space Environment Center and the University of Colorado at Boulder contributed to provide scientific accuracy. Show content and accompanying educational materials are aligned with state and national science standards. While designed for students in grades 6-8, this show has been positively evaluated by students from grades 4-10 and shown to the general public with favorable responses. Curricular materials extend the planetarium experience into the K-12 classroom so that students inspired and engaged by the show continue to see real-life applications and workplace opportunities. Fiske Planetarium offers both "Space Storm” and "Tormenta Espacial” to other planetariums at a minimal rate, including technical support for the life of the show. Thanks to a request from a planetarium in Belgium, a version of "Space Storm” is available with no spoken dialogue so that languages other than English or Spanish may be accommodated. Collaborative projects among planetariums, NASA missions (planned as well as active), research scientists and other parties keep EPO activities healthy and well-funded. Fiske Planetarium staff strive to develop and maintain partnerships throughout the EPO and informal education communities.

  11. Innovations in Mission Architectures for Human and Robotic Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, Douglas R.; Joosten, B. Kent; Lo, Martin W.; Ford, Ken; Hansen, Jack

    2002-01-01

    Through the application of advanced technologies, mission concepts, and new ideas in combining capabilities, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to discovery driven, technology enabled exploration. Numbers and masses of vehicles required are greatly reduced, yet enable the pursuit of a broader range of objectives. The scope of missions addressed range from the assembly and maintenance of arrays of telescopes for emplacement at the Earth-Sun L2, to Human missions to asteroids, the moon and Mars. Vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities; allowing for decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.

  12. Medical System Concept of Operations for Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric

    2017-01-01

    Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.

  13. A new trajectory concept for exploring the earth's geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Dunham, D. W.

    1981-01-01

    An innovative trajectory technique for a magnetotail mapping mission is described which can control the apsidal rotation of an elliptical earth orbit and keep its apogee segment inside the tail region. The required apsidal rotation rate of approximately 1 deg/day is achieved by using the moon to carry out a prescribed sequence of gravity-assist maneuvers. Apogee distances are alternately raised and lowered by the lunar-swingby maneuvers; several categories of the 'sun-synchronous' swingby trajectories are identified. The strength and flexibility of the new trajectory concept is demonstrated by using real-world simulations showing that a large variety of trajectory shapes can be used to explore the earth's geomagnetic tail between 60 and 250 R sub E.

  14. Evolution of Mobil`s methods to evaluate exploration and producing opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaynor, C.B.; Cook, D.M. Jr.

    1996-08-01

    Over the past decade, Mobil has changed significantly in size, structure and focus to improve profitability. Concurrently, work processes and methodologies have been modified to improve resource utilization and opportunity selection. The key imperative has been recognition of the full range of hydrocarbon volume uncertainty, its risk and value. Exploration has focussed on increasing success through improved geotechnical estimates and demonstrating value addition. For Producing, the important tasks: (1) A centralized Exploration and Producing team was formed to help ensure an integrated, consistent worldwide approach to prospect and field assessments. Monte Carlo simulation was instituted to recognize probability-weighted ranges ofmore » possible outcomes for prospects and fields, and hydrocarbon volume category definitions were standardized. (2) Exploration instituted a global Prospect Inventory, tracking wildcat predictions vs. results. Performance analyses led to initiatives to improve the quality and consistency of assessments. Process improvement efforts included the use of multidisciplinary teams and peer reviews. Continued overestimates of hydrocarbon volumes prompted methodology changes such as the use of {open_quotes}reality checks{close_quotes} and log-normal distributions. The communication of value predictions and additions became paramount. (3) Producing now recognizes the need for Exploration`s commercial discoveries and new Producing ventures, notwithstanding the associated risk. Multi-disciplinary teams of engineers and geoscientists work on post-discovery assessments to optimize field development and maximize the value of opportunities. Mobil now integrates volume and risk assessment with correlative future capital investment programs to make proactive strategic choices to maximize shareholder value.« less

  15. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  16. Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Friedman, Louis

    2012-01-01

    This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into

  17. Techniques to minimize adjacent band emissions from Earth Exploration Satellites to protect the Space Research (Category B) Earth Stations in the 8400-8450 MHz band

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin

    2004-01-01

    The Earth Exploration Satellites operating in the 8025-8400 MHz band can have strong adjacent band emissions on the8400-8450 MHz band which is allocated for Space Research (Category-B). The unwanted emission may exceed the protection criterion establish by the ITU-R for the protection of the Space Research (Category B) earth stations, i.e., deep-space earth stations. An SFCG Action Item (SF 23/14) was created during the 23rd SFCG meeting to explore technical and operational techniques to reduce the adjacent band emissions. In response to this action item, a study was conducted and results are presented in this document.

  18. 2005 Earth-Mars Round Trip

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.

  19. Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top.

    The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim.

    Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.

    This view is presented as a cylindrical projection with geometric seam correction.

  20. The esa earth explorer land surface processes and interactions mission

    NASA Astrophysics Data System (ADS)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  1. Model-Based Trade Space Exploration for Near-Earth Space Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  2. Forget the hype or reality. Big data presents new opportunities in Earth Science.

    NASA Astrophysics Data System (ADS)

    Lee, T. J.

    2015-12-01

    Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.

  3. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  4. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    USGS Publications Warehouse

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  5. Exploration Platform in the Earth-Moon Libration System Based on ISS

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Derechin, Alexander

    2012-01-01

    International Space Station (ISS) industry partners have been working for the past two years on concepts using ISS development methods and residual assets to support a broad range of exploration missions. These concepts have matured along with planning details for NASA's Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) to allow serious consideration for a platform located in the Earth-Moon Libration (EML) system. This platform would provide a flexible basis for future exploration missions and would significantly reduce costs because it will enable re-use of expensive spacecraft and reduce the total number of launches needed to accomplish these missions. ISS provides a robust set of methods which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. We will show how ISS can be used to reduce risk and improve operational flexibility for missions beyond low earth orbit through the development of a new Exploration Platform based in the EML system. The benefits of using the EML system as a gateway will be presented along with additional details of a lunar exploration mission concept. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. We will show how technology developed for ISS can be evolved and adapted to the new exploration challenge. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Finally, we will describe how the EML Platform could be built and deployed and how International access for crew and cargo could be provided.

  6. Sagan Lecture : Exploring Titan, An Earth-like Organic Paradise

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2007-12-01

    Saturn's giant moon Titan has been called many things - 'The Mars of the Outer Solar System', 'A Fiercely-Frozen Echo of the Early Earth', 'A Place Like Home'- indeed, 'The Whole ball of Wax'. These various appelations reflect the richness and bewildering complexity of this most fascinating world which bears comparisons with both the terrestrial planets as well as other icy satellites. Titan's thick but dynamic atmosphere sculpts its surface with tidal winds and methane monsoons, and its climate has competing greenhouse and antigreenhouse effects as well as a seasonal polar haze structure analogous to the Earth's ozone hole. Titan is striking also in its massive organic inventory - its dunes and lakes make up an exposed carbon reservoir hundreds of times more massive than all of Earth's fossil fuels. At least part of this organic inventory has been processed by transient exposures to liquid water, in impact melt sheets and cryovolcanic flows (a scenario first pointed out by Thompson and Sagan in 1991). This aqueous chemical interaction is known from terrestrial laboratory experiments to yield amino acids, pyrimidines and other building blocks of living molecular systems. How far these chemical systems might evolve on geological, as opposed to laboratory, scales of space and time on Titan is completely unknown, but must surely be interesting to find out. The talk will review some of the surprising findings from Cassini-Huygens, their lessons for us here on Earth, and what future Titan exploration may tell us about the origins of worlds and the origins of life.

  7. Exploring spiritual value in earth science concept through learning using chain till unanswered questions

    NASA Astrophysics Data System (ADS)

    Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana

    2017-08-01

    Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.

  8. Exploration of Victoria crater by the mars rover opportunity

    USGS Publications Warehouse

    Squyres, S. W.; Knoll, A.H.; Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Calvin, W.M.; Christensen, P.R.; Clark, B. C.; Cohen, B. A.; De Souza, P.A.; Edgar, L.; Farrand, W. H.; Fleischer, I.; Gellert, Ralf; Golombek, M.P.; Grant, J.; Grotzinger, J.; Hayes, A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.; Klingelhofer, G.; Knudson, A.; Li, R.; McCoy, T.J.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R.V.; Rice, J. W.; Schroder, C.; Sullivan, R.J.; Yen, A.; Yingst, R.A.

    2009-01-01

    The Mars rover Opportunity has explored Victoria crater, a ???750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ???6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.

  9. Exploration of Victoria crater by the Mars rover Opportunity.

    PubMed

    Squyres, S W; Knoll, A H; Arvidson, R E; Ashley, J W; Bell, J F; Calvin, W M; Christensen, P R; Clark, B C; Cohen, B A; de Souza, P A; Edgar, L; Farrand, W H; Fleischer, I; Gellert, R; Golombek, M P; Grant, J; Grotzinger, J; Hayes, A; Herkenhoff, K E; Johnson, J R; Jolliff, B; Klingelhöfer, G; Knudson, A; Li, R; McCoy, T J; McLennan, S M; Ming, D W; Mittlefehldt, D W; Morris, R V; Rice, J W; Schröder, C; Sullivan, R J; Yen, A; Yingst, R A

    2009-05-22

    The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.

  10. Contingency study for the third international Sun-Earth Explorer (ISEE-3) satellite

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    The third satellite of the international Sun-Earth Explorer program was inserted into a periodic halo orbit about L sub 1, the collinear libration point between the Sun and the Earth-Moon barycenter. A plan is presented that was developed to enable insertion into the halo orbit in case there was a large underperformance of the Delta second or third stage during the maneuver to insert the spacecraft into the transfer trajectory. After one orbit of the Earth, a maneuver would be performed near perigee to increase the energy of the orbit. A relatively small second maneuver would put the spacecraft in a transfer trajectory to the halo orbit, into which it could be inserted for a total cost within the fuel budget. Overburns (hot transfer trajectory insertions) were also studied.

  11. Lunar Satellite Snaps Image of Earth

    NASA Image and Video Library

    2014-05-07

    This image, captured Feb. 1, 2014, shows a colorized view of Earth from the moon-based perspective of NASA's Lunar Reconnaissance Orbiter. Credit: NASA/Goddard/Arizona State University -- NASA's Lunar Reconnaissance Orbiter (LRO) experiences 12 "earthrises" every day, however LROC (short for LRO Camera) is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that LROC can capture a view of Earth. On Feb. 1, 2014, LRO pitched forward while approaching the moon's north pole allowing the LROC Wide Angle Camera to capture Earth rising above Rozhdestvenskiy crater (112 miles, or 180 km, in diameter). Read more: go.nasa.gov/1oqMlgu NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Exploring Earth's Magnetism and Northern lights in High School Classroom

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Peticolas, L.

    2008-05-01

    Present studies are being conducted as a part of the outreach project entitled Geomagnetic Event Observation Network by Students (GEONS) to share excitement of the THEMIS (Time History of Events and Macro scale Interactions during Substorm) mission launched during February, 2007. The goal of this mission is to investigate the causality of events that lead to the explosive release of energy (derived from the Sun) stored in the Earth's magnetic field. The visible manifestation of the energy release is Aurora Borealis observed in the Northern hemisphere of the Earth. Inherent to understanding the root-cause of formation of spectacular aurora is the interaction between the Earth's magnetic field and the solar wind charged particles. To achieve this ambitious objective in a high school classroom, students conducted activities using the magnetic field of bar magnets, electromagnets, electromagnetic induction, and Lenz's Law. Following the fundamental understanding of these concepts, students acquired the necessary vocabulary and explored the various components of the interaction between the Earth's magnetic field and the solar wind charged particles. They were also familiarized with the general format in which THEMIS spacecraft data is displayed. In this presentation, we will address student's misconceptions, their struggle to make connections before they can appreciate "Big Idea" in terms of its components. Discussion will highlight the relationship between student understanding of new ideas and how these ideas connect with their prior knowledge.

  13. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  14. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  15. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  16. Resource Exploration Approaches on Mars Using Multidisciplinary Earth-based Techniques

    NASA Astrophysics Data System (ADS)

    Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Smart, K. J.

    2005-12-01

    Water is the most important Martian exploration target - key to finding evidence of past life and providing a crucial resource for future exploration. Water is thought to be present in vapor, liquid, and ice phases on Mars. Except for ice in polar regions, little direct evidence of current surface accumulation of water has been found. Existing research has addressed potential source areas, including meteoric water, glacial ice, and volcanic centers and areas of discharge such as large paleo-outflow channels. Missing from these analyses is characterization of migration pathways of water in the subsurface from sources to discharge areas, and the present distribution of water. It has been estimated that ~90% of the global inventory of water on Mars resides in the subsurface. Targeting potential subsurface accumulations has relied primarily on theoretical modeling and geomorphic analysis. While global scale thermal modeling and analysis of the stability of ground ice provide important constraints on potential locations of large deposits of ice or liquid water, these studies have not accounted for variations in stratigraphy and structure that may strongly influence local distribution. Depth to water or ice on Mars is thought to be controlled primarily by latitude and elevation. However, the distribution of outflow channels clearly indicates that structural, stratigraphic, and geomorphic features all play important roles in determining past and present distribution of water and ice on Mars as they do on Earth. Resource exploration and extraction is a multi-billion dollar industry on Earth that has developed into a highly sophisticated enterprise with constantly improving exploration technologies. Common to all successful exploration programs, whether for hydrocarbons or water, is detailed analysis and integration of all available geologic, geophysical and remotely sensed data. The primary issues for identification and characterization of water or hydrocarbon resource

  17. Earth Exploration Toolbook Workshops: Helping Teachers and Students Analyze Web-based Scientific Data

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.; Dahlman, L.; Haddad, N.

    2007-12-01

    One of the challenges faced by Earth science teachers, particularly in K-12 settings, is that of connecting scientific research to classroom experiences. Helping teachers and students analyze Web-based scientific data is one way to bring scientific research to the classroom. The Earth Exploration Toolbook (EET) was developed as an online resource to accomplish precisely that. The EET consists of chapters containing step-by-step instructions for accessing Web-based scientific data and for using a software analysis tool to explore issues or concepts in science, technology, and mathematics. For example, in one EET chapter, users download Earthquake data from the USGS and bring it into a geographic information system (GIS), analyzing factors affecting the distribution of earthquakes. The goal of the EET Workshops project is to provide professional development that enables teachers to incorporate Web-based scientific data and analysis tools in ways that meet their curricular needs. In the EET Workshops project, Earth science teachers participate in a pair of workshops that are conducted in a combined teleconference and Web-conference format. In the first workshop, the EET Data Analysis Workshop, participants are introduced to the National Science Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). They also walk through an Earth Exploration Toolbook (EET) chapter and discuss ways to use Earth science datasets and tools with their students. In a follow-up second workshop, the EET Implementation Workshop, teachers share how they used these materials in the classroom by describing the projects and activities that they carried out with students. The EET Workshops project offers unique and effective professional development. Participants work at their own Internet-connected computers, and dial into a toll-free group teleconference for step-by-step facilitation and interaction. They also receive support via Elluminate, a Web

  18. A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)

    NASA Astrophysics Data System (ADS)

    Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.

    2001-05-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of

  19. Human Expeditions to Near-Earth Asteroids: An Update on NASA's Status and Proposed Activities for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Reeves, David; Drake, Bret; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth- Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a NEA using NASA s proposed exploration systems a compelling endeavor.

  20. Invited Pesek lecture: Exploration rather than speculation-assembling the puzzle of potential life beyond Earth

    NASA Astrophysics Data System (ADS)

    Dominik, Martin

    2012-12-01

    Speculations about the existence of life beyond Earth are probably as old as mankind itself, but still there is no evidence - neither for its presence nor for its absence. Moreover, we neither know the necessary nor the sufficient conditions for life to emerge, sustain or evolve. The Drake equation famously quantifies our ignorance by writing the number of detectable civilizations as product of factors that get increasingly uncertain the further one goes to the right. As a result, the predictive power is poor, and it ultimately depends on the most uncertain factor. However, if we were able to derive a reasonable estimate, we would not need SETI experiments to tell us whether we are alone or not. What has changed substantially over human history is our ability to explore the Universe. Most significantly, radio transmission technology gives us the opportunity to communicate over interstellar distances, and we are now able to not only determine the population statistics of planets within the Milky Way, but even in principle to find biosignatures in their atmospheres. By finding life beyond Earth, we will learn how frequently it emerges. By finding signals from intelligent extra-terrestrial civilizations, we will get unprecedented insight into our biological, technological, and societal evolution. The Drake equation is not such a useful means for assessing the chances of success of SETI, but instead it provides the framework for using observational data in advancing towards understanding the origins of our existence and our role in the cosmos, and maybe to get a glimpse of our future.

  1. Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Polar)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top.

    This view is presented as a polar projection with geometric seam correction.

    The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim.

    Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.

  2. Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Vertical)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top.

    This view is presented as a vertical projection with geometric seam correction.

    The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim.

    Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.

  3. Mars Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Jordan, James F.; Miller, Sylvia L.

    2000-01-01

    The architecture of NASA's program of robotic Mars exploration missions received an intense scrutiny during the summer months of 1998. We present here the results of that scrutiny, and describe a list of Mars exploration missions which are now being proposed by the nation's space agency. The heart of the new program architecture consists of missions which will return samples of Martian rocks and soil back to Earth for analysis. A primary scientific goal for these missions is to understand Mars as a possible abode of past or present life. The current level of sophistication for detecting markers of biological processes and fossil or extant life forms is much higher in Earth-based laboratories than possible with remotely deployed instrumentation, and will remain so for at least the next decade. Hence, bringing Martian samples back to Earth is considered the best way to search for the desired evidence. A Mars sample return mission takes approximately three years to complete. Transit from Earth to Mars requires almost a single year. After a lapse of time of almost a year at Mars, during which orbital and surface operations can take place, and the correct return launch energy constraints are met, a Mars-to-Earth return flight can be initiated. This return leg also takes approximately one year. Opportunities to launch these 3-year sample return missions occur about every 2 years. The figure depicts schedules for flights to and from Mars for Earth launches in 2003, 2005, 2007 and 2009. Transits for less than 180 deg flight angle, measured from the sun, and more than 180 deg are both shown.

  4. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    2011-12-01

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  5. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  6. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  7. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  8. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  9. Exploring home visits in a faith community as a service-learning opportunity.

    PubMed

    du Plessis, Emmerentia; Koen, Magdalene P; Bester, Petra

    2013-08-01

    Within South Africa the Psychiatric Nursing Science curriculum in undergraduate Baccalaureate nursing education utilizes home visits as a service-learning opportunity. In this context faith communities are currently unexplored with regards to service-learning opportunities. With limited literature available on this topic, the question was raised as to what are these students' and family members' experience of home visits within a faith community. To explore and describe nursing students' and family members' experiences of home visits within a faith community. A qualitative approach was used that was phenomenological, explorative and descriptive and contextual in nature. The research was conducted within a faith community as service learning opportunity for Baccalaureate degree nursing students. This community was situated in a semi-urban area in the North-West Province, South Africa. Eighteen (n=18) final year nursing students from different cultural representations, grouped into seven groups conducted home visits at seven (n=7) families. Comprehensive reflective reporting after the visits, namely that the students participated in a World Café data collection technique and interviews were conducted with family members. Three main themes emerged: students' initial experiences of feeling overwhelmed but later felt more competent; students' awareness of religious and cultural factors; and students' perception of their role. Two main themes from the family members emerged: experiencing caring and growth. There is mutual benefit for nursing students and family members. Students' experiences progress during home visits from feeling overwhelmed and incompetent towards a trusting relationship. Home visits in a faith community seems to be a valuable service learning opportunity, and the emotional competence, as well as spiritual and cultural awareness of nursing students should be facilitated in preparation for such home visits. Copyright © 2012 Elsevier Ltd. All rights

  10. Cyberlearning for Climate Literacy: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    McCaffrey, M. S.; Buhr, S. M.; Gold, A. U.; Ledley, T. S.; Mooney, M. E.; Niepold, F.

    2010-12-01

    Cyberlearning tools provide cost and carbon-efficient avenues for fostering a climate literate society through online engagement with learners. With climate change education becoming a Presidential Priority in 2009, funding for grants from NSF, NASA and NOAA is leading to a new generation of cyberlearning resources that supplement existing online resources. This paper provides an overview of challenges and opportunities relating to the online delivery of high quality, often complex climate science by examining several existing and emerging efforts, including the Climate Literacy and Energy Awareness Network (CLEAN,) a National Science Digital Library Pathway, the development by CIRES Education and Outreach of the Inspiring Climate Education Excellence (ICEE) online course, TERC’s Earth Exploration Toolbook (EET,) DataTools, and EarthLab modules, the NOAA Climate Stewards Education Program (CSEP) that utilizes the NSTA E-Learning Center, online efforts by members of the Federation of Earth Science Information Partners (ESIP), UCAR’s Climate Discovery program, and the Climate Adaptation, Mitigation e-Learning (CAMeL) project. In addition, we will summarize outcomes of the Cyberlearning for Climate Literacy workshop held in Washington DC in the Fall of 2009 and examine opportunities for teachers to develop and share their own lesson plans based on climate-related web resources that currently lack built-in learning activities, assessments or teaching tips.

  11. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Arnold William; Baysinger, Mike; Crane, Tracie; Capizzo, Pete; Sutherlin, Steven; Dankanich, John; Woodcock, Gordon; Edlin, George; Rushing, Johnny; Fabisinski, Leo; hide

    2007-01-01

    This work documents the advancements in MSFC threat modeling and mitigation technology research completed since our last major publication in this field. Most of the work enclosed here are refinements of our work documented in NASA TP-2004-213089. Very long development times from start of funding (10-20 years) can be expected for any mitigation system which suggests that delaying consideration of mitigation technologies could leave the Earth in an unprotected state for a significant period of time. Fortunately there is the potential for strong synergy between architecture requirements for some threat mitigators and crewed deep space exploration. Thus planetary defense has the potential to be integrated into the current U.S. space exploration effort. The number of possible options available for protection against the NEO threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. A summary of the major lessons learned during this study is presented, as are recommendations for future work.

  12. Principal Components Analysis of Reflectance Spectra from the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Mercer, C. M.; Cohen, B. A.

    2010-01-01

    In the summer of 2007 a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), the primary instrument used by the Athena Science Team to identify locally unique rocks on the Martian surface. The science team needs another way to distinguish interesting rocks from their surroundings on a tactical timescale. This study was designed to develop the ability to identify locally unique rocks on the Martian surface remotely using the Mars Exploration Rovers' Panoramica Camera (PanCam) instrument. Meridiani bedrock observed by Opportunity is largely characterized by sulfate-rich sandstones and hematite spherules. Additionally, loose fragments of bedrock and "cobbles" of foreign origin collet on the surface, some of which are interpreted as meteorites.

  13. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  14. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; hide

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  15. Challenges and Opportunities for Developing Capacity in Earth Observations for Agricultural Monitoring: The GEOGLAM Experience

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Di Bella, C. M.; Becker Reshef, I.; Deshayes, M.; Justice, C. O.

    2015-12-01

    Since 2011, the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) Initiative has been working to strengthen the international community's capacity to use Earth observation (EO) data to derive timely, accurate, and transparent information on agriculture, with the goals of reducing market volatility and promoting food security. GEOGLAM aims to develop capacity for EO-based agricultural monitoring at multiple scales, from national to regional to global. This is accomplished through training workshops, developing and transferring of best-practices, establishing networks of broad and sustainable institutional support, and designing or adapting tools and methodologies to fit localized contexts. Over the past four years, capacity development activities in the context of GEOGLAM have spanned all agriculture-containing continents, with much more work to be done, particularly in the domains of promoting access to large, computationally-costly datasets. This talk will detail GEOGLAM's experiences, challenges, and opportunities surrounding building international collaboration, ensuring institutional buy-in, and developing sustainable programs.

  16. Exploring the Earth's Past

    ERIC Educational Resources Information Center

    Lindaman, Arnold D.; And Others

    1972-01-01

    Describes three approaches to a study of the earth's past: (1) development of a time line of the ages; (2) a study of rocks and how each was formed; and (3) a study of fossils as found in certain kinds of stone. (Editor)

  17. Species Loss: Exploring Opportunities with Art-Science.

    PubMed

    Harrower, Jennifer; Parker, Jennifer; Merson, Martha

    2018-04-25

    Human-induced global change has triggered the sixth major extinction event on earth with profound consequences for humans and other species. A scientifically literate public is necessary to find and implement approaches to prevent or slow species loss. Creating science-inspired art can increase public understanding of the current anthropogenic biodiversity crisis and help people connect emotionally to difficult concepts. In spite of the pressure to avoid advocacy and emotion, there is a rich history of scientists who make art, as well as art-science collaborations resulting in provocative work that engages public interest; however, such interdisciplinary partnerships can often be challenging to initiate and navigate. Here we explore the goals, impacts, cascading impacts and lessons learned from art-science collaborations, as well as ideas for collaborative projects. Using three case studies based on Harrower's scientific research into species interactions, we illustrate the importance of artists as a primary audience and the potential for a combination of art and science presentations to influence public understanding and concern related to species loss.

  18. Human Exploration Missions Study Launch Window from Earth Orbit

    NASA Technical Reports Server (NTRS)

    Young, Archie

    2001-01-01

    The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric

  19. A Potential Role for smallsats and Cubesats in Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Bérengère; De Rosa, Diego; Schiemann, Jens D.; Walker, Roger; Zeppenfeldt, Frank

    2015-04-01

    The Moon is an important exploration destination for ESA, which is currently engaged in activities to access and exploit the Moon through developments in future human exploration systems and precursor robotic surface missions. However, recent major advancements in Smallsat and Cubesat technologies, and their application to fields such as Earth imaging and atmospheric science, has opened the possibility of utilising these smaller, lower cost platforms beyond LEO and potentially at the Moon. ESA is interested in understanding how emerging Smallsat & Cubesat instrument and platform technology could be applied to Lunar Exploration, particularly in the fields of technology demonstration and investigations which can be precursors to longer term l exploration activies. Lunar Cubesats can offer an means of access to the Moon, which complements larger ESA-led opportunities on international surface missions and via future human exploration systems. In this talk ESA will outline its current objectives in Lunar Exploration and highlight potential future opportunities for Smallsat and Cubesat platforms to play a role.

  20. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  1. Native American Science Education: A Compelling Opportunity for the Integration of Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Maryboy, N.; Begay, D.

    2005-05-01

    The strong relationships between Earth and sky in the worldviews of Native American people presents a wonderful opportunity for collaborations that can co-create compelling educational opportunities for both Native and non-Native learners. This paper will discuss the relationship among successful science education for Native Americans, standards-based science education, and informal science education. It will address some strategies for combining best practice in education with a deep cultural authenticity. Presenting astronomy in a culturally relevant and correct way is not only of value to the Native learner, but it is also of value to the non-Native learner because cultural relevance for Native people demands that science be presented via different learning modalities (e.g. visual, kinesthetic, tactile) and in a way that is more interconnected with other science and non-science disciplines. This kind of multi-modal and interdisciplinary approach is valuable and progressive for Non-native learners as well.

  2. Human Health and Performance Considerations for Exploration of Near Earth Asteroids (NEA)

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Charles, John B.; Steinberg, Susan L.

    2011-01-01

    This slide presentation reviews some of the health and performance issues for an manned exploration mission to some of the Near Earth Asteroids (NEA). The issues that NASA is reviewing are: 1. Radiation exposure 2. Inadequate food and nutrition 3. Challenges to behavioral health 4. Muscle, cardiovascular, bone atrophy 5. Dust and volatiles 6. Remote medical care 7. Decompression sickness.

  3. Human space exploration the next fifty years.

    PubMed

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.

  4. Using immersive media and digital technology to communicate Earth Science

    NASA Astrophysics Data System (ADS)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  5. Working Group Reports and Presentations: Mars Science and Exploration

    NASA Technical Reports Server (NTRS)

    Beaty, David

    2006-01-01

    In Mars, the spirit of exploring an exciting and rewarding new frontier is alive. Mars not only offers a unique destination for exploration, but it is also a critical destination for the advancement of human society and preservation of humanity. The exploration of Mars will provide significant social and technological benefits to enhance life on Earth as well. International cooperation will not only be essential to the success of a human presence on Mars, but development of such interactions will jumpstart collaboration on global issues. The eventual commercialization of space holds tremendous opportunities for economic growth. Finally, there is an undeniable basic human need to explore and define our place in the universe. The overarching theme that ties together all of these reasons for exploration is to inspire and unite the global community to pursue a common cause that is much larger than disagreements over ethnic differences or national borders. Continuous inspiration of the public, the scientific community, and the community of Earth are required in order to explore Mars.

  6. Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    NASA Technical Reports Server (NTRS)

    Rivkin, Andrew S.; Kirby, Karen; Cheng, Andrew F.; Gold, Robert; Kelly, Daniel; Reed, Cheryl; Abell, Paul; Garvin, James; Landis, Rob

    2012-01-01

    spacecraft was designed to support rendezvous with a range of candidate asteroid targets and could easily be launched with one of several NASA launch vehicles. The Falcon 9 launch vehicle supports a Next Gen NEAR launch to target many near-Earth asteroids under consideration that could be reached with a C3 of 18 km2/sec2 or less, and the Atlas V-401 provides added capability supporting launch to NEAs that require more lift capacity while at the same time providing such excess lift capability that another payload of opportunity could be launch in conjunction with Next Gen NEAR. Next Gen NEAR will measure and interact with the target surface in ways never undertaken at an asteroid, and will prepare for first human precursor mission by demonstrating exploration science operations at an accessible NEO. This flexible mission and spacecraft design concept supports target selection based on upcoming Earth-based observations and also provides opportunities for co-manifest & international partnerships. JHU/APL has demonstrated low cost, low risk, high impact missions and this mission will help to prepare NASA for human NEO exploration by combining the best of NASA s human and robotic exploration capabilities.

  7. Research and Teaching About the Deep Earth

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  8. Near-Earth Asteroid (NEA) Scout

    NASA Technical Reports Server (NTRS)

    McNutt, Leslie; Johnson, Les; Kahn, Peter; Castillo-Rogez, Julie; Frick, Andreas

    2014-01-01

    Near-Earth asteroids (NEAs) are the most easily accessible bodies in the solar system, and detections of NEAs are expected to grow exponentially in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a potential mission concept, tentatively called 'NEAScout,' utilizing a low-cost platform such as CubeSat in response to the current needs for affordable missions with exploration science value. The NEAScout mission concept would be treated as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV).

  9. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    rover in an assumed intentional state of "hibernation" since mid-April 2010. and the Opportunity rover actively embarking on a long (> 12 km) drive to the 22-km diameter crater Endeavour. This presentation will provide an update on the status of the expected return to operations of the Spirit rover this summer or fall, and the team's plans to continue to explore the potential hydrothermal environment in the region around the ancient volcanic feature known as Home Plate. I will also provide an update on the progress of Opportunity's drive to Endeavour, and the team's plans to study clay mineral (phyllosilicate) deposits that have been identified on the rim of Endeavour from orbital remote sensing observations. A key point of this presentation is that despite this being a robotic mission, it isn't really the rovers that are exploring Mars; rather, it is a large team of people here on Earth (as well as the interested public) that have spent nearly 7 years "virtually" roving across the red planet using some amazing and highly capable robotic tools.

  10. The ISECG Science White Paper - A Scientific Perspective on the Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Bussey, David B.; Worms, Jean-Claude; Spiero, Francois; Schlutz, Juergen; Ehrenfreund, Pascale

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As an element of this continued road mapping effort, the ISECG agencies are therefore soliciting input and coordinated discussion with the scientific community to better articulate and promote the scientific opportunities of the proposed mission themes. An improved understanding of the scientific drivers and the requirements to address priority science questions associated with the exploration destinations (Moon, Near Earth Asteroids, Mars and its moons) as well as the preparatory activities in cis-lunar space is beneficial to optimize the partnership of robotic assets and human presence beyond low Earth orbit. The interaction has resulted in the development of a Science White Paper to: • Identify and highlight the scientific opportunities in early exploration missions as the GER reference architecture matures, • Communicate overarching science themes and their relevance in the GER destinations, • Ensure international science communities' perspectives inform the future evolution of mission concepts considered in the GER The paper aims to capture the opportunities offered by the missions in the GER for a broad range of scientific disciplines. These include planetary and space sciences, astrobiology, life sciences, physical sciences, astronomy and Earth science. The paper is structured around grand science themes that draw together and connect research in the various disciplines, and it will focus on

  11. ED20. Crisis or Opportunity? Earth and Space Science Education at the State and National Levels

    NASA Astrophysics Data System (ADS)

    Brett, J. M.

    2011-12-01

    Scientists and researchers, those often in oversight positions and often control of the purse strings, have historically not been kind to the Earth Systems Science (ESS) discipline. This is puzzling to those of us who are ESS educators because we know that to appreciate how our planet works it is necessary to integrate and apply all the disciplines of science. With our amazing technologies and the increasing demands of a growing population we are dramatically changing our home planet. Perhaps a crisis? As the last century ended we found ESS in the same minor league position it was in when the 20th Century started. During the review period of what was to become the National Science Education Standards (NSES) draft after draft, no matter what color the cover was, seemed to ignore, omit, or severely limit ESS topics in meteorology and oceanography. Once published the NSES became the basis for the science standards in many states with what many said were critical gaps. In the years following 1996 different groups have worked to correct the omissions they found by developing guides...Ocean Literacy: Essential Principles of Ocean Science K-12 and Climate Literacy: The Essential Principals of Climate Science. An observer on the side might have considered each effort one of lobbying to get attention, funding and materials. Each effort was clearly interested in making an impact where it mattered...in the classroom. Now our Opportunity! The NAS process for developing "A Framework for K-12 Science Education" presented ESS educators with a real opportunity and we can proudly say we made our voices heard. And while there is great enthusiasm for the framework and the Chapter 7 Earth and Space we face critically important work to bring real Earth Space Science Education into the K-12 classroom. The possibility of the standards to be developed from the Framework becoming Common Core for the majority of states following the course of ELA and mathematics requires that those who

  12. The Next Generation Science Standards: An Historic Opportunity for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.; Passow, M. J.; Holzer, M. A.; Moore, J.

    2014-12-01

    The Next Generation Science Standards (NGSS) provide an historic opportunity to significantly improve Earth and space science (ESS) education nationally at the K-12 level. The increased emphasis on ESS related topics in the NGSS relative to previous standards provides a real opportunity for ensuring all K-12 students in adopting states learn about the ESS - allowing us to reach many more students than are currently are exposed to our discipline. The new standards are also exciting in that they explicitly couple science and engineering practice, cross-cutting concepts, and disciplinary core ideas in such a way that student must actively demonstrate their understanding through actions rather than through mere regurgitation of memorized responses. Achieving mastery of NGSS Performance Expectations will require practice with higher-order learning skills - with students engaging in the practices of scientists and engineers. Preparing students for this mastery will be a challenging task for teachers, since in many states professional development support is limited at best for the current curriculum - let alone the curricula that will be developed to address the NGSS. As adoption of the NGSS expands across the country, states will be at various levels of implementation of the new standards over the next several years - and there is real concern that teachers must have sufficient professional development to be able to be successful in preparing their students - particularly in view of likely coupled assessments and teacher evaluations. NESTA strongly supports implementation of the NGSS, and the rigorous and compelling ESS education it will engender, when coupled with a strong emphasis nationwide on teacher professional development. For the past two years, the National Earth Science Teachers Association (NESTA) has continued our leadership in K-12 ESS education through workshops, web seminars, events and publications that emphasize implementation of the NGSS in ESS

  13. Language of the Earth: Exploring Natural Hazards through a Literary Anthology

    NASA Astrophysics Data System (ADS)

    Malamud, B. D.; Rhodes, F. H. T.

    2009-04-01

    This paper explores natural hazards teaching and communications through the use of a literary anthology of writings about the earth aimed at non-experts. Teaching natural hazards in high-school and university introductory Earth Science and Geography courses revolves mostly around lectures, examinations, and laboratory demonstrations/activities. Often the results of such a course are that a student 'memorizes' the answers, and is penalized when they miss a given fact [e.g., "You lost one point because you were off by 50 km/hr on the wind speed of an F5 tornado."] Although facts and general methodologies are certainly important when teaching natural hazards, it is a strong motivation to a student's assimilation of, and enthusiasm for, this knowledge, if supplemented by writings about the Earth. In this paper, we discuss a literary anthology which we developed [Language of the Earth, Rhodes, Stone, Malamud, Wiley-Blackwell, 2008] which includes many descriptions about natural hazards. Using first- and second-hand accounts of landslides, earthquakes, tsunamis, floods and volcanic eruptions, through the writings of McPhee, Gaskill, Voltaire, Austin, Cloos, and many others, hazards become 'alive', and more than 'just' a compilation of facts and processes. Using short excerpts such as these, or other similar anthologies, of remarkably written accounts and discussions about natural hazards results in 'dry' facts becoming more than just facts. These often highly personal viewpoints of our catostrophic world, provide a useful supplement to a student's understanding of the turbulent world in which we live.

  14. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE PAGES

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  15. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  16. Exploring the hidden interior of the Earth with directional neutrino measurements

    PubMed Central

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-01-01

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. PMID:28691700

  17. The 1994 Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1994-01-01

    This document is the proceedings from the fourth annual 'Space and Earth Science Data Compression Workshop,' which was held on April 2, 1994, at the University of Utah in Salt Lake City, Utah. This workshop was held in cooperation with the 1994 Data Compression Conference, which was held at Snowbird, Utah, March 29-31 1994. The Workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. It consisted of 13 papers presented in 4 sessions. The papers focus on data compression research that is integrated into, or has the potential to be integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientist's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  18. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    NASA Astrophysics Data System (ADS)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  19. Near Earth Objects - a threat and an opportunity

    NASA Astrophysics Data System (ADS)

    Tate, Jonathan R.

    2003-05-01

    In the past decade the hazard posed to the Earth by Near Earth Objects (NEOs) has generated considerable scientific and public interest. A number of major films, television programmes and media reports have brought the issue to public attention. From an educational perspective an investigation into NEOs and the effects of impacts on the Earth forms a topical and dynamic basis for study in a huge range of subjects, not just scientific. There are clear routes to chemistry, physics, mathematics and biology, but history, psychology, geography, palaeontology and geology are just a selection of other subjects involved. A number of projects have been established, mainly in the USA, to determine the extent of the hazard, and to develop ways of countering it, but the present situation is far from satisfactory. Current detection and follow-up programmes are underfunded and lack international coordination.

  20. Earth Exploration Toolbook Workshops: Web-Conferencing and Teleconferencing Professional Development Bringing Earth Science Data Analysis and Visualization Tools to K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.

    2008-12-01

    The Earth Exploration Toolbook (EET) Workshops Project provides a mechanism for teachers and students to have successful data-using educational experiences. In this professional development project, teachers learn to use National Science Digital Library (NSDL), the Digital Library for Earth System Education (DLESE), and an Earth Exploration Toolbook (EET) chapter. In an EET Data Analysis Workshop, participants walk through an Earth Exploration Toolbook (EET) chapter, learning basic data analysis techniques and discussing ways to use Earth science datasets and analysis tools with their students. We have offered twenty-eight Data Analysis Workshops since the project began. The total number of participants in the twenty-eight workshops to date is three hundred eleven, which reflects one hundred eighty different teachers participating in one or more workshops. Our workshops reach middle and high school teachers across the United States at schools with lower socioeconomic levels and at schools with large numbers of minority students. Our participants come from thirty-eight different states including Alaska, Maine, Florida, Montana, and many others. Eighty-six percent of our participants are classroom teachers. The remaining fourteen percent are staff development specialists, university faculty, or outreach educators working with teachers. Of the classroom teachers, one third are middle school teachers (grades 6 to 8) and two thirds are high school teachers (grades 9 to 12.) Thirty-four percent of our participants come from schools where minority populations are the majority make up of the school. Twenty-five percent of our participants are at schools where the majority of the students receive free or reduced cost lunches. Our professional development workshops are helping to raise teachers' awareness of both the Digital Library for Earth System Education (DLESE) and the National Science Digital Library (NSDL). Prior to taking one of our workshops, forty-two percent of

  1. Exploring Earth's Polar Regions Online at Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Gardiner, L.; Johnson, R.; Russell, R.; Genyuk, J.; Bergman, J.; Lagrave, M.

    2007-12-01

    Earth's Polar Regions (www.windows.ucar.edu/polar.html), a new section of the Windows to the Universe Web site, made its debut in March 2007, at the start of International Polar Year. With this new online resource we seek to communicate information about the science, the history and cultures of the Arctic and Antarctic to students, teachers, and the general public. The Web section includes brief articles about diverse aspects of the science of polar regions including the cryosphere, climate change, geography, oceans, magnetic poles, the atmosphere, and ecology. Polar science topics link to related areas of the broader Web site as well. Other articles tell the stories of our human connections to the polar regions including the history of polar exploration and human cultures. Online "Postcards from the Field" allow contributing scientists to share their polar research with a broader audience. We continue to build content, games, puzzles, and interactives to complement and expand the existing resources. A new section about the poles of other planets is also in development. A growing collection of classroom activities which allow students to explore aspects of the polar regions is provided for K-12 educators. An image gallery of photographs from the polar regions and links to IPY and related educational programs provide additional resources for educators. We have been disseminating information about the Earth's Polar Regions Web resources to educators via National Science Teacher Association workshops, the Windows to the Universe educator newsletter, various education Listservs, and Climate Discovery courses offered through NCAR Online Education. Windows to the Universe (www.windows.ucar.edu), a long-standing and widely-used Web resource (with over 20 million user sessions in the past 12 months), provides extensive information about the Earth and space sciences at three levels - beginner, intermediate, and advanced - to serve the needs of upper elementary through lower

  2. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  3. Conceptual Learning Outcomes of Virtual Experiential Learning: Results of Google Earth Exploration in Introductory Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Bitting, Kelsey S.; McCartney, Marsha J.; Denning, Kathy R.; Roberts, Jennifer A.

    2018-06-01

    Virtual globe programs such as Google Earth replicate real-world experiential learning of spatial and geographic concepts by allowing students to navigate across our planet without ever leaving campus. However, empirical evidence for the learning value of these technological tools and the experience students gain by exploration assignments framed within them remains to be quantified and compared by student demographics. This study examines the impact of a Google Earth-based exploration assignment on conceptual understanding in introductory geoscience courses at a research university in the US Midwest using predominantly traditional college-age students from a range of majors. Using repeated-measures ANOVA and paired-samples t tests, we test the significance of the activity using pretest and posttest scores on a subset of items from the Geoscience Concept Inventory, and the interactive effects of student gender and ethnicity on student score improvement. Analyses show that learning from the Google Earth exploration activity is highly significant overall and for all but one of the concept inventory items. Furthermore, we find no significant interactive effects of class format, student gender, or student ethnicity on the magnitude of the score increases. These results provide strong support for the use of experiential learning in virtual globe environments for students in introductory geoscience and perhaps other disciplines for which direct observation of our planet's surface is conceptually relevant.

  4. The impact of earth resources exploration from space. [technology assessment/LANDSAT satellites -technological forecasting

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1975-01-01

    The use of Earth Resources Technology Satellites in solving global problems is examined. Topics discussed are: (1) management of food, water, and fiber resources; (2) exploration and management of energy and mineral resources; (3) protection of the environment; (4) protection of life and property; and (5) improvements in shipping and navigation.

  5. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  6. Exploration Medical Capability System Engineering Introduction and Vision

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Reilly, J.

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.

  7. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  8. The Earth Science Research Network as Seen Through Network Analysis of the AGU

    NASA Astrophysics Data System (ADS)

    Narock, T.; Hasnain, S.; Stephan, R.

    2017-12-01

    Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.

  9. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  10. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  11. Layers: Places in Peril, An Art and Earth Science Exploration

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Waller, J. L.

    2013-12-01

    As an Earth scientist (former U.W. Geography/Geology Professor-now Director of the Education Program at The American Meteorological Society) and a painter (Professor of Art, University of Wisconsin - Fox Valley), we have together twenty years of collaborative teaching and scholarly work. We have produced an exhibition of paintings and accompanying explanatory essays focusing on layers, a nexus of our two disciplines. Our traveling exhibition, entitled Layers: Places in Peril, highlights natural and human caused threats to selected beloved and treasured cities and areas. The Earth and its atmosphere are composed of layers, paintings are often layered and the built environment is often constructed in layers. We feel that this notion of overlapping and interleaving strata gives texture to reality. This realization and acknowledgement is something we wish to share with those who design or study the built environment. This reality also provides an important opportunity to convey the reality of hazards to a new and important audience. In this session, we will first describe our professional history of collaboration and then feature Layers as a culmination of our collaborative teaching and professional work. Through the success of our first two showings of our Layers exhibition of large paintings and Earth science text panels (at the Aylward Gallery at the University of Wisconsin, Fox Valley in 2012, followed in 2013 at the Indiana University of Pennsylvania Museum) and, most recently, through our participation at the National Academy of Sciences 'DASER on Disasters' event at the Keck Center in Washington D.C., we witnessed the essential educational power of this type of collaborative activity. To conclude our presentation, we will lead a brief conversation about strategy and practice that illustrates how engaged colleagues can flourish across disciplines and institutions. The result will hopefully inspire those who study, teach, shape, build and care about future

  12. Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11787 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11787

    NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top.

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim.

    Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  13. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth

  14. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  15. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  16. The Next Giant Leap: Human Exploration and Utilization of NEOs

    NASA Astrophysics Data System (ADS)

    Jones, T. D.; Vilas, F.; Love, S.; Hack, K.; Gefert, L.; Sykes, M. V.; Lewis, J. S.; Jedicke, R.; Davis, D.; Hartmann, W. K.; Farquhar, R.; McFadden, L.; Durda, D.

    2001-11-01

    Planetary science plays a unique role as the pathfinder for future human space activities beyond the International Space Station. It can also provide the rationale for the first human departure from LEO since the Apollo program. We are examining the potential for human missions to small near-Earth objects (typically tens of meters), passing close by the Earth-Moon system with very low delta-v. A preliminary estimate suggests there may be many thousands of these objects, raising the possibility of number of launch opportunities each year. To demonstrate feasibility, we have simulated a mission to 1991 VG during 1991/1992 when it passed within 0.004 AU of the Earth. This mission takes a total of 60 days, including a 30 day stay time at the asteroid. The accessibility of these targets may provide an opportunity to develop and test systems needed for longer duration interplanetary missions to Mars, and to engage in precursor space resource utilization activities. Early discovery, orbit determination, and target characterization should be pursued and spacebased and groundbased systems that would be needed assessed. Crewed missions would be preceded by robotic probes to test acquisition, rendezvous, and local operations while returning significant new science from target objects. As we look beyond ISS over the next decade, we must reinvigorate a mutually supportive relationship between our human space and solar system exploration goals. The scientific and exploration rationale for sending humans to NEOs must be mature to meet NASA's decision making window, now opening, for operations beyond near-Earth space.

  17. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Espinasse, S.; Hufenbach, B.

    2013-09-01

    Lunar exploration continues to be a priority for the European Space Agency (ESA) and is recognized as the next step for human exploration beyond low Earth orbit. The Moon is also recognized as an important scientific target providing vital information on the history of the inner solar system; Earth and the emergence of life, and fundamental information on the formation and evolution of terrestrial planets. The Moon also provides a platform that can be utilized for fundamental science and to prepare the way for exploration deeper into space and towards a human Mars mission, the ultimate exploration goal. Lunar missions can also provide a means of preparing for a Mars sample return mission, which is an important long term robotic milestone. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. These include activities on the ISS and participation with US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017. Future activities planned activities also include participation in international robotic missions. These activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We present ESA's plans for Lunar exploration and the current status of activities. In particular we will show that this programme gives rise to unique scientific opportunities and prepares scientifically and technologically for future exploratory steps.

  18. The potential of space exploration for education

    NASA Technical Reports Server (NTRS)

    Shair, Fredrick H.

    1993-01-01

    Space exploration and observations from space offer unique opportunities with respect to education. Recent technical advances have significantly increased the width and sensitivity of the electromagnetic spectrum window through which we are able to 'see' the universe. Observations from space have forced a realization that the earth is a beautiful, complex, and interconnected system. Space astronomy and the remote sensing of objects throughout our solar system have the potential of providing unique educational opportunities. Modern technologies have significantly reduced the cost of collecting, transmitting and processing data. Consequently, we are entering an age where it is possible to open up the process of discovery to almost everyone - and especially to young people throughout the world.

  19. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    PubMed

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  20. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit

    PubMed Central

    Rasky, Daniel J.

    2017-01-01

    Abstract Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that “killer app”: technologically competitive, economically viable, and with the ability to close the business case. PMID:29375939

  1. NASA's Space Launch System: Deep-Space Opportunities for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew A.

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed cubesats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the cubesats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage

  2. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (approx about 5 million km or 37 lunar distances). Human Exploration Considerations: These missions would be the first human expeditions to inter-planetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the

  3. Growing Beyond Earth; Students Exploring Plant Varieties for Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Litzinger, Marion; Massa, Gioia

    2017-01-01

    Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages

  4. Making the Most of a Limited Opportunity: Empowering our Future Earth Science Educators by Engaging Them in Field-Based Inquiry.

    NASA Astrophysics Data System (ADS)

    Levy, R.; David, H.; Carlson, D.; Kunz, G.

    2004-12-01

    Geoscience courses that engage students in our K-12 learning environments represent a fundamental method to increase public awareness and understanding of Earth systems science. K-12 teachers are ultimately responsible for developing and teaching these courses. We recognize that it is our role as university instructors to ensure that our future K-12 teachers receive a high-quality and practical Earth science education; unfortunately many education majors at our institution receive no formal exposure to geoscience. Furthermore, for those students who choose to take a geoscience course, the experience is typically limited to a large introductory lecture-lab. While these courses are rich in content they neither provide opportunities for students to experience `real' Earth science nor address the skills required to teach Earth science to others. In 2002 we began to develop a field-based introductory geoscience course designed specifically for education students. Our major goal was to attract education majors and provide a field-based geoscience learning experience that was challenging, exciting, and directly applicable to their chosen career. Specific objectives of our project were to: (1) teach geoscience concepts and skills that K-12 teachers are expected to understand and teach to their students (outlined in national standards); (2) provide students with an opportunity to learn through scientific inquiry; (3) enhance student confidence in their ability to teach geoscience in the K-12 classroom. We piloted a two-week field course during summer 2004. The field excursion followed a route through Nebraska and Wyoming. Instructors focused on exposing students to the Earth systems concepts and content outlined in national education standards. The primary instructional approach was to engage students in inquiry-based learning. Students were provided many opportunities to utilize science process skills including: observation, documentation, classification, questioning

  5. Exploration Medical Capability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; McGuire, K.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  6. Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Defrees, D. (Editor); Brownlee, D. (Editor); Tarter, J. (Editor); Usher, D. (Editor); Irvine, W. (Editor); Klein, H. (Editor)

    1989-01-01

    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented.

  7. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  8. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  9. Lunar Exploration Orbiter (LEO)

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Spohn, T.; Hiesinger, H.; Jessberger, E. K.; Neukum, G.; Oberst, J.; Helbert, J.; Christensen, U.; Keller, H. U.; Mall, U.; Böhnhardt, H.; Hartogh, P.; Glassmeier, K.-H.; Auster, H.-U.; Moreira, A.; Werner, M.; Pätzold, M.; Palme, H.; Wimmer-Schweingruber, R.; Mandea, M.; Lesur, V.; Häusler, B.; Hördt, A.; Eichentopf, K.; Hauber, E.; Hoffmann, H.; Köhler, U.; Kührt, E.; Michaelis, H.; Pauer, M.; Sohl, F.; Denk, T.; van Gasselt, S.

    2007-08-01

    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system. Even today, the Moon remains an extremely interesting target scientifically and technologically, as ever since, new data have helped to address some of our questions about the Earth-Moon system, many questions remained. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. In this concept study, we present scientific and technological arguments for a national German lunar mission, the Lunar Explorations Orbiter (LEO). Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, LEO will be unique, because it will globally explore the Moon in unprecedented spatial and spectral resolution. LEO will significantly improve our understanding of the lunar surface composition, surface ages, mineralogy, physical properties, interior, thermal history, gravity field, regolith structure, and magnetic field. The Lunar Explorations Orbiter will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, microwave and

  10. Earth as Seen from Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On its 449th martian day, or sol (April 29, 2005), NASA's Mars rover Opportunity woke up approximately an hour after sunset and took this picture of the fading twilight as the stars began to come out. Set against the fading red glow of the sky, the pale dot near the center of the picture is not a star, but a planet -- Earth.

    Earth appears elongated because it moved slightly during the 15-second exposures. The faintly blue light from the Earth combines with the reddish sky glow to give the pale white appearance.

    The images were taken with Opportunity's panoramic camera, using 440-nanometer, 530-nanometer, and 750-nanometer color filters. In processing on the ground, the images were shifted slightly to compensate for Earth's motion between one image and the next.

  11. Small asteroids temporarily captured in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff

    2016-01-01

    We present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system like the 2-3 meter diameter, 2006 RH120, that was discovered by the Catalina Sky Survey. We use the term `minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.

  12. Small asteroids temporarily captured in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff

    2015-08-01

    We will present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system, such as the 2-3 meter diameter 2006 RH120 that was discovered by the Catalina Sky Survey. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.

  13. Using Google Earth to Explore Multiple Data Sets and Plate Tectonic Concepts

    NASA Astrophysics Data System (ADS)

    Goodell, L. P.

    2015-12-01

    Google Earth (GE) offers an engaging and dynamic environment for exploration of earth science data. While GIS software offers higher-level analytical capability, it comes with a steep learning curve and complex interface that is not easy for the novice, and in many cases the instructor, to negotiate. In contrast, the intuitive interface of GE makes it easy for students to quickly become proficient in manipulating the globe and independently exploring relationships between multiple data sets at a wide range of scales. Inquiry-based, data-rich exercises have been developed for both introductory and upper-level activities including: exploration of plate boundary characteristics and relative motion across plate boundaries; determination and comparison of short-term and long-term average plate velocities; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions. Used successfully in undergraduate course settings, for TA training and for professional development programs for middle and high school teachers, the exercises use the following GE data sets (with sources) that have been collected/compiled by the author and are freely available for non-commercial use: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA, UNAVCO); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).

  14. Commercial Research and Development: Power to Explore, Opportunities from Discovery

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving

  15. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign

  16. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  17. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  18. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  19. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.

    2017-12-01

    Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  20. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long

    2017-01-01

    Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  1. Principal Components Analysis of Reflectance Spectra Returned by the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Mercer, C. M.; Cohen, Barbara A.

    2010-01-01

    The Mars Exploration Rover Opportunity has spent over six years exploring the Martian surface near its landing site at Meridiani Planum. Meridiani bedrock observed by the rover is largely characterized by sulfate-rich sandstones and hematite spherules, recording evidence of ancient aqueous environments [1]. The region is a deflationary surface, allowing hematite spherules, fragments of bedrock, and "cobbles" of foreign origin to collect loosely on the surface. These cobbles may be meteorites (e.g., Barberton, Heat Shield Rock, Santa Catarina) [2], or rock fragments of exotic composition derived from adjacent terranes or from the subsurface and delivered to Meridiani Planum as impact ejecta [3]. The cobbles provide a way to better understand Martian meteorites and the lithologic diversity of Meridiani Planum by examining the various rock types located there. In the summer of 2007, a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), which served as the Athena Science Team s primary tool for remotely identifying rocks of interest on a tactical timescale for efficient rover planning. While efforts are ongoing to recover use of the Mini-TES, the team is currently limited to identifying rocks of interest by visual inspection of images returned from Opportunity's Panoramic Camera (Pancam). This study builds off of previous efforts to characterize cobbles at Meridiani Planum using a database of reflectance spectra extracted from Pancam 13-Filter (13F) images [3]. We analyzed the variability of rock spectra in this database and identified physical characteristics of Martian rocks that could potentially account for the observed variance. By understanding such trends, we may be able to distinguish between rock types at Meridiani Planum and regain the capability to remotely identify locally unique rocks.

  2. Earth-return trajectory options for the 1985-86 Halley opportunity

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Dunham, D. W.

    1982-01-01

    A unique and useful family of ballistic trajectories to Halley's comet is described. The distinguishing feature of this family is that all of the trajectories return to the Earth's vicinity after the Halley intercept. It is shown that, in some cases, the original Earth-return path can be reshaped by Earth-swingby maneuvers to achieve additional small-body encounters. One mission profile includes flybys of the asteroid Geographos and comet Tempel-2 following the Halley intercept. Dual-flyby missions involving comets Encke and Borrelly and the asteroid Anteros are also discussed. Dust and gas samples are collected during the high-velocity (about 70 km/sec) flythrough of Halley, and then returned to a high-apogee Earth orbit. Aerobraking maneuvers are used to bring the sample-return spacecraft to a low-altitude circular orbit where it can be recovered by the Space Shuttle.

  3. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Cargo Vehicle s first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate high

  4. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  5. Integrating Bioregenerative Foods into the Exploration Spaceflight Food System

    NASA Technical Reports Server (NTRS)

    Douglas, Grace L.

    2017-01-01

    Food, the nutrition it provides, and the eating experiences surrounding it, are central to performance, health, and psychosocial wellbeing on long duration spaceflight missions. Exploration missions will require a spaceflight food system that is safe, nutritious, and acceptable for up to five years, possibly without cold storage. Many of the processed and packaged spaceflight foods currently used on the International Space Station will not retain acceptable quality or required levels of key nutrients under these conditions. The addition of bioregenerative produce to exploration missions may become an important countermeasure to the nutritional gaps and a resource to support psychosocial health. Bioregenerative produce will be central to establishment of Earth-independence as exploration extends deeper into space. However, bioregenerative foods introduce food safety and scarcity risks that must be eliminated prior to crew reliance on these systems. The pathway to Earth independence will require small-scale integration and validation prior to large scale bioregenerative dependence. Near term exploration missions offer the opportunity to establish small scale supplemental salad crop and fruit systems and validate infrastructure reliability, nutritional potential, and the psychosocial benefits necessary to promote further bioregenerative integration.

  6. Exploration Medical Cap Ability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  7. Visualizing Earth Materials

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  8. Earth Day 2017

    NASA Image and Video Library

    2017-12-08

    Happy Earth Day! Explore the diverse colors, unique shapes and striking patterns of our very favorite planet, Earth - as only NASA can see it. Credit: NASA/Goddard #nasagoddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The role of the space station in earth science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Jack A.

    1999-01-22

    The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less

  10. Earth Stewardship: An initiative by the Ecological Society of America to foster engagement to sustain Planet Earth

    USGS Publications Warehouse

    Chapin, F. Stuart; Pickett, S.T.A.; Power, Mary E.; Collins, Scott L.; Baron, Jill S.; Inouye, David W.; Turner, Monica G.

    2017-01-01

    The Ecological Society of America (ESA) has responded to the growing commitment among ecologists to make their science relevant to society through a series of concerted efforts, including the Sustainable Biosphere Initiative (1991), scientific assessment of ecosystem management (1996), ESA’s vision for the future (2003), Rapid Response Teams that respond to environmental crises (2005), and the Earth Stewardship Initiative (2009). During the past 25 years, ESA launched five new journals, largely reflecting the expansion of scholarship linking ecology with broader societal issues. The goal of the Earth Stewardship Initiative is to raise awareness and to explore ways for ecologists and other scientists to contribute more effectively to the sustainability of our planet. This has occurred through four approaches: (1) articulation of the stewardship concept in ESA publications and Website, (2) selection of meeting themes and symposia, (3) engagement of ESA sections in implementing the initiative, and (4) outreach beyond ecology through collaborations and demonstration projects. Collaborations include societies and groups of Earth and social scientists, practitioners and policy makers, religious and business leaders, federal agencies, and artists and writers. The Earth Stewardship Initiative is a work in progress, so next steps likely include continued nurturing of these emerging collaborations, advancing the development of sustainability and stewardship theory, improving communication of stewardship science, and identifying opportunities for scientists and civil society to take actions that move the Earth toward a more sustainable trajectory.

  11. Research Opportunities in Solid Earth Science (RESESS): Broadening Participation in Geology and Geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Hubenthal, M.

    2009-12-01

    RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of

  12. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  13. East Meets West on "Double Star", a Joint Mission to Explore Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    2001-07-01

    ESA Director General Antonio Rodotà and Luan Enjie, Administrator of the CNSA, signed an official agreement that will enable European experiments to be flown on Chinese satellites for the first time. "This agreement marks a significant advance for international cooperation in the exploration and peaceful use of outer space," said Mr. Rodotà. "It is one of the most important landmarks in scientific collaboration since ESA and the People's Republic of China first agreed to exchange scientific information more than 20 years ago." "The Double Star programme will be just the first step in substantial cooperation between the Chinese National Space Administration and ESA" said Mr Luan Enjie. "The signing of today's agreement paves the way not only for reciprocal cooperation between scientists, but for the establishment of comprehensive cooperation between the two agencies". Double Star will follow in the footsteps of ESA's groundbreaking Cluster mission by studying the effects of the Sun on the Earth's environment. Conducting joint studies with Cluster and Double Star should increase the overall scientific return from both missions. A key aspect of ESA's participation in the Double Star project is the inclusion of 10 instruments that are identical to those currently flying on the four Cluster spacecraft. A further eight experiments will be provided by Chinese institutes. "We hope it will be possible to make coordinated measurements with both Cluster and Double Star." said Cluster Project Scientist Philippe Escoubet. "For example, we would hope to carry out a joint exploration of the magnetotail, a region where storms of high energy particles are generated. When these particles reach Earth, they can cause power cuts, damage satellites and disrupt communications." Six of the eleven Cluster principal investigators have agreed to provide flight spares or duplicates of the experiments that are currently revolutionising our understanding of near-Earth space. This reuse of

  14. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, Shari Blissett-Clark of the Florida Bat Conservancy displays one of the mammals. The event took place during the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn more about energy awareness, the environment and sustainability.

  15. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  16. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  17. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    ERIC Educational Resources Information Center

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  18. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably

  19. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA s) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making measurable progress toward delivering a new capability for human and scientific exploration. To arrive at the current plan, government and industry experts carefully analyzed hundreds of architecture options and selected the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. Slated for its maiden voyage in 2017, the SLS will provide a platform for further cooperation in space based on the International Space Station model. This briefing will focus on specific progress that has been made by the SLS team in its first year, as well as provide a framework for evolving the vehicle for far-reaching missions to destinations such as near-Earth asteroids, Lagrange Points, and Mars. As this briefing will show, the SLS will serve as an infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  20. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley J.; Olson, Valerie A.; Trenchard, Mike; Willis, Kim; Baskin, Pam; Ritsher, Jennifer Boyd

    2006-01-01

    mission (significant quadratic and trimodal models). There was also a small but significant increase in photo activity on the weekends. In contrast, fewer photos were taken during major station events and for a period of time immediately preceding those events. Data on photography patterns presented here represent a relatively objective group-level measure of Earth observing activities on ISS. Crew Earth Observations offers a self-initiated positive activity that may be important in salutogenesis (maintenance of well-being) of astronauts on long-duration missions. Consideration should be given to developing substitute activities for crewmembers in future exploration missions where there will not be the opportunity to look at Earth, such as on long-duration transits to Mars.

  1. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  2. Recent Opportunity Microscopic Imager Results

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Arvidson, R. E.; Jolliff, B. L.; Yingst, R.; Team, A.

    2013-12-01

    Opportunity. The extremely soft bedrock exposed at a Whitewater Lake outcrop target dubbed 'Azilda' is mostly fine-grained, with dispersed 2-5 mm-diameter spherules and resistant veins. This target was easily abraded by the RAT, exposing a sandstone-like texture, but the sorting of grains is difficult to determine at MI resolution. Darker, erosion-resistant veneers, similar to desert varnishes on Earth, appear to record aqueous alteration that post-dates the formation of the Ca sulfate veins; they likely contain the nontronite that is observed by CRISM in this area. The inferred neutral pH and relatively low temperature of the fluids involved in these phases of alteration would have provided a habitable environment for life if it existed on Mars at that time. Because Opportunity can no longer directly sense phyllosilicate mineralogy with the MiniTES or Mössbauer spectrometers, it is focusing on characterizing the chemistry with the APXS and texture with the MI of potential phyllosilicate host rocks. The Athena MI continues to return useful images of Mars that are being used to study the textures of rocks and soils at Endeavour crater. Exploration by Opportunity continues, with the rover approaching 'Solander Point' and more exposures of phyllosilicates detected from orbit; the latest MI results will be presented at the conference.

  3. Rethinking Approaches to Exploration and Analysis of Big Data in Earth Science

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Maskey, M.

    2015-12-01

    With increasing amounts of data available for exploration and analysis, there are increasing numbers of users that need information extracted from the data for very specific purposes. Many of the specific purposes may not have even been considered yet so how do computational and data scientists plan for this diverse and not well defined set of possible users? There are challenges to be considered in the computational architectures, as well as the organizational structures for the data to allow for the best possible exploration and analytical capabilities. Data analytics need to be a key component in thinking about the data structures and types of storage of these large amounts of data, coming from a variety of sensing platforms that may be space based, airborne, in situ and social media. How do we provide for better capabilities for exploration and anaylsis at the point of collection for real-time or near real-time requirements? This presentation will address some of the approaches being considered and the challenges the computational and data science communities are facing in collaboration with the Earth Science research and application communities.

  4. FLORIS: phase A status of the fluorescence imaging spectrometer of the Earth Explorer mission candidate FLEX

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Bézy, J.-L.; Del Bello, U.; Berlich, R.; Drusch, M.; Franco, R.; Gabriele, A.; Harnisch, B.; Meynart, R.; Silvestrin, P.

    2013-10-01

    The Fluorescence Explorer (FLEX) mission is currently subject to feasibility (Phase A) study as one of the two candidates of ESA's 8th Earth Explorer opportunity mission. The FLuORescence Imaging Spectrometer (FLORIS) will be an imaging grating spectrometer onboard of a medium sized satellite flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe vegetation fluorescence and reflectance within a spectral range between 500 nm and 780 nm. It will thereby cover the photochemical reflection features between 500 nm and 600 nm, the Chlorophyll absorption band between 600 and 677 nm, and the red-edge in the region from 697 nm to 755 nm being located between the Oxygen A and B absorption bands. By this measurement approach, it is expected that the full spectrum and amount of the vegetation fluorescence radiance can be retrieved, and that atmospheric corrections can efficiently be applied. FLORIS will measure Earth reflected spectral radiance at a relatively high spectral resolution of ~0.3 nm around the Oxygen absorption bands. Other spectral band areas with less pronounced absorption features will be measured at medium spectral resolution between 0.5 and 2 nm. FLORIS will provide imagery at 300 m resolution on ground with a swath width of 150 km. This will allow achieving global revisit times of less than one month so as to monitor seasonal variations of the vegetation cycles. The mission life time is expected to be at least 4 years. The fluorescence retrieval will make use of information coming from OLCI and SLSTR, which are onboard of Sentinel-3, to monitor temperature, to detect thin clouds and to derive vegetation reflectance and information on the aerosol content also outside the FLORIS spectral range. In order to mitigate the technological and programmatic risk of this Explorer mission candidate, ESA has initiated two comprehensive bread-boarding activities, in which the most critical technologies and instrument

  5. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  6. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-01-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  7. Eyes on Planet Earth! Exploring Your Local Watershed

    ERIC Educational Resources Information Center

    Smith, Michael J.; Southard, John B.

    2003-01-01

    The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…

  8. Trends and opportunities in seismology. [Asilomar, California, January 3--9, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    Thirty-five experts in the fields of geology, geophysics, and engineering, from academia, government, and industry, were invited to participate in a workshop and address the many problems of national and global concern that require seismological expertise for their solutions. This report reviews the history, accomplishments, and status of seismology; assesses changing trends in seismological research and applications; and recommends future directions in the light of these changes and of the growing needs of society in areas in which seismology can make significant contributions. The first part of the volume discusses areas of opportunity (understanding earthquakes and reducing their hazards; exploration,more » energy, and resources; understanding the earth and planets) and realizing the benefits (the roles of Federal, state, and local governments, industry, and universities). The second part, Background and Progress, briefly considers each of the following topics: the birth and early growth of seismology, nuclear test monitoring and its scientific ramifications, instrumentation and data processing, geodynamics and plate tectonics, theoretical seismology, structure and composition of the earth, exploration seismology, seismic exploration for minerals, earthquake source mechanism studies, engineering seismology, strong ground motion and related earthquake hazards, volcanoes, tsunamis, planetary seismology, and international aspects of seismology. 26 figures. (RWR)« less

  9. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  10. Wind Streaks on Earth; Exploration and Interpretation

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in

  11. EarthServer: Visualisation and use of uncertainty as a data exploration tool

    NASA Astrophysics Data System (ADS)

    Walker, Peter; Clements, Oliver; Grant, Mike

    2013-04-01

    software from the EarthServer project we can produce a novel data offering that allows the use of traditional exploration and access mechanisms such as WMS and WCS. However the real benefits can be seen when utilising WCPS to explore the data . We will show two major benefits to this infrastructure. Firstly we will show that the visualisation of the combined chlorophyll and uncertainty datasets through a web based GIS portal gives users the ability to instantaneously assess the quality of the data they are exploring using traditional web based plotting techniques as well as through novel web based 3 dimensional visualisation. Secondly we will showcase the benefits available when combining these data with the WCPS standard. The uncertainty data can be utilised in queries using the standard WCPS query language. This allows selection of data either for download or use within the query, based on the respective uncertainty values as well as the possibility of incorporating both the chlorophyll data and uncertainty data into complex queries to produce additional novel data products. By filtering with uncertainty at the data source rather than the client we can minimise traffic over the network allowing huge datasets to be worked on with a minimal time penalty.

  12. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  13. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE PAGES

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; ...

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  14. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  15. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  16. Future Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    Program by NASA during 2014. Given that the science questions about Venus are many - ranging from the surface and interior and extending into the atmosphere to 120 km and beyond, it is likely that there will be opportunities for other efforts to contribute to the comprehensive exploration of Venus. If undertaken in a coordinated and collaborative manner, we may make substantial progress in understanding Venus, why and/or how it evolved differently from Earth. This knowledge will help us understand Earth-like rocky planets around other stars that are being discovered at a rapid pace now.

  17. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  18. Europa Explorer: A Mission to Explore Europa and Investigate Its Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Clark, K.; Greeley, R.; Abelson, R.; Bills, B.; Blankenship, D.; Jorgenson, E.; Kahn, P.; Khurana, K.; Kirby, K.; Klaasen, K.; Lock, R.; Man, G.; McCord, T.; Moore, W.; Paranicas, C.; Prockter, L.; Rasmussen, R.; Sogin, M.

    2007-10-01

    Europa is the astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible chemical energy sources. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and particles and fields environments. The Europa Explorer is a mature orbiter mission concept to explore Europa and investigate its habitability, fulfilling objectives laid out by the National Research Council's Planetary Science Decadal Survey. The mission examines Europa's ocean, ice shell, chemistry, geology, external environment (fields, particles, and atmosphere), and neighborhood (the Jupiter system). Science questions for Europa are well-honed, yet we anticipate being surprised by discoveries. Europa Explorer would nominally launch in June 2015, on a Venus-Earth-Earth Gravity Assist trajectory with a 6 year flight time to the Jupiter system. It would orbit Jupiter for 2 years using gravity assists of the icy Galilean satellites to lower its energy, providing the opportunity for significant Jupiter system science. It would then enter Europa orbit at an altitude of 100-200 km, where it would perform science investigations for 1 year. A campaign-based operations scenario has been developed which permits return of 5.4 Tbits of science data beginning in July 2021, and emphasizing the highest priority Europa science objectives early in the orbital phase of the mission. The baseline mission concept includes 11 instruments that address high-priority investigations while providing the flexibility to respond to discoveries. The radiation design approach has been independently reviewed and validated, and a statistical lifetime prediction method has been developed. Past technology investments have reduced mission risk, making the Europa Explorer mission ready to move forward in order to address the high-priority astrobiological and

  19. New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science

    NASA Astrophysics Data System (ADS)

    Skolnik, S.; Ramirez-Linan, R.

    2016-12-01

    NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.

  20. NOAA International Polar Year Formal And Informal Education Projects: Climate Change And Exploration At The Poles During The Forth International Polar Year

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Kermond, J.

    2006-12-01

    The Polar Regions play an integral role in how our Earth system operates. However, the Polar Regions are marginally studied in the K-12 classroom in the United States. The International Polar Year's (IPY) coordinated campaign of polar observations, research, and analysis that will be multidisciplinary in scope and international in participation offers a powerful opportunity for K-12 classroom. The IPY's scientific objective to better understand the key roles of the Polar Regions in global processes will allow students a window into the poles and this unique regions role in the Earth system. IPY will produce careful, useful scientific information that will advance our understanding of the Polar Regions and their connections to the rest of the globe. The IPY is an opportunity to inspire the next generation of very young Earth system scientists. This IPY's will education & outreach position paper asks a key question that must guide future educational projects; "Why is the polar regions and polar research important to all people on earth"? In efforts to coordinate educational activities and collaborate with international projects, United States national agencies, NOAA, NASA, USGS and NSF to mention a few, and other educational initiatives, it is the purpose of this session to explore potential partnerships, while primarily recommending a model for educational product development and review. In the context of the 125 year legacy of IPY, this talk will provide an opportunity to discuss the NOAA Arctic programs current arctic research and explorations, projects being planned for this IPY, its education related activities, new and innovative efforts to capture the inherent mystique of polar regions and describe the process of scientific research relating to IPY. In addition, numerous teacher professional development opportunities, newly developed curricula, and other public events will be introduced so scientists, teachers and their students can find ways to explore the

  1. Earth-approaching asteroid streams

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.

    1991-01-01

    Three association patterns have been noted among 139 earth-approaching asteroids on the basis of current orbital similarity; these asteroid streams, consisting of two groups of five members and one of four, can be matched to three of the four meteorite-producing fireball streams determined by Halliday et al. (1990). If the asteroid streams are true nonrandom associations, the opportunity arises for studies of an 'exploded' asteroid in the near-earth environment. Near-earth asteroid-search projects are encouraged to search the mean orbit of the present streams in order to discover additional association members.

  2. Accessibility of near-Earth asteroids, 1990

    NASA Technical Reports Server (NTRS)

    Hulkower, Neal D.; Child, Jack B.

    1991-01-01

    Previous research which analyzed the accessibility of all known near-Earth asteroids is updated. Since then, many new near-Earth asteroids have been discovered, and 1928 DB, the most accessible asteroid at that time, has been recovered. Many of these recently discovered near-Earth asteroids have promising orbital characteristics. In addition to accessibility (as defined by minimum global delta v), ideal rendezvous opportunities are identified.

  3. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  4. Protection of passive radio frequencies used for earth exploration by satellite

    NASA Astrophysics Data System (ADS)

    Rochard, Guy

    2004-10-01

    Space-borne passive sensing of the Earth"s surface and atmosphere has an essential and increasing importance in Earth Observation. The impressive progress recently made or shortly expected in weather analysis, warning and forecasts (in particular for dangerous weather phenomena as rain and floods, storms, cyclones, droughts) as well as in the study and prediction of climate change, is mainly attributable to the spaceborne observations. On this basis, economic studies show that meteorological services have a high positive impact on a wide range of economic activities, notwithstanding safety of life and property aspects. Space-borne passive sensing feeds crucial observational data to numerical weather predction models run on the most advanced super-computers that are operated by a few global forecasting centers. All meteorological and environmental satellite organizations operate these crucial remote-sensing missions as part of the GOS of the World Weather Watch and others... Spaceborne passive sensing for meterological applications is performed in frequency bands allocated to the Earth Exploration-Satellite Service. This is named "EESS passive" in the ITU-R Radio Regulations. The appropriate bands are uniquely determined by the physical properties (e.g. molecular resonance) of constituents of the atmosphere, and are therefore one of the unique natural resources (similarly to Radio Astronomy bands). Passive measurements at several frequencies in the microwave spectrum must be made simultaneously in order to extract the individual contribution of the geophysical parameter of interest. Bands below 100 GHz are of particular importance to provide an "all-weather" capability since many clouds are almost transparent at these frequencies. Along this line, the two first figures below about zenithal opacity describes respectively the atmosphere optical thickness due to water vapor and dry components in the frequency range 1 to 275 GHz and 275 GHz to 1000 GHz on which have

  5. A Space-Based Near-Earth Object Survey Telescope in Support of Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.

  6. The Opportunities for Star Tourism as a Motivation for Space Tourism

    NASA Astrophysics Data System (ADS)

    Spennemann, D. H. R.

    By necessity, current star tourism is an outward looking, Earth-bound and geo-centric opportunity with the observer's window to the skies constrained by his/her location. The emergent area of space tourism offers to remove such constraints. Moreover, as it visually and experientially places Earth into the context of other planets, space tourism will provide the tourist with a literally different perspective. While the selling point of sub-orbital tourism is still largely focused on weightlessness and the opportunity of seeing Earth from orbit, it will also offer the tourist brief opportunities for viewing stars from a different point of view. Orbital, lunar and planetary tourism, be it `real' (through tourists in space) or virtual (via pay-per-drive remote controlled rovers), moves from a geo-centric opportunity spectrum to one that provides views of Earth in space as part of a suite of offerings that encompasses views of planets and stars wholly unencumbered by atmospheric disturbances, and also unencumbered by constraints of the spatial positioning of the observer in relation to the sector of the universe viewed. This paper reviews various proposed scenarios of orbital, lunar and interplanetary tourism and examines the opportunity spectra each these provide for star tourism.

  7. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover

    NASA Astrophysics Data System (ADS)

    Kuchynka, Petr; Folkner, William M.; Konopliv, Alex S.; Parker, Timothy J.; Park, Ryan S.; Le Maistre, Sebastien; Dehant, Veronique

    2014-02-01

    The Opportunity Mars Exploration Rover remained stationary between January and May 2012 in order to conserve solar energy for running its survival heaters during martian winter. While stationary, extra Doppler tracking was performed in order to allow an improved estimate of the martian precession rate. In this study, we determine Mars rotation by combining the new Opportunity tracking data with historic tracking data from the Viking and Pathfinder landers and tracking data from Mars orbiters (Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter). The estimated rotation parameters are stable in cross-validation tests and compare well with previously published values. In particular, the Mars precession rate is estimated to be -7606.1 ± 3.5 mas/yr. A representation of Mars rotation as a series expansion based on the determined rotation parameters is provided.

  8. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth

  9. What Is the Difference between a Calorie and a Carbohydrate?--Exploring Nutrition Education Opportunities in Alternative School Settings

    ERIC Educational Resources Information Center

    Norquest, Michele; Phelps, Josh; Hermann, Janice; Kennedy, Tay

    2015-01-01

    Extension-based nutrition educators have indicated current curricula do not engage alternative school students' interests. The study reported here explored nutrition education opportunities at alternative schools in Oklahoma. Data collection involved focus groups gathering student perspectives regarding preferred teaching and learning styles, and…

  10. Using Virtual and In-Person Engagement Opportunities to Connect K-12 Students, Teachers, and the Public With NASA Astromaterials Research and Exploration Science Assets

    NASA Technical Reports Server (NTRS)

    Graff, P.; Foxworth, S.; Luckey, M. K.; McInturff, B.; Mosie, A.; Runco, S.; Todd, N.; Willis, K. J.; Zeigler, R.

    2017-01-01

    Engaging K-12 students, teachers, and the public with NASA Astromaterials Research and Exploration Science (ARES) assets provides an extraordinary opportunity to connect audiences with authentic aspects unique to our nation's space program. NASA ARES has effectively engaged audiences with 1) Science, Technology, Engineering and Mathematics (STEM) experts, 2) NASA specialized facilities, and 3) NASA astromaterial samples through both virtual and in-person engagement opportunities. These engagement opportunities help connect local and national audiences with STEM role models, promote the exciting work being facilitated through NASA's Science Mission Directorate, and expose our next generation of scientific explorers to science they may be inspired to pursue as a future STEM career.

  11. Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Mink, Ronald G.; Adamo, Daniel R.; Alberding, Cassandra M.

    2011-01-01

    Near-Earth Asteroids (NEAs) have been identified by the Administration as potential destinations for human explorers during the mid-2020s. Planning such ambitious missions requires selecting potentially accessible targets from the growing known population of 8,008 NEAs. NASA is therefore conducting the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS), in which the trajectory opportunities to all known NEAs are being systematically evaluated with respect to a set of defined constraints. While the NHATS algorithms have identified hundreds of NEAs which satisfy purposely inclusive trajectory constraints, only a handful of them offer truly attractive mission opportunities in the time frame of greatest interest. In this paper we will describe the structure of the NHATS algorithms and the constraints utilized in the study, present current study results, and discuss various mission design considerations for future human space flight missions to NEAs.

  12. Astrobiology and Venus exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, David H.; Bullock, Mark A.

    For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial

  13. The Role of Cis-Lunar Space in Future Global Space Exploration

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  14. Exploring the implication of climate process uncertainties within the Earth System Framework

    NASA Astrophysics Data System (ADS)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  15. Evander Childs High School. Career Exploration Opportunities for Bilingual Students, 1981-1982. O.E.E. Evaluation Report.

    ERIC Educational Resources Information Center

    Keyes, Jose Luis; And Others

    The Career Exploration Opportunities for Bilingual Students (C.E.O.B.S.) program at Evander Childs High School in the Bronx, New York City, served 100 ninth and tenth grade Spanish speaking students of limited English proficiency during 1981-82. The project provided instruction in English as a second language and Spanish language skills; bilingual…

  16. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  17. Biomedical Aspects of Lunar and Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2006-01-01

    Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.

  18. Robotic lunar exploration: Architectures, issues and options

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto

    2007-06-01

    The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long

  19. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  20. Large Multispectral and Albedo Panoramas Acquired by the Pancam Instruments on the Mars Exploration Rovers Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.

    2005-01-01

    Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.

  1. Global partnerships: Expanding the frontiers of space exploration education

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  2. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies

  3. USArray Siting Outreach: Telling the EarthScope Story

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Taber, J. J.; McQuillan, P.; Busby, R. W.; Woodward, R.

    2013-12-01

    USArray has engaged in a variety of activities that involve students in and inform the general public about EarthScope. Examples include the highly successful Transportable Array Student Siting Program that employed students and faculty from colleges and universities in the identification of sites for future Transportable Array stations in their region, and a range of informal education and media opportunities where information about EarthScope and its discoveries are shared with educators and the public. During the course of eight summers, more than 135 students from about 55 institutions conducted site reconnaissance for nearly 1375 sites from the West Coast to the East Coast, and from the Gulf of Mexico to the Great Lakes and southern Canada. While telling the EarthScope story, students who participated in the program increased their professional skills and deepened their personal growth. Other students had opportunities to engage in EarthScope-related research as part of the Research Experiences for Undergraduates program. Several EarthScope-focused outreach products for the public and educational audiences have been developed including Ground Motion Visualizations, EarthScope-centric and regional content sets for the IRIS Active Earth Monitor (AEM), and animations of earth processes. A kiosk loan program has helped to broadly disseminate the AEM displays. There have also been articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world's most respected scientific and educational production companies that have included a segment about EarthScope and the Transportable Array. Over the next five years, USArray will be deploying and operating Transportable Array stations in Alaska and western Canada. This challenging environment will offer new opportunities to connect with communities throughout the region including native populations.

  4. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  5. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  6. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  7. Our Place in Space: Exploring the Earth-Moon System and Beyond with NASA's CINDI E/PO Program

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Hairston, M. R.

    2010-12-01

    Where does space begin? How far is the Moon? How far is Mars? How does our dynamic star, the Sun, affect its family of planets? All of these questions relate to exploration of our Solar System, and are also part of the Education/Public Outreach (E/PO) Program for NASA’s CINDI project, a space weather mission of opportunity. The Coupled Ion Neutral Dynamics Investigation has been flying aboard the US Air Force Communication/Navigation Outage Forecast System (C/NOFS) satellite in the upper atmosphere of the Earth since April 2008. The Earth’s ionosphere, the part of the atmosphere CINDI studies, is also in space. The CINDI E/PO program uses this fact in lessons designed to help students in middle schools and introductory astronomy classes develop a sense of their place in space. In the activity "How High is Space?" students’ start by building an 8-page scale model of the Earth’s atmosphere with 100 km/page. The peak of Mount Everest, commercial airplanes, and the tops of thunderheads all appear at the bottom of the first page of the model, with astronaut altitude -where space begins- at the top of the same sheet of paper. In "Where Would CINDI Be?" the idea of scale is further developed by modeling the Earth-Moon system to scale first in size, then in distance, using half of standard containers of play dough. With a lowest altitude of about 400 km, similar to that of the International Space Station and orbiting Space Shuttle, CINDI is close to the Earth when compared with the nearly thousand times greater distance to the Moon. Comparing and combining the atmosphere and Earth-Moon system models help reinforce ideas of scale and build student understanding of how far away the Moon actually is. These scale models have also been adapted for use in Family Science Nights, and to include the planet Mars. In this presentation, we will show how we use CINDI’s scale modeling activities and others from our broader space sciences E/PO program in formal and informal

  8. Near-Earth Asteroid Scout

    NASA Technical Reports Server (NTRS)

    Walden, Amy; Clardy, Dennon; Johnson, Les

    2015-01-01

    Near-Earth asteroids (NEAs) are easily accessible objects in Earth's vicinity. As NASA continues to refine its plans to possibly explore NEAs with humans, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit an NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The NASA Marshall Space Flight Center (MSFC) and NASA Jet Propulsion Laboratory are jointly developing the Near-Earth Asteroid Scout (NEAS) utilizing a low-cost CubeSat platform in response to the current needs for affordable missions with exploration science value. The mission is enabled by the use of an 85-sq m solar sail being developed by MSFC (figs. 1 and 2).

  9. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  10. Multilateral Research Opportunities in Ground Analogs

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.

    2015-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. International collaboration provides an opportunity to leverage other nations' investments to meet common goals. The Humans In Space Community shares a common goal to enable safe, reliable, and productive human space exploration within and beyond Low Earth Orbit. Meeting this goal requires efficient use of limited resources and International capabilities. The International Space Station (ISS) is our primary platform to conduct microgravity research targeted at reducing human health and performance risks for exploration missions. Access to ISS resources, however, is becoming more and more constrained and will only be available through 2020 or 2024. NASA's Human Research Program (HRP) is actively pursuing methods to effectively utilize the ISS and appropriate ground analogs to understand and mitigate human health and performance risks prior to embarking on human exploration of deep space destinations. HRP developed a plan to use ground analogs of increasing fidelity to address questions related to exploration missions and is inviting International participation in these planned campaigns. Using established working groups and multilateral panels, the HRP is working with multiple Space Agencies to invite International participation in a series of 30- day missions that HRP will conduct in the US owned and operated Human Exploration Research Analog (HERA) during 2016. In addition, the HRP is negotiating access to Antarctic stations (both US and non-US), the German :envihab and Russian NEK facilities. These facilities provide unique capabilities to address critical research questions requiring longer duration simulation or isolation. We are negotiating release of international research opportunities to ensure a multilateral approach to future analog research campaigns, hoping to begin multilateral campaigns in the

  11. Future Visions for Scientific Human Exploration

    NASA Technical Reports Server (NTRS)

    Garvin, James

    2005-01-01

    Today, humans explore deep-space locations such as Mars, asteroids, and beyond, vicariously here on Earth, with noteworthy success. However, to achieve the revolutionary breakthroughs that have punctuated the history of science since the dawn of the Space Age has always required humans as "the discoverers," as Daniel Boorstin contends in this book of the same name. During Apollo 17, human explorers on the lunar surface discovered the "genesis rock," orange glass, and humans in space revamped the optically crippled Hubble Space Telescope to enable some of the greatest astronomical discoveries of all time. Science-driven human exploration is about developing the opportunities for such events, perhaps associated with challenging problems such as whether we can identify life beyond Earth within the universe. At issue, however, is how to safely insert humans and the spaceflight systems required to allow humans to operate as they do best in the hostile environment of deep space. The first issue is minimizing the problems associated with human adaptation to the most challenging aspects of deep space space radiation and microgravity (or non-Earth gravity). One solution path is to develop technologies that allow for minimization of the exposure time of people to deep space, as was accomplished in Apollo. For a mission to the planet Mars, this might entail new technological solutions for in-space propulsion that would make possible time-minimized transfers to and from Mars. The problem of rapid, reliable in-space transportation is challenged by the celestial mechanics of moving in space and the so-called "rocket equation." To travel to Mars from Earth in less than the time fuel-minimizing trajectories allow (i.e., Hohmann transfers) requires an exponential increase in the amount of fuel. Thus, month-long transits would require a mass of fuel as large as the dry mass of the ISS, assuming the existence of continuous acceleration engines. This raises the largest technological

  12. Deep Space Gateway Science Opportunities

    NASA Astrophysics Data System (ADS)

    Quincy, C. D.; Charles, J. B.; Hamill, D. L.; Sun, S. C.

    2018-02-01

    Life sciences see the Deep Space Gateway as an opportunity to investigate biological organisms in a unique environment that cannot be replicated in Earth-based labs or on LEO platforms. The needed capabilities must be built into the Gateway facility.

  13. Exploring Value-Added Options - Opportunities in Mouldings and Millwork

    Treesearch

    Bob Smith; Philip A. Araman

    1997-01-01

    The millwork industry, which includes manufacture of doors, windows, stair parts, blinds, mouldings, picture frame material, and assorted trim, can be a lucrative value-added opportunity for sawmills. Those entering the value-added millwork market often find that it is a great opportunity to generate greater profits from upper grades and utility species, such as yellow...

  14. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation considers the use of new launch vehicles in defense against near-Earth objects, building upon expertise in launch vehicle and spacecraft design, astronomy and planetary science and missile defense. This work also seeks to demonstrate the synergy needed between architectures for human/robotic exploration initiatives and planetary defense. Three different mitigation operations were baselined for this study--nuclear standoff explosion, kinetic interceptor, and solar collector--however, these are not the only viable options. The design and predicted performance of each of these methods is discussed and compared. It is determined that the nuclear interceptor option can deflect NEOs of smaller size (100-500 m) with 2 years or more time before impact, and larger NEOs with 5 or more years warning; kinetic interceptors may be effective for deflection of asteroids up to 300-400 m but require 8-10 years warning time; and, solar collectors may be able to deflect NEOs up to 1 km if issues pertaining to long operation can be overcome. Ares I and Ares V vehicles show sufficient performance to enable the development of a near-term categorization and mitigation architecture.

  15. Near-Earth Asteroids: Destinations for Human Exploration

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  16. Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of 200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  17. Earth Science Outreach: A Move in the Right Direction

    NASA Astrophysics Data System (ADS)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  18. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  19. C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Gibson, B.

    2008-05-01

    Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links

  20. Computer-simulated laboratory explorations for middle school life, earth, and physical Science

    NASA Astrophysics Data System (ADS)

    von Blum, Ruth

    1992-06-01

    Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.

  1. Atmospheric Neutrinos as a Tool for Exploring the Earth's Inner Parts

    NASA Astrophysics Data System (ADS)

    Naumov, P. Yu.; Sinev, V. V.

    2017-11-01

    Investigation of the Earth's inner parts requires developing new methods. It is well known that atmospheric neutrinos traverse the Earth, undergoing virtually no interaction. The change in the neutrino flux is due exclusively to neutrino oscillations, which are enhanced by the effect of Earth's matter. At the present time, there are two projects outside Russia (PINGU and ORCA) that are aimed at detecting atmospheric neutrinos that traversed the Earth, which are supposed to be used for purposes of Earth's tomography. The creation of a large neutrino detector on the basis of a liquid scintillator is planned at the BaksanNeutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) in the North Caucasus. After testing this detector, there will arise the possibility of employing it as part of the worldwide network of neutrino detectors for studying the Earth's inner parts.

  2. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  3. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  4. Accessible Near-Earth Objects (NEOs)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.

    2015-01-01

    Near Earth Objects (NEOs) are asteroids and comets whose orbits are in close proximity to Earth's orbit; specifically, they have perihelia less than 1.3 astronomical units. NEOs particularly near Earth asteroids (NEAs) are identified as potential destinations for future human exploration missions. In this presentation I provide an overview of the current state of knowledge regarding the astrodynamical accessibility of NEAs according to NASA's Near Earth Object Human Space Flight Accessible Targets Study (NHATS). I also investigate the extremes of NEA accessibility using case studies and illuminate the fact that a space-based survey for NEOs is essential to expanding the set of known accessible NEAs for future human exploration missions.

  5. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  6. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  7. The first steps towards a de minimus, affordable NEA exploration architecture

    NASA Astrophysics Data System (ADS)

    Landis, Rob R.; Abell, Paul A.; Adamo, Daniel R.; Barbee, Brent W.; Johnson, Lindley N.

    2013-03-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the US Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human-accessible targets. The majority of the known NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing a comprehensive catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades and shared with the international community. This initial step of a space-based NEO survey is therefore the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from (1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), (2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and (3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  8. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER engineer Steven Kenyon installs an X-ray detector onto the payload’s detector plate. The detectors are protected by red caps during installation because they are very sensitive to dust and other foreign object debris. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    A NICER team member measures the focused optical power of each X-ray concentrator in a clean tent at NASA’s Goddard Space Flight Center. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    The NICER payload, blanketed and waiting for launch in the Space Station Processing Facility at NASA’s Kennedy Space Center in Cape Canaveral, Florida. The instrument is in its stowed configuration for launch. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. From tectonics to tractors: New insight into Earth's changing surface

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.

    2017-12-01

    Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally

  12. Human Space Exploration: The Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  13. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    in the inner solar system and the environment under which early life was able to survive. We learned that the long-lived heat producing elements are concentrated on the lunar nearside and a major geologic event must have occurred very early during the evolution of the crust and mantle to accomplish this. We learned that significant volatile deposits occur at both lunar poles and may have resulted in water ice in their permanently shadowed regions. The embers then fire from this small influx of new information and understanding in the 1990s set the stage for the next generation of lunar exploration. International Lunar Exploration: The Golden Age In 2003 ESA launched what was to become a highly successful technology demonstration mission to the Moon, SMART-1. This small pathfinder has now been followed by some of the most sophisticated remote sensing robotic missions ever sent to the Moon. The SELENE/KAGUYA mission from JAXA and the Chang'E mission from China were launched in 2007 and are successfully returning remarkable data to Earth with unprecedented resolution and detail. The Chandrayaan-1 mission of ISRO with a complement of modern Indian as well foreign instruments is set to launch in 2008. The LRO/LCROSS pair of NASA will be next, followed by NASA's GRAIL geophysics mission in 2010. It is fitting that Earth's neighbour, which harbours so many secrets about our own origins and place in the universe, is now being explored independently by a virtual armada originating from space-faring nations across the Earth. The opportunities for peaceful coordination and cooperation abound, both at the personal scientist-to-scientist level as well as at the national policy level. The next 50 years of exploration of the Earth-Moon system will be truly remarkable with the new foundation of knowledge brought forth by this golden age of lunar exploration.

  14. Opportunity's View After Long Drive on Sol 1770

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009).

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini.

    The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

    This view is presented as a cylindrical projection with geometric seam correction.

  15. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  16. NEW DIRECTIONS AND CHALLENGES FOR THE COMMUNITY EARTH SYSTEM MODELIn this talk, we will discuss the upcoming release of CESM2 and the challenges encountered in the process. We will then discuss upcoming new opportunities in development and applications of Earth System Models

    NASA Astrophysics Data System (ADS)

    Lamarque, J. F.

    2016-12-01

    In this talk, we will discuss the upcoming release of CESM2 and the computational and scientific challenges encountered in the process. We will then discuss upcoming new opportunities in development and applications of Earth System Models; in particular, we will discuss additional ways in which the university community can contribute to CESM.

  17. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low

  18. States, Earth Science, and Decision-Making: Five Years of Lessons Learned by the NASA DEVELOP National Program Working with a State Government

    NASA Astrophysics Data System (ADS)

    Favors, J.; Ruiz, M. L.; Rogers, L.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.

    2017-12-01

    Over a five-year period that spanned two administrations, NASA's DEVELOP National Program engaged in a partnership with the Government of the Commonwealth of Virginia to explore the use of Earth observations in state-level decision making. The partnership conducted multiple applied remote sensing projects with DEVELOP and utilized a shared-space approach, where the Virginia Governor's Office hosted NASA DEVELOP participants to mature the partnership and explore additional science opportunities in the Commonwealth. This presentation will provide an overview of various lessons learned from working in an administrative and policy environment, fostering the use of science in such an environment, and building substantive relationships with non-technical partners. An overview of the projects conducted in this partnership will provide an opportunity to explore specific best practices that enhanced the work and provide tips to enhance the potential for success for other science and technology organizations considering similar partnerships.

  19. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.

  20. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  1. KENNEDY SPACE CENTER, FLA. - From a burst of fire and smoke, the Delta II launch vehicle races into the sky carrying the second Mars Exploration Rover, Opportunity. The bright glare briefly illuminated Florida Space Coast beaches. Opportunity’s dash to Mars began with liftoff at 11:18:15 p.m. Eastern Daylight Time from Cape Canaveral Air Force Station, Fla. The spacecraft separated successfully from the Delta's third stage 83 minutes later, after it had been boosted out of Earth orbit and onto a course toward Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - From a burst of fire and smoke, the Delta II launch vehicle races into the sky carrying the second Mars Exploration Rover, Opportunity. The bright glare briefly illuminated Florida Space Coast beaches. Opportunity’s dash to Mars began with liftoff at 11:18:15 p.m. Eastern Daylight Time from Cape Canaveral Air Force Station, Fla. The spacecraft separated successfully from the Delta's third stage 83 minutes later, after it had been boosted out of Earth orbit and onto a course toward Mars.

  2. The Asteroid Redirect Mission (ARM): Exploration of a Former Binary NEA?

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). The current reference target for the ARM is NEA (341843) 2008 EV5, which may have been the primary body of a former binary system (Busch et al., 2011; Tardivel et al., 2016). The ARRM will perform several close proximity operations to investigate the NEA and map its surface. A detailed investigation of this object may allow a better understanding of binary NEA physical characteristics and the possible outcomes for their evolution. An overview of the ARM robotic and crewed segments, including mission operations, and a discussion of potential opportunities for participation with the ARM will be provided in this presentation.

  3. Fe-Bearing Phases Indentified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Ming, D. W.; Schroeder, C.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of approx.200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  4. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  5. Mt. Kilimanjaro expedition in earth science education

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  6. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  7. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  8. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  9. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  10. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  11. Analysis of Opportunities for Intercalibration Between Two Spacecraft. Chapter 1

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Speth, Paul W.

    2012-01-01

    There is currently a strong interest in obtaining highly accurate measurements of solar radiation reflected by Earth. For example, the Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) satellite mission has been under consideration in Europe for several years, and planning is now under way for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) spacecraft in the United States. Such spacecraft will provide measurements whose high accuracy is traceable to SI standards; these measurements will be useful as a reference for calibrating similar instruments on board other spacecraft. Hence, analysis of opportunities for intercalibration between two spacecraft plays an important role in the planning of future missions. In order for intercalibration to take place, the measurements obtained from two spacecraft must have similar viewing geometry and be taken within a few minutes of one another. Viewing geometry is characterized in terms of viewing zenith angle, solar zenith angle, and relative azimuth angle. Opportunities for intercalibration are greater in number and longer in duration if the sensor with high accuracy can be aimed at points on the surface of the Earth other than the nadir or sub-satellite point. Analysis of intercalibration over long periods is rendered tractable by making several simplifying assumptions regarding orbital motions of the two spacecraft about Earth, as well as Earth s orbit about the Sun. The shape of the Earth is also considered. A geometric construction called a tent is introduced to facilitate analysis. It is helpful to think of an intercalibration opportunity as the passage of one spacecraft through a tent that has a fixed shape and moves with the spacecraft whose measurements are to be calibrated. Selection of points on Earth s surface as targets for measurement is discussed, as is aiming the boresight of a steerable instrument. Analysis results for a pair of spacecraft in typical low Earth orbits

  12. Opportunities investigating the thermosphere/ionosphere system by low Earth orbiting satellite missions (Invited)

    NASA Astrophysics Data System (ADS)

    Stolle, C.; Park, J.; Luhr, H.

    2013-12-01

    New opportunities for investigating the thermosphere/ionosphere interactions arise from in situ measurements on board low Earth orbiting satellites. Ten years of successful operation of the CHAMP satellite mission at a unique orbit altitude of about 400 km revealed many interesting features of the coupling between the thermosphere and ionosphere and the different atmospheric layers. Examples are the investigations of signatures of stratospheric warming events that are known to change significantly the dynamics of the equatorial ionosphere. It was shown that these modifications are due to an enhancement of lunar tidal effects, e.g. reflected in the thermospheric zonal wind, in the equatorial electroje or in the eastward electric field. Another topic concerns the energy deposit in the F-region though cooling of the thermal electron gas caused by elastic and inelastic processes (Schunk and Nagy, 2009). We find that a significant deposition is present during day at mid latitudes. At low latitudes the energy flux remain important until midnight. Observed heating rates depend on the satellite altitudes, but they are globally available from the CHAMP data. Further enhanced investigations are expected from ESA's three-satellite Swarm mission with a launch planned in 2014. The mission will provide observations of electron density, electron and ion temperature, ion drift and the electric field together with neutral density and winds. High-precision magnetic field observations will allow monitoring ionospheric currents.

  13. Opportunity's Path

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This Long Term Planning graphic was created from a mosaic of navigation camera images overlain by a polar coordinate grid with the center point as Opportunity's original landing site. The blue dots represent the rover position at various locations.

    The red dots represent the center points of the target areas for the instruments on the rover mast (the panoramic camera and miniature thermal emission spectrometer). Opportunity visited Stone Mountain on Feb. 5. Stone Mountain was named after the southernmost point of the Appalachian Mountains outside of Atlanta, Ga. On Earth, Stone Mountain is the last big mountain before the Piedmont flatlands, and on Mars, Stone Mountain is at one end of Opportunity Ledge. El Capitan is a target of interest on Mars named after the second highest peak in Texas in Guadaloupe National Park, which is one of the most visited outcrops in the United States by geologists. It has been a training ground for students and professional geologists to understand what the layering means in relation to the formation of Earth, and scientists will study this prominent point of Opportunity Ledge to understand what the layering means on Mars.

    The yellow lines show the midpoint where the panoramic camera has swept and will sweep a 120-degree area from the three waypoints on the tour of the outcrop. Imagine a fan-shaped wedge from left to right of the yellow line.

    The white contour lines are one meter apart, and each drive has been roughly about 2-3 meters in length over the last few sols. The large white blocks are dropouts in the navigation camera data.

    Opportunity is driving along and taking a photographic panorama of the entire outcrop. Scientists will stitch together these images and use the new mosaic as a 'base map' to decide on geology targets of interest for a more detailed study of the outcrop using the instruments on the robotic arm. Once scientists choose their targets of interest, they plan to study the outcrop for roughly five to

  14. Introducing the Benson Prize for Discovery Methods of Near Earth Objects by Amateurs

    NASA Astrophysics Data System (ADS)

    Benson, J. W.

    1997-05-01

    The Benson Prize Sponsored by Space Development Corporation The Benson Prize for Discovery Methods of Near Earth Objects by Amateurs is an annual competition which awards prizes to the best proposed methods by which amateur astronomers may discover such near earth objects as asteroids and comet cores. The purpose of the Benson Prize is to encourage the discovery of near earth objects by amateur astronomers. The utilization of valuable near earth resources can provide many new jobs and economic activities on earth, while also creating many new opportunities for opening up the space frontier. The utilization of near earth resources will significantly contribute to the lessening of environmental degradation on the Earth caused by mining and chemical leaching operations required to exploit the low grade ores now remaining on Earth. In addition, near earth objects pose grave dangers for life on earth. Discovering and plotting the orbits of all potentially dangerous near earth objects is the first and necessary step in protecting ourselves against the enormous potential damage possible from near earth objects. With the high quality, large size and low cost of todays consumer telescopes, the rapid development of powerful, high resolution and inexpensive CCD cameras, and the proliferation of inexpensive software for todays powerful home computers, the discovery of near earth objects by amateur astronomers is more attainable than ever. The Benson Prize is sponsored by the Space Development Corporation, a space resource exploration and utilization company. In 1997 one prize of \\500 will be awarded to the best proposed method for the amateur discovery of NEOs, and in each of the four following years, Prizes of \\500, \\250 and \\100 will be awarded. Prizes for the actual discovery of Near Earth Asteroids will be added in later years.

  15. Multiplying Mars Lander Opportunities with Marsdrop Microlanders

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Spangelo, Sara; Lane, Marc S.; Aaron, Kim M.; Bhartia, Rohit; Boland, Justin S.; Christensen, Lance E.; Forouhar, Siamak; de la Torre Juarez, Manuel; Trawny, Nikolas; hide

    2015-01-01

    From canyons to glaciers, from geology to astrobiology, the amount of exciting surface science awaiting us at Mars greatly outstrips available mission opportunities. Based on the thrice -flown Aerospace Corporation Earth Reentry Breakup Recorder (REBR), we present a method for accurate landing of small instrument payloads on Mars, utilizing excess cruise -stage mass on larger missions. One to a few such microlanders might add 1-5% to the cost of a primary mission with inconsequential risk. Using the REBR and JPL Deep Space 2 starting points for a passively stable entry vehicle provides a low mass and low ballistic coefficient, enabling subsonic d employment of a steerable parawing glider, capable of 10+ km of guided flight at a 3:1 glide ratio. Originally developed for the Gemini human space program, the parawing is attractive for a volume -limited microprobe, minimizing descent velocity, and providing sufficient remaining volume for a useful scientific payload. The ability to steer the parawing during descent opens unique opportunities, including terrain- relative navigation for landing within tens of meters of one of several specified targets within a given uncertainty ellipse. In addition to scientific value, some Mars human exploration Strategic Knowledge Gaps could be addressed with deployment of focused instruments at multiple locations.

  16. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    NASA Astrophysics Data System (ADS)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  17. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  18. The Revolution in Earth and Space Science Education.

    ERIC Educational Resources Information Center

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  19. Teach the Earth: On-line Resources for Teachers and Teachers of Teachers

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2007-12-01

    Effective Earth science education depends on excellent teachers: teachers who not only possess a strong grasp of geoscience but are also well-versed in the pedagogic methods they need to connect with their audience. Preparing Earth science teachers is a task no less challenging that also requires strengths in both areas. The Teach the Earth website provides a variety of resources to support preparation of Earth science teachers. Here you can find collections of teaching activities addressing all aspects of the Earth system; discussions of teaching methods linked to examples of their use in geoscience courses; and the Earth Exploration Toolbook, a resource specifically designed for teachers who would like to incorporate data rich activities in their teaching. These resources are suitable for use by teachers, students in courses addressing the methodology of teaching Earth science and science, and faculty designing courses. Faculty working with current and future teachers will find a section on Preparing Teachers to Teach Earth Science with a collection of courses designed specifically to benefit future Earth Science teachers, examples of key activities in these courses, and descriptions of programs for pre-service and in-service teachers. The materials housed in this web-resource demonstrate a wide range of fruitful approaches and exciting opportunities. On the order of 25,000 individuals use the site repeatedly during the year. We estimate that 27 percent of these users are geoscience faculty and 12 percent are teachers. We invite teachers, faculty, researchers, and educators to enhance this resource by contributing descriptions of activities, courses, or programs as a mechanism for sharing their experience with others engaged in similar work.

  20. Explorers from space

    USGS Publications Warehouse

    Fary, Raymond W.

    1967-01-01

    The statement that a new era in exploration is opening will almost surely bring to mind the venturing of man into space and the ever more imminent exploration of the moon. The reference here, however, is to exploration of earth itself and to the unique capabilities for study of the earth that space technology will provide. Demands for water, minerals, energy, food, and for working, living and recreational space are outrunning our ability to meet them by traditional methods. In order to satisfy these demands, it is necessary now, just as it has been in the past, to look to the activities, the instruments, and the technologies that in part create the pressures for aid in meeting them. Studies being made at the U.S. Geological Survey and elsewhere of the potential applications of remote sensors in space to earth resources research indicate that now, at last, it will be possible to approach solutions on a regional or global basis. This paper discusses the plans for an Earth Resources Observational Satellites Program which will be designed for that purpose.

  1. Capability 9.1 Exploration

    NASA Technical Reports Server (NTRS)

    Eckelkamp, Rick; Blacic, Jim

    2005-01-01

    The exploration challenge are: To build an efficient, cost effective exploration infrastructure, To coordinate exploration robots & crews from multiple. earth sites to accomplish science and exploration objectives. and To maximize self-sufficiency of the lunar/planetary exploration team.

  2. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  3. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, Richard S.

    2014-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit and/or on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  4. Heterogeniety and Heterarchy: How far can network analyses in Earth and space sciences?

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Fox, P. A.; Eleish, A.; Li, C.; Pan, F.; Zhong, H.

    2017-12-01

    The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level. Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks. In the past 10 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level. This presentation will cover the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration.

  5. Exploring the Universe.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    Highlights National Aeronautics and Space Administration's (NASA) space exploration studies, focusing on Voyager at Saturn, advanced Jupiter exploration, infrared observatory, space telescope, Dynamics Explorers (satellites designed to provide understanding of earth/sun energy relationship), and ozone studies. (JN)

  6. Opportunity Traverse Map, Sol 383

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Mars Exploration Rover Opportunity drove a total of 2,801 meters (1.74 miles) between its landing in January 2004 and its 383rd martian day, or sol (Feb. 20, 2005). This map on an image taken by the Mars Orbiter Camera on NASA's Mars Global Surveyor shows the course the rover drove during that period. Recently, Opportunity has been making rapid progress from 'Endurance Crater' toward exploration targets farther south.

  7. NASA's Space Launch System: A New Opportunity for CubeSats

    NASA Technical Reports Server (NTRS)

    Hitt, David; Robinson, Kimberly F.; Creech, Stephen D.

    2016-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward

  8. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  9. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    A photo taken during the NICER range-of-motion test at NASA’s Goddard Space Flight Center shows the photographer’s reflection in the mirror-like radiator surface of the detector plate. Teflon-coated silver tape is used to keep NICER’s detectors cool. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Optics Lead Takashi Okajima prepares to align NICER’s X-ray optics. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER engineer Steven Kenyon prepares seven of the 56 X-ray concentrators for installation in the NICER instrument. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fieldsmore » of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.« less

  13. Asteroid exploration and utilization

    NASA Technical Reports Server (NTRS)

    Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar

    1992-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.

  14. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  15. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    NASA Astrophysics Data System (ADS)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  16. EarthScope National Office Education and Outreach Program: 2013 Update on Activities and Outcomes

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Robinson, S.; Bohon, W.; Schwab, P.; Arrowsmith, R.; Garnero, E. J.; Fouch, M. J.; Pettis, L.; Baumback, D.; Dick, C.

    2013-12-01

    The EarthScope Program (www.earthscope.org) funded by the National Science Foundation, fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. Data and findings from EarthScope continue to transform geoscientific studies throughout the Earth, enhance understanding and mitigation of hazards, and inform applications of geoscience toward environmental sustainability. The EarthScope Program also marshals significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including the EarthScope Steering Committee, researchers, educators, students, and the general public. ESNO supports and promotes E&O through social media and web-hosted resources, newsletters and published articles, E&O workshops for informal educators (interpreters), assistance to grassroots K-12 STEM teacher professional development projects (typically led by EarthScope researchers), continuing education for researchers, collaborations with other Earth-science E&O providers, and biannual national conferences. The EarthScope E&O program at ESNO leads and supports wide dissemination of the data, findings, and legacy of EarthScope. Notable activities in 2013 include expansion of social-media and web-based content, two Interpretive Workshops in the eastern United States, the Great ShakeOut, the EarthScope National Meeting in Raleigh, and continuing partnerships with affiliated E&O providers. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  17. Recent Results from the Mars Exploration Rover Opportunity Pancam Instruments

    NASA Astrophysics Data System (ADS)

    Bell, James F., III; Arvidson, Raymond; Farrand, William; Johnson, Jeffrey; Rice, James; Rice, Melissa; Ruff, Steven; Squyres, Steven; Wang, Alian

    2013-04-01

    The Mars Exploration Rover (MER) Panoramic Camera (Pancam) instruments [1] are multispectral, stereoscopic CCD cameras that have acquired high resolution color images from the Spirit rover field site in Gusev crater and the Opportunity rover field site in Meridiani Planum. Spirit's mission ended in March 2010 after 2209 sols of operation and acquisition of more than 81,000 Pancam images. Opportunity's mission is ongoing, now spanning more than 3180 sols of operation as of early January 2013. As of this writing, the Opportunity Pancam instruments have acquired more than 106,000 images. Approximately 21% of those images have been acquired as part of 11-color multispectral "image cubes" used to characterize the color properties of the surface and atmosphere at wavelengths between 432 and 1009 nm. Most of the remainder of the imaging part of the rovers' downlink (which is the vast majority of the overall downlink) has been used for monochrome or limited-filter tactical imaging of targets of interest, stereo Navcam or Hazcam imaging in support of rover driving and/or rover arm instrument chemical, mineralogical, or Microscopic Imager measurements, photometric experiments, atmospheric dynamics and aerosol observations, and even occasional astronomical observations like solar transits of Phobos and Deimos. Less than 2% of the downlinked bits have been used for calibration observations (bias, dark current, flatfield, calibration target) over the course of the mission. During the past Mars year, Opportunity arrived at Cape York, a northwestern segment of the rim of 22 km diameter Endeavour crater, and has been used to characterize the geology, geochemistry, and mineralogy of this ancient Noachian terrain. Pancam multispectral images have provided important data with which to help identify basaltic impact breccias within the crater rim materials, as well as gypsum-rich veins within the Meridiani plains sedimentary rocks adjacent to the rim. The continuing study of light

  18. Earth Science Observations from the International Space Station: An Overview (Invited)

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2013-12-01

    The International Space Station (ISS) provides a unique and valuable platform for observing the Earth. With its mid-inclination (~51 degree) orbit, it provides the opportunity to view most of the Earth, with data acquisition possible over a full range of local times, in an orbit that nicely complements the polar sun-synchronous orbits used for much of space-based Earth observation, and can draw on a heritage of mid-inclination observations from both free flying satellites and the Space Shuttle program. The ISS, including its component observing modules supplied by NASA's international partners, can provide needed resources and viewing opportunities by a broad range of Earth-viewing scientific instruments. In this talk, the overall picture of Earth viewing from ISS will be presented, with examples from a range of past, current, and projected sensors being shared; talks on the ISS implementation for a subset of current and projected payload will be presented in individual talks presented by their their respective teams.

  19. Opportunity on 'Cabo Frio' (Simulated)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006).

    This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  20. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to

  1. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  2. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  3. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  4. Exploring factors related to the translation of collaborative research learning experiences into clinical practice: Opportunities and tensions.

    PubMed

    Fletcher, Simon; Whiting, Cheryl; Boaz, Annette; Reeves, Scott

    2017-07-01

    Providing training opportunities to develop research skills for clinical staff has been prioritised in response to the need for improving the evidence base underpinning the delivery of care. By exploring the experiences of a number of former participants of a multidisciplinary postgraduate research course, this article explores the factors that have enabled and impeded staff to translate their learnt research skills into clinical practice. Adopting an exploratory case study approach, 16 interviews with 5 cohorts of Masters by Research in Clinical Practice (MResCP) graduates were undertaken. The interviews explored graduates' course experiences and their subsequent attempts to undertake clinical research. Analysis of the data indicated that although participants valued their interactions with colleagues from different professions and felt they gained useful research skills/knowledge, upon returning to clinical practice, they encountered a number of barriers which restricted their ability to apply their research expertise. Professional isolation, issues of hierarchy, and a lack of organisational support were key to limiting their ability to undertake clinical research. Further work is needed to explore in more depth how (i) these barriers can be overcome and (ii) how taught collaborative research skills can be more effectively translated into practice.

  5. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  6. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  7. Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences

    NASA Astrophysics Data System (ADS)

    CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.

    2012-10-01

    The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace

  8. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn about the environment. The two-day event featured approximately 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more.

  9. Earth Systems Education: Origins and Opportunities. Science Education for Global Understanding. Second Edition.

    ERIC Educational Resources Information Center

    University of Northern Colorado, Greeley.

    This publication introduces and provides a framework for Earth Systems Education (ESE), an effort to establish within U.S. schools more effective programs designed to increase the public's understanding of the Earth system. The publication presents seven "understandings" around which curriculum can be organized and materials selected in…

  10. Subglacial environments and the search for life beyond the Earth

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Bagshaw, Elizabeth; Balme, Matt; Doran, Peter; McKay, Christopher P.; Miljkovic, Katarina; Pearce, David; Siegert, Martin J.; Tranter, Martyn; Voytek, Mary; Wadham, Jemma

    One of the most remarkable discoveries resulting from the robotic and remote sensing exploration of space is the inferred presence of bodies of liquid water under ice deposits on other planetary bodies: extraterrestrial subglacial environments. Most prominent among these are the ice-covered ocean of the Jovian moon, Europa, and the Saturnian moon, Enceladus. On Mars, although there is no current evidence for subglacial liquid water today, conditions may have been more favorable for liquid water during periods of higher obliquity. Data on these extraterrestrial environments show that while they share similarities with some subglacial environments on the Earth, they are very different in their combined physicochemical conditions. Extraterrestrial environments may provide three new types of subglacial settings for study: (1) uninhabitable environments that are more extreme and life-limiting than terrestrial subglacial environments, (2) environments that are habitable but are uninhabited, which can be compared to similar biotically influenced subglacial environments on the Earth, and (3) environments with examples of life, which will provide new opportunities to investigate the interactions between a biota and glacial environments.

  11. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.

  12. Overview of Space Science and Information Research Opportunities at NASA

    NASA Technical Reports Server (NTRS)

    Green, James L.

    2000-01-01

    It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.

  13. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  14. Unequal Access to Rigorous High School Curricula: An Exploration of the Opportunity to Benefit from the International Baccalaureate Diploma Programme (IBDP)

    ERIC Educational Resources Information Center

    Perna, Laura W.; May, Henry; Yee, April; Ransom, Tafaya; Rodriguez, Awilda; Fester, Rachél

    2015-01-01

    This study explores whether students from low-income families and racial/ethnic minority groups have the opportunity to benefit in what is arguably the most rigorous type of credit-based transition program: the International Baccalaureate Diploma Programme (IBDP). The analyses first describe national longitudinal trends in characteristics of…

  15. The Single Crew Module Concept for Exploration

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2012-01-01

    Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them

  16. Opportunity First Decade of Driving on Mars

    NASA Image and Video Library

    2014-01-23

    The gold line on this image shows NASA Opportunity route from the landing site, in upper left, to the area it is investigating on the western rim of Endeavour Crater as of the rover 10th anniversary on Mars, in Earth years.

  17. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    PubMed

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn more about energy awareness, the environment and sustainability. The two-day event featured approximately 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more.

  19. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-18

    Employees had the opportunity to take a look under the hood of an electric vehicle on display during Kennedy Space Center’s annual Earth Day celebration. The two-day event featured approximately 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more.

  20. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to get an up-close look at experimental electric vehicles. The two-day event featured approximately 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more.

  1. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn about the environment and meet Butterfly Dan” Dunwoody. The two-day event featured approximately 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more.

  2. Opportunities in Training & Development Careers. VGM Opportunities Series.

    ERIC Educational Resources Information Center

    Gordon, Edward E.; Petrini, Catherine M.; Campagna, Ann P.

    This volume is a resource for those who want to explore opportunities in training and development careers. Chapter 1 covers the evolution of training and the future of education at work. Chapter 2 considers trainers' roles; program design and development; needs assessment; development of program objectives; program content, training methods,…

  3. Earth on the Horizon

    NASA Image and Video Library

    2004-03-13

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560

  4. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  5. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  6. Opportunity Surroundings on Sol 1687 Stereo

    NASA Image and Video Library

    2009-01-05

    NASA Mars Exploration Rover Opportunity combined images into this stereo, 360-degree view of the rover surroundings on Oct. 22, 2008. Opportunity position was about 300 meters southwest of Victoria. 3D glasses are necessary to view this image.

  7. NASA Benefits Earth

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  8. Model Meets Data: Challenges and Opportunities to Implement Land Management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Dolman, A. J.; Don, A.; Erb, K. H.; Fuchs, R.; Herold, M.; Jones, C.; Luyssaert, S.; Kuemmerle, T.; Meyfroidt, P.

    2016-12-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals

  9. Model meets data: Challenges and opportunities to implement land management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Luyssaert, Sebastiaan; Kuemmerle, Tobias; Meyfroidt, Patrick; Naudts, Kim

    2017-04-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals

  10. Opportunity's Travels

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overview map made from Mars Orbiter camera images illustrates the path that the Mars Exploration Rover Opportunity has taken from its first sol on the red planet through its 87th sol. After thoroughly examining its 'Eagle Crater' landing-site, the rover moved onto the plains of Meridiani Planum, stopping to examine a curious trough and a target within it called 'Anatolia.' Following that, Opportunity approached and remotely studied the rocky dish called 'Fram Crater.' As of its 91st sol (April 26, 2004), the rover sits 160 meters (about 525 feet) from the rim of 'Endurance Crater.'

  11. Opportunity's View After Long Drive on Sol 1770 (Polar)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009).

    This view is presented as a polar projection with geometric seam correction. North is at the top.

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini.

    The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

  12. Opportunity's View After Long Drive on Sol 1770 (Vertical)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009).

    This view is presented as a vertical projection with geometric seam correction. North is at the top.

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini.

    The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

  13. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  14. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  15. Power and Propulsion System Design for Near-Earth Object Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.

    2011-01-01

    Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.

  16. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  17. 2003 Mars Exploration Rover Mission: Robotic Field Geologists for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2008-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Jan. 4, 2004 and the rover Opportunity arrived on the plains of Meridiani Planum on Jan. 25, 2004. The rovers continue to return new discoveries after 4 continuous Earth years of operations on the surface of the red planet. Spirit has successfully traversed 7.5 km over the Gusev crater plains, ascended to the top of Husband Hill, and entered into the Inner Basin of the Columbia Hills. Opportunity has traveled nearly 12 km over flat plains of Meridiani and descended into several impact craters. Spirit and Opportunity carry an integrated suite of scientific instruments and tools called the Athena science payload. The Athena science payload consists of the 1) Panoramic Camera (Pancam) that provides high-resolution, color stereo imaging, 2) Miniature Thermal Emission Spectrometer (Mini-TES) that provides spectral cubes at mid-infrared wavelengths, 3) Microscopic Imager (MI) for close-up imaging, 4) Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, 5) Moessbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, 6) Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath, and 7) Magnetic Properties Experiment that allow the instruments to study the composition of magnetic martian materials [1]. The primary objective of the Athena science investigation is to explore two sites on the martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The Athena science instruments have made numerous scientific discoveries over the 4 plus years of operations. The objectives of this paper are to 1) describe the major scientific discoveries of the MER robotic field geologists and 2) briefly summarize what major outstanding questions were not answered by MER that might be addressed by returning samples to our laboratories on Earth.

  18. The geologist and public policy issues, opportunities and obligations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, W.

    1993-03-01

    Historically, geologists have been perceived by the public as solely involved in resource exploration and production or geologic hazards mitigation. This generally included mining, oil drilling, landslide or earthquake (after the fact) comments, and rock or mineral collecting. These operations have come to be associated with land exploitation involving extraction of non-renewable resources, and often, in consequence, pollution. These generic activities may not currently be considered environmentally sound or politically correct. Because of the high visibility of environmental issues in recent years, geologists now have an opportunity to offer necessary input contributing to solutions for many of these problems. Indeed,more » geologists must be thought of as part of the solution, and thus alter public perception that geologists are facilitators of environmental damage. After all, who may better protect and conserve the earth and its environments than people trained in the Earth Sciences Governmental and industry or consulting geologists are now involved in a wide range of interpretative geologic decisions regarding a cross-section of activities aimed at development and conservation of lands and natural resources. These can be grouped in generalized categories including: waste disposal issues, water resources issues, land-use planning and zoning issues, and resource conservation or regulation requirements.« less

  19. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  20. Overview of an Integrated Medical System for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Rubin, David

    2013-01-01

    The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.

  1. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry; Hitt, David

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads

  2. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple

  3. The Earth's Gravity and Its Geological Significance.

    ERIC Educational Resources Information Center

    Cook, A. H.

    1980-01-01

    Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)

  4. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER’s X-ray concentrator optics are inspected under a black light for dust and foreign object debris that could impair functionality once in space. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER Optics Lead Takashi Okajima makes a fine adjustment to the orientation of one X-ray “concentrator” optic. The 56 optics must point in the same direction in order for NICER to achieve its science goals. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Exploration Roadmap Working Group (ERWG) Data Collection, NASA's Inputs

    NASA Technical Reports Server (NTRS)

    Drake, Bret; Landis, Rob; Thomas, Andrew; Mauzy, Susan; Graham, Lee; Culbert, Chris; Troutman, Pat

    2010-01-01

    This slide presentation reviews four areas for further space exploration: (1) Human Exploration of Mars Design Reference Architecture (DRA) 5.0, (2) Robotic Precursors targeting Near Earth Objects (NEO) for Human Exploration, (3) Notional Human Exploration of Near Earth Objects and (4) Low Earth Orbit (LEO) Refueling to Augment Human Exploration. The first presentation reviews the goals and objectives of the Mars DRA, presents a possible mission profile, innovation requirements for the mission and key risks and challenges for human exploration of Mars. The second presentation reviews the objective and goals of the robotic precursors to the NEO and the mission profile of such robotic exploration. The third presentation reviews the mission scenario of human exploration of NEO, the objectives and goals, the mission operational drivers, the key technology needs and a mission profile. The fourth and last presentation reviews the examples of possible refueling in low earth orbit prior to lunar orbit insertion, to allow for larger delivered payloads for a lunar mission.

  7. Inspiring the Next Generation through Real Time Access to Ocean Exploration

    NASA Astrophysics Data System (ADS)

    Bell, K. L.; Ballard, R. D.; Witten, A. B.; O'Neal, A.; Argenta, J.

    2011-12-01

    Using live-access exposure to actual shipboard research activities where exciting discoveries are made can be a key contributor to engaging students and their families in learning about earth science and STEM subjects. The number of bachelor's degrees awarded annually in the Earth sciences peaked at nearly 8000 in 1984, and has since declined more than 50%; for the last several years, the number of bachelor's degrees issued in U.S. schools in the geosciences has hovered around 2500 (AGI, 2009). In 2008, the last year for which the data are published, only 533 Ph.D.s were awarded in Earth, Atmospheric and Ocean sciences (NSF, 2009). By 2030, the supply of geoscientists for the petroleum industry is expected to fall short of the demand by 30,000 scientists (AGI, 2009). The National Science Foundation (NSF) reports that minority students earn approximately 15% of all bachelor's degrees in science and engineering, but only 4.6% of degrees in the geosciences. Both of these percentages are very low in comparison to national and state populations, where Hispanics and African-Americans make up 29% of the U.S. overall. The Ocean Exploration Trust (OET) is a non-profit organization whose mission is to explore the world's ocean, and to capture the excitement of that exploration for audiences of all ages, but primarily to inspire and motivate the next generation of explorers. The flagship of OET's exploratory programs is the Exploration Vessel Nautilus, on which annual expeditions are carried out to support our mission. The ship is equipped with state of the art satellite telecommunications "telepresence" technology that enables 24/7 world-wide real time access to the data being collected by the ships remotely operated vehicles. It is this "live" access that affords OET and its partners the opportunity to engage and inspire audiences across the United States and abroad. OET has formed partnerships with a wide-range of educational organizations that collectively offer life

  8. Board on Earth Sciences and Resources and its Activities

    NASA Technical Reports Server (NTRS)

    Schiffries, Craig M.

    1997-01-01

    The Board will provide oversight of the earth science and resource activities within the National Research Council, provide a review of research and public activities in the solid-earth sciences, and provide analyses and recommendations relevant to the supply, delivery, and associated impacts of and issues related to hydrocarbon, metallic, and non-metallic mineral resources. The Board will monitor the status of the earth sciences, assess the health of the disciplines, and identify research opportunities, and will respond to specific agency requests.

  9. Learning in Earth and space science: a review of conceptual change instructional approaches

    NASA Astrophysics Data System (ADS)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-03-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.

  10. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    NASA Astrophysics Data System (ADS)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  11. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  12. Museum-Based Teacher Professional Development: Peabody Fellows in Earth Science

    ERIC Educational Resources Information Center

    Pickering, Jane; Ague, Jay J.; Rath, Kenneth A.; Heiser, David M.; Sirch, James N.

    2012-01-01

    The Peabody Fellows in Earth Science program was a professional development opportunity for middle and high school teachers to enhance their knowledge of, and teaching skills in, the Earth sciences. It combined a summer institute and academic year workshops with the production of new curricular resources on the interpretation of landforms in…

  13. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  15. Layers in Burns Cliff Examined by Opportunity

    NASA Image and Video Library

    2011-11-21

    NASA Mars Exploration Rover Opportunity studied layers in the Burns Cliff slope of Endurance Crater in 2004. The layers show different types of deposition of sulfate-rich sediments. Opportunity panoramic camera recorded this image.

  16. Studies of Life on Earth are Important for Mars Exploration

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    1998-01-01

    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  17. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  18. Opportunity's Travels During its First 205 Martian Days

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map shows the traverse of NASA's Mars Exploration Rover Opportunity through the rover's 205th martian day, or sol (Aug. 21, 2004). The background image is from the rover's descent imaging camera. Images inset along the route are from Opportunity's navigation camera. Opportunity began its exploration inside 'Eagle' crater near the left edge of the map. Following completion of its study of the outcrop there, it traversed eastward to a small crater ('Fram' crater) before driving southeastward to the rim of 'Endurance' crater. After a survey partly around the south rim of Endurance crater, Opportunity drove inside the southwest rim of Endurance crater and began a systematic study of outcrops exposed on the crater's inner slope.

  19. Exploring the Earth's Radiation Belts

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Anastasiadis, A.; Chatzichristou, E. T.; Ropokis, G.; Giannakis, O.

    2012-09-01

    We present the outreach efforts of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, intended to provide the general public with simplified information concerning the scientific objectives of the project, its focus and its expected outcomes. MAARBLE involves monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts (torus-shaped regions encircling the Earth, in which high-energy charged particles are trapped by the geomagnetic field), which have direct impact on human endeavors in space (spacecraft and astronauts exposure). The public outreach website of MAARBLE, besides regular updates with relevant news, also employs a variety of multimedia (image and video galleries) and impressive sounds of space (characteristic sounds such as whistlers or tweeks) related to very low and ultra low frequency (VLF/ULF) electromagnetic waves. It also provides links to some of the most interesting relevant educational activities, including those at partner institutions such as the Institute of Geophysics and Planetary Physics at UCLA, the University of Alberta, the Swedish Institute of Space Physics and the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic.

  20. Off-Earth Driving Champs in Miles

    NASA Image and Video Library

    2011-12-07

    The total distance driven on Mars by NASA Mars Exploration Rover, 21.35 miles by early December 2011, is approaching the record total for off-Earth driving, held by the robotic Lunokhod 2 rover operated on Earth moon by the Soviet Union in 1973.

  1. Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations

    NASA Astrophysics Data System (ADS)

    Margarida Maria, Ana; Pereira, Hélder

    2017-04-01

    During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.

  2. Earth-based analogs of lunar and planetary facilities

    NASA Technical Reports Server (NTRS)

    Bell, Larry; Trotti, Guillermo

    1992-01-01

    Antarctica contains areas where the environment and terrain are more similar to regions on the Moon and Mars than any other place on Earth. These features offer opportunities for simulations to determine performance capabilities of people and machines in harsh, isolated locales. The Sasakawa International Center for Space Architecture (SICSA) plans to create a facility on Antarctica for research, planning, and demonstrations in support of planetary exploration. The Antarctic Planetary Testbed (APT) will be financed and utilized by public and private organizations throughout the world. Established on a continent owned by no country, it can serve as a model for cooperation between spacefaring nations. APT science and technology programs will expand knowledge about the nature and origin of our solar system, and will support preparations for human settlements beyond Earth that may occur within the first quarter of the next century. The initial APT facility, conceived to be operational by the year 1992, will be constructed during the summer months by a crew of approximately 12. Six to eight of these people will remain through the winter. As in space, structures and equipment systems will be modular to facilitate efficient transport to the site, assembly, and evolutionary expansion. State-of-the-art waste recovery/recycling systems are also emphasized due to their importance in space.

  3. New Collaborative Strategies for Bringing the Geosciences to Students, Teachers, and the Public: Progress and Opportunities from the National Earth Science Teachers Association and Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.; Herrold, A.; Holzer, M. A.; Passow, M. J.

    2010-12-01

    The geoscience research and education community is interested in developing scalable and effective user-friendly strategies for reaching the public, students and educators with information about the Earth and space sciences. Based on experience developed over the past decade with education and outreach programs seeking to reach these populations, there is a growing consensus that this will be best achieved through collaboration, leveraging the resources and networks already in existence. While it is clear that gifted researchers and developers can create wonderful online educational resources, many programs have been stymied by the difficulty of attracting an audience to these resources. The National Earth Science Teachers Association (NESTA) has undertaken an exciting new project, with support from the William and Flora Hewlett Foundation, that provides a new platform for the geoscience education and research community to share their research, resources, programs, products and services with a wider audience. In April 2010, the Windows to the Universe project (http://windows2universe.org) moved from the University Corporation for Atmospheric Research to NESTA. Windows to the Universe, which started in 1995 at the University of Michigan, is one of the most popular Earth and space science education websites globally, with over 16 million visits annually. The objective of this move is to develop a suite of new opportunities and capabilities on the website that will allow it become a sustainable education and outreach platform for the geoscience research and education community hosting open educational resources. This presentation will provide an update on our progress, highlighting our new strategies, synergies with community needs, and opportunities for collaboration.

  4. Explorer 1 60th Anniversary

    NASA Image and Video Library

    2018-01-31

    Michael Freilich, Director of the Earth Science Division of NASA's Science Mission Directorate, speaks during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)

  5. EarthCube's Assessment Framework: Ensuring Return on Investment

    NASA Astrophysics Data System (ADS)

    Lehnert, K.

    2016-12-01

    EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.

  6. Earth Moon

    NASA Image and Video Library

    1998-06-08

    NASA Galileo spacecraft took this image of Earth moon on December 7, 1992 on its way to explore the Jupiter system in 1995-97. The distinct bright ray crater at the bottom of the image is the Tycho impact basin. http://photojournal.jpl.nasa.gov/catalog/PIA00405

  7. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    David Bell of Renew Merchandise was one of 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more. The event took place during the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn more about energy awareness, the environment and sustainability.

  8. Radiometric assessment method for diffraction effects in hyperspectral imagers applied to the earth explorer #8 mission candidate flex

    NASA Astrophysics Data System (ADS)

    Berlich, R.; Harnisch, B.

    2017-11-01

    An accurate stray light analysis represents a crucial part in the early design phase of hyperspectral imaging systems, since scattering effects can severely limit the radiometric accuracy performance. In addition to conventional contributors including ghost images and surface scattering, i.e. caused by a residual surface micro-roughness and particle contamination, diffraction effects can result in significant radiometric errors in the spatial and spectral domain of pushbroom scanners. In this paper, we present a mathematical approach that efficiently evaluates these diffraction effects based on a Fourier analysis. It is shown that considering the conventional diffraction at the systems entrance pupil only, significantly overestimates the stray light contribution. In fact, a correct assessment necessitates taking into account the joint influence of the entrance pupil, the spectrometer slit as well as the dispersion element. We quantitatively investigate the corresponding impact on the Instrument Spectral Response Function (ISRF) of the Earth Explorer #8 Mission Candidate FLEX and analyse the expected radiometric error distribution for a typical earth observation scenario requirement.

  9. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  10. Naive (commonsense) geography and geobrowser usability after ten years of Google Earth

    NASA Astrophysics Data System (ADS)

    Hamerlinck, J. D.

    2016-04-01

    In 1995, the concept of ‘naive geography’ was formally introduced as an area of cognitive geographic information science representing ‘the body of knowledge that people have about the surrounding geographic world’ and reflecting ‘the way people think and reason about geographic space and time, both consciously and subconsciously’. The need to incorporate such commonsense knowledge and reasoning into design of geospatial technologies was identified but faced challenges in formalizing these relationships and processes in software implementation. Ten years later, the Google Earth geobrowser was released, marking the beginning of a new era of open access to, and application of, geographic data and information in society. Fast-forward to today, and the opportunity presents itself to take stock of twenty years of naive geography and a decade of the ubiquitous virtual globe. This paper introduces an ongoing research effort to explore the integration of naive (or commonsense) geography concepts in the Google Earth geobrowser virtual globe and their possible impact on Google Earth's usability, utility, and usefulness. A multi-phase methodology is described, combining usability reviews and usability testing with use-case scenarios involving the U.S.-Canadian Yellowstone to Yukon Initiative. Initial progress on a usability review combining cognitive walkthroughs and heuristics evaluation is presented.

  11. Research and career opportunities in the geophysical sciences for physics students

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew

    2008-10-01

    The field of geophysics involves using most branches of physics to investigate the physical structure and process that characterize the solid and fluid parts of our planet. Major advances in geophysics have come about from physicists crossing disciplinary boundaries and using their skills and knowledge to address first-order problems about the nature and structure of our planet and how the planet has changed over time. Indeed, some of the largest scientific breakthroughs in geophysics have come from physicists. As a way to introduce students to the field of geophysics and to provide them with information about research and career opportunities in geophysics, this talk will focus on one area of geophysics, seismology. This is an area of geophysics that has not only been instrumental in advancing our understanding of solid Earth structure and processes, but one that also has an applied side used for oil, gas and mineral exploration, as well as for environmental work. Examples of research projects involving seismic wave propagation and tomographic imaging will be presented, along the short descriptions of career opportunities in industry, government and academic institutions. In collaboration with Solomon Bililign, North Carolina A&T State University.

  12. Scientific drilling and the evolution of the earth system: climate, biota, biogeochemistry and extreme systems

    NASA Astrophysics Data System (ADS)

    Soreghan, G. S.; Cohen, A. S.

    2013-11-01

    A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling

  13. Continuing the International Roadmapping Effort - An Introduction to the Evolution of the ISECG Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.

  14. Topical Conference on the Origin of the Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The abstracts are presented on the topic of the origin of the Earth. The subject of planetary evolution from inner solar system plantesimals through the formation and composition of the Earth's atmosphere and the physical structure of the Earth and the Moon is explored in great variety.

  15. Emerging technology becomes an opportunity for EOS

    NASA Astrophysics Data System (ADS)

    Fargion, Giulietta S.; Harberts, Robert; Masek, Jeffrey G.

    1996-11-01

    During the last decade, we have seen an explosive growth in our ability to collect and generate data. When implemented, NASA's Earth observing system data information system (EOSDIS) will receive about 50 gigabytes of remotely sensed image data per hour. This will generate an urgent need for new techniques and tools that can automatically and intelligently assist in transforming this abundance of data into useful knowledge. Some emerging technologies that address these challenges include data mining and knowledge discovery in databases (KDD). The most basic data mining application is a content-based search (examples include finding images of particular meteorological phenomena or identifying data that have been previously mined or interpreted). In order that these technologies be effectively exploited for EOSDIS development, a better understanding of data mining and the requirements for using this technology is necessary. The authors are currently undertaking a project exploring the requirements and options of content-based search and data mining for use on EOSDIS. The scope of the project is to develop a prototype with which to investigate user interface concepts, requirements, and designs relevant for EOSDIS core system (ECS) subsystem utilizing these techniques. The goal is to identify a generic handling of these functions. This prototype will help identify opportunities which the earth science community and EOSDIS can use to meet the challenges of collecting, searching, retrieving, and interacting with abundant data resources in highly productive ways.

  16. From Sky to Earth: Data Science Methodology Transfer

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  17. Exploration Blueprint: Data Book

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-02-01

    The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human

  18. Exploration Blueprint: Data Book

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    2007-01-01

    The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human

  19. The 6th International Earth Science Olympiad: A Student Perspective

    ERIC Educational Resources Information Center

    Barlett, Luke; Cathro, Darcy; Mellow, Maddi; Tate, Clara

    2014-01-01

    In October 2012, two students from the Australian Science and Mathematics School and two from Yankalilla Area School were selected to travel to Olavarria, Argentina in order to compete in the 6th International Earth Science Olympiad (IESO). It was an opportunity for individuals with a passion for Earth science to come together from 17 countries to…

  20. Earth views and an illuminated earth limb

    NASA Image and Video Library

    1998-11-20

    STS047-54-016 (12 - 20 Sept 1992) --- The colors in this photograph provide insight into the relative density of the atmosphere. The crew members had many opportunities to witness sunrises and sunsets, considering they orbit the Earth every 90 minutes, but few, they said, compared to this scene. It captures the silhouette of several mature thunderstorms with their cirrus anvil tops spreading out against the tropopause (the top of the lowest layer of Earth's atmosphere) at sunset. The lowest layer (troposphere) is the densest and refracts light at the red end of the visible spectrum (7,400 Angstroms), while the blues (4,000 Angstroms) are separated in the least dense portion of the atmosphere (middle and upper atmosphere, or stratosphere and mesosphere). Several layers of blue can be seen. NASA scientists studying the photos believe this stratification to be caused by the scattering of light by particulate trapped in the stratosphere and mesosphere particulate that generally originate from volcanic eruptions, such as those of Mt. Pinatubo in the Philippines and, most recently, Mt. Spurr in Alaska.

  1. International Coordination of Exploring and Using Lunar Polar Volatiles

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2016-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range strategy for human and robotic space exploration beyond low earth orbit. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit, beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars.

  2. Drilling, sampling, and sample-handling system for China's asteroid exploration mission

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zhang, Wenming; Wang, Kang; Gao, Sheng; Hou, Liang; Ji, Jianghui; Ding, Xilun

    2017-08-01

    Asteroid exploration has a significant importance in promoting our understanding of the solar system and the origin of life on Earth. A unique opportunity to study near-Earth asteroid 99942 Apophis will occur in 2029 because it will be at its perigee. In the current work, a drilling, sampling, and sample-handling system (DSSHS) is proposed to penetrate the asteroid regolith, collect regolith samples at different depths, and distribute the samples to different scientific instruments for in situ analysis. In this system, a rotary-drilling method is employed for the penetration, and an inner sampling tube is utilized to collect and discharge the regolith samples. The sampling tube can deliver samples up to a maximum volume of 84 mm3 at a maximum penetration depth of 300 mm to 17 different ovens. To activate the release of volatile substances, the samples will be heated up to a temperature of 600 °C by the ovens, and these substances will be analyzed by scientific instruments such as a mass spectrometer, an isotopic analyzer, and micro-cameras, among other instruments. The DSSHS is capable of penetrating rocks with a hardness value of six, and it can be used for China's asteroid exploration mission in the foreseeable future.

  3. Europa Explorer: A Mission to Explore Europa and Investigate Its Habitability

    NASA Astrophysics Data System (ADS)

    Clark, K. B.; Pappalardo, R. T.; Greeley, R.

    2007-12-01

    Europa is the astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible chemical energy sources. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and particles and fields environments. In 2007, NASA commissioned a study of a flagship-class mission to Europa, with the aim of launching as early as 2015. The difficulty of this type of mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many previous studies which investigated various approaches to meeting the science objectives. The Europa Explorer is a mature orbiter concept to explore Europa and investigate its habitability, fulfilling objectives laid out by the National Research Council's Planetary Science Decadal Survey. The mission examines Europa's ocean, ice shell, chemistry, geology, external environment, and neighborhood. With a nominal launch in June 2015, the flight system arrives at Jupiter in 6 years using a Venus- Earth-Earth Gravity Assist trajectory. It would orbit Jupiter for 2 years using gravity assists of the icy Galilean satellites to lower its energy, providing the opportunity for significant Jupiter system science. It would then enter Europa orbit at an altitude of 100-200 km, where it would perform science investigations for 1 year. A campaign- based operations scenario has been developed which permits return of 5.4 Tbits of science data beginning in July 2021, and emphasizing the highest priority Europa science objectives early in the orbital phase of the mission. The baseline mission concept includes 11 instruments that address high-priority investigations while providing the flexibility to respond to discoveries. A less ambitious mission has also been evaluated which has 8 instruments and returns about a third of the data with 6 months of orbital operations at

  4. Constructing Understanding in Primary Science: An Exploration of Process and Outcomes in the Topic Areas of Light and the Earth in Space

    ERIC Educational Resources Information Center

    Thurston, Allen; Grant, G.; Topping, K. J.

    2006-01-01

    This study explored the process and outcomes of constructivist methods of enhancing science understanding in the topic areas of light and the earth in space. The sample was drawn from a group of 41 nine-year-old children, delivered in four two-hour weekly sessions. Each session involved different combinations of interactive discussion and…

  5. Risk and Exploration: Earth, Sea and Stars

    NASA Technical Reports Server (NTRS)

    Dick, Steven J. (Editor); Cowing, Keith L. (Editor)

    2005-01-01

    The NASA History Division is pleased to present the record of a unique meeting on risk and exploration held under the auspices of the NASA Administrator, Sean O Keefe, at the Naval Postgraduate School in Monterey, California, from September 26-29, 2004. The meeting was the brainchild of Keith Cowing and astronaut John Grunsfeld, NASA's chief scientist at the time. Its goals, stated in the letter of invitation published herein, were precipitated by the ongoing dialogue on risk and exploration in the wake of the Columbia Shuttle accident, the Hubble Space Telescope servicing question, and, in a broader sense, by the many NASA programs that inevitably involve a balance between risk and forward-looking exploration. The meeting, extraordinarily broad in scope and participant experience, offers insights on why we explore, how to balance risk and exploration, how different groups defi ne and perceive risk differently, and the importance of exploration to a creative society. At NASA Headquarters, Bob Jacobs, Trish Pengra, and Joanna Adamus of NASA Public Affairs led the meeting's implementation. The Naval Postgraduate School, commanded by Rear Admiral Patrick W. Dunne, provided a congenial venue. The meeting was broadcast on NASA TV, and thanks are due in this regard to Al Feinberg, Tony Stewart, Jim Taylor, and the planners collaborative: Mark Shaddock and Spotlight Productions, Donovan Gates of Donovan Gates Production, and Michael Ditertay and his staff on this 30-person television crew. Thanks to their efforts, a DVD record of the meeting has also been produced. Thanks are also due to the moderators: Miles O Brien of CNN, Chris McKay of NASA Ames, David Halpern of the White House Office of Science and Technology Policy, and John Grunsfeld, NASA Headquarters. In order to maintain the informal flavor of the meetings, these proceedings are based on transcripts that have been lightly edited for grammar and punctuation. Most references to slides shown during the

  6. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    NASA Astrophysics Data System (ADS)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  7. In-Situ Resource Utilization for further exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Thakore, B.; Pohajsky, S.

    In-Situ Resource Utilization ISRU is the concept of living off the land Initially proposed in the mid 20th Century many experts have suggested that ISRU is an important enabler for the expansion of humanity beyond the confines of limited resources on Earth However even today ISRU remains a relatively underdeveloped and under--demonstrated in current exploration roadmaps This paper summarizes the proposals of an interdisciplinary study carried out by 27 students from 17 different countries at the International Space University The study reviewed the past and present ISRU techniques and related robotic technologies in the context of complementing the Moon and Mars exploration scenarios of the major space faring countries The economic viability and benefits of ISRU are examined together with the regulatory ethical and cultural aspects of space resource utilisation The renewed opportunities for moon exploration have rekindled interest in ISRU as an enabling technology It is important to assess both the tangible and intangible benefits of this technology in order to evaluate the technical and economic feasibility of adopting it in support of human exploration of the Moon Mars and beyond

  8. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2010-01-01

    Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s proposed Enabling Technology Development and Demonstration (ETDD) Program. LSHS will develop and mature technologies to sustain life on long duration human missions beyond Low Earth Orbit that are reliable, have minimal logistics supply and increase self-sufficiency. For long duration exploration missions, further closure of life support systems is paramount, including focus on key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodation that recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and which have increased reliability and capability. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. Beyond LEO, return to Earth will be constrained. The potability of recycled water and purity of regenerated air must be measured and certified aboard the spacecraft. Missions must be able to recover from fire events through early detection, use of non-toxic suppression agents, and operation of recovery systems that protect on-board Environmental Control and Life Support (ECLS) hardware. Without the protection of the Earth s geomagnetic field, missions beyond LEO must have improved radiation shielding and dosimetry, as well as warning systems to protect the crew against solar particle events. This paper will describe plans for the new LSHS Foundational Domain and mission factors that will shape its technology development portfolio.

  9. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  10. Opportunity's View of 'Viking' Crater, Sol 421

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On the 421st martian day, or sol, of its time on Mars (March 31,2005), NASA's Mars Exploration Rover Opportunity drove to within about 10 meters (33 feet) of a small crater called 'Viking.' After completing the day's 71-meter (233-foot) drive across flatland of the Meridiani Planum region, the rover used its navigation camera to take images combined into this view of its new surroundings, including the crater. That day was the last of Opportunity's second extended mission. On April 1, both Opportunity and its twin, Spirit, began third extensions approved by NASA for up to 18 more months of exploring Mars. This view is presented in a cylindrical projection with geometric seam correction.

  11. D-Star Panorama by Opportunity (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's twin Mars Exploration Rovers have been getting smarter as they get older. This view from Opportunity shows the tracks left by a drive executed with more onboard autonomy than has been used on any other drive by a Mars rover.

    Opportunity made the curving, 15.8-meter (52-foot) drive during its 1,160th Martian day, or sol (April 29, 2007). It was testing a navigational capability called 'Field D-star,' which enables the rover to plan optimal long-range drives around any obstacles in order to travel the most direct safe route to the drive's designated destination. Opportunity and its twin, Spirit, did not have this capability until the third year after their January 2004 landings on Mars. Earlier, they could recognize hazards when they approached them closely, then back away and try another angle, but could not always find a safe route away from hazards. Field D-Star and several other upgrades were part of new onboard software uploaded from Earth in 2006. The Sol 1,160 drive by Opportunity was a Martian field test of Field D-Star and also used several other features of autonomy, including visual odometry to track the rover's actual position after each segment of the drive, avoidance of designated keep-out zones, and combining information from two sets of stereo images to consider a wide swath of terrain in analyzing the route.

    Two days later, on Sol 1,162, (May 1, 2007), Opportunity was still at the location it reached during that drive, and the rover's panoramic camera (Pancam) took the exposures combined into this image.

    Victoria Crater is in the background, at the top of the image. The Sol 1,160 drive began at the place near the center of the image where tracks overlap each other. Tracks farther away were left by earlier drives nearer to the northern rim of the crater. For scale, the distance between the parallel tracks left by the rover's wheels is about 1 meter (39 inches) from the middle of one track to the middle of the other. The

  12. Mars Human Exploration Objectives

    NASA Technical Reports Server (NTRS)

    Briggs, Geoff

    1998-01-01

    This paper reviews the objectives and other considerations of Human exploration of Mars. The objectives of human exploration of Mars are: (1) to learn how Mars is similar to, and different from, Earth; (2) to explore possible life, past and present; (3) to discover what Mars is like now from the perspective of Geoscience and geologic history; and (4) how did Mars form and how did its formation differ from Earth. Considerations of human Martian exploration involve: (1) having a capable base laboratory; (2) having long range transportation; (3) having operational autonomy of the crew, and the requirement of the crew to possess a range of new cognitive processes along with easy communications with terrestrial colleagues; and finally (4) creating the human habitat along with human factors which involve more than just survivability.

  13. Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML

    NASA Technical Reports Server (NTRS)

    Mcadams, Jim V.

    1992-01-01

    The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.

  14. Providing Opportunities for Interdisciplinary Research through Partnering two Undergraduate Research Programs: RESESS and SOARS

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Eriksson, S. C.

    2005-12-01

    Undergraduate research provides a unique opportunity to explore scientifically novel questions, particularly those at the intersection of disciplines. This opportunity should be balanced with the need to provide the strong discipline-based training that undergraduate students require to continue their academic careers. This need for balance is especially acute for students from groups who are historically under-represented in geosciences; their status as minorities and women makes them especially vulnerable to the devaluing of their research if it isn't along traditional lines. Combining undergraduate research with a strong, diverse learning community is one way to balance the opportunity of interdisciplinary research with the need for depth of understanding in a field. In this model, students individually pursue focused research in partnership with a particular scientist as they work collaboratively across disciplines to prepare scientific papers, presentations, and posters to share the results of their research. Over time, programmatic success can even help insulate students from the risks of interdisciplinary work. Research Experience for Students in Solid Earth Science (RESESS) and Significant Opportunities in Atmospheric Science (SOARS) implement this approach. SOARS is a program with a 10-year history in the atmospheric science; RESESS is a new program focused on Solid Earth Sciences. The two currently collaborate by merging their learning communities while maintaining distinct research focuses. While still in the pilot phase of partnering, initial discussions by the student participants indicate a growing awareness of potential for cross-disciplinary collaboration. In fact, two projects, both by graduate students who have participated for multiple summers, straddle the disciplines of geology and meteorology. One project characterized dust storms in the Southwest US using remote sensing, and a second project studied wind-driven migration of sand dunes on the

  15. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  16. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  17. Dynamics Explorer twin spacecraft under evaluation tests

    NASA Technical Reports Server (NTRS)

    Redmond, C.

    1981-01-01

    The Dynamics Explorer A and B satellites designed to explore the interactive processes occuring between the magnetosphere and Earth's ionosphere, upper atmosphere, and plasmasphere are described. Effects of these interactions, satellite orbits, data collecting antennas, solar power systems, axes, configurations, and Earth based command, control and data display systems are mentioned.

  18. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to get an up-close look at experimental electric vehicles. The "Remove Before Flight" tag is on a Polaris GEM electric car. The two-day event featured approximately 50 exhibitors offering information on a variety of topics, including electric vehicles, sustainable lighting, renewable energy, Florida-friendly landscaping tips, Florida’s biking trails and more.

  19. The 1993 Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed.

  20. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    NASA Astrophysics Data System (ADS)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on

  1. Enhancing Geographic and Digital Literacy with a Student-Generated Course Portfolio in Google Earth

    ERIC Educational Resources Information Center

    Guertin, Laura; Stubbs, Christopher; Millet, Christopher; Lee, Tsan-Kuang; Bodek, Matthew

    2012-01-01

    Google Earth can serve as a platform for students to construct a course ePortfolio. By having students construct their own placemarks in a customized Google Earth file, students document their learning in a geospatial context, learn an innovative use of Google Earth, and have the opportunity for creativity and flexibility with disseminating their…

  2. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  3. Observation Planning Made Simple with Science Opportunity Analyzer (SOA)

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.

    2004-01-01

    As NASA undertakes the exploration of the Moon and Mars as well as the rest of the Solar System while continuing to investigate Earth's oceans, winds, atmosphere, weather, etc., the ever-existing need to allow operations users to easily define their observations increases. Operation teams need to be able to determine the best time to perform an observation, as well as its duration and other parameters such as the observation target. In addition, operations teams need to be able to check the observation for validity against objectives and intent as well as spacecraft constraints such as turn rates and acceleration or pointing exclusion zones. Science Opportunity Analyzer (SOA), in development for the last six years, is a multi-mission toolset that has been built to meet those needs. The operations team can follow six simple steps and define his/her observation without having to know the complexities of orbital mechanics, coordinate transformations, or the spacecraft itself.

  4. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER Optics Lead Takashi Okajima installs one of NICER’s 56 X-ray “concentrators,” each consisting of 24 concentric foils. To minimize the effects of Earth’s gravity on their alignment, the concentrator assemblies were installed from the outside edges toward the center of the plate that houses them. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER team members Takashi Okajima, Yang Soong, and Steven Kenyon apply epoxy to the X-ray concentrator mounts after alignment. The epoxy holds the optics assemblies fixed in position through the vibrations experienced during launch to the International Space Station. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Many of NICER’s 56 X-ray “concentrators” seen from within the instrument optical bench. Light reflected from the gold surfaces of the 24 concentric foils in each concentrator is focused onto detectors slightly more than 1 meter (3.5 feet) away. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. UNESCO’s New Earth Science Education Initiative for Africa

    NASA Astrophysics Data System (ADS)

    Missotten, R.; Gaines, S. M.; de Mulder, E. F.

    2009-12-01

    The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.

  8. Management Approach for Earth Venture Instrument

    NASA Technical Reports Server (NTRS)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  9. The Value of Context Images at the Mars Surveyor Landing Sites: Insights from Deep Ocean Exploration on Earth

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.; Bulmer, M. H.

    1999-06-01

    Exploration of the Martian surface with a rover is similar to investigation of Earth's oceans using remotely operated vehicles (ROVs) or deep submergence vehicles (DSVs). In the case of Mars, the techniques required to perform a robust scientific survey are similar to those that have been developed by the deep ocean research community. In both instances, scientists are challenged by having to choose and characterize a target site, identify favorable sites for detailed analysis and possible sample collection, only being able to maneuver within a few meters of the landing site and integrating data sets with a range of spatial resolutions that span 1-2 orders of magnitude (rover data versus satellite data, or submersible data versus bathymetric data). In the search for biologic communities at Earth's mid-ocean ridges, it is important to note that the vast majority of the terrain is completely barren of life: no microbes live in the thousands to hundreds of thousands of meters that separate the life-sustaining hydrothermal vent fields. In attempts to better understanding the origin and emplacement of geologic and biologic features on the seafloor, techniques have been developed to select sites of special interest (target sites), by combining the low-resolution, high spatial-coverage data with medium-resolution, higher spatial-coverage data. Once individual sites are selected, then a DSV or ROV is used to obtain high-resolution, low-spatial-coverage data. By integrating the different resolution data sets, the individual target sites can be placed into the larger context of the regional and global geologic system. Methods of exploration of the oceans are pertinent to the Mars Lander Missions because they highlight the importance and value of the acquisition of 'context' images. Over 60% of Earth's mid-ocean ridge crests have been surveyed using multibeam bathymetry. The typical resolution of such data is 100 m in the vertical and 20 m in the horizontal. This data set is

  10. Research Opportunities in Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  11. The Mission Accessibility of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Abell, Paul A.; Adamo, Daniel R.; Mazanek, Daniel D.; Johnson, Lindley N.; Yeomans, Donald K.; Chodas, Paul W.; Chamberlin, Alan B.; Benner, Lance A. M.; Taylor, Patrick; hide

    2015-01-01

    Astrodynamical Earth departure dates; mission v; mission duration; stay time; etc. Physical I NEO size(?); rotation rate; dust satellites environment; chemistry; etc. Architectural Launch vehicle(s); crew vehicle(s); habitat module(s); budget; etc. Operational Operations experience; abort options profiles; etc. Astrodynamical Accessibility is the starting point for understanding the options and opportunities available to us. Here we shall focus on. Astrodynamical Accessibility.2 Earth departure date between 2015-01-01 and 2040-12-31 Earth departure C3 60 km2s2. Total mission v 12 kms. The total v includes (1) the Earth departure maneuver from a 400 km altitude circular parking orbit, (2) the maneuver to match the NEAs velocity at arrival, (3) the maneuver to depart the NEA and, (4) if necessary, a maneuver to control the atmospheric re-entry speed during Earth return. Total round trip mission duration 450 days. Stay time at the NEA 8 days Earth atmospheric entry speed 12 kms at an altitude of 125 km. A near-Earth asteroid (NEA) that offers at least one trajectory solution meeting those criteria is classified as NHATS-compliant.

  12. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  13. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  14. ESAS-Derived Earth Departure Stage Design for Human Mars Exploration

    NASA Technical Reports Server (NTRS)

    Flaherty, Kevin; Grant, Michael; Korzun, Ashley; Malo-Molina, Faure; Steinfeldt, Bradley; Stahl, Benjamin; Wilhite, Alan

    2007-01-01

    The Vision for Space Exploration has set the nation on a course to have humans on Mars as early as 2030. To reduce the cost and risk associated with human Mars exploration, NASA is planning for the Mars architecture to leverage the lunar architecture as fully as possible. This study takes the defined launch vehicles and system capabilities from ESAS and extends their application to DRM 3.0 to design an Earth Departure Stage suitable for the cargo and crew missions to Mars. The impact of a propellant depot in LEO was assessed and sLzed for use with the EDS. To quantitatively assess and compare the effectiveness of alternative designs, an initial baseline architecture was defined using the ESAS launch vehicles and DRM 3.0. The baseline architecture uses three NTR engines, LH2 propellant, no propellant depot in LEO, and launches on the Ares I and Ares V. The Mars transfer and surface elements from DRM 3.0 were considered to be fixed payloads in the design of the EDS. Feasible architecture alternatives were identified from previous architecture studies and anticipated capabilities and compiled in a morphological matrix. ESAS FOMs were used to determine the most critical design attributes for the effectiveness of the EDS. The ESAS-derived FOMs used in this study to assess alternative designs are effectiveness and performance, affordability, reliability, and risk. The individual FOMs were prioritized using the AHP, a method for pairwise comparison. All trades performed were evaluated with respect to the weighted FOMs, creating a Pareto frontier of equivalently ideal solutions. Additionally, each design on the frontier was evaluated based on its fulfillment of the weighted FOMs using TOPSIS, a quantitative method for ordinal ranking of the alternatives. The designs were assessed in an integrated environment using physics-based models for subsystem analysis where possible. However, for certain attributes such as engine type, historical, performance-based mass estimating

  15. Getting Out of Orbit: Water Recycling Requirements and Technology Needs for Long Duration Missions Away from Earth

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2017-01-01

    Deep-space crewed missions will not have regular access to the Earth's resources or the ability to rapidly return to Earth if a system fails. As crewed missions extend farther from Earth for longer periods, habitation systems must become more self-sufficient and reliable for safe, healthy, and sustainable human exploration. For human missions to Mars, Environmental Control and Life Support Systems (ECLSS) must be able operate for up to 1,100 days with minimal spares and consumables. These missions will require capabilities to more fully recycle atmospheric gases and wastewater to substantially reduce mission costs. Even with relatively austere requirements for use, water represents one of the largest consumables by mass. Systems must be available to extract and recycle water from all sources of waste. And given that there will be no opportunity to send samples back to Earth for analysis, analytical measurements will be limited to monitoring hardware brought on board the spacecraft. The Earth Reliant phase of NASA's exploration strategy includes leveraging the International Space Station (ISS) to demonstrate advanced capabilities for a robust and reliable ECLSS. The ISS Water Recovery System (WRS) includes a Urine Processor Assembly (UPA) for distillation and recovery of water from urine and a Water Processor Assembly (WPA) to process humidity condensate and urine distillate into potable water. Possible enhancements to more fully "close the water loop" include recovery of water from waste brines and solid wastes. A possible game changer is the recovery of water from local planetary resources through use of In Situ Resource Utilization (ISRU) technologies. As part of the development and demonstration sequence, NASA intends to utilize cis-Lunar space as a Proving Ground to verify systems for deep space habitation by conducting extended duration missions to validate our readiness for Mars.

  16. Forging Inclusive Solutions: Experiential Earth Charter Education

    ERIC Educational Resources Information Center

    Hill, Linda D.

    2010-01-01

    Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…

  17. "April Fool’s Day" comet to pass by Earth

    NASA Image and Video Library

    2017-12-08

    On April 1, 2017, comet 41P will pass closer than it normally does to Earth, giving observers with binoculars or a telescope a special viewing opportunity. Comet hunters in the Northern Hemisphere should look for it near the constellations Draco and Ursa Major, which the Big Dipper is part of. Whether a comet will put on a good show for observers is notoriously difficult to predict, but 41P has a history of outbursts, and put on quite a display in 1973. If the comet experiences similar outbursts this time, there’s a chance it could become bright enough to see with the naked eye. The comet is expected to reach perihelion, or its closest approach to the sun, on April 12. A member of the Jupiter family of comets, 41P makes a trip around the sun every 5.4 years, coming relatively close to Earth on some of those trips. On this approach, the comet will pass our planet at a distance of about 13 million miles (0.14 astronomical units), or about 55 times the distance from Earth to the moon. This is the comet’s closest approach to Earth in more than 50 years and perhaps more than a century. Read more: go.nasa.gov/2nLNzes Photo caption: In this image taken March 24, 2017, comet 41P/Tuttle-Giacobini-Kresák is shown moving through a field of faint galaxies in the bowl of the Big Dipper. On April 1, the comet will pass by Earth at a distance of about 13 million miles (0.14 astronomical units), or 55 times the distance from Earth to the moon; that is a much closer approach than usual for this Jupiter-family comet. Photo credit: Image copyright Chris Schur©, used with permission NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Building Professional and Technical Skills in the Use of Earth Observations through the NASA DEVELOP National Program: Best Practices & Lessons Learned

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.; Clayton, A.

    2017-12-01

    The NASA DEVELOP National Program offers 10-week research opportunities to participants to work on rapid feasibility projects utilizing NASA Earth observations in a variety of applications, including ecological forecasting, water resources, disasters, and health and air quality. DEVELOP offers a unique collaborative environment in which students, recent graduates, and transitioning career professionals are placed on interdisciplinary teams to conduct projects. DEVELOP offers a variety of opportunities and resources to build participants technical skills in remote sensing and GIS, as well as interpersonal and leadership skills. As a capacity building program, DEVELOP assesses participants' growth by using entrance and exit personal growth assessments, as well as gathering general program feedback through an exit survey. All of this information is fed back into the program for continual improvement. DEVELOP also offers a progression of opportunities through which participants can advance through the program, allowing participants to build a diverse set of technical and leadership skills. This presentation will explore best practices including the use of pre- and post-growth assessments, offering advanced leadership opportunities, and overall capacity building impacts on participants.

  19. Binary Asteroids and Human Exploration Considerations

    NASA Technical Reports Server (NTRS)

    Abell, P. A.

    2013-01-01

    In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. Subsequently, the U.S. presidential administration directed NASA on April 15, 2010 to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Current NASA plans to explore NEAs do not include binary systems. However, with a few in situ robotic precursor missions to binary NEAs, and increased confidence in human mission capabilities, the scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a binary NEA using NASA's proposed exploration systems a compelling endeavor.

  20. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of

  1. Opportunity's First Dip into Victoria Crater

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity entered Victoria Crater during the rover's 1,291st Martian day, or sol, (Sept. 11, 2007). The rover team commanded Opportunity to drive just far enough into the crater to get all six wheels onto the inner slope, and then to back out again and assess how much the wheels slipped on the slope. The driving commands for the day included a precaution for the rover to stop driving if the wheels were slipping more than 40 percent. Slippage exceeded that amount on the last step of the drive, so Opportunity stopped with its front pair of wheels still inside the crater. The rover team planned to assess results of the drive, then start Opportunity on an extended exploration inside the crater.

    This wide-angle view taken by Opportunity's front hazard-identification camera at the end of the day's driving shows the wheel tracks created by the short dip into the crater. The left half of the image looks across an alcove informally named 'Duck Bay' toward a promontory called 'Cape Verde' clockwise around the crater wall. The right half of the image looks across the main body of the crater, which is 800 meters (half a mile) in diameter.

  2. Opportunity's 'Rub al Khali' Panorama

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Opportunity's 'Rub al Khali' Panorama (QTVR)

    This panoramic image, dubbed 'Rub al Khali,' was acquired by NASA's Mars Exploration Rover Opportunity on the plains of Meridiani during the period from the rover's 456th to 464th sols on Mars (May 6 to May 14, 2005). Opportunity was about 2 kilometers (1.2 miles) south of 'Endurance Crater' at a place known informally as 'Purgatory Dune.'

    The rover was stuck in the dune's deep fine sand for more than a month. 'Rub al Khali' (Arabic translation: 'the empty quarter') was chosen as the name for this panorama because it is the name of a similarly barren, desolate part of the Saudi Arabian desert on Earth.

    The view spans 360 degrees. It consists of images obtained in 97 individual pointings of the panoramic camera. The camera took images with five camera filters at each pointing. This 22,780-by-6,000-pixel mosaic is an approximately true-color rendering generated using the images acquired through filters admitting light wavelengths of 750, 530, and 480 nanometers.

    Lighting varied during the nine sols it took to acquire this panorama, resulting in some small image seams within the mosaic. These seams have been smoothed in sky parts of the mosaic to better simulate the vista that a person would see if able to view it all at the same time on Mars.

    Opportunity's tracks leading back to the north (center of the panorama) are a reminder of the rover's long trek from Endurance Crater. The deep ruts dug by Opportunity's wheels as it became stuck in the sand appear in the foreground. The crest and trough of the last ripple the rover crossed before getting stuck is visible in the center. These wind-formed sand features are only about 10 to 15 centimeters (4 to 6 inches) tall. The crest of the actual ripple where the rover got stuck can be seen just to the right of center. The tracks and a few other places on and near ripple crests can

  3. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  4. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  5. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  6. International Space Station Accomplishments Update: Scientific Discovery, Advancing Future Exploration, and Benefits Brought Home to Earth

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; hide

    2013-01-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million

  7. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    NASA Astrophysics Data System (ADS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  8. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; hide

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  9. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  10. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  11. The Sun-Earth saddle point: characterization and opportunities to test general relativity

    NASA Astrophysics Data System (ADS)

    Topputo, Francesco; Dei Tos, Diogene A.; Rasotto, Mirco; Nakamiya, Masaki

    2018-04-01

    The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun-Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on L_{1,2} Lagrange point orbits. Sun-Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.

  12. Record Drive Day, Opportunity Sol 383 3-D

    NASA Image and Video Library

    2005-03-05

    On Feb. 19, 2005, NASA Mars Exploration Rover Opportunity set a one-day distance record for martian driving; Opportunity rolled 177.5 meters 582 feet across the plain of Meridiani. 3D glasses are necessary to view this image.

  13. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  14. Basic exploration geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting datamore » as well as geographical methods are introduced.« less

  15. Near-Earth Asteroid Retrieval Mission (ARM) Study

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Muirhead, Brian

    2013-01-01

    The Asteroid Redirect Mission (ARM) concept brings together the capabilities of the science, technology, and the human exploration communities on a grand challenge combining robotic and human space exploration beyond low Earth orbit. This paper addresses the key aspects of this concept and the options studied to assess its technical feasibility. Included are evaluations of the expected number of potential targets, their expected discovery rate, the necessity to adequately characterize candidate mission targets, the process to capture a non-cooperative asteroid in deep space, and the power and propulsion technology required for transportation back to the Earth-Moon system. Viable options for spacecraft and mission designs are developed. Orbits for storing the retrieved asteroid that are stable for more than a hundred years, yet allow for human exploration and commercial utilization of a redirected asteroid, are identified. The study concludes that the key aspects of finding, capturing and redirecting an entire small, near-Earth asteroid to the Earth-Moon system by the first half of the next decade are technically feasible. The study was conducted from January 2013 through March 2013 by the Jet Propulsion Laboratory (JPL) in collaboration with Glenn Research Center (GRC), Johnson Space Center (JSC), Langley Research Center (LaRC), and Marshall Space Flight Center (MSFC).

  16. Teaching About the Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    This talk will be about the Sun: how it changes with time, its magnetic cycle, flares, and the solar wind. The solar wind and what space is like between the Sun and Earth will be presented. Also, the Earth, its magnetic field, how the solar wind interacts with the Earth, Aurora, and how these affect human systems will be discussed. These interactions dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). Some simple classroom activities will be presented that can be done using new data from space that is available daily on the internet, and how you can use the internet to get space questions answered within about 1 day. Finally, some career opportunities for jobs related to space for the future will be discussed.

  17. KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  18. Opportunities for NASA Aerospace Related Funding and Collaboration

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2005-01-01

    This presentation describes the different opportunities that NASA offers for effective collaboration with Academia and Industry. In particular, the presentation includes a general overview of opportunities such as SBIRs, STTRs, Educational Programs and NASA Research Announcements. A general description of forthcoming competitive opportunities under the Exploration Systems Mission Directorate (ESMD) as well as the Science Mission Directorate (SMD) are also provided.

  19. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  20. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities