Sample records for earth garnet selective

  1. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  2. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  3. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  4. Phase stable rare earth garnets

    DOEpatents

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  5. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  6. Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Kargin, Yu. F.; Denisov, V. M.

    2015-08-01

    The correlation between the heat capacities of rare-earth cuprates, orthovanadates, and garnets with ionic radius R 3+ has been analyzed. It has been shown that the values of C {/p 0} change consistently depending on the radius R 3+ within the corresponding tetrads (La-Nd, Pm-Gd, Gd-Ho, Eu-Lu).

  7. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  8. Magneto-Optical Experiments on Rare Earth Garnet Films.

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1980-01-01

    Describes experiments in which inexpensive or standard laboratory equipment is used to measure several macroscopic magnetic properties of thin rare earth garnet films used in the manufacture of magnetic bubble devices. (Author/CS)

  9. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  10. Silicate garnet studies at high pressures: A view into the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela Gales

    Silicate garnets are an abundant component in the Earth's upper mantle and transition zone. Therefore, an understanding of garnet behavior under the pressure and temperature conditions of the mantle is critical to the development of models for mantle mineralogy and dynamics. Work from three projects is presented in this report. Each investigation explores an aspect of silicate garnet behavior under high pressures. Moreover, each investigation was made possible by state-of-the-art methods that have previously been unavailable. Brillouin scattering was used to determine the elastic constants and aggregate elastic moduli of three end-member garnets at high pressures in a diamond anvil cell. These are the first high-pressure measurements of the elastic constants of end-member silicate garnets by direct measurement of acoustic velocities. The results indicate that the pressure dependence of silicate garnet elastic constants varies with composition. Therefore, extrapolation from measurements on mixed composition garnets is not possible. A new method of laser heating minerals in a diamond anvil cell has made possible the determination of the high-pressure and high-temperature stability of almandine garnet. This garnet does not transform to a silicate perovskite phase as does pyrope garnet, but it decomposes to its constituent oxides: FeO, Alsb2Osb3, and SiOsb2. These results disprove an earlier prediction that ferrous iron may expand the stability field of garnet to the lower mantle. The present results demonstrate that this is not the case. The third topic is a presentation of the results of a new technique for studying inclusions in mantle xenoliths with synchrotron X-ray microdiffraction. The results demonstrate the importance of obtaining structural as well as chemical information on inclusions within diamonds and other high-pressure minerals. An unusual phase with garnet composition is investigated and several other phases are identified from a suite of natural

  11. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  12. Growth-induced anisotropy in bismuth - Rare-earth iron garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.

    1986-01-01

    The bismuth-doped rare-earth iron garnets, (R3-x-yBixPby)Fe5O12 (Bi:RIG, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), were prepared under constant growth conditions to investigate the influence of ionic species on the bismuth-based growth-induced uniaxial anisotropy K(u) exp g. The effect of ionic species on growth-induced anisotropy in Bi:RIG was not consistent with the ionic size model of site ordering. In particular, Bi:SmIG, Bi:EuIG, and Bi:TbIG displayed high growth-induced anisotropies, up to 331,000 erg/cu cm at room temperature for x of about 0.5. The temperature dependence of these K(u) exp gs was somewhat higher than that of the well studied Bi:YIG. The site ordering of Bi can be modeled by assuming that small, low-oxygen-coordination BiOw exp +3-2 w melt complexes have a strong site selectivity for small, high-oxygen coordination sites at the growth interface.

  13. A new statistical analysis of rare earth element diffusion data in garnet

    NASA Astrophysics Data System (ADS)

    Chu, X.; Ague, J. J.

    2015-12-01

    The incorporation of rare earth elements (REE) in garnet, Sm and Lu in particular, links garnet chemical zoning to absolute age determinations. The application of REE-based geochronology depends critically on the diffusion behaviors of the parent and daughter isotopes. Previous experimental studies on REE diffusion in garnet, however, exhibit significant discrepancies that impact interpretations of garnet Sm/Nd and Lu/Hf ages.We present a new statistical framework to analyze diffusion data for REE using an Arrhenius relationship that accounts for oxygen fugacity, cation radius and garnet unit-cell dimensions [1]. Our approach is based on Bayesian statistics and is implemented by the Markov chain Monte Carlo method. A similar approach has been recently applied to model diffusion of divalent cations in garnet [2]. The analysis incorporates recent data [3] in addition to the data compilation in ref. [1]. We also include the inter-run bias that helps reconcile the discrepancies among data sets. This additional term estimates the reproducibility and other experimental variabilities not explicitly incorporated in the Arrhenius relationship [2] (e.g., compositional dependence [3] and water content).The fitted Arrhenius relationships are consistent with the models in ref. [3], as well as refs. [1]&[4] at high temperatures. Down-temperature extrapolation leads to >0.5 order of magnitude faster diffusion coefficients than in refs. [1]&[4] at <750 °C. The predicted diffusion coefficients are significantly slower than ref. [5]. The fast diffusion [5] was supported by a field test of the Pikwitonei Granulite—the garnet Sm/Nd age postdates the metamorphic peak (750 °C) by ~30 Myr [6], suggesting considerable resetting of the Sm/Nd system during cooling. However, the Pikwitonei Granulite is a recently recognized UHT terrane with peak temperature exceeding 900 °C [7]. The revised closure temperature (~730 °C) is consistent with our new diffusion model.[1] Carlson (2012) Am

  14. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of themore » phenomenon is demonstrated.« less

  15. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  16. Evaluation of stability region for scandium-containing rare-earth garnet single crystals and their congruent-melting compositions

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Domoroshchina, E. N.; Kuz'micheva, G. M.; Rybakov, V. B.

    2017-06-01

    Single crystals of scandium-containing rare-earth garnets in system R-Sc-C-O (R3+=Y, Gd; C3+=Al, Ga) have been grown by the Czochralski technique. X-ray diffraction analysis has been used to refine crystal compositions. The fundamental difference between the melt compositions and compositions of grown crystals has been found (except for compositions of congruent-melting compounds, CMC). The specific features of garnet solid solution formation have been established and the ternary diagrams with real or hypothetical phases have been built. The dinamics of coordination polyhedra changes with the formation of substitutional solid solutions have been proposed based on the mathematical modeling and experimental data. Possible existence of CMC with garnet structure in different systems as well as limit content of Sc ions in dodecahedral and octahedral sites prior to their partial substitution of ions, located in other sites, have been evaluated. It was established that the redistribution of cations over crystallographic sites (antistructural point defects) due to system self-organization to maintain its stability may be accompanied by cation ordering and the symmetry change of individual polyhedrons and/or the whole crystal.

  17. Investigation of the growth of garnet films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sandfort, R. M.

    1974-01-01

    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted.

  18. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    NASA Technical Reports Server (NTRS)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  19. Is There Segregation of Rare Earth Ions in Garnet Optical Ceramics?

    NASA Astrophysics Data System (ADS)

    Boulon, Georges; Epicier, T.; Zhao, W.; Guzik, M.; Pan, Y.; Jiang, B.

    Research on advanced optical materials for a large variety of applications is always increasing. As an example, we can note high progress in solid-state laser sources like laser-diode (LD) - pumped solid-state lasers (DPSSL) including developments of new materials and high-power laser diode led to high-power and tuneable solid-state lasers. A wide variety of materials has been studied to develop more efficient and high power microchip lasers [1]. In end-pumping schemes, in particular, materials with a short absorption length for the LD pump beam are strongly anticipated for highly efficient operations because of the excellent match between the mode and pump beam profiles. High Nd3+ concentrations were so considered such as NdP5O14, LiNdP4O12 (LNP), and NdAl3(BO3)O4. However, crystal growths of these compositions are not so easy. Cubic crystals are much more researched. When looking at the literature for actual applications, we see immediately the importance of cubic garnet crystals for which dodecahedral (Y3+), octahedral (Al3+) and tetrahedral (Al3+) sites are considered as a reservoir for many activators like: Ce3+, Nd3+, Er3+, Tm3+, Ho3+, Yb3+ rare earth ions in dodecahedral symmetry sites and transition metal ions like Cr3+ in the octahedral symmetry sites or Cr4+ in the tetrahedral symmetry sites. Among garnet crystals, Y3Al5O12 (YAG) host is the most used, commercially produced by the Czochralski method. However, in the case of the most used Nd3+: YAG laser crystal, the Nd3+ concentration that affects the performance in laser applications, is strongly limited to 0.2-1.4 Nd3+ at. % as a result of the segregation distribution coefficient [1].

  20. Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M = Zn and Mg).

    PubMed

    Hasegawa, Takuya; Abe, Yusuke; Koizumi, Atsuya; Ueda, Tadaharu; Toda, Kenji; Sato, Mineo

    2018-01-16

    Extensive attention has been focused toward studies on inexpensive and rare-earth-free garnet-structure vanadate phosphors, which do not have a low optical absorption due to the luminescence color being easily controlled by its high composition flexibility. However, bluish emission phosphors with a high quantum efficiency have not been found until now. In this study, we successfully discovered bluish-white emitting, garnet structure-based LiCa 3 MV 3 O 12 (M = Zn and Mg) phosphors with a high quantum efficiency, and the detailed crystal structure was refined by the Rietveld analysis technique. These phosphors exhibit a broad-band emission spectra peak at 481 nm under near UV-light excitation at 341 nm, indicating no clear difference in the emission and excitation spectra. A very compact tetrahedral [VO 4 ] unit is observed in the LiCa 3 MV 3 O 12 (M = Zn and Mg) phosphors, which is not seen in other conventional garnet compounds, and generates a bluish-white emission. In addition, these phosphors exhibit high quantum efficiencies of 40.1% (M = Zn) and 44.0% (M = Mg), respectively. Therefore, these vanadate garnet phosphors can provide a new blue color source for LED devices.

  1. Mixed garnet laser for a water vapour DIAL

    NASA Astrophysics Data System (ADS)

    Treichel, Rainer; Strohmaier, Stephan; Nikolov, Susanne; Eichler, Hans-Joachim; Murphy, Eamonn

    2017-11-01

    For the water vapour DIAL "WALES" the wavelength regions around 935 nm, 942 nm and 944 nm have been identified as the most suitable wavelength ranges. These wavelengths can be obtained using opticalparametric-oscillators (OPOs), stimulated Raman shifters and the Ti-Sapphire laser but none of these systems could deliver all the needed parameters like beam quality, efficiency, pulse length and energy yet. Also these systems are comparably big and heavy making them less suitable for a satellite based application. A fourth possibility to achieve these wavelength ranges is to shift the quasi-3-level laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing aluminium and yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals or special pump lasers are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. In a first phase such mixed garnet crystals had been grown and characterised. The outcome was the selection of the gadolinium-scandium garnet for the most suitable laser crystal. During a second phase the complete laser system with output energy about 18 mJ in single 20 ns pulses and up to 8 mJ in free running mode with a combined pulse width of 250 μs at 942 nm have been demonstrated. The results of the first laser operation and the achieved performance parameter are reported.

  2. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements

  3. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    NASA Astrophysics Data System (ADS)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  4. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  5. Partition coefficients for REE between garnets and liquids - Implications of non-Henry's Law behaviour for models of basalt origin and evolution

    NASA Technical Reports Server (NTRS)

    Harrison, W. J.

    1981-01-01

    An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.

  6. Metastable garnet in oceanic crust at the top of the lower mantle.

    PubMed

    Kubo, Tomoaki; Ohtani, Eiji; Kondo, Tadashi; Kato, Takumi; Toma, Motomasa; Hosoya, Tomofumi; Sano, Asami; Kikegawa, Takumi; Nagase, Toshiro

    As oceanic tectonic plates descend into the Earth's lower mantle, garnet (in the basaltic crust) and silicate spinel (in the underlying peridotite layer) each decompose to form silicate perovskite-the 'post-garnet' and 'post-spinel' transformations, respectively. Recent phase equilibrium studies have shown that the post-garnet transformation occurs in the shallow lower mantle in a cold slab, rather than at approximately 800 km depth as earlier studies indicated, with the implication that the subducted basaltic crust is unlikely to become buoyant enough to delaminate as it enters the lower mantle. But here we report results of a kinetic study of the post-garnet transformation, obtained from in situ X-ray observations using sintered diamond anvils, which show that the kinetics of the post-garnet transformation are significantly slower than for the post-spinel transformation. Although metastable spinel quickly breaks down at a temperature of 1,000 K, we estimate that metastable garnet should survive of the order of 10 Myr even at 1,600 K. Accordingly, the expectation of where the subducted oceanic crust would be buoyant spans a much wider depth range at the top of the lower mantle, when transformation kinetics are taken into account.

  7. Developing New Methods for Microsampling and Sm/Nd Dating of Zoned Garnet

    NASA Astrophysics Data System (ADS)

    Pollington, A. D.; Baxter, E. F.

    2007-12-01

    Garnets provide one of the Earth Science community's most useful tools for studying rates, duration and timing of crustal processes. In this study we describe new techniques for fine sampling of multiple growth zones of garnet and Sm/Nd dating of each individual zone. We test these techniques on large (>5cm) garnets from a shear zone in the Tauern Window of Austria where we seek to quantify the growth history of garnet in a manner similar to dating tree rings. Microsampling permits a more precise quantification of duration, episodicity and kinetics of metamorphic reactions. Past studies of garnet growth duration - based on core and rim garnet ages - have been limited by sampling methods for extracting discrete, and accurate, growth zones. Modeling of radial growth symmetry in garnet shows that previous studies may underestimate garnet growth duration by as much as 50%. We are able to dramatically improve microsampling by using microdrilling guided by chemical maps of the garnet composition. This provides much improved precision and accuracy in sampling. By using chemical mapping of the garnet we can be sure that we are correctly sampling narrow (~500 micron wide) growth (i.e. age) zones rather than smearing and averaging multiple growth zones together. In principle, tens of growth zones (and ages) spanning the entire interval of garnet growth may be sampled and resolved. Microdrilled domains, the results of which are an ultrafine powder, are drilled and collected in water. Due to the adverse geochronological effect of unavoidable micro-inclusions in garnet, we have tested several partial dissolution techniques to cleanse the garnet of inclusions and yield higher 147Sm/144Nd and hence, more precise ages. Analysis of a finely crushed bulk Tauern Window garnet sample after HF/HClO3 cleansing indicates that 147Sm/144Nd at least as high as 0.89 is attainable in this particular sample, but cleansing efforts on microdrilled powders have thus far failed to yield such high

  8. Chemical properties of Garnets from Garnet Ridge, Navajo volcanic field in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Koga, I.; Ogasawara, Y.

    2012-12-01

    Significant amounts of garnet crystals have derived from kimberlitic diatremes at Garnet Ridge in northern Arizona. These garnets are chemically diverse and their origins have been still controversial. The diatremes at Garnet Ridge were dated at 30Ma (Smith et al., 2004). Coesite-bearing lawsonite eclogite reported by Usui et al., (2003) is important evidence for subduction of the Fallaron Plate below the Colorado plateau. This study characterized various kinds of garnets with several origins by petrographical observations and electron microprobe analyses (JXA-8900 WDS mode and JXA-733 EDS mode). On the basis of the chemical compositions and other features, the garnets were classified into the following 8 groups (A to H). Inclusions and exsolved phases were identified by laser Raman spectroscopy. (A) Garnet crystals (5-8 mm) with purple color are called ''Navajo Ruby''. A significant amount of Cr2O3 is a typical feature (up to ~5.9 wt. %). These garnet were rich in pyrope (66-78 mol. %). Olivine, Cpx, and exsolved lamellae of rutile were contained. (B) Reddish brown garnets were Pyp-rich (60-75 mol. %), and contained a minor amount of Cr2O3 (less than ~1 wt. %). The inclusions were rod-shaped rutile , Cpx, Opx, zircon, olivine and exsolved lamellae of apatite. (C) Garnet megacrysts (8-12 cm) were plotted near the center of Prp-Alm-Grs triangle (Pyp30-35 Alm28-33 Grs29-35). Exsolved apatite lamellae were confirmed. (D) Some of reddish brown garnets were plotted on same area as the Type-C. (E) Garnets in eclogite have Alm-rich composition (Pyp6-22 Alm52-65 Grs16-42). They clearly showed prograde chemical zonation; MgO: 1.4 to 5.4 wt. %, CaO: 14.0 to 5.6 wt. % both from core to rim. (F) Garnets in altered or metasomatized eclogite had a wide range of chemical composition (Pyp7-38 Alm52-69 Grs4-31) with similar prograde zonation. The cores were plotted near the rim of Type-E garnet. (G) Garnets in unidentified rock (strongly altered) had Alm-rich composition near Alm

  9. A detrital garnet fingerprint of the Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Berger, Alfons; Schlunegger, Fritz

    2017-04-01

    Detrital garnet is a promising candidate to reliably fingerprint sediment sources in the Alps, which has so far been complicated by the wide range and similarity of some of the lithologies. Garnet is present in most Alpine sediments, is easy to identify, is fairly stable and, most importantly, reflects the type and the metamorphic grade of its source rock in its chemical composition. This study aims to establish fingerprints based on detrital garnet composition for the most important tectonic units of the Central Alps, including European, Penninic and Adriatic basement rocks and their respective meta-sedimentary cover. Sediments collected from modern rivers, which drain representative portions of the individual tectonic units, contain a natural mixture of the various garnet populations present in each unit. We selected six catchments in southwestern Switzerland draining the External Massifs, Helvetic sediments and the Penninic nappe stack at the transition of Alpine greenschist- to amphibolite-facies metamorphism in order to test the variability of Alpine garnets and the role of inherited (pre-Alpine) garnets. Extraordinary grossular- and spessartine-rich garnets of the External massifs, which experienced greenschist facies metamorphism, are clearly distinguishable from generally almandine-rich garnets supplied by the higher-grade metamorphic Penninic nappe stack. The variable pyrope-, grossular- and spessartine-components of these almandine-rich garnets can be used to further distinguish pre-Alpine, Alpine eclogite-facies and low-grade metasedimentary garnets. This fingerprint has the potential to be used for reconstructing sediment sources, transport and dispersal patterns in a variety of settings throughout the Alpine sedimentary record.

  10. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  11. Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data

    NASA Astrophysics Data System (ADS)

    Chassé, Mathieu; Griffin, William L.; Alard, Olivier; O'Reilly, Suzanne Y.; Calas, Georges

    2018-06-01

    The meta-analysis of about 13,000 analyses of scandium content in garnet grains shows that, below the spinel-garnet transition, this phase carries about three-quarters of the Sc budget of the mantle, indicating its control on Sc mobility. The Sc content of garnets in mafic rocks is low, due to a dilution effect resulting from their high modal content in garnet. Garnets from ultramafic rocks exhibit a wider range of Sc concentrations. We assess the relative influence of thermobarometry, crystal chemistry and fluid-related events on the distribution of Sc in garnet from such rocks to improve the tracking of geochemical processes in the mantle. Pressure and temperature of equilibration in the mantle are second-order factors influencing the Sc content of garnet, while crystal chemistry, in particular Cr/Cr+Al and Ca/Ca+Mg, is the main parameter controlling the compatibility of Sc. Scandium is incorporated in both X and Y sites of Cr-Ca-rich garnets, resulting in a behaviour intermediate between rare-earth elements, incorporated in the X site, and trivalent transition elements, occupying the Y site. This affinity for both sites results in a mild compatibility of Sc in the garnet stability field of the mantle; hence Sc concentration in garnet increases with melt extraction and can be reduced by silicate-melt metasomatism. In contrast, metasomatism by volatile-rich fluids increases the Sc concentration in garnet. The control of garnet on the compatibility of Sc in deep lithospheric rocks demonstrates the potential of using Sc to track the conditions of formation of magmas and their residual rocks, as well as the origin and nature of metasomatic fluids.

  12. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  13. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  14. Current sensing using bismuth rare-earth iron garnet films

    NASA Astrophysics Data System (ADS)

    Ko, Michael; Garmire, Elsa

    1995-04-01

    Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.

  15. Garnet from diamondiferous metamorphic rocks of Kokchetav massif, Kazakhstan as a peak pressure recorder

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Palyanov, Y. N.; Shatsky, V. S.; Sokol, A. G.; Tomilenko, A. A.

    2003-12-01

    ., Dokl. Earth. Sci., 2001, 380:671). Based on the difference in Na2O and majorite contents in natural Kokchetav garnets, and those coexisting with diamonds in kimberlite and obtained in UHP experiments, we conclude that the peak of metamorphism at Kokchetav massif occurred at P about 4.5-5.0 GPa and T=900-1000° C (Sobolev, Shatsky, Nature, 1990, 343:742; Shatsky et al., Contr. Min. Petr., 1999, 137:185; Sobolev et al., Dokl. Earth. Sci., 2001, 380:237) but not exceeding 6.0 GPa (e.g. Ogasawara et al., Island Arc, 2000, 9:400).

  16. Promise and Pitfalls of Lu/Hf-Sm/Nd Garnet Geochronology

    NASA Astrophysics Data System (ADS)

    King, R. L.; Vervoort, J. D.; Kohn, M. J.; Zirakparvar, N. A.; Hart, G. L.; Corrie, S. L.; Cheng, H.

    2007-12-01

    Our ability to routinely measure Lu-Hf and Sm-Nd isotopes in garnet allows broad new applications in geochronology, petrology, and tectonics. However, applications of these data can be limited by challenges in interpreting the petrologic record and preparing garnets for analysis. Here, we examine petrologic and chemical pitfalls encountered in garnet geochronology. Petrologic factors influencing trace element compositions in garnet include reactions that modify REE availability and partitioning (1,2), kinetically limited transfer of REEs to garnet (3), and bulk compositional heterogeneities (4). Interpreting the effects of these processes on Sm/Nd and Lu/Hf ages requires characterizing REE zonation prior to isotope analysis and age interpretation. Because garnet fractions are traditionally picked from crushed samples without regard to intracrystalline origins or chemistries, isochrons will represent mixtures derived to varying degrees from all periods of garnet growth. While measured zoning might generally indicate what garnet portion dominates the Lu/Hf or Sm/Nd budget, traditional mineral separation will rarely realize the chronologic potential afforded by high precision Hf and Nd isotope measurements. The potential use of alternative techniques, such as microsampling, necessitates selective digestion and/or leaching to eliminate inclusions within garnet. For Sm/Nd geochronology, H2SO4 leaching removes LREE-rich phosphates (e.g. apatite), but not silicates (e.g. epidote), precluding Sm-Nd dating of some rocks. For Lu/Hf geochronology, ubiquitous zircon microinclusions (c. 1 μm) can significantly disrupt age determinations. Microinclusions cannot be detected optically or separated physically, requiring selective chemical digestion. If complete digestion methods, such as bomb digestion, are used for garnet fractions, then "common Hf" from zircon will be contained in final solutions. These mixed analyses are of dubious utility and will fall into one of two

  17. Study of RE-garnets using BPW method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, P.; Mukhopadhyay, G.

    1995-02-01

    The magnetic susceptibility of rare-earth (Y and Lu) iron garnets is studied using a modified Bethe-Peierls-Weiss (BPW) approximation. The modifications enable us to incorporate the three exchange parameters Jad, Jaa and Jdd necessary to describe the systems. We get excellent fits to the experimental susceptibilities from which we determined the J-values. These also give excellent agreement with the spin wave dispersion relation constant D.

  18. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  19. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2010-01-01

    In 2009, U.S. production of crude garnet concentrate for industrial use was estimated to be 56.5 kt (62,300 st), valued at about $8.85 million. This was a 10-percent decrease in quantity compared with 2008 production. Refined garnet material sold or used was 28 kt (31,000 st) valued at $7.96 million.

  20. Chapter L: U.S. Industrial Garnet

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.

    2006-01-01

    The United States presently consumes about 16 percent of global production of industrial garnet for use in abrasive airblasting, abrasive coatings, filtration media, waterjet cutting, and grinding. As of 2005, domestic garnet production has decreased from a high of 74,000 t in 1998, and imports have increased to the extent that as much as 60 percent of the garnet used in the United States in 2003 was imported, mainly from India, China, and Australia; Canada joined the list of suppliers in 2005. The principal type of garnet used is almandite (almandine), because of its specific gravity and hardness; andradite is also extensively used, although it is not as hard or dense as almandite. Most industrial-grade garnet is obtained from gneiss, amphibolite, schist, skarn, and igneous rocks and from alluvium derived from weathering and erosion of these rocks. Garnet mines and occurrences are located in 21 States, but the only presently active (2006) mines are in northern Idaho (garnet placers; one mine), southeastern Montana (garnet placers; one mine), and eastern New York (unweathered bedrock; two mines). In Idaho, garnet is mined from Tertiary and (or) Quaternary sedimentary deposits adjacent to garnetiferous metapelites that are correlated with the Wallace Formation of the Proterozoic Belt Supergroup. In New York, garnet is mined from crystalline rocks of the Adirondack Mountains that are part of the Proterozoic Grenville province, and from the southern Taconic Range that is part of the northern Appalachian Mountains. In Montana, sources of garnet in placers include amphibolite, mica schist, and gneiss of Archean age and younger granite. Two mines that were active in the recent past in southwestern Montana produced garnet from gold dredge tailings and saprolite. In this report, we review the history of garnet mining and production and describe some garnet occurrences in most of the Eastern States along the Appalachian Mountains and in some of the Western States where

  1. Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ye; Teng, Fang-Zhen; Xiao, Yilin; Gu, Hai-Ou; Zha, Xiang-Ping; Huang, Jian

    2016-07-01

    The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock δ26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited δ26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different δ26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene-garnet Mg isotope fractionation (Δ26Mgclinopyroxene-garnet = δ26Mgclinopyroxene-δ26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene-garnet O isotope fractionation (Δ18Oclinopyroxene-garnet = δ18Oclinopyroxene-δ18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the δ26Mgclinopyroxene versus δ26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium Δ26Mgclinopyroxene-garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene-garnet Mg isotope thermometer. This yields a function of Δ26Mgclinopyroxene-garnet = (0.99 ± 0.06) × 106/ T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene-garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.

  2. Genesis of ultra-high pressure garnet pyroxenites in orogenic peridotites and its bearing on the compositional heterogeneity of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2018-07-01

    degrees of partial melting than sources with higher Mg#. Positive Eu and Sr anomalies in bulk rocks, indicative of their origin from cumulitic crustal gabbros, are preserved mostly in high Mg# pyroxenites due to their higher melting temperatures and consequent lower partial melting degrees. The results of this study show that the genesis of UHP garnet pyroxenites in orogenic peridotites requires a new recipe for the marble cake mantle hypothesis, combining significant recycling and stirring of both oceanic and continental lower crust in the Earth's mantle. Furthermore, this study establishes a firm connection between the isotopic signatures of UHP pyroxenite heterogeneities in the mantle and the continental lower crust.

  3. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    goenv.o -,y la)ers were YIG (yttrium iron garnet ) films grown by liquid phase epitaxy w:* ( LPE ) on gadolinium gallium garnet (GGG) substrates. Magnetic...containing three epitaxial layers. In addition to the MSW work oil garnets , LPE of lithium ferrite and hexagonal fertites was studied. A substituted lead...of a stripline. The other layers are epitaxial films , generally YIG (yttrium iron garnet ) with magnetic properties adjusted by suitable modifications

  4. Significance of hydrous silicate lamellae in pyrope-rich garnets from the Garnet Ridge in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2014-12-01

    Pyrope-rich garnets originated from the upper mantle underneath the Colorado Plateau occur at the Garnet Ridge. These garnets contain the following lamellae of hydrous and anhydrous minerals; Rt, Ilm, crichtonites, Cr-Spl, Amp, Cpx, Chl, rarely Apt, srilankite and carmichealite. The origin of these lamellae in the garnets is controversial; exsolved origin or epitaxial growth. We emphasize here the close relations between the presence of hydrous lamellae and the OH concentrations in the host garnets. Lamella phases were identified with a standard-less quantitative EDS system and a laser Raman spectrometer with Ar+ laser (514.5 nm). OH concentrations in garnets were quantitated on the basis of IR absorption spectra of garnet by micro FT-IR method using IR absorption coefficient (8770 L/mol/cm2, Katayama et al., 2006). Pyrope-rich reddish brown garnet (group B by Sato et al., AGU2014F) has large variations of major chemical compositions (Prp: 49-76, Alm: 6-43, Grs: 6-26 mol%), and OH contents (2-177 ppm wt. H2O). Among this group garnets, Ca-rich ones (Prp: 49-66; Alm: 18-28; Grs: 16-26 mol%) have lamellae of both hydrous (Amp and Chl) and anhydrous (Rt, Ilm, and Cpx) minerals. Amp and Chl lamellae are pargasitic amphibole and clinochlore, respectively, and their host garnets contain significantly low amounts of OH (2-42 ppm). Cr and pyrope-rich garnet (group A by Sato et al., AGU2014F) has chemical compositions of Prp: 67-74, Alm: 13-18, Grs: 7-11 mol% with Cr2O3 up to 5.9 wt.%, and contains lamellae of anhydrous minerals (Rt, Ilm, crichtonites, and Cr-Spl). The host garnet with these anhydrous lamellae contains a little higher OH ranging 24 to 115 ppm. Summarizing the present results, the OH contents of the host garnets depend on the presence of hydrous silicate lamella phase; OH in the garnet with hydrous silicate lamellae is lower than that in the garnet with anhydrous lamellae. The precursor OH incorporated in the host garnet structure was exsolved as hydrous

  5. Inclusion/lamella mineralogy and chemical characteristics of garnets from the Garnet Ridge in the Colorado Plateau, northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2013-12-01

    A wide variety of garnets as xenocrysts and those in xenoliths, come from kimberlitic diatreme (Smith et al. 2004), occurs at the Garnet Ridge. Koga and Ogasawara (2012) classified these garnets into 9 groups: (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They divided genetically these groups into four: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i).In this study, the following 4 groups (a, b, f, g) were chose for inclusion mineralogy by laser Raman spectroscopy. Groups (a) and (b): pyrope-rich garnets (a: 45-82, b: 61-80 Prp mol%) both Cr-rich and Cr-poor (a: 1.0-5.9, b: 0.0-1.0 wt.% Cr2O3) are Ca-poor (1.5-7.0 wt.% CaO) and single-crystals of 5-15 mm in diameter. Group (a) is identical to chrome-pyrope based on the classification of kimberlitic garnets by Dawson and Stephens (1975). CaO-Cr2O3 ratio of (a, b) indicates lherzorite origin (Turkin and Sobolev 2009). Wang et al. (1999) have reported the detailed inclusion and lamella mineralogy of pyrope-rich garnets from the Garnet Ridge. We identified inclusions of Chl (OH: 3450, 3582, 3679 cm-1), Amp (OH: 3685, 3711 cm-1), Ol, Opx, Cpx, Rt (OH: 3295 cm-1), Mgs, Dol, Cal, sulfides, fluid (OH: 3445 cm-1) and spherical composite inclusions of Amp, Ap, Dol, Mgs, Rt and sulfides, and oriented lamellae (presumable exsolution) of Qz, Ol, Opx, Cpx, Amp, Chl, Rt, Ilm, crichtonite (6-7 Peaks at 120-820 cm-1), carmichaelite (710-782 cm-1, OH: 3340 cm-1), Ap (OH: 3570 cm-1) and Ti-Chn (OH: 3404, 3527, 3564 cm-1) adjacent to the oriented Ol. The mineral assemblages of the inclusion and lamella show a correlation with the host garnet compositions; inclusions: (a, b) Ol + Opx + Cpx × composite, (b, low Mg) Opx + Cpx + Amp

  6. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Sakamaki, Kunihiko; Sato, Yuto; Ogasawara, Yoshihide

    2016-12-01

    This is the first report on amphibole exsolution in pyrope from the Colorado Plateau. Pyrope crystals delivered from mantle depths underneath the Colorado Plateau by kimberlitic volcanism at 30 Ma were collected at Garnet Ridge, northern Arizona. The garnet grains analyzed in this study occur as discrete crystals (without adjacent rock matrix) and are classified into two major groups, Cr-rich pyrope and Cr-poor pyrope. The Cr-poor pyrope group is divided into four subgroups based on exsolved phases: amphibole lamella type, ilmenite lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type. Exsolved amphibole occurs in amphibole lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type of Cr-poor pyrope. The amphibole crystals tend to have preferred orientations in their garnet hosts and occur as monomineralic hexagonal or rhombic prisms and tablets, and as multimineralic needles or blades with other exsolved phases. Exsolved amphibole has pargasitic compositions (Na2O up to 1.6 apfu based on 23 oxygen). Garnet host crystals that have undergone amphibole exsolution have low OH contents (2-42 ppmw H2O) compared to garnets that do not have amphibole lamellae (up to 115 ppmw H2O). The low OH contents of garnets hosting amphibole lamellae suggest loss of OH from garnet during amphibole exsolution. Amphibole exsolution from pyrope resulted from breakdown of a precursor "hydrous Na-garnet" composition (Mg,Na+ x)3(Al2 - x, Mgx)2Si3O12 - 2x(OH)2x. Exsolution of amphibole and other phases probably occurred during exhumation to depths shallower than 100 km prior to volcanic eruption.

  7. Magnesium isotope fractionation in co-existing clino-pyroxene and garnet: implications for geothermometry and mantle source characterization

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Jacobsen, S. B.; Basu, A. R.

    2011-12-01

    It is now well established that the Mg isotopic composition of the bulk silicate Earth, as represented by olivines, peridotites and basalts is identical to bulk meteorites and the Moon. However, small differences have been documented between co-existing olivines and clino-pyroxenes in mantle xenoliths as well as co-existing hornblendes and biotites in granitoids; spinels show some of the heaviest δ26Mg (deviation of the 26Mg/24Mg ratio from the Dead Sea Metal standard). A recent study has documented a large Mg isotopic fractionation between co-existing omphacite and garnet (Δ26MgOMP-GT = δ26MgOMP - δ26MgGT ~1.14) from eclogites in the Dabie orogen of China. This large equilibrium Mg isotope fractionation is explained by the difference in coordination number of Mg in omphacite (six) and garnet (eight). We report stable Mg isotopic compositions of co-existing garnet and clino-pyroxenes from different mantle-derived rocks. Garnet-omphacite pairs analyzed are from an eclogite xenolith from the Roberts Victor kimberlite pipe, the ultra-high pressure Tso Morari eclogite from the Ladakh Himalayas and the Healdsburg eclogite from the Franciscan Subduction Complex, which have a wide range in estimated temperatures of equilibration. Although, the latter two eclogites were exhumed in orogenic belts, our selective picking of the mineral cores for analysis avoided retrograded compositions. We have also analyzed Cr-diopside and pyrope-rich garnet pairs from several southern African kimberlite pipes. These include granular garnet peridotite xenoliths (P = 30-40 kbar, T =950-10500C) as well as the deeper sheared xenoliths (P = 50-60 kbar, T = 13500C). Rapid quenching of the kimberlite-hosted xenoliths ensures minimal low temperature pervasive alteration of these samples. Also analyzed are samples from the Gore Mt. amphibolite and a wollastonite-diopside-garnet skarn from the Adirondacks with equilibration temperatures of 700-7260C. Minerals were separated by hand-picking under

  8. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  9. Trace elements in garnet reveal multiple fluid pulses in eclogite, Ring Mountain, CA

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Page, F. Z.; Lozier, E.; Feineman, M. D.; Zack, T.; Mertz-Kraus, R.

    2017-12-01

    Garnetite veins in a hornblende-eclogite block from Ring Mountain, CA, offer a unique opportunity to investigate the chemical composition of fluid interactions during mélange formation in subduction zones. Garnet occurs as matrix porphyroblasts (2-5 mm) and in 1-5 cm garnetite veins that are laterally continuous up to 10 m across the outcrop. Garnet at the vein edges is slightly larger (300-600 µm) than within the veins (5-50 µm), and records a protracted history of vein garnet growth. Major and trace element concentrations in garnet were determined using EPMA and LA-ICP-MS, respectively. Detailed rim-to-rim trace element traverses were performed using 12 µm spots at 15 µm spacing across one matrix garnet (2 mm) and three vein edge garnet grains (375-570 µm). Zoning in Mn, Ca, and rare earth elements (REE) reveal 5 distinct garnet growth zones. Zone 1, found only in matrix garnet cores, is characterized by decreasing Mn and increasing Ca and is interpreted to reflect prograde zoning. Zones 2-5 are found in the mantles and rims of matrix garnet, and comprise the entirety of vein garnet. Garnet growth in Zones 2-5 is likely heavily influenced by internally- and externally-derived fluids, based on texture and chemistry. One key fluid-related texture of Zones 2-5 is oscillatory birefringence zoning, likely the result of incorporation of small amounts of water into the garnet structure (i.e., hydrogrossular). Zones 2 and 3 are characterized by progressive enrichment in heavy to middle REE from Zone 2 outward into Zone 3. We attribute this to diffusion-limited uptake of REE, wherein the heaviest REE are incorporated first, followed by progressively lighter REE. Zone 3 is also characterized by a high-Mn annulus that appears decoupled from the trace elements. Zone 4 is characterized by a sudden drop in Ca and enrichment in MREE, particularly Dy and Tb, possibly due to epidote breakdown. Zone 5 is characterized by strong enrichment in Mn+REE, with high-HREE and high

  10. Petrogenetic evolution of the Mesoproterozoic garnet-bearing granitoids of Dumka, Eastern India: Implication of garnet and biotite composition

    NASA Astrophysics Data System (ADS)

    Roy, P.; Goswami, B.; Ghosal, A.; Nanda, J.; Basak, A.; Bhattacharyya, C.

    2017-12-01

    Garnet is a petrologically significant accessory mineral of igneous rocks. Granite, tonalite, charnoenderbite and enderbite are prominent facies of 1450 Ma old Dumka Granitoids, Jharkhand district, India. Interestingly all the facies of Dumka granitoids contain good amount of garnet and biotite. Sphene, magnetite, ilmenite, zircon, monazite, allanite and rare hornblende present as accessory minerals. The garnets are mainly solid solutions between almandine, pyrope and grossular. Garnets contain 70.5-75.8 mol% of the almandine, 12.8-17.5 mol% of pyrope, 8-11 mol% of grossular and 0.6-2.9 mol% of spessartine. Composition of garnets fit well in the compositional range of igneous garnets suggested by Miller and Stoddard (1981). High MgO and CaO contents together with very low MnO of these garnets suggest that these have been crystallized from granitoid magma under high pressure in the lower crust. No compositional zoning is found in the analyzed garnets. Biotites of the granitoids are rich in Mg [Mg/(Fe+Mg) ratio > 0.4]. Biotites plot in Abdel-Rahman's (1994) field for biotites of calc-alkaline granites. The matrix biotites in these granitoids have higher Ti content than biotites coexist with garnets. Biotites coexisting with garnet are richer in Mg/Fe ratio than matrix biotites. Mg/Fe distribution coefficients between garnet core and matrix biotite (KD= (Mg/Fe)grt/(Mg/Fe)bt) for the Dumka enderbite and tonalite are 0.275 to 0.280 while for the granites the KD varies from 0.189 to 0.264. These KD values are higher than the values obtained from high-grade metamorphic rocks and are consistent with the values of igneous granitoids as shown by Lyons and Morse (1970). Absence of zoning in magmatic garnets in Dumka Granitoids indicate that these have crystallized above 700 °C, whereas absence of "spessartine bell-shaped profile" of the garnets of present study refute their metamorphic origin or that these crystallized below 700 °C (Dahlquist et al., 2007). Geothermobaric

  11. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1980-02-28

    shaped LPE garnet samples with 31.5um film thickness. We were informed that initial evalu- ation showed acceptably low insertion loss and that the material...frequencies above 25 GHz. c. Furnish up to eight (8) liquid phase epitaxy yttrium iron garnet films to RADC/EEA for testing and evaluation. These tasks...a "Method for Controlling Resonance Frequency of Yttrium Iron Garnet Films ." A patent, "Epitaxial Growth of M-type Hexagonal Ferrite Films on Spinel

  12. The potential of detrital garnet as a provenance proxy in the Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Berger, Alfons; Schlunegger, Fritz

    2017-04-01

    Detrital garnet is a promising candidate to reliably fingerprint sediment sources in the Alps, which has so far been complicated by the wide range and similarity of some of the lithologies. Garnet is present in most Alpine sediments, is easy to identify, is fairly stable and, most importantly, reflects the type and the metamorphic grade of its source rock in its chemical composition. This study aims to establish fingerprints based on detrital garnet composition for the most important tectonic units of the Central Alps, including European, Penninic and Adriatic basement rocks and their respective metasedimentary covers. Sediments collected from modern rivers, which drain representative portions of the individual tectonic units, contain a natural mixture of the various garnet populations present in each unit. We selected six catchments in southwestern Switzerland draining the External massifs, Helvetic sediments and the Penninic nappe stack at the transition of Alpine greenschist- to amphibolite-facies metamorphism in order to test the variability of Alpine garnets and the role of inherited (pre-Alpine) garnets. Extraordinary grossular- and spessartine-rich garnets of the External massifs, which experienced greenschist facies metamorphism, are clearly distinguishable from generally almandine-rich garnets supplied by the higher-grade metamorphic Penninic nappe stack. The variable pyrope, grossular and spessartine components of these almandine-rich garnets can be used to further distinguish pre-Alpine, Alpine eclogite-facies and low-grade metasedimentary garnets. This provenance proxy has the potential to be used for reconstructing sediment sources, transport and dispersal patterns in a variety of settings throughout the Alpine sedimentary record.

  13. High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies

    NASA Astrophysics Data System (ADS)

    Faryad, S. W.; Jedlicka, R.; Hauzenberger, C.; Racek, M.

    2018-03-01

    Mafic layers displaying transition between clinopyroxenite and eclogite within peridotite from felsic granulite in the Bohemian Massif (Lower Austria) have been investigated. The mafic-ultramafic bodies shared a common granulite facies metamorphism with its hosting felsic rocks, but they still preserve evidence of eclogite facies metamorphism. The selected mafic layer for this study is represented by garnet with omphacite in the core of coarse-grained clinopyroxene, while fine-grained clinopyroxene in the matrix is diopside. In addition, garnet contains inclusions of omphacite, alkali feldspars, hydrous and other phases with halogens and/or CO2. Textural relations along with compositional zoning in garnet from the clinopyroxenite-eclogite layers favour solid-state recrystallization of the precursor minerals in the inclusions and formation of garnet and omphacite during subduction. Textures and major and trace element distribution in garnet indicate two stages of garnet growth that record eclogite facies and subsequent granulite facies overprint. The possible model explaining the textural and compositional changes of minerals is that the granulite facies overprint occurred after formation and exhumation of the eclogite facies rocks.

  14. Rare-Earth Garnets and Perovskites for Space-Based ADR Cooling at High T and Low H

    NASA Technical Reports Server (NTRS)

    King, T. T.; Rowlett, B. A.; Ramirez, R. A.; Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Panek, J. S.; Tuttle, J. G.; Shull, R. D.; Fry, R. A.; hide

    2001-01-01

    Future NASA satellite detector systems must be cooled to the 0.1 K temperature range to meet the stringent energy resolution and sensitivity requirements demanded by mid-term astronomy missions. The development of adiabatic demagnetization refrigeration (ADR) materials that can efficiently cool from the passive radiative cooling limit of approx. 30 K down to sub-Kelvin under low magnetic fields (H less than or equal to 3 T) would represent a significant improvement in space-based cooling technology. Governed by these engineering goals, our efforts have focused on quantifying the change in magnetic entropy of rare-earth garnets and perovskites. Various compositions within the gadolinium gallium iron garnet solid solution series (GGIG, Gd3Ga(5-x)Fe(x)O12, 0.00 less than or equal to X less than or equal to 5.00) and gadolinium aluminum perovskite (GAP, GdAlO3) have been synthesized via an organometallic complex approach and confirmed with powder x-ray diffraction. The magnetization of the GGIG and GAP materials has been measured as a function of composition (0.00 less than or equal to X less than or equal to 5.00), temperature (2 K less than or equal to T less than or equal to 30 K) and applied magnetic field (0 T less than or equal to H less than or equal to 3 T). The magnetic entropy change (DeltaS(sub mag)) between 0 T and 3 T was determined from the magnetization data. In the GGIG system, DeltaS(sub mag) was compositionally dependent; Fe(sup 3+) additions up to X less than or equal to 2.44 increased DeltaS(sub mag) at T > 5 K. For GAP, DeltaS(sub mag) was similar to that of GGIG, X = 0.00, both in terms of magnitude and temperature dependence at T > 10 K. However, the DeltaS(sub mag) of GAP at T < 10 K was less than the endmember GGIG composition, X = 0.00, and exhibited maximum approx. 5 K.

  15. The Role of Garnet Pyroxenite in High-Fe Mantle Melt Generation: High Pressure Melting Experiments

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Takahashi, E.; Gibson, S.

    2004-12-01

    Evidence for the existence of heterogeneous or 'marble cake' convecting mantle1 is provided recently by rare, high MgO ( ˜ 15 wt.%) primitive magmas with anomalously high abundances of FeO* ( ˜ 13.5 to 16 wt. %2,3; where FeO* = total Fe as FeO). These high-Fe mantle melts show a limited occurrence in the initial stage of magmatism in large igneous provinces (e.g. Deccan, Ethiopia and Paraná-Etendeka) and some have incompatible trace-element and radiogenic-isotopic ratios (Sr, Nd and Pb) that resemble those of ocean-island basalts. This suggests that they are predominantly derived from the convecting mantle2. The ferropicrites are mildly- to sub-alkaline and have low contents of Al2O3 (< 10 wt.%) and heavy rare-earth elements (e.g. Lu < 0.18ppm) that are consistent with the increased stability of garnet, due to the high FeO* content in the ferropicrite mantle source. It has been proposed that the source of the high FeO* may be garnet-pyroxenite streaks derived from subducted mafic oceanic crust2. We have undertaken melting experiments between 1 atmosphere and 7 GPa in order to determine the anhydrous phase relations of an uncontaminated ferropicrite lava from the base of the Early-Cretaceous Paraná-Etendeka continental flood-basalt province. The sample has high contents of MgO ( ˜ 14.9 wt.%), FeO* (14.9 wt.%) and NiO (0.07 wt.%). Olivine phenocrysts have maximum Fo contents of 85 and are in equilibrium with the host rock, assuming a Kd of 0.32 and we believe that the sample is representative of a primary Fe-rich mantle plume derived melt. In total, 75 experimental runs were carried out. Melting phase relations as well as compositions and modal proportions of all coexisting phases were successfully determined in 60 run products. Phase relations indicate that the ferropicrite melt was generated either at ˜ 2.2 GPa from an olivine-pyroxene residue or ˜ 5 GPa from a garnet-pyroxene residue. A low bulk-rock Al2O3 content (9 wt.%) and high [Gd/Yb]n ratio (3.1) are

  16. Mineral resource of the month: garnet

    USGS Publications Warehouse

    Olson, Donald W.

    2011-01-01

    Garnet, the birthstone for the month of January, has been used as a gemstone for centuries. Garnet necklaces dating from the Bronze Age have been found in graves, and garnet is found among the ornaments adorning the oldest Egyptian mummies. However, garnet’s characteristics, such as its relatively high hardness and chemical inertness, make it ideal for many industrial applications.

  17. Neoarchean metamorphism recorded in high-precision Sm-Nd isotope systematics of garnets from the Jack Hills (Western Australia)

    NASA Astrophysics Data System (ADS)

    Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.

    2013-12-01

    Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting <50 ppm 2 sigma analytical precision on a 400pg in-house standard and continued improvement in blanks (<15pg full procedural blanks). Additionally, employing a nondestructive chemical prescreening technique (tabletop SEM) allows for grouping of multiple grains based on chemical similarity. Final Nd loads in the 450-750pg range routinely yield dates with precisions <×10Ma for two point isochrons between

  18. Using Garnet to Reconstruct Subduction Zone Dehydration Flux

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Dragovic, B.; Samanta, L. M.; Selverstone, J.; Caddick, M. J.

    2011-12-01

    Coupled geodynamic-thermodynamic models make predictions about the progressive dehydration flux from subducted lithologies. However, it has been difficult to test or confirm these predictions through direct petrologic assessment of natural systems. We have developed a method that may be used to reconstruct the rate, timing, and flux of dehydration from diverse lithologies within subduction zones. Here, we summarize the fundamentals of the method and highlight data from two blueschist facies lithologies from the island of Sifnos, Greece. The data indicate that garnet growth and related dehydration from individual lithologies can be focused into relatively brief (100,000s of years) pulses. In general, most garnet forming reactions (in initially hydrous lithologies) also involve the consumption of hydrous minerals (including chlorite, biotite, chloritoid, amphibole, epidote, lawsonite) and the consequent liberation of water. Depending on the exact reaction and on the pressure and temperature vector over which the reaction occurs, the stoichiometric (i.e. molar) ratio between garnet produced and water produced can vary. If this stoichiometry can be constrained via thermodynamic and textural reaction analysis, then garnet may be used as a direct monitor of the progressive dehydration of the rock for the P-T-t span over which garnet grew. To a first order, rocks with greater modal proportion of garnet have released greater amounts of water. Modern techniques are available to directly date the span of garnet growth from single crystals larger than about 5mm diameter. Sm-Nd geochronology of chemically contoured microsampled prograde garnet growth zones from single crystals can produce constraints on garnet growth duration at better than 1 million year resolution. Integration of zoned garnet geochronology and thermodynamic reaction analysis permits reconstruction of the dehydration rate and duration from individual samples. Recent studies of contrasting lithologies on

  19. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz

  20. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Zhou, Tao-fa; White, Noel C.; Zhang, Le-jun; Fan, Yu; Wang, Fang-yue; Chen, Xue-feng

    2018-03-01

    Xinqiao is a large copper-gold deposit and consists of two major mineralization types: stratabound and skarn. The skarn occurs along the contact between a quartz diorite intrusion and Carboniferous-Triassic limestone. Xinqiao has a strongly developed skarn zone, including endoskarn and exoskarn; the exoskarn is divided into proximal and distal exoskarn. We present systematic major, trace and rare earth element (REE) concentrations for garnets from the skarn zone, discuss the factors controlling the incorporation of trace elements into the garnets, and constrain the formation and evolution of the garnet from skarn zone in Xinqiao deposit. Grossular (Adr20-44Grs56-80) mostly occurs in endoskarn and has typical HREE-enriched and LREE-depleted patterns, with small Eu anomalies and low ∑REE. Garnets from the exoskarn show complex textures and chemical compositions. The composition of garnets range from Al-rich andradite (Adr63-81Grs19-47) to andradite (Adr67-98Grs2-33). Garnet in endoskarn has typical HREE-enriched and LREE-depleted patterns. Al-rich andradite in proximal skarn has small Eu anomalies and moderate ∑REE. Andradite from distal exoskarn shows strong positive Eu anomalies and has variable ∑REE. The U, Y, Fe and Al relationship with ∑REE shows that two mechanisms controlled incorporation of REE into the garnets: crystal chemistry (substitution and interstitial solid solution) mainly controlled in the endoskarn garnet (grossular) and the proximal exoskarn (Al-rich andradite), and fluid and rock chemistry (surface adsorption and occlusion) controlled REEs in the distal exoskarn. Furthermore, Al has a negative relationship with ∑REE indicating that REE3+ did not follow a coupled, YAG-type substitution into the garnets. Variations in textures and trace and rare earth elements of garnets suggest that the garnets in the endoskarn formed by slow crystal growth at low W/R ratios and near-neutral pH in a closed system during periods of diffusive metasomatism

  1. Punctuated HT/UHT metamorphism during prolonged Archean orogenesis in the Pikwitonei Granulite Domain revealed by garnet petrochronology

    NASA Astrophysics Data System (ADS)

    Dragovic, Besim; Guevara, Victor; Caddick, Mark; Couëslan, Chris; Baxter, Ethan

    2017-04-01

    Fundamental to every modern continent's early (Archean) history is the generation of high temperature conditions required to produce the dense, strong, relatively anhydrous rocks that comprise most of Earth's stable cratonic crust. While the thermal gradients supported in Archean terranes are better understood, the timescales over which these conditions occur are more enigmatic. Garnet petrochronology allows for the interrogation of a semi-continuous record of these tectonometamorphic conditions, by linking pressure-temperature-fluid conditions (using phase equilibria modeling, trace element thermometry, stable isotope geochemistry) to a precise chronologic/chronometric record (e.g. high-precision Sm-Nd geochronology, geospeedometry of major and trace element diffusion profiles). Here, we utilize techniques from this burgeoning field of study to elucidate the rates and conditions of high temperature/ultra-high temperature (HT/UHT) metamorphism in the 2.7 Ga Pikwitonei Granulite Domain (PGD). The PGD represents over 150,000 km2 of dominantly granulite-facies metamorphic rocks situated at the NW edge of the Superior Province. Peak temperatures in the region range from 760°C in the southernmost part of the PGD, to 900-960˚C in the central/western PGD ( 40-60 km apart). Previous studies have suggested that metamorphism was long-lived in the region, occurring over 100 Ma, from 2.71-2.60 Ga [1, 2, 3]. High-precision garnet geochronology on microsampled garnets provides a detailed growth history of several lithologies across the region. Where necessary, bulk garnet analysis (i.e. dating based upon multiple whole garnet crystals rather than portions thereof) was also performed. While cooling from HT/UHT will result in some degree of intra-mineral age resetting, a detailed isotopic study of a range of large garnet porphyroblasts from the PGD (those which would be variably reset depending on peak T, grain size, and initial cooling rate) can retain information about both

  2. Atomistic simulation of trace element incorporation into garnets - comparison with experimental garnet-melt partitioning data

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Allan, N. L.; Blundy, J. D.; Purton, J. A.; Wood, B. J.

    2000-05-01

    We have studied the energetics of trace element incorporation into pure almandine (Alm), grossular (Gros), pyrope (Py) and spessartine (Spes) garnets (X 3Al 2Si 3O 12, with X = Fe, Ca, Mg, Mn respectively), by means of computer simulations of perfect and defective lattices in the static limit. The simulations use a consistent set of interatomic potentials to describe the non-Coulombic interactions between the ions, and take explicit account of lattice relaxation associated with trace element incorporation. The calculated relaxation (strain) energies Urel are compared to those obtained using the Brice (1975) model of lattice relaxation, and the results compared to experimental garnet-melt trace element partitioning data interpreted using the same model. Simulated Urel associated with a wide range of homovalent (Ni, Mg, Co, Fe, Mn, Ca, Eu, Sr, Ba) and charge-compensated heterovalent (Sc, Lu, Yb, Ho, Gd, Eu, Nd, La, Li, Na, K, Rb) substitutions onto the garnet X-sites show a near-parabolic dependence on trace element radius, in agreement with the Brice model. From application of the Brice model we derived apparent X-site Young's moduli EX(1+, 2+, 3+) and the 'ideal' ionic radii r0(1+, 2+, 3+), corresponding to the minima in plots of Urel vs. radius. For both homovalent and heterovalent substitutions r0 increases in the order Py-Alm-Spes-Gros, consistent with crystallographic data on the size of garnet X-sites and with the results of garnet-melt partitioning studies. Each end-member also shows a marked increase in both the apparent EX and r0 with increasing trace element charge ( Zc). The increase in EX is consistent with values obtained by fitting to the Brice model of experimental garnet-melt partitioning data. However, the increase in r0 with increasing Zc is contrary to experimental observation. To estimate the influence of melt on the energetics of trace element incorporation, solution energies ( Usol) were calculated for appropriate exchange reactions between

  3. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  4. New method for revealing dislocations in garnet: premelting decoration

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Xie, Zhanjun; Jin, Zhenmin; Li, Zhuoyue; Ao, Ping; Wu, Yikun

    2018-05-01

    Premelting decoration (PMD) of dislocation experiments was carried out on garnets at 1 atmosphere pressure and temperatures of 800-1000 °C. Numerous decorated lines were observed on the polished surface of heat-treated garnet grains. The results of scanning electron microscopy, laser Raman spectroscopy and transmission electron microscopy (TEM) analyses indicate that these decorated lines were generated by premelting reaction along the dislocation lines and subgrain boundaries. The constituents of decorated lines on the polished surface of garnet are hematite, magnetite, and melt. While, in the interior of garnet, their constituents changed to Al-bearing magnetite and melt. The dislocation density of a gem-quality megacrystal garnet grain by means of the PMD is similar to that obtained by TEM, which confirms that the PMD is a new reliable method for revealing dislocations in garnet. This method greatly reduces the cost and time involved in the observation of dislocation microstructures in deformed garnet.

  5. Epitaxial Garnet Investigation; Technical Report, Foreign Travel

    DTIC Science & Technology

    1988-10-25

    Pure yttrium iron garnet (YIG) films are grown on GGG substrates by * liquid phase epitaxy ( LPE ) in production lots. In addition, one or two...epitaxial garnet films for Philips Dr. Krumme * Dr. Doormann 3-6-87 Thomson - CSF Research Center, Orsay, France Dr. J. P. Castera Dr. P. L. Meunier all...research physicists who grow, characterize, Dr. J. Y. Beguin or use epitaxial garnet films for Thomson CSF. Dr. J. L. Rolland Dr. P. Friez The

  6. Chemistry and mineralogy of garnet pyroxenites from Sabah, Malaysia

    USGS Publications Warehouse

    Morgan, B.A.

    1974-01-01

    Garnet pyroxenites and corundum-garnet amphibolites from the Dent peninsula of eastern Sabah (North Borneo) occur as blocks in a slump breccia deposit of late Miocene age. The earliest formed minerals include pyrope-almandine garnet, tschermakitic augite, pargasite, and rutile. Cumulate textures are present in two of the six specimens studied. The earlier fabric has been extensively brecciated and partly replaced by plagioclase, ilmenite, and a fibrous amphibole. The bulk composition and mineralogy of these rocks are similar to those of garnet pyroxenite lenses within ultramafic rocks. Estimated temperature and pressure for the origin of the Sabah garnet pyroxenites is 850??150?? C and 19??4 kbar. ?? 1974 Springer-Verlag.

  7. The success and complementarity of Sm-Nd and Lu-Hf garnet geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Scherer, E. E.

    2013-12-01

    Garnet's potential as a direct chronometer of tectonometamorphic processes and conditions was first realized over 30 years ago. Since then, the Sm-Nd and Lu-Hf systems have emerged as the most effective, with both permitting age precision < ×1 Myr. Both have proven successful not merely in dating garnet growth itself, but rather in constraining the ages, durations, and rates of particular earth processes or conditions that can be directly linked to garnet growth via chemical, thermodynamic, or petrographic, means. Appreciating important differences between Sm-Nd and Lu-Hf in terms of contaminant phases, partitioning, daughter element diffusivity, and isotopic analysis makes these two systems powerfully complementary when used and interpreted in concert. Well established, robust analytical methods mitigate the effects of ubiquitous mineral inclusions (monazite is most significant for Sm-Nd; zircon is most significant for Lu-Hf), improving the precision and accuracy of garnet dates from both systems. Parent-daughter ratios tend to be higher for Lu-Hf leading to the potential for better age precision in general. The Lu-176 decay rate is faster than Sm-147, meaning that Lu-Hf provides better age precision potential for young (Cenozoic) samples. However, Sm-Nd provides better precision potential for older (Precambrian) samples primarily because of the higher precisions on the parent-daughter ratios (i.e., 147Sm/144Nd) that can be achieved by ID-TIMS analysis. For dating microsampled zones or growth rings in single garnet crystals, Sm-Nd has proven most successful owing to more uniform distribution of Sm, and established methods to measure <10 ng quantities of Nd at high precision via TIMS. However, new MC-ICP-MS sample introduction technologies are closing this gap for small samples. For analyses of bulk garnet that grew over a protracted interval, Lu-Hf dates are expected to be older than Sm-Nd dates owing to differences in Lu and Sm zonation (i.e. Lu tends to be

  8. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries.

    PubMed

    Li, Yutao; Chen, Xi; Dolocan, Andrei; Cui, Zhiming; Xin, Sen; Xue, Leigang; Xu, Henghui; Park, Kyusung; Goodenough, John B

    2018-05-23

    Garnet-structured Li 7 La 3 Zr 2 O 12 is a promising solid Li-ion electrolyte for all-solid-state Li-metal batteries and Li-redox-flow batteries owing to its high Li-ion conductivity at room temperature and good electrochemical stability with Li metal. However, there are still three major challenges unsolved: (1) the controversial electrochemical window of garnet, (2) the impractically large resistance at a garnet/electrode interface and the fast lithium-dendrite growth along the grain boundaries of the garnet pellet, and (3) the fast degradation during storage. We have found that these challenges are closely related to a thick Li 2 CO 3 layer and the Li-Al-O glass phase on the surface of garnet materials. Here we introduce a simple method to remove Li 2 CO 3 and the protons in the garnet framework by reacting garnet with carbon at 700 °C; moreover, the amount of the Li-Al-O glass phase with a low Li-ion conductivity in the grain boundary on the garnet surface was also reduced. The surface of the carbon-treated garnet pellets is free of Li 2 CO 3 and is wet by a metallic lithium anode, an organic electrolyte, and a solid composite cathode. The carbon post-treatment has reduced significantly the interfacial resistances to 28, 92 (at 65 °C), and 45 Ω cm 2 at Li/garnet, garnet/LiFePO 4 , and garnet/organic-liquid interfaces, respectively. A symmetric Li/garnet/Li, an all-solid-state Li/garnet/LiFePO 4 , and a hybrid Li-S cell show small overpotentials, high Coulombic efficiencies, and stable cycling performance.

  9. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  10. Preservation of Partial Melt Textures in Inclusions in Garnet Megacrysts of Pelitic Paragneiss, UHP Terrane, North-East Greenland Eclogite Province

    NASA Astrophysics Data System (ADS)

    Lang, H. M.; Gilotti, J. A.

    2005-12-01

    inclusions are commonly rimmed by a moat of plagioclase + K-feldspar, which extends into apophyses in garnet. These feldspar rims indicate that the most mobile and volatile-rich portion of the melt was able to penetrate garnets and travel along garnet-inclusion boundaries. Possible melt inclusions have been described in natural garnets from other UHP terranes (Stockert, et al., 2001, Geology; Hwang, et al., 2001, Earth and Planetary Science Letters) and have been produced experimentally (Perchuk, et al., 2005, Terra Nova). In the experiments and at least one of the natural occurrences, patchy microstructures (attributed to high Ca) were observed in BSE images of garnet surrounding the melt inclusions. Although we observe no garnet zoning in BSE images, patchy high-Ca zoning is apparent on X-ray maps of garnet surrounding the melt inclusions in our samples. Small, euhedral, high-Ca garnets are abundant in melt lenses in the matrix, so crystallization or recrystallization of high-Ca garnet surrounding the melt inclusions is not surprising.

  11. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  12. MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth

    NASA Technical Reports Server (NTRS)

    O'Neill, Bridget; Jeanloz, Raymond

    1994-01-01

    Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.

  13. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    operating at frequencies between 1 GHz and 25 GHz. 2. Investigate LPE growth of lithium ferrite with the objective of preparing low-loss, large area films ...and hexagonal ferrites when the series of contracts began in 1975. At that time the liquid phase epitaxy method for growth of magnetic garnet films ...principal interest in epitaxial garnets was for magnetic bubble memories. For this Uapplication the films had to be about 3pm thick with low defect density

  14. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Kun; Gong, Yunhui; Liu, Boyang

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  15. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE PAGES

    Fu, Kun; Gong, Yunhui; Liu, Boyang; ...

    2017-04-07

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  16. Structure and thermodynamics of uranium-containing iron garnets

    DOE PAGES

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; ...

    2016-09-15

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca 3U xZr 2–xFe 3O 12 (x = 0.5–0.7), along with the endmember phase, Ca 3(Zr 2)SiFe 3+ 2O 12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in themore » phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe 3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca 3U xZr 2–xFe 3O 12 as viable waste form phases for U and other actinides.« less

  17. Structure and thermodynamics of uranium-containing iron garnets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  18. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  19. The Effect of fO2 on Partition Coefficients of U and Th between Garnet and Silicate Melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; He, Z.; Schmidt, M. W.; Li, Q.

    2014-12-01

    Garnet is one of the most important minerals controlling partitioning of U and Th in the upper mantle. U is redox sensitive, while Th is tetra-valent at redox conditions of the silicate Earth. U-series disequilibria have provided a unique tool to constrain the time-scales and processes of magmatism at convergent margins. Variation of garnet/meltDU/Th with fO2 is critical to understand U-series disequilibria in arc lavas. However, there is still no systematic experimental study about the effect of fO2 on partitioning of U and Th between garnet and melt. Here we present experiments on partitioning of U, Th, Zr, Hf, Nb, Ta, and REE between garnet and silicate melts at various fO2. The starting material was hydrous haplo-basalt. The piston cylinder experiments were performed with Pt double capsules with C-CO, MnO-Mn3O4 (MM), and hematite-magnetite (HM) buffers at 3 GPa and 1185-1230 oC. The experiments produced garnets with diameters > 50μm and quenched melt. Major elements were measured by EMPA at ETH Zurich. Trace elements were determined using LA-ICP-MS at Northwestern University (Xi'an, China) and SIMS (Cameca1280 at the Institute of Geology and Geophysics, Beijing, China), producing consistent partition coefficient data for U and Th. With fO2 increasing from CCO to MM and HM, garnet/meltDU decreases from 0.041 to 0.005, while garnet/meltDTh ranges from 0.003 to 0.007 without correlation with fO2. Notably, garnet/meltDTh/U increases from 0.136 at CCO to 0.41 at HM. Our results indicate that U is still more compatible than Th in garnet even at the highest fO2 considered for the subarc mantle wedge (~NNO). Therefore, we predict that if garnet is the dominant phase controlling U-Th partitioning during melting of the mantle wedge, melts would still have 230Th excess over 238U. This explains why most young continental arc lavas have 230Th excess. If clinopyroxene is the dominant residual phase during mantle melting, U could be more incompatible than Th at high fO2

  20. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  1. Manufacturing issues and optical properties of rare-earth (Y, Lu, Sc, Nd) aluminate garnets composite transparent ceramics

    NASA Astrophysics Data System (ADS)

    Bonnet, Loïck; Boulesteix, Rémy; Maître, Alexandre; Sallé, Christian; Couderc, Vincent; Brenier, Alain

    2015-12-01

    In this work, a comparative study of reactive sintering and optical properties of three laser composite transparent ceramics doped with neodymium: Nd:YAG/Nd:YS1AG, Nd:YAG/Nd:LuAG and Nd:YS1AG/Nd:LuAG has been achieved. Samples were manufactured thanks to pressureless co-sintering under vacuum of bilayer powder compacts. The reaction sequence from primary oxides to final garnet phases has been investigated. Similar dilatometric behavior was observed during reactive-sintering for each composition. Differential shrinkage can be thus accommodated to some extent. Second, this work has shown that the intermediate zone at composites interface is composed of single-phased garnet solid-solution with continuous evolution from one side to the other. The thickness of the interdiffusion zone was found to be limited to about 100 μm in all cases and appeared to be well described by classical diffusion laws of Fick and Whipple-Le Claire. The analyses of spectroscopic properties of transparent ceramics composites have finally shown that composite ceramics should be suitable to produce dual wavelength emission for terahertz generation.

  2. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  3. Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer

    NASA Astrophysics Data System (ADS)

    Thomas, Jay B.; Spear, Frank S.

    2018-05-01

    Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston-cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm-1 Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P-T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from - 0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P-T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than 10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.

  4. Quantification of water in majoritic garnet

    DOE PAGES

    Thomas, Sylvia -Monique; Wilson, Kathryn; Koch-Muller, Monika; ...

    2015-05-01

    Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H 2O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H 2O was synthesized at conditions ofmore » 18-19 GPa and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe) 3(Si,Mg,Fe,Al,Cr) 2[SiO4] 3. Furthermore, the IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10 470 ± 3100 Lmol-1cm-2 to 23 400 ± 2300 Lmol -1cm -2.« less

  5. Fluid-aided incorporation of Y into almandine-pyrope garnet via coupled dissolution-reprecipitation

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2009-12-01

    In nature almandine-pyrope garnet is a well-known host for a variety of trace elements including (Y+HREE), Sr, HFSE, as well as LREE such as Sm and Nd; all of which have important roles with regard to various geological processes (Kohn, 2009, GCA, 73, 170). For example, Y exchange between xenotime and garnet has been empirically calibrated as a geothermometer (Pyle and Spear, 2000, CMP, 138, 51). Sm/Nd and Lu/Hf dating, using garnet, is a well-known geochronometer (Thöni et al., 2008, Chem Geol, 254, 216). In general, REE + HFSE + Sr have been used to chart garnet growth and subsequently the evolution of the host rock (Konrad-Schmolke et al., 2008, EPSL, 272, 488). Incorporation of Y into garnet is probably the most widely studied trace element. These studies range from stress-induced redistribution of Y in garnet (Røhr et al, 2007, Am Mineral, 92, 1276) to Y zoning during garnet growth (Zeh, 2005, J Petrol, 47, 2335). While the incorporation of Y into garnet has generally been thought to occur either via diffusion or during garnet growth, more recent workers have suggested that incorporation of Y could also be fluid-aided. Fluid-aided incorporation of Y into garnet has been tested in the piston-cylinder apparatus (CaF2 assemblies, cylindrical graphite ovens) at 1000 MPa and 900 °C (8 days duration). Here, 10 mg of 50-200 µm size, inclusion-free, gem quality, fragments of the Gore Mountain garnet (Alm40-49, Py37-43, Gr13-16, Sp1) plus 5 mg 2N NaOH and 2 mg Y2O3 were loaded into a 3 mm diameter, 1 cm long, Au capsule that was then arc-welded shut and placed vertically in the CaF2 assembly such that the NiCr thermocouple tip came halfway up along the Au capsule length. Examination of the garnet fragments after the experiment indicates both high Y mobility and the partial alteration of the garnet in the form of a remobilized Y3Al5O12 component enriching those areas of the garnet along the grain rim. The enriched areas take the form of a series of intergrowths with

  6. Metasomatic Control of Water in Garnet and Pyroxene from Kaapvaal Craton Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.

    2012-01-01

    Fourier transform infrared spectrometry (FTIR) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used to determine water, rare earth (REE), lithophile (LILE), and high field strength (HFSE) element contents in garnet and pyroxene from mantle xenoliths, Kaapvaal craton, southern Africa. Water enters these nominally anhydrous minerals as protons bonded to structural oxygen in lattice defects. Pyroxene water contents (150-400 ppm in clinopyroxene; 40-250 ppm in orthopyroxene) correlate with their Al, Fe, Ca and Na and are homogeneous within a mineral grains and a xenolith. Garnets from Jagersfontein are chemically zoned for Cr, Ca, Ti and water contents. Garnets contain 0 to 20 ppm H2 Despite the fast diffusion rate of H in mantle m inerals, the observations above indicate that the water contents of mantle xenolith minerals were not disturbed during kimberlite entrainment and that the measured water data represent mantle values. Trace elements in all minerals show various degrees of light REE and LILE enrichments indicative of minimal to strong metasomatism. Water contents of peridotite minerals from the Kaapvaal lithosphere are not related to the degree of depletion of the peridotites. Instead, metasomatism exerts a clear control on the amount of water of mantle minerals. Xenoliths from each location record specific types of metasomatism with different outcomes for the water contents of mantle minerals. At pressures . 5.5 GPa, highly alkaline melts metasomatized Liqhobong and Kimberley peridotites, and increased the water contents of their olivine, pyroxenes and garnet. At higher pressures, the circulation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, overall decreasing their water content, and lowered the water content of olivines at Finsch Mine. The calculated water content of these melts varies depending on whether the water content of the peridotite

  7. The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the characteristic PTt path of a cold mantle wedge garnet peridotite

    NASA Astrophysics Data System (ADS)

    Gilio, Mattia; Clos, Frediano; van Roermund, Herman L. M.

    2015-08-01

    We present pseudosections of Cr-bearing garnet peridotite that together with new mineral-chemical data allow quantification of the early PT conditions of the original lithospheric mantle assemblage (M1) of the Friningen Garnet Peridotite (FGP) located in the central/middle belt of the Seve Nappe Complex in central Sweden. Results indicate that the early, coarse grained, olivine + orthopyroxene + clinopyroxene + "high Cr" garnet assemblage (M1a) was formed at 1100 ± 100 °C and 5.0 ± 0.5 GPa. These metamorphic conditions were followed by an inferred late Proterozoic exhumation event down to 850-900 °C and 1.5 GPa (M1b). The latter PT estimate is based on the breakdown of high-Cr M1a garnet (Cr# = 0.065) + olivine into an orthopyroxene + clinopyroxene + spinel (Cr# = 0.15-0.25) ± pargasite kelyphite (M1b) and the exsolution of garnet from Al-rich orthopyroxene and clinopyroxene. The M1b kelyphite is overprinted by an early-Caledonian UHPM mineral assemblage (M2; T = 800 °C and P = 3.0 GPa), equivalent to the earlier discovered UHP assemblage within an eclogitic dyke that cross-cuts FGP. In the garnet peridotite M2 is displayed by low-Cr garnet (Cr# = 0.030) growing together with spinel (Cr# = 0.35-0.45), both these minerals form part of the olivine + orthopyroxene + clinopyroxene + garnet + spinel + pargasite M2 assemblage. The formation of plagioclase + diopside symplectites after omphacite and breakdown of kyanite to sapphirine + albite in internal eclogite and the breakdown of M2 olivine + garnet to amphibole + orthopyroxene + spinel assemblages (M3) in garnet peridotite indicate post-UHP isothermal decompression down to 750-800 °C and 0.8-1.0 GPa (= M3). Multiphase solid-and fluid inclusion assemblages composed of Sr-bearing magnesite, dolomite or carbon decorate linear defect structures within M1a-b minerals and/or form subordinate local assemblages together with M2 minerals. The latter are interpreted as evidence for infiltration of early-Caledonian COH

  8. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  9. Genesis of Ultra-High Pressure Garnet Pyroxenite in Orogenic Peridotites and its bearing on the Isotopic Chemical Heterogeneity in the Mantle Source of Oceanic Basalts

    NASA Astrophysics Data System (ADS)

    Varas Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2017-04-01

    The genesis of ultra-high pressure (UHP) garnet pyroxenites in orogenic peridotite massifs and its implications on the formation of chemical heterogeneities in the mantle and on basalt petrogenesis are still not fully understood. Some UHP (diamond-bearing) garnet pyroxenites have isotopic, and major and trace element compositions similar to the recycled oceanic crustal component observed in oceanic basalts [1-6]. These pyroxenites hence provide an exceptional opportunity to investigate in situ the nature and scale of the Earth's mantle chemical heterogeneities. Here, we present an integrated geochemical study of UHP garnet pyroxenites from the Ronda (Betic Belt, S. Spain) and Beni Bousera (Rif Belt, N. Morocco) peridotite massifs. This investigation encompasses, in the same sample, bulk rock major and trace elements, as well as Sr-Nd-Pb-Hf isotopic analyses. According to their Al2O3 content, we classify UHP garnet pyroxenites into three groups that have distinct trace elements and Sr-Nd-Pb-Hf isotopic signatures. Group A pyroxenites (Al2O3: 15 - 17.5 wt. %) are characterized by low initial 87Sr/86Sr, relatively high 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios, and highly variable 207Pb/204Pb and 208Pb/204Pb ratios. Group B pyroxenites (Al2O3 < 14 wt. %) have isotopic signatures characterized by relatively high initial 87Sr/86Sr and low 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios. Group C pyroxenites (Al2O3 ˜ 15 wt. %) display relatively low initial 87Sr/86Sr and 206Pb/204Pb ratios, high 143Nd/144Nd and 176Hf/177Hf ratios, and 207Pb/204Pb and 208Pb/204Pb ratios similar to Group B pyroxenites. The major and trace element, and isotopic compositions of the studied Ronda and Beni Bousera UHP garnet pyroxenites lend support to the "Marble Cake Mantle" model [7] for the genesis of these pyroxenites. This model envisions the mantle source of oceanic basalts as a mélange of subducted, ancient oceanic crust —-represented by garnet pyroxenites in orogenic

  10. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications.

    PubMed

    Xia, Zhiguo; Meijerink, Andries

    2017-01-03

    Garnets have the general formula of A 3 B 2 C 3 O 12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce 3+ -doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging. Garnet phosphors are unique in their tunability of the luminescence properties through variations in the {A}, [B] and (C) cation sublattice. The flexibility in phosphor composition and the tunable luminescence properties rely on design and synthesis strategies for new garnet compositions with tailor-made luminescence properties. It is the aim of this review to discuss the variation in luminescence properties of Ce 3+ -doped garnet materials in relation to the applications. This review will provide insight into the relation between crystal chemistry and luminescence for the important class of Ce 3+ -doped garnet phosphors. It will summarize previous research on the structural design and optical properties of garnet phosphors and also discuss future research opportunities in this field.

  11. Combined external-beam PIXE and /μ-Raman characterisation of garnets used in Merovingian jewellery

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Colinart, S.; Poirot, J.-P.; Sudres, C.

    2002-04-01

    Red garnets were the dominant gemstones used for jewels in Europe during the Early Middle Ages. We have studied over 350 garnets set on 12 jewels unearthed in the royal necropolis of the Saint-Denis Basilica, close to Paris. This famous collection of "cloisonné" style artefacts dates from the Merovingian period (late fifth century AD to early seventh century AD). The archaeological issue addressed is the identification of the geographical origin of these garnets, in view to establish the gem trading routes during the Dark Ages. External beam PIXE was used to determine the major constituents (Mg, Al, Si, Ca, Mn, Fe), specifying the garnet type (composition in various mineralogical end-members, e.g. almandine, pyrope, spessartite, …), and the trace element content (Cr, Y). Three sorts of garnets were identified. Ten jewels are adorned with almandine garnets (Fe-rich). One jewel has intermediate almandine-pyrope garnets ("rhodolite"). The last and most recent jewel is inlaid with pyrope (Mg-rich) garnets. Trace element content and slight differences in major composition allowed to distinguish five different sources: two sources for pyrope garnets (with and without chromium), and two sources for almandine garnets (distinctive calcium, magnesium and yttrium contents). A preliminary comparison with literature data suggested that almandine garnets may have been mined from India while the "rhodolite" garnets may have been imported from Sri Lanka. The sources of pyrope garnets could be the Bohemian deposits (Czech republic). In addition, μ-Raman spectrometry was used to identify most of the mineral inclusions (apatite, zircon, ilmenite, monazite, calcite, quartz) present in almandine garnets. Even if two specific types of inclusions were not identified, due to the lack of corresponding reference spectra in our database, the Raman spectra collected provided an interesting inclusion fingerprint.

  12. Optical Properties of Nd Doped Rare Earth Vanadates (Preprint)

    DTIC Science & Technology

    2010-07-01

    Rare earth orthovanadates are being used as substitute for traditional solid state laser hosts such as yttrium aluminium garnet (YAG). While the most...common of these is yttrium orthovanadate, other rare earth vanadates such as lutetium vanadate and gadolinium vanadate are being used for their... gadolinium vanadate are being used for their special properties in certain applications. We report new measurements of the refractive indices and thermo

  13. On fabrication procedures of Li-ion conducting garnets

    NASA Astrophysics Data System (ADS)

    Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina

    2017-04-01

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.

  14. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of industrial garnet was about 326 kt in 2006, with the U.S. producing about 11 percent of this total. U.S. consumption, imports, and exports were estimated at 74.3 kt, 52.3 kt, and 13.2 kt, respectively. The most important exporters are Australia, China, and India. Although demand is expected to rise over the next 5 years, prices are expected to remain low in the short term.

  15. Unraveling the history of complex zoned garnets from the North Motagua Mélange (Guatemala)

    NASA Astrophysics Data System (ADS)

    Barickman, M. H.; Martin, C.; Flores, K. E.; Harlow, G. E.; Bonnet, G.

    2016-12-01

    The Guatemala Suture Zone (GSZ) is situated in central Guatemala, between the North American and Caribbean plates. Two serpentinite mélanges straddle the Motagua Fault system: the North Motagua Mélange (NMM) and the South Motagua Mélange (SMM). In this study, chemically zoned garnet grains from four eclogite blocks from the NMM were analyzed by EMPA for major elements and LA-ICP-MS for trace elements to unravel the geological history of the eclogites. These eclogites typically consist of euhedral to subhedral garnets, partly retrogressed omphacite grains, and accessory minerals such as phengite and epidote as inclusions in garnet. EBSD was employed to examine apparent garnet inclusions in garnet. The garnet grains in NMM eclogites display complex chemical zonations: all grains roughly show a spessartine-rich core, an almandine-rich core and/or intermediate zone, and a pyrope and grossular-rich rim. Additionally, crystal resorption can be observed between the different zones, and the pyrope-grossular rim can display oscillatory zoning. Finally, grossular-rich zones (crystallographically syntactic) within garnet are present in all studied samples. REE and spider diagrams do not show any significant difference in the patterns of the different zones within the garnet, or indicating that the chemical environment from which each garnet zone grew was broadly the same. The lack of significant variation in LILE content indicates that a fluid influx during garnet growth is unlikely. Consequently, we interpret that garnet grains grew in a largely closed system; however, the presence of the grossular-rich zones, argues for occasional excursions into conditions when either two garnets crystallized or Ca-rich overgrowths that were largely resorbed prior to subsequent continued garnet growth.

  16. The Garnet to Majorite Transformation in Mafic Compositions

    NASA Technical Reports Server (NTRS)

    Xirouchakis, D.; Draper, David S.; Agee, C. B.

    2002-01-01

    The garnet to majorite transformation in mafic compositions is controlled by bulk composition and the presence of silicate melt, clinopyroxene, and silicate perovskite as well as pressure. Thus, the use of empirical geobarometers based on garnet Si(4+) and/or [Al(3+) +/- Cr(3+)] (p.f.u) seems unjustified. Additional information is contained in the original extended abstract.

  17. Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Xia, Qiong-Xia; Zhou, Li-Gang

    2017-09-01

    Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet

  18. Mixed Messages from Garnet Lu-Hf and Sm-Nd Geochronology

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Wang, D.; Johnson, T. A.

    2017-12-01

    Garnet geochronology provides important information on the timing and conditions of metamorphism. As a major indicator mineral formed during metamorphism, its direct dating can not only help establish the timing of metamorphism, provide the "t" for P-T-t paths, but also, if the dated garnet can be placed in a textural context, can provide information on the timing of deformational features. With advances in chemistry and mass spectrometry, garnet Lu-Hf and Sm-Nd geochronology has become an important geochronological tool and we can now reliably (if not routinely) date a wide variety of garnet compositions formed under diverse conditions. In the course of dating a variety of lithologies using both Lu-Hf and Sm-Nd isotope systems, however, some intriguing results have emerged. Although there are many examples where the Lu-Hf and Sm-Nd systems give the same date within uncertainty, there are also many cases where these systems yield significantly different dates, and the differences between these dates can be considerable—many 10's of Ma of and even 100's of Ma. For example, in garnet-bearing Mesoproterozoic gneisses from across the Blue Ridge Province in Virginia, both Lu-Hf and Sm-Nd analyses (determined on the same solutions) define narrow time spans, but with the Sm-Nd dates systematically younger (for orthogneisses Lu-Hf dates are 1032 to 1019 Ma whereas Sm-Nd dates are 965 to 949 Ma—a difference of 67 to 80 Ma). There are many other examples of systematically younger Sm-Nd garnet dates in both the literature and with our ongoing research. Potential explanations for these differences include: 1) strong partitioning of Lu into garnet during growth yielding ages weighted toward the beginning of growth; 2) faster Lu diffusion from high Lu regions after garnet formation, potentially leading to isochron rotation and anomalously old Lu-Hf dates; and 3) differences in closure temperatures of the two isotope systems. We will review several examples of divergent Lu

  19. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand

    USGS Publications Warehouse

    Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.

    2010-01-01

    Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to <0.6 GPa @ 650??C, peak garnet granulite facies metamorphic conditions to 680-815??C @ 1.1-1.4. GPa, and a P-T path with a P increase of???0.5. GPa. These sections are compatible with water contents???0.28wt.%, local dehydration during garnet granulite metamorphism, and <0.3. GPa P increases during garnet growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern

  20. Garnet: featured mineral group at the 1993 Tucson Show

    USGS Publications Warehouse

    Modreski, P.J.

    1993-01-01

    The garnets are a common but complex group of minerals. They are perhaps the mineral kingdom's best example of solid solution: a relationship in which minerals have chemical compositions that are intermediate between two or more ideal end-member species. In garnet, we deal with a complex group of solid-solution series between as many as 14 end-member minerals. The varying intergradations of solid solution between these different end-members help to explain the garnet group's variety of color, environment of occurrence, gem use, and variation in such physical properties as specific gravity, refractive index, and hardness. -from Author

  1. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  2. Metasomatic processes in the mantle beneath the Arkhangelsk province, Russia: evidence from garnet in mantle peridotite xenoliths, Grib pipe

    NASA Astrophysics Data System (ADS)

    Kargin, Alexei; Sazonova, Lyudmila; Nosova, Anna; Kovalchuk, Elena; Minevrina, Elena

    2015-04-01

    garnets. 3. The melting of the reworked carbonate-bearing mantle peridotite (mantle source II, degree of partial melting was 1 %) resulted in the generation of proto-kimberlite melts and type-2 garnet. These proto-kimberlite melts interacted with lithospheric mantle orthopyroxene to produce megacryst garnets and melts that formed the Grib kimberlite. This stage was responsible for the formation of the metasomatic equilibrium clinopyroxene -- garnet assemblage (type-3) in lithospheric peridotite and metasomatic transformation of deformed peridotite (type 4 and 5 garnet). This model suggests that peridotitic garnet originated at the first stage in the presence of subduction-generated melts or fluids. Kononova V.A., Nosova A.A., Pervov V.A., Kondrashov I.A. (2006). Compositional variations in kimberlites of the east European platform as a manifestation of sublithospheric geodynamic processes // Doklady Earth Sciences. V. 409. Is. 2. Pp. 952-957.

  3. 19. General view showing garneting machine number eight on right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. General view showing garneting machine number eight on right, and garneting machines numbers four through seven on left in background - Norfolk Manufacturing Company Cotton Mill, 90 Milton Street, Dedham, Norfolk County, MA

  4. Distribution of garnet grain sizes and morphologies across the Moine Supergroup, northern Scottish Caledonides

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2016-04-01

    Garnet is used in a wide range of geologic studies due to its important physical and chemical characteristics. While the mineral is useful for thermobarometry and geochronology constraints and can often be correlated to deformation and fabric development, difficulties remain in making meaningful interpretations of such data. In this study, we characterize garnet grain sizes and crystal morphologies from 141 garnet-bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup in the Scottish Caledonides. Larger, euhedral crystals are indicative of prograde metamorphic growth and are typically associated with the most recent phase of orogenesis (Scandian, ˜430 Ma). Small, rounded ("pin-head") garnets are interpreted as detrital in origin. A subhedral classification is more subjective and is used when garnets contains portions of straight boundaries but have rounded edges or rims that have been altered through retrograde metamorphic reactions. From our collection, 88 samples contain anhedral garnets (maximum measured grain size d = 0.46 ± 0.21 mm), 34 bear subhedral garnets (d = 2.0 ± 1.0 mm), and the remaining 19 samples contain garnets with euhedral grains (d = 4.4 ± 2.6 mm). Plotting the distribution of garnets relative to the mapped thrust contacts reveals an abrupt change in morphology and grain size when traced from the Moine thrust sheet across the Ben Hope and Sgurr Beag thrusts into the higher-grade, more hinterland-positioned thrust sheets. The dominance of anhedral garnets in the Moine thrust sheet suggests that these grains should not be used for peak P - T estimation associated with relatively low temperature (<500 ° C) Scandian metamorphism, as they are likely detrital in origin and contain protolith chemical signatures that would not have been reset due to sluggish diffusivities at greenschist facies temperatures. However, chemical and isotopic data from these grains may provide information into the provenance of

  5. Rare-Earth Ion-Host Lattice Interactions: 15. Analysis of the Spectra of Nd3+ in Gd3Sc2Ga3O12.

    DTIC Science & Technology

    1984-05-01

    Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet CT’stals, Soy. J. Quant. Electron. 12 (1982), 1124. 6M. Dutoit, J. C...Shcherbakov, Absolute Quantum Efficiency of the Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet Crystals, Soy. J...HDL Project: 324332 19. KEY WORDS (Continue on reverse side it necessary end Identify by block number) Rare earth Mixed garnet Spectra Laser Judd-Ofelt

  6. The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1995-01-01

    We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.

  7. An inverse modeling strategy and a computer program to model garnet growth and resorption

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre; Giuntoli, Francesco

    2017-04-01

    GrtMod is a computer program that allows numerical simulation of the pressure-temperature (P-T) evolution of garnet porphyroblasts based on the composition of successive growth zones preserved in natural samples. For each garnet growth stage, a new reactive bulk composition is optimized, allowing for resorption and/or fractionation of the previously crystalized garnet. The successive minimizations are performed using a heuristic search method and an objective function that quantify the amount by which the predicted garnet composition deviates from the measured values. The automated strategy of GrtMod includes a two stages optimization and one refinement stage. In this contribution, we will present several application examples. The new strategy provides quantitative estimates of the optimal P-T conditions whereas it was generally derived in a qualitatively way by using garnet isopleth intersections in equilibrium phase diagrams. GrtMod can also be used to model the evolution of the reactive bulk composition along any P-T trajectories. The results for typical MORB and metapelite compositions demonstrate that fractional crystallization models are required to derive accurate P-T information from garnet compositional zoning. GrtMod can also be used to retrieve complex garnet histories involving several stages of resorption. For instance, it has been used to model the P-T condition of garnet growth in grains from the Sesia Zone (Western Alps). The compositional variability of successive growth zones is characterized using standardized X-ray maps and the program XMapTools. Permian garnet cores crystalized under granulite facies conditions (T > 800°C and P = 6 kbar), whereas Alpine garnet rims grew at eclogite facies conditions (650°C and 16 kbar) involving several successive episodes of resorption. The model predicts that up to 50 vol% of garnet was dissolved before a new episode of garnet growth.

  8. Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments

    USGS Publications Warehouse

    Koziol, A.M.; Bohlen, S.R.

    1992-01-01

    The thermodynamic mixing properties of almandine-pyrope garnet were derived from phase equilibrium experiments at temperatures of 900 and 1000??C and pressures from 8 to 14 kbar. Almandine has essentially ideal behavior in almandine-pyrope garnet over the composition range Alm89-Alm61 at the above experimental conditions. In all experimental products a systematic partitioning of Fe and Mg between garnet and ilmenite was seen with ln Kd ??? 1.59 which was not temperature sensitive. The results support the use of garnet mixing models that incorporate ideal or nearly ideal Fe-Mg parameters. -from Authors

  9. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  10. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy

    NASA Astrophysics Data System (ADS)

    Skora, Susanne; Lapen, Thomas J.; Baumgartner, Lukas P.; Johnson, Clark M.; Hellebrand, Eric; Mahlen, Nancy J.

    2009-10-01

    The distinct core-to-rim zonation of different REEs in garnet in metamorphic rocks, specifically Sm relative to Lu, suggests that Sm-Nd and Lu-Hf isochron ages will record different times along a prograde garnet growth history. Therefore, REE zonations in garnet must be measured in order to correctly interpret the isochron ages in terms of the garnet growth interval, which could span several m.y. New REE profiles, garnet crystal size distributions, and garnet growth modeling, combined with previously published Sm-Nd and Lu-Hf geochronology on a UHP eclogite of the Zermatt-Saas Fee (ZSF) ophiolite, Lago di Cignana (Italy), demonstrate that prograde garnet growth of this sample occurred over a ~ 30 to 40 m.y. interval. Relative to peak metamorphism at 38 to 40 Ma, garnet growth is estimated to have begun at ~ 11 to 14 kbar pressure at ~ 70 to 80 Ma. Although such a protracted garnet growth interval is surprising, this is supported by plate tectonic reconstructions which suggest that subduction of the Liguro-Piemont ocean occurred through slow and oblique convergence. These results demonstrate that REE zonations in garnet, coupled to crystal size distributions, provide a powerful means for understanding prograde metamorphic paths when combined with Sm-Nd and Lu-Hf geochronology.

  11. Effects of selective fusion on the thermal history of the earth's mantle

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.

  12. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    PubMed Central

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  13. Experimental investigation of Fe3+-rich majoritic garnet and its effect on majorite geobarometer

    NASA Astrophysics Data System (ADS)

    Tao, Renbiao; Fei, Yingwei; Bullock, Emma S.; Xu, Cheng; Zhang, Lifei

    2018-03-01

    Majoritic garnet [(Ca, Mg, Fe2+)3(Fe3+, Al, Si)2(SiO4)3] is one of the predominant and important constituents of upper mantle peridotite and ultra-deep subducted slabs. Majoritic substitution in garnet depends on pressure, and it has been used to estimate the formation pressure of natural majoritic garnet. Ferric iron (Fe3+) substitution occurs in natural majoritic garnets from mantle diamonds and shocked meteorites. However, available majorite geobarometers were developed without considering the effect of Fe3+ substitution in the structure. In this study, we systematically synthesized Fe3+- bearing majoritic garnets from 6.5 GPa to 15 GPa to evaluate the effect of Fe3+ on the majorite geobarometer. The Fe3+ contents of synthetic majoritic garnets were analyzed using the "Flank method" with the electron probe microanalyzer (EPMA). The results were compared with those based on the charge balance calculations. From the known synthesis pressures and measured Fe3+ contents, we developed a new majorite geobarometer for Fe3+-bearing majoritic garnets. Our results show that the existing majorite geobarometer, which does not take into account the Fe3+ substitution, could underestimate the formation pressure of majoritic garnets, especially for samples with a high majoritic component.

  14. Garnet--An Essential Industrial Mineral and January's Birthstone

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.; Frank, David G.; Olson, Donald W.

    2006-01-01

    Garnet is one of the most common minerals in the world. Occurring in almost any color, it is most widely known for its beauty as a gem stone. Because of its hardness and other properties, garnet is also an essential industrial mineral used in abrasive products, non-slip surfaces, and filtration. To help manage our Nation's resources of such essential minerals, the U.S. Geological Survey (USGS) provides crucial data and scientific information to industry, policymakers, and the public.

  15. Raman spectroscopy of detrital garnet from the (U)HP terrane of eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Andò, Sergio; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Malusà, Marco G.; Aliatis, Irene; Vezzoli, Giovanni; Garzanti, Eduardo

    2013-04-01

    ). Earth Pl. Sci. Lett. 310:21-32. Malusà M.G., Garzanti E. 2012. Actualistic snapshot of the early Oligocene Alps: the Alps-Apennines knot detangled. Terra Nova 24:1-6. Mange M.A., Morton A.C. 2007. Geochemistry of Heavy Minerals. In: Mange, M.A. & Wright, D.T. (Eds) Heavy Minerals in Use, Developments in Sedimentology 58:345-391. Win K.S., Takeuchi M., Tokiwa T. 2007. Changes in detrital garnet assemblages related to transpressive uplifting associated with strike-slip faulting: an example from the Cretaceous System in Kii Peninsula, southwest Japan. Sedim. Geol. 201:412-431.

  16. GARNET--gene set analysis with exploration of annotation relations.

    PubMed

    Rho, Kyoohyoung; Kim, Bumjin; Jang, Youngjun; Lee, Sanghyun; Bae, Taejeong; Seo, Jihae; Seo, Chaehwa; Lee, Jihyun; Kang, Hyunjung; Yu, Ungsik; Kim, Sunghoon; Lee, Sanghyuk; Kim, Wan Kyu

    2011-02-15

    Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO) terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. GARNET (Gene Annotation Relationship NEtwork Tools) is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction) are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules--gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. GARNET (gene annotation relationship network tools) is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/).

  17. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  18. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Dieing, Thomas; Golovin, Aleksandr V; Toporski, Jan

    2011-10-01

    Confocal Raman imaging of fluid inclusions in garnet porphyroblasts from diamond-grade metamorphic calc-silicate rocks from the Kumdy-Kol microdiamond deposit (Kokchetav Massif, Northern Kazakhstan) reveals that these fluid inclusions consist of almost pure water with different step-daughter phases (e.g., calcite, mica and rare quartz). These fluid inclusions are characterized by negative crystal shape of the host-garnet and they exclusively occur within the core of garnet porphyroblasts. These observations are consistent with their primary origin, most likely at ultrahigh-pressure (UHP) metamorphic conditions. The euhedral newly formed garnet, different in color and composition, was found to be associated with these fluid inclusions. It is proposed that newly formed garnet and water fluid inclusions appear by reaction between the hydrous fluid and the garnet-host. These fluid inclusions provide an unequivocal record of almost pure H(2)O fluids, indicating water-saturated conditions within subducted continental crust during prograde stage and/or ultrahigh-P metamorphism. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Dating high-grade metamorphism: constraints from zircon and garnet REE compositions

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Platt, J. P.

    2001-12-01

    We present high spatial resolution ion microprobe REE analyses of zircon and garnet from pelitic granulite adjacent to the Ronda peridotite, Betic Cordillera, southern Spain. The zircons exhibit polyphase growth, with thick structureless (in cathodoluminescence) overgrowths over detrital cores. These overgrowths yield a U-Pb age of 21.3 +/- 0.3 Ma [1, unpublished data] which we intepret as dating an episode of zircon growth during the Alpine orogeny. REE analyses of the dated portions of these zircons reveal profound differences between cores and rims. Cores show patterns typical of magmatic zircon (steep upward slopes from La to Lu with marked positive Ce anomaly), while the overgrowths are characterised by flat or even negatively sloping HREE profiles (Gd - Lu). Garnet, which occupies ca. 30 % by volume of the rock, is the most likely phase to host the HREEs in the rock and has been the subject of further ion-microprobe REE, textural and trace element investigations. The garnets are themselves zoned, with dominant central regions that are relatively free of inclusions overgrown by inclusion-rich, more calcic rims. Inclusions of kyanite +rutile in the central regions and sillimanite +ilmenite in the rims suggests that the garnets grew during decompression, and the Ca-enrichment in the rims suggests that their growth coincided with the initiation of partial melting. The presence of rimmed zircons only in the garnet rims and the matrix further suggests that the zircons also grew during this late decompressional history. An REE traverse of the garnet from core to rim reveals marked HREE depletion in the rims relative to the cores which we suggest is consistent with the textural evidence and probably results from early garnet core growth strongly depleting the HREEs available to subsequent growth. This mechanism can also be invoked to explain depletion in the zircon rims and more closely ties their formation to this stage of garnet growth. We therefore interpret the

  20. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.

    1989-01-01

    are mineralogically controlled by rutile, garnet, sphene, apatite, zircon, zoisite, and allanite. Alkali and alkaline earth elements are much less enriched in the solid assemblage, and thus appear to be decoupled from the other elements in the inferred metasomatic process(es). The compositions of migmatitic garnet amphibolite blocks seem to complement that of "average" island-arc tholeiite. Trace-element metasomatism reflects fluid-solid, rather than melt-solid, interaction. The metasomatic effects indicate that H2O-rich fluid, perhaps with a significant component of Na-Al silicate and alkalis, carried Th, U, Sr, REE, and HFSE. Fractionations of LREE in migmatites resemble those of migmatitic metasedimentary rocks underlying the mafic and ultramafic complex. "Exotic" LREE deposited in allanite in migmatites could have been derived from fluids in equilibrium with subducted sediment. If the paleo-subduction zone represented by the mafic and ultramafic complex of the Catalina Schist had continued its thermal and fluid evolution, a selvage of similarly enriched rocks might have been generated along the slab-mantle wedge contact between ~30 and 85 km depth. Rocks affected by "subduction-zone metasomatism," although rarely recognized at the surface, could be volumetrically significant products of the initiation of subduction and may prove to be geochemical probes of convergent margins that approach the significance of xenoliths in the study of other magmatic environments. ?? 1989.

  1. Garnet zoning and metamorphism of the Barrovian type area, Scotland

    NASA Astrophysics Data System (ADS)

    Dempster, T. J.

    1985-03-01

    A microprobe investigation of the high grade metamorphic zones from the Barrovian type area in Angus, Scotland, shows the importance of local zones of retrograde cation exchange between garnet, staurolite and biotite. The interpretation of this zoning, established during a slow cooling history, is critical to any study of metamorphic reactions or conditions. The extent and intensity of these diffusion effects are dependent on a number of parameters including grainsize, fabric orientation, heating and cooling history, and the modal abundance of the phases. Increasing diffusion within garnets with metamorphic grade, and the subsequent retrograde effects are modelled using Temperature-Time-Transformation diagrams and provide information on the activation energy for Fe-Mg diffusion in garnet.

  2. Fragmentation of wall rock garnets during deep crustal earthquakes

    PubMed Central

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale. PMID:28261660

  3. Olivine Lamellae and Interstitial Blebs of Diopside and Enstatite Exsolved from Majoritic Garnet during Decompression in Multianvil Apparatus

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L. F.; Green, H. W.

    2003-12-01

    We present preliminary experimental data on the decompression of majoritic garnet primarily synthesized from a mineral mix of garnet peridotite bulk chemistry showing exsolution from majoritic garnet of olivine (Ol) in the form of oriented plates and pyroxenes as interstitial blebs. Experiments conducted at 14GPa/1673K demonstrate that all enstatite (En) and about 85% of diopside (Di) were dissolved into garnet yielding run products of approximately 40% Ol + 55% Grt + 5% Di. Garnet was found to be supersilicic with Si=3.17-3.31 p.f.u. Repeat of such experiments followed immediately by re-annealing at 13 and 12 GPa yielded exsolution of both Di and Ol. Olivine exsolved as micron-size plates nucleated within garnet on low-angle boundaries. In contrast, diopside exsolved abundantly as tiny blebs at garnet grain boundaries, exhibiting no typical exsolution microstructures. Similarly, in specimens annealed at 5 GPa after previous equilibration at 8GPa/1673K, En exsolved as small blebs at garnet boundaries. Under conditions similar to the latter experiments, interstitial blebs of natural enstatite also occur at garnet grain boundaries (Van Roermund et al., 2001) in Norwegian deep-seated (>200 km) subduction zone grt-peridotite. Our experiments show that Ol as well as En and Di may exsolve during decompression of majoritic garnets in the course of Grt peridotite exhumation. Examples of preservation of pyroxene exsolution lamellae in former majoritic garnets come from both xenoliths in kimberlites (Haggerty and Sautter, 1990; Sautter et al., 1991) as well as from very large garnets in subduction-zone peridotites (van Roermund and Drury, 1998). However, many other garnet peridotites from subduction zones contain Di, En, and/or Ol along grain boundaries within larger polycrystalline garnets and within embayments at the margins of smaller amoeboid garnets (e.g. Dobrzhinetskaya et al, 1996, Green and Dobrzhinetskaya, 2003). Such garnets also may contain rounded non

  4. Phase diagram and high degeneracy points for generic anisotropic exchange on the garnet lattice

    NASA Astrophysics Data System (ADS)

    Andreanov, Alexei; McClarty, Paul

    Garnet magnets with chemical formula RE3Ga5O12 where RE is a rare earth ion have properties that are determined by a combination of geometrical frustration and strong spin-orbit coupling. The former arises from the RE structure which consists of two interpenetrating hyperkagome lattices while the latter leads, in general, to an anisotropy in the magnetic exchange. We systematically explore and describe the full phase diagram for the case of all nearest-neighbor interactions compatible with lattice symmetries and consider the role of fluctuations and further neighbor couplings around high degeneracy points in the phase diagram. AA was supported by Project Code(IBS-R024-D1).

  5. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE PAGES

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...

    2015-11-24

    Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  6. Variations in Ti coordination and concentration in garnet in response to temperature, pressure and composition

    NASA Astrophysics Data System (ADS)

    Ackerson, M. R.; Tailby, N.; Watson, E. B.; Spear, F. S.

    2013-12-01

    Titanium concentrations in garnet vary over several orders of magnitude in natural systems-- from trace-element levels in continental metamorphic systems to several weight percent in garnets from mantle xenoliths. Broadly speaking the wide range of concentrations is due to crystallization from diverse environments. Understanding the crystallographic site and Ti-substitution mechanism in garnet is crucial to deciphering concentration trends and how these relate to the petrogenetic history. This study uses XANES spectroscopy to measure Ti coordination in natural and synthetic garnets known to crystallize over a wide range of conditions to investigate whether changes in Ti coordination and concentration correlate with changes T, P and bulk composition. Ti XANES spectroscopy utilizes shifts in the 1s-3d pre-edge feature, which shows systematic shifts in intensity and energy with coordination. Natural and synthetic garnets grown at >800 oC and >1 GPa incorporate Ti almost entirely on the octahedral site in garnet. It is possible that a small amount of Ti substitutes on the tetrahedral site in these garnets, but the concentration is too low to be observed in the spectra. The most feasible mechanism for octahedral substitution involves charge-balanced coupled substitution with an M2+ cation (where M2+=Mg, Fe, Ca, or Mn) resulting in a net loss of two Al for every Ti gained. Substitution of Al onto the tetrahedral site and Ti on the octahedral site is an other feasible mechanism, although the stoichiometric deficit of Al in experimental garnets suggests this mechanism could only account for a small percentage of Ti. Increases in Ti concentration correlate best with increasing Ca content in experimental garnets. Ti solubility also changes in response to T and P. These observations suggest that Ti incorporation on the octahedral site is dependent on the activities of Ti, Al and other M2+ cation system components. This helps to explain some of the differences in Ti

  7. Raman spectroscopic study of synthesized Na-bearing majoritic garnets

    NASA Astrophysics Data System (ADS)

    Okamoto, K.

    2003-12-01

    Majoritic garnets in diamond have been considered as the sample from mantle transition zone (e.g. Moore and Gurney, 1985). For non-destructive, in-situ Raman analysis, Gillet et al. (2002) systematically checked chemistry and Raman peak of various majoritic garnets in diamond. They treated majoritic component as number of excess-silica than 3.0 per formula unit. However, in the basaltic system, majorite garnets also have significant amounts of Na. Na substitution is coupled with Si and Ti as follows; Na +Ti = Ca +Al (Ringwood and Lovering, 1970), Na +Si = Ca + Al (Sobolev and Labrentav, 1971; Ringwood and Major, 1971) or Na + Si = Mg + Al (Gasparik, 1989). Each component in garnet is defined as follows; Mj (majorite) component = ((Si-3)-Na)/2), NaSi (Na2MSi5O12 where M= Ca, Mg, Fe2+) component = (Na-T)/2, and NaTi component = Ti/2. Okamoto and Maruyama (2003) conducted UHP experiments in the MORB + H2O system (KNCFMATSH) at 10-19 GPa. They show that 1) Mj and NaTi component are constant and lower than 0.1 at T = 900 \\deg C, and 2) NaSi component increases drastically above 15 GPa although it is neglibly small at P<15 GPa. Raman spectra was newly analyzed using Okamoto and Maruyama (2003)'s run charges. Above 15 GPa, there is a characteristic sharp peak at 910 cm-1 and broad shoulder between 800 and 900 cm-1 as well as broad band near 960 cm-1. Gillet et at (2002) concluded that the former peak at 910cm-1 is the only reliable signature for the majoritic garnet (Si>3). They also implied that the latter two broad peaks are diagnostic feature for Ti rich garnet (> 1wt% of TiO2) as well as peak at 1030 cm-1. However, in all P range (10-19 GPa) of the present study, TiO2 is higher than 1wt%, and there is a peak at 1030 cm-1. Additional Ti-free experiment at 16 GPa, 1200 \\deg C clearly revealed that Na-bearing majoritic garnet has a significant shoulder at 800-900 cm-1. Ref; Gasparik (1989) CMP, 102,389, Gillet et al. (2002) Am.Min., 87, 312, Moore and Gurney (1985

  8. Raman spectroscopic study of synthetic pyrope-grossular garnets: structural implications

    NASA Astrophysics Data System (ADS)

    Du, Wei; Han, Baofu; Clark, Simon Martin; Wang, Yichuan; Liu, Xi

    2018-02-01

    A study of the effect of substitution of Mg and Ca in garnet solid solution (Grtss) was carried out using Raman spectroscopy to probe changes to the crystal lattice. The garnet solid solutions with composition changing along pyrope (Py; Mg3Al2Si3O12) and grossular (Gr; Ca3Al2Si3O12) binary were synthesized from glass at 6 GPa and 1400 °C and a second series of Grtss with composition Py40Gr60 were synthesized at 6 GPa but different temperatures from 1000 to 1400 °C. Raman mode assignments were made based on a comparison with the two end members pyrope and grossular, which show consistent result with literature study on single crystals data. The correlation between the Raman mode frequencies and compositional changes along the pyrope-grossular binary suggests a two-mode behavior for Mg and Ca cations in the garnet structure. The full widths at half-maximum of selected Raman modes increase on moving away from the end members and are about double the end-member values in the mid-position, where the frequencies closely linearly change with composition. The frequencies of the translational modes of the SiO4 tetrahedron (T(SiO4)) show large deviations from linearity indicating a strong kinematic coupling with the translational modes of the Ca and Mg cations. The anomalies in T(SiO4) are linked to mixing unit cell volume, suggesting that the nonlinear mixing volume behavior along the pyrope-grossular binary is related to the resistance of the Si-O bond to expansion and compression, which is caused by substitution of Mg and Ca cations in the dodecahedral sites. Annealing temperature also shows effect on Raman mode frequencies, but the main factor controlling the changes in mode frequencies along pyrope-grossular binary is composition.

  9. Symbiogenesis, natural selection, and the dynamic Earth.

    PubMed

    Kutschera, U

    2009-08-01

    One century ago, Constantin S. Mereschkowsky introduced the symbiogenesis theory for the origin of chloroplasts from ancient cyanobacteria which was later supplemented by Ivan E. Wallin's proposal that mitochondria evolved from once free-living bacteria. Today, this Mereschkowsky-Wallin principle of symbiogenesis, which is also known as the serial primary endosymbiosis theory, explains the evolutionary origin of eukaryotic cells and hence the emergence of all eukaryotes (protists, fungi, animals and plants). In 1858, the concept of natural selection was described independently by Charles Darwin and Alfred R. Wallace. In the same year, Antonio Snider-Pellegrini proposed the idea of shifting continents, which was later expanded by Alfred Wegener, who published his theory of continental drift eight decades ago. Today, directional selection is accepted as the major cause of adaptive evolution within natural populations of micro- and macro-organisms and the theory of the dynamic Earth (plate tectonics) is well supported. In this article, I combine the processes and principles of symbiogenesis, natural selection and the dynamic Earth and propose an integrative 'synade-model' of macroevolution which takes into account organisms from all five Kingdoms of life.

  10. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  11. Crystallization of high-Ca chromium garnet upon interaction of serpentine, chromite, and Ca-bearing hydrous fluid

    NASA Astrophysics Data System (ADS)

    Chepurov, A. A.; Turkin, A. I.; Pokhilenko, N. P.

    2017-10-01

    The results of experimental modeling of the conditions of crystallization of high-Ca chromium garnets in the system serpentine-chromite-Ca-Cr-bearing hydrous fluid at a pressure of 5 GPa and temperature of 1300°C are reported. The mineral association including quantitatively predominant high-Mg olivine and diopside-rich clinopyroxene, bright-green garnet, and newly formed chrome spinel was formed. Garnet mostly crystallized around primary chromite grains and was characterized by a high concentration of CaO and Cr2O3. According to the chemical composition, garnets obtained are close to the uvarovite-pyrope varieties, which enter the composition of relatively rare natural paragenesis of garnet wehrlite. The experimental data obtained clearly show that high-Ca chromium garnets are formed in the reaction of chromite-bearing peridotite and Ca-rich fluid at high P-T parameters.

  12. Evidence of mantle metasomatism in garnet peridotites from V. Grib kimberlite pipe (Arkhangelsk region, Russia)

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Agashev, Alexey; Golovin, Nikolai; Pokhilenko, Nikolai

    2013-04-01

    We have studied 26 samples of garnet peridotite xenoliths from V.Grib pipe and 17 of them are phlogopite bearing. Studied peridotites have features of two types of modal metasomatism: low-temperature (˜ 1100 C°) and high-temperature (˜ 1100 C°). Low-temperature modal metasomatism: 17 samples contain modal phlogopite, which is present in the form of tabular grains (to 3 mm in size) and rims around pyrope grains. Chemical composition of minerals from phlogopite-garnet peridotites and phlogopite free peridotites is distinctly different. Olivine, garnet, orthopyroxene and clinopyroxene have higher concentration of FeO relative to these minerals in phlogopite free peridotites. Occurrence of phlogopite in peridotites indicates the influence of melt enriched in K2O, H2O, FeO and other incompatible elements. Two types of phlogopite have difference in chemical composition that indicates two different sources. High-temperature modal metasomatism: Reconstructed V.Grib pipe peridotite whole-rocks composition and high Mg# of peridotite olivines indicates that these samples are residues after 30-40 % partial melting of primitive mantle. At those high degree of partial melting all clinopyroxene and probably all garnet should be exhausted from residue. Character of REE patterns in garnets and clinopyroxenes indicates that the most garnets and all clinopyroxene in studied peridotites are of metasomatic origin. We used the method of geochemical modeling of fractional crystallization to establish the source's composition for garnets and clinopyroxenes. For geochemical modeling we used the composition of tholeitic basalts, picrites and carbonatites which occurred in Arkhangelsk diamondiferous province (ADP) and have emplacement ages similar to that of kimberlites. Modeling result indicates that garnets could be crystallized from alkali picrite and tholeite basalts compositions. Peridotites containing garnets equilibrated with picritic melt have a different position in lithospheric

  13. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  14. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less

  15. Correlation by Rb-Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, John N.; Selverstone, Jane; Rosenfeld, John L.

    1993-06-01

    In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhulle (USH) and Lower Schieferhulle (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67(-0.13)+0.19 mm/million years and 0.88(-0.19)+0.34 mm/million years, respectively, indicating an average growth duration of 5.4 +- 1.7 million years. The duration of growth coupled withmore » the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7(-0.7)+1.2 x 10(-14) s-1 . Garnet growth in the sample from the USH occurred between 35.4 +- 0.6 and 30 +- 0.8 Ma. The garnet from the LSH grew at a rate of 0.23 +- 0.015 mm/mil lion years, between 62 +- 1.5 Ma and 30.2 +- 1.5 Ma. Contemporaneous cessation of garnet growth in both units at approximately 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that these P - T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4(-2)+3 mm/year and 2 +- 1 mm/year, respectively. [References: 34]« less

  16. The CaGeO3 Ca3Fe2Ge3O12 garnet join: an experimental study

    NASA Astrophysics Data System (ADS)

    Iezzi, Gianluca; Boffa-Ballaran, Tiziana; McCammon, Catherine; Langenhorst, Falko

    2005-06-01

    Germanate garnets are often used as isostructural analogues of silicate garnets to provide insight into the crystal chemistry and symmetry of the less accessible natural garnet solid solutions. We synthesised two series of germanate garnets at 3 GPa along the joinVIIICa3VI(CaGe)IVGe3O12 VIIICa3VIFe2IVGe3O12 at 900 °C and 1,100 °C. Samples with compositions close to the CaGeO3 end-member consist of tetragonal garnet with a small amount of triclinic CaGe2O5. Samples with nominal compositions between XFe=0.4 and 1.0 consist of a mixture of tetragonal and cubic garnets; whereas, single-phase cubic garnets were obtained for compositions with XFe>1.2 (XFe gives the iron content expressed in atoms per formula unit, and varies between 0 and 2 along the join). Run products which were primarily single-phase garnet were investigated using Mössbauer spectroscopy. Spectra from samples synthesised at 1,100°C consist of one well-resolved doublet that can be assigned to Fe3+ in the octahedral site of the garnet structure. A second doublet, present primarily in samples synthesised at 900°C, can be assigned to Fe2+ at the octahedral sites of the garnet structure. The relative abundance of Fe2+ decreases with increasing iron content. Transmission electron microscopy analyses confirm this tendency and show that the garnets are essentially defect-free. The unit-cell parameters of tetragonal VIIICa3VI(CaGe)IVGe3O3 garnet decrease with increasing synthesis temperature, and the deviation from cubic symmetry becomes smaller. Cubic garnets show a linear decrease of unit-cell parameter with increasing iron content. The results are discussed in the context of iron incorporation into VIIIMg3VI(MgSi)IVSi3O3 majorite.

  17. Graphical representations of the chemistry of garnets in a three-dimensional MATLAB based provenance plot

    NASA Astrophysics Data System (ADS)

    Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael; Meszar, Maria; Gier, Susanne

    2016-04-01

    A newly developed, MATLAB based garnet provenance plot allows a three-dimensional tetrahedral representation of the chemistry of garnets for the endmembers almandine, pyrope, spessartine and grossular. Based on a freely accessible database of Suggate & Hall (2013) and additional EPMA-data on the internet, the chemistry of more than 2500 garnets was evaluated and used to create various subfields that correspond to different facies conditions of metapelitic, metasomatic and metaigneous rocks as well as granitic rocks. These triangulated subfields act as reference structures within the tetrahedron, facilitating assignments of garnet chemistries to different lithologies. In comparison with conventional tenary garnet discrimination diagrams by Mange & Morton (2007), Wright/Preston et al. (1938/2002) and Aubrecht et al. (2009), this tetrahedral provenance plot enables a better assessment of the conditions of formation of garnets by reducing the overlapping of certain subfields. In particular, a clearer distinction between greenschist facies rocks, amphibolite facies rocks and granitic rocks can be achieved. First applications of the tetrahedral garnet plot provided new insights on sedimentary processes during the Lower Miocene in the pre-Alpine Molasse basin. Bibliography Aubrecht, R., Meres, S., Sykora, M., Mikus, T. (2009). Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt , Western Carpathians, Slovakia). In: Geologica Carpathica, Dec. 2009, 60, 6, pp. 463-483. Mange, M.A., Morton, A.C. (2007). Geochemistry of Heavy Minerals. In: Mange, M.A. & Wright, D.T.(2007).Heavy Minerals in Use, Amsterdam, pp. 345-391. Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M., May, G., Buck, S., Vaughan, L. (2002). The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical and sedimentological constraints. In: Journal of Sedimentary Research, 72, pp. 18

  18. Lu-Hf Garnet Geochronology Reveals the Tectonic History of Precambrian Rocks in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Aronoff, R.; Andronicos, C.; Vervoort, J. D.; Hunter, R. A.

    2014-12-01

    Lu-Hf garnet dating of Proterozoic rocks of the southwestern United States provides constraints on the timing and geographic extent of metamorphism associated with the Yavapai, Mazatzal, and newly recognized Picuris orogenies. Prior work focusing on U-Pb dating of plutons and Ar geochronology has left the timing of prograde metamorphism ambiguous, particularly in northern New Mexico and southern Colorado. Because the Lu-Hf system dates the onset of garnet growth, it can constrain the timing of the prograde P-T path. Garnet schist samples from central and northern New Mexico exhibit garnet growth restricted to the time period between ~1460 and 1400 Ma. In the Picuris and Manzano mountains, the oldest Lu-Hf garnet ages predate the U-Pb ages of ~1.4 Ga plutons located near the dated samples. This implies that garnet growth, and therefore the onset of amphibolite facies metamorphism, cannot be driven by contact metamorphism, as has been previously inferred. Garnet-bearing samples from the Needle and Wet Mountains in southern Colorado display a range of garnet ages between ~1750 and 1470 Ma. A garnet gneiss from the Needle Mountains in southwestern Colorado yields an age of 1748 Ma, which is consistent with the Yavapai orogeny. This Lu-Hf garnet age has not been reset by contact metamorphism associated with the emplacement of the ~1.4 Ga Eolus batholith. Anatectic garnet in an orthogneiss from the northern Wet Mountains yields an age of 1601 Ma and is interpreted to date partial melting at the close of the Mazatzal orogeny. A 1476 Ma garnet age from the aureole of the 1440 Ma Oak Creek pluton is interpreted to date upper amphibolite facies metamorphism. The age distribution of these samples shows that rocks in Colorado underwent a complex, poly-metamorphic history, while rocks in New Mexico underwent a single progressive metamorphic event. This contrast implies that the boundary between rocks deformed and metamorphosed during the ~1800-1600 Ma Yavapai and Mazatzal

  19. Single crystal Ce doped scintillator material with garnet structure sensitive to gamma ray and neutron radiation

    NASA Astrophysics Data System (ADS)

    Solodovnikov, D.; Weber, M. H.; Haven, D. T.; Lynn, K. G.

    2012-08-01

    A mixed garnet scintillator host material is obtained from the melt—Yttrium Gadolinium Gallium Aluminum Garnet (YGGAG). In addition to the high thermal and chemical stability and radiation hardness found in garnet crystals, it offers sensitivity to neutrons due to the presence of Gd atoms, has lower melting temperature than yttrium aluminum garnet, and similar crystallization behavior suitable for growth of large volume crystals. Crystals of YGGAG doped with Ce of 10×10×10 mm3 have already demonstrated energy resolution of 10% at 662 keV.

  20. Mineralogy and chemistry of the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1985-01-01

    The Earth is the prototype if not typical terrestrial planet. Ideas about the origin, evolution, structure and chemistry of the planets can be tested most thoroughly on the Earth. Similarly, the study of the other planets has generated new ideas which may be applicable to the Earth. For example the concepts of magma oceans, large polar wander, global stress fields, buoyant lithosphere, deep cumulate reservoirs, multiple tectonic styles and crust generation may also apply to the Earth, present or past. It is no longer valid to think of the mantle as an essentially homogeneous undifferentiated shell of olivine with pockes of basalt providing melts to midocean ridges and oceanic islands. It appears to be a well differentiated, outgassed body with both radial and lateral chemical variations. The lower mantle is close to chondritic in its major element chemistry. The transition region is garnet and clinopyroxene rich and may be a major basalt reservoir. This would explain the thin crust paradox. Chemical stratification of the Earth probably occurred during accretion.

  1. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons

    NASA Astrophysics Data System (ADS)

    An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang

    2017-03-01

    We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.

  2. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  3. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    USGS Publications Warehouse

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  4. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  5. Garnet cannibalism provides clues to extensive hydration of lower crustal fragments in a subduction channel (Sesia Zone, Northwestern Alps)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2015-04-01

    The extent to which granulites are transformed to eclogites is thought to impose critical limits on the subduction of continental lower crust. Although it is seldom possible to document such densification processes in detail, the transformation is believed to depend on fluid access and deformation. Remarkably complex garnet porphyroblasts are widespread in eclogite facies micaschists in central parts of the Sesia Zone (Western Italian Alps). They occur in polydeformed samples in assemblages involving phengite+quartz+rutile ±paragonite, Na-amphibole, Na-pyroxene, chloritoid. Detailed study of textural and compositional types reveals a rich inventory of growth and partial resorption zones in garnet. These reflect several stages of the polycyclic metamorphic evolution. A most critical observation is that the relict garnet cores indicate growth at 900 °C and 0.9 GPa. This part of the Eclogitic Micaschist Complex thus derived from granulite facies metapelites of Permian age. These dry rocks must have been extensively hydrated during Cretaceous subduction, and garnet records the conditions of these processes. Garnet from micaschist containing rutile, epidote, paragonite and phengite were investigated in detail. Two types of garnet crystals are found in many thin sections: mm-size porphyroclasts and smaller atoll garnets, some 100 µm in diameter. X-ray maps of the porphyroclasts show complex zoning in garnet: a late Paleozoic HT-LP porphyroclastic core is overgrown by several layers of HP-LT Alpine garnet, these show evidence of growth at the expense of earlier garnet generations. Textures indicate 1-2 stages of resorption, with garnet cores that were fractured and then sealed by garnet veins, rimmed by multiple Alpine overgrowth rims with lobate edges. Garnet rim 1 forms peninsula and embayment structures at the expense of the core. Rim 2 surrounds rim 1, both internally and externally, and seems to have grown mainly at the expense of the core. Rim 3 grew mainly at

  6. Holmium: yttrium aluminum garnet laser-assisted endoscopic sinus surgery: laboratory experience.

    PubMed

    Shapshay, S M; Rebeiz, E E; Bohigian, R K; Hybels, R L; Aretz, H T; Pankratov, M M

    1991-02-01

    Endoscopic sinus surgery has gained wide acceptance since its introduction into the United States. Complex sinus anatomy and troublesome bleeding have been associated with complications, which vary in severity from synechia to blindness and leakage of cerebrospinal fluid. Endoscopic sinus surgery using a holmium: yttrium aluminum garnet pulsed solid-state laser oscillating at 2.1 microns with fiberoptic delivery was performed in the laboratory, and the results were compared with those of conventional endoscopic sinus surgery. Three beagle dogs, six human cadaver heads, and one calf head were used in the in vivo and in vitro studies to evaluate the bone ablation, tissue coagulation, and hemostatic properties of the holmium: yttrium aluminum garnet laser. Modified endoscopic telescopes for sinus surgery, a newly developed handpiece for fiberoptic delivery, and other surgical instruments were used. The results indicate that the holmium: yttrium aluminum garnet laser and new delivery instrumentation provide good hemostasis and controlled soft-tissue ablation and bone removal. The access to all sinuses in the human cadaver model was very good. The canine in vivo study showed delayed but complete healing on the laser-treated side. Clinical evaluation of the holmium: yttrium aluminum garnet laser is warranted to increase the precision and safety of endoscopic sinus surgery.

  7. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    USGS Publications Warehouse

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  8. Evidence for polymetamorphic garnet growth in the Çine (southern Menderes) Massif, Western Turkey

    NASA Astrophysics Data System (ADS)

    Baker, C. B.; Catlos, E. J.; Sorensen, S. S.; Çemen, I.; Hancer, M.

    2008-07-01

    Garnet-based thermobarometry is often used to develop models for the evolution of the Menderes Massif, a key Aegean metamorphic core complex. Here we present X-ray element maps and high-contrast backscattered electron (BSE) and cathodoluminescence (CL) images from a garnet-bearing rock from the Çine (southern Menderes) Massif. The images document a polymetamorphic history as plagioclase and garnet grains show distinct cores and rims. The sample contains matrix monazite in reaction with allanite. The garnet in the sample is likely not in equilibrium with its matrix minerals. This is evidenced by BSE images that document compositional variability in both core and rim zoning and tracks of bright streaks extending from rim to core. We propose that some garnet that is now present in the Menderes Massif formed due to collision during Cambro-Ordovician and may have recrystallized during subsequent collisional and extensional events. These processes led to non-equilibrium compositions and can result in spurious pressure-temperature (P-T) calculations. To establish the feasibility of the P-T estimates of rocks from the Çine Massif for input into tectonic models for the region, more than one sample from single outcrops should be analyzed. Rocks within the Çine Massif have been suggested to display inverted metamorphism, an increase in T towards structurally higher levels. Based on the garnet documented here, we propose that the inverted metamorphism may be a consequence of apparent P-T rather than a real phenomenon.

  9. Tunable Microwave Transversal Filters and Dispersive Delay Lines Based on Oblique Incidence Reflection of Magnetostatic Wave Propagating in Epitaxial Garnets.

    DTIC Science & Technology

    1986-09-30

    surface. Ferromagnetic resonance measurements on Ion implanted garnet films (2.18, 2.19) have confirmed that the principal effects of ion implantation...Yttrium Iro Garnet (Y 3FesO1 2 ) films used in the experiments were grown or one Inch polished [111] oriented Gadolinium Gallium Garnet (GGG) wafers, by...Yttrium Iron Garnet ) films grown on 0.5mm thick substrate of GGG (Gadolinium Gallium Garnet ). Samples were angle lapped to optimize coupling into and

  10. Orbit Selection for Earth Observation Missions

    NASA Technical Reports Server (NTRS)

    King, J. C.

    1978-01-01

    The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.

  11. The compression mechanism of garnets based on in situ observations

    NASA Astrophysics Data System (ADS)

    Dymshits, Anna; Sharygin, Igor; Litasov, Konstantin; Shatskiy, Anton

    2014-05-01

    Previously it was showed that the bulk modulus of garnet is strongly affected by the bulk modulus of the dodecahedra, while compressibility of other individual polyhedra displays no correlation with the compressibility of the structure as a whole (Milman et al., 2001). If so, Na-majorite (Na-maj) would have the smallest bulk modulus of all silicate garnets, as a phase with a predicted dodecahedral bulk modulus of approximately 70 GPa (Hazen et al., 1994). In fact Na-maj has the largest bulk modulus among the silicate garnets. This behavior must reflect the all-mineral framework of Na-maj with very small cell volume and silicon in the octahedral position. Thus, we conclude that not only the dodecahedral sites, but also the behavior of the garnet framework and relative sizes of the 8- and 6-coordinated cations, control garnet compression. The octahedral site in Na-maj is quite small (1.79 Å) and contains only silicon in comparison to the pyrope (1.85 Å) or majorite (1.88 Å). The small and highly charged octahedra shares four edges with the dodecahedra and thus restrict the volume of the large and low charged dodecahedra. In spite Na-maj has a large average X-cation radius (RNa = 1.07 Å) its dodecahedral volume is relatively small (V = 21.23 and 21.26 Å3). Pacalo et al. (1992) suggested that XO8 polyhedra act as braces and controls the amount of rotation between tetrahedra and octahedra within the corner-linked chains. In case of pyrope XO8 cite is not filled up and polyhedra within the corner-linked chains can rotate freely to accommodate applied stress. In case of Na-maj the dodecahedral site is filled up and rotational freedom is minimized. The dodecahedral site in knorringite (Knr) contains cation with a small radius (Mg-O = 2.22 and 2.34 Å), so XO8 polyhedra is not filled up and can rotate freely to accommodate applied stress. In case of uvarovite not only octahedral but the dodecahedral site is also large (Ca-O = 2.35 and 2.51 Å), so the rotational

  12. The first discovery of Hadean zircon in garnet granulites from the Sutam River (Aldan Shield)

    NASA Astrophysics Data System (ADS)

    Glukhovskii, M. Z.; Kuz'min, M. I.; Bayanova, T. B.; Lyalina, L. M.; Makrygina, V. A.; Shcherbakova, T. F.

    2017-09-01

    For the first time in Russia, a Hadean zircon grain with an age of 3.94 Ga (ID-TIMS) has been discovered in high-aluminous garnet granulites of the Aldan Shield among the U-Pb zircons with an age from 1.92 Ga. In this connection, the problems of its parental source, the petrogenesis of granulites that captured this zircon, and the mechanism of occurrence of these deep rocks in the upper horizons of the crust have been solved. The comparison of the geochemistry of garnet granulites and the middle crust has shown that the granulites are enriched in the entire range of rare-earth elements (except for the Eu minimum), as well as in Al2O3, U, and Th and are depleted in the most mobile elements (Na, Ca, Sr). In the upper part of the allitic weathering zone of the middle crust, which formed under conditions of arid climate, this zircon grain was originated from the weathered granites from the middle crust. In the latter case, they were empleced discretely in the upper granite-gneiss crust under high pressure conditions (the rutile age is 1.83-1.82 Ga). The zircon with an age of 3.94 Ga is comparable to the Hadean zircons from orthogneisses of the Acasta region (Canadian Shield, 4.03-3.94 Ga).

  13. Analysis of garnets from the archaeological sites in Slovenia

    NASA Astrophysics Data System (ADS)

    Šmit, Ž.; Fajfar, H.; Jeršek, M.; Knific, T.; Lux, J.

    2014-06-01

    Garnets (62 individual stones) originating from the Migration Period cemeteries and hilltop settlements in Slovenia were analyzed by the combined PIXE/PIGE method for their chemical composition. Typologically, the analyzed stones may be classified as almandines originating from the sites in India, belonging to types I and II according to Calligaro. A smaller group of pyraldines intermediate between almandines and pyropes was also determined; identified as type III, their source is most likely in Sri Lanka. No garnets from Bohemia (Czech Republic) have been discovered, which may be related to important political changes in the 7th c. AD, induced by Slavic and Avaric migrations.

  14. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  15. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  16. Single-Crystal X-Ray Diffraction of Pyrope Garnet to 84 GPa

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Dera, P. K.; Duffy, T. S.

    2012-12-01

    Garnets are characteristic minerals of many metamorphic and igneous rocks, and are also important upper-mantle constituents. Mg-rich (pyrope) garnets occur in both peridotite and eclogite compositions in the upper mantle. At high temperatures and pressures above 25 GPa, garnets transform to the perovskite structure. The post-garnet transition kinetics are sluggish, and in cold subducting slabs garnets could persist metastably at temperatures as high as 1700 K on geological timescales. These phases could add positive buoyancy to a subducting slab, inhibiting subduction. There has been minimal previous work on the 300 K compression behavior of aluminosilicate garnets at pressures higher than 10 GPa. In this work, we have collected single-crystal X-ray diffraction data on near end-member natural pyrope (Dora Maira pyrope) to 84 GPa. By extending the compression of pyrope to much higher pressures, we can better constrain the equation of state while also characterizing the structural response to such extreme pressures for the first time. Crystals were polished to ~5-10 μm in thickness, and loaded in a diamond anvil cell with gold foil and ruby balls as pressure calibrants. Helium was used as a pressure-transmitting medium. High-pressure single-crystal X-ray diffraction experiments were performed at the GSECARS 13-ID-D beamline of the Advanced Photon Source and the 12.2.2 beamline of the Advanced Light Source. Structure refinements were carried out successfully to the highest pressure using Shelx-97, extending the range over which the compression behavior of this material has been characterized by a factor of nearly three. Pyrope exhibits smooth compression behavior and no phase transitions over the investigated pressure range. A preliminary 3rd order Birch-Murnaghan equation of state was successfully fit to data up to 52 GPa. If the bulk modulus is fixed to 170 GPa, a value consistent with previous Brillouin and Ultrasonic studies, our data yields a pressure derivative

  17. Garnet clinopyroxenite layers from the mantle sequences of the Northern Apennine ophiolites (Italy): Evidence for recycling of crustal material

    NASA Astrophysics Data System (ADS)

    Montanini, A.; Tribuzio, R.; Thirlwall, M.

    2012-10-01

    This study aims to define the origin of garnet clinopyroxenite layers from the mantle sequences of the External Ligurian ophiolites. These mantle sequences retain a subcontinental origin and were exposed at a Jurassic ocean-continent transition. The garnet clinopyroxenites are mafic rocks with Mg# values of 66-71. Their chondrite-normalised REE patterns are characterised by severe LREE depletion (CeN/SmN=0.1-0.2) and nearly flat (Type-A pyroxenites) to moderately enriched HREE (Type-B pyroxenites). In addition, Type-A pyroxenites display a small positive Eu anomaly. The whole-rock REE variations are paralleled by the garnet REE compositions. We attribute the major and trace element characteristics of the garnet clinopyroxenites to recycling of gabbroic protoliths that underwent partial melting under eclogite facies conditions. The garnet clinopyroxenites may represent variably evolved garnet+clinopyroxene cumulates formed by eclogite-derived melts. In an alternative hypothesis, Type-A and -B pyroxenites are residual rocks after eclogite melting and cumulates derived from the eclogite melts, respectively. The high pressure fractionation event that gave rise to the garnet clinopyroxenites is considered of Triassic age on the basis of Sm-Nd and Lu-Hf isotope correlations. The Nd-Hf isotopic compositions of the garnet clinopyroxenites in the Triassic (ɛNd=+4.7 to +7.6, ɛHf=+4.4 to +12.8) lie below the mantle array, in agreement with recycled ancient MOR-type material. The oxygen isotopic composition of garnet and clinopyroxene from the garnet clinopyroxenites (δ18O=+4.9‰ to +5.2‰) may be reconciled with subduction-related recycling of the lowermost oceanic crust, or delamination and foundering of underplated gabbros from the continental lithosphere. The potential involvement of the garnet clinopyroxenites in the melting processes that gave rise to the MOR-type oceanic crust in the Jurassic would account for the moderate Nd isotope variability and the garnet

  18. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  19. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  20. Mixed garnet laser crystals for water vapour DIAL transmitter

    NASA Astrophysics Data System (ADS)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  1. Coexisting calderite and spessartine garnets in eclogite-facies metacherts of the Western Alps

    NASA Astrophysics Data System (ADS)

    Cenki-Tok, B.; Chopin, C.

    2006-09-01

    The coexistence of a colourless and a yellow garnet was observed in eclogite-facies manganese concentrations of the Mesozoic ophiolitic Zermatt-Saas Unit, at the Praborna mine near Saint-Marcel, Val d’Aoste, Italy, and in the upper Maurienne Valley, France. They occur both in oxidised metachert with hematite and braunite (+ minor Mn-pyroxenoid and tirodite, rare tiragalloite; with ardennite or piemontite in distinct layers), and in more reduced, carbonate-rich boudins included in it. The co-occurrence takes a variety of textural aspects, from coexisting euhedral garnets (10-100 µm in size for the calderite to mm-size for spessartine) to sharp overgrowths of yellow calderitic garnet on colourless spessartine, to yellow cauliflower-like masses (a few hundreds of µm in size) overgrowing colourless spessartine and showing evidence of oscillatory zoning, resorption stages and resumed growth. Sector zoning and anisotropy are common, although not consistent features. Compositions can be expressed to 95% in the quadrilateral system (Ca, Mn2+)3 (Al, Fe3+)2 Si3O12, with less than 1.0 wt% MgO and 0.8 wt% TiO2 in colourless spessartine, and less than 0.2 wt% MgO and 1.6 wt% TiO2 in yellow garnet. Calcium partitions into the ferric garnet. Coexisting pairs define two compositional gaps, bounded by values of the Fe3+/(Al + Fe3+) ratio of 10 and 15% for the first one, of 40 and 65% for the other. The optically obvious discontinuity (colour change and Becke’s line) corresponds to the narrower gap, between colourless spessartine and yellow spessartine, whereas the broad compositional gap occurs within yellow garnet, between yellow spessartine and yellow calderite, and is only revealed by back-scattered electron images. Only the latter can be a candidate for a miscibility gap, if any.

  2. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The P-T conditions of garnet inclusion formation in diamond: thermal expansion of synthetic end-member pyrope

    NASA Astrophysics Data System (ADS)

    Milani, Sula; Mazzucchelli, Matteo; Nestola, Fabrizio; Alvaro, Matteo; Angel, Ross J.; Geiger, Charles A.; Domeneghetti, Chiara

    2013-04-01

    Pyrope, Mg3Al2Si3O12, due to the abundance of garnet in Earths's upper mantle, has been studied many times. A number of different investigations have measured its physical and thermodynamic properties at high temperature or pressure and, even more recently, under simultaneous high P-T conditions (e.g. Zou et al., 2012). This abstract reports thermal expansion results on pyrope, as part of a much wider project on the determination of the physical properties of garnet, in order to obtain geobarometric information on the formation conditions of its inclusion in diamond. Our experimental approach is based on the elastic method (e.g. Izraeli et al., 1999; Howell et al., 2010; Nestola et al., 2011; Howell et al., 2012), which takes into account the thermoelastic properties of both diamond and any tiny solid phase inclusion within it. The method requires accurate and precise knowledge of thermal expansion and compressibility behavior in order to calculate precisely the pressure and temperature formation conditions of the diamond-inclusion pair. Thus, in order to do this, we measured the thermal expansion of an end-member synthetic single crystal of pyrope up to 1100 K at 52 different temperatures. This was done by measuring the ao unit-cell edge with high precision and accuracy under heating and cooling conditions. This allows excellent experimental reproducibility, which is also checked by monitoring any diffraction peak broadening over the entire range of temperatures. Fitting the temperature-volume data to the thermal expansion equation of Berman (1988), we obtained a room temperature volume-thermal expansion coefficient equal to 2.72(2)×10-5K-1. Using the same pyrope crystal, in situ high-pressure measurements are now in progress in order to determine its isothermal bulk modulus. The use of our results, along with the dK/dT data of Zou et al ( 2012), we plan to calculate the pressure of formation of diamonds containing pyrope-rich garnet inclusions. References Berman

  4. Precipitation of Oriented Rutile and Ilmenite Needles in Garnet, Northeastern Connecticut, USA: Evidence for Extreme Metamorphic Conditions?

    NASA Astrophysics Data System (ADS)

    Ague, J. J.; Eckert, J. O.

    2011-12-01

    We report the discovery of oriented needles of rutile and, less commonly, ilmenite in the cores of garnets from northeastern CT, USA. The rocks preserve granulite facies mineral assemblages, form part of the Merrimack Synclinorium, and underwent metamorphism and deformation during the Acadian orogeny. The needles appear identical to those reported from a number of extreme P-T environments worldwide, including UHP metamorphic rocks, high-P granulites, and garnet peridotites. The needles are predominantly oriented along <111> directions in garnet. The long axes of the rutile needles commonly do not go extinct parallel to the cross hairs under cross-polarized light (e.g., Griffin et al., 1971). This anomalous extinction indicates that the needles do not preserve a specific crystallographic relationship with their garnet hosts (e.g., Hwang et al., 2007). The needles range from a few hundred nm to a few um in diameter, and can be mm-scale in length. Micrometer-scale plates of rutile, srilankite and crichtonite have also been observed in some garnets together with the Fe-Ti oxide needles. Several origins for the needles have been proposed in the literature; we investigate the hypothesis that they precipitated in situ from originally Ti-rich garnet. Chemical profiles across garnets indicate that some retain Ti zoning, with elevated-Ti concentrations in the cores dropping to low values in the rims. For these zoned garnets, high-resolution, 2-D chemical mapping using the JEOL JXA-8530F field emission gun electron microprobe at Yale University reveals that the needles are surrounded by well-defined Ti-depletion halos. Chemical profiles also document strong depletions of Cr (which is present in both rutile and ilmenite) directly adjacent to needles. The observed Ti-depletions demonstrate that the needles precipitated from Ti-bearing garnet, probably during cooling and/or decompression associated with exhumation. The rutile precipitates must be largely incoherent with respect

  5. Fractographic and three body abrasion behaviour of Al-Garnet-C hybrid chill cast composites

    NASA Astrophysics Data System (ADS)

    Bandekar, Nityanand; Prasad, M. G. Anantha

    2017-08-01

    Fractographic and tribological behaviour of hybrid composite of aluminum alloy LM13 matrix with garnet and carbon was investigated. Conventional stir casting technique was used to fabricate the composites with chill cast technique. Various chill materials like Copper, Steel, Iron and Silicon carbide were used to improve the directional solidification. The garnet being added ranges from 3 to 12 wt-% in steps of 3wt-% and constant 3wt-% of carbon. The experiment evaluates the mechanical, fractographic and three body abrasion behaviour of the hybrid composites for various parameters of load, garnet and chills. Microstructural characterization of the composite samples revealed a uniform distribution of reinforcements with minimum clustering. SEM was used for examine worn surfaces. The addition of garnet and carbon reinforcement decreases the wear rate of hybrid composites. Fracture behaviour showed the changes from ductile mode to brittle mode of failure. Further, directional chilling with copper chill improves the wear resistance of the composites.

  6. In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries.

    PubMed

    Wang, Chengwei; Gong, Yunhui; Dai, Jiaqi; Zhang, Lei; Xie, Hua; Pastel, Glenn; Liu, Boyang; Wachsman, Eric; Wang, Howard; Hu, Liangbing

    2017-10-11

    The garnet-based solid state electrolyte (SSE) is considered a promising candidate to realize all solid state lithium (Li) metal batteries. However, critical issues require additional investigation before practical applications become possible, among which high interfacial impedance and low interfacial stability remain the most challenging. In this work, neutron depth profiling (NDP), a nondestructive and uniquely Li-sensitive technique, has been used to reveal the interfacial behavior of garnet SSE in contact with metallic Li through in situ monitoring of Li plating-stripping processes. The NDP measurement demonstrates predictive capabilities for diagnosing short-circuits in solid state batteries. Two types of cells, symmetric Li/garnet/Li (LGL) cells and asymmetric Li/garnet/carbon-nanotubes (LGC), are fabricated to emulate the behavior of Li metal and Li-free Li metal anodes, respectively. The data imply the limitation of Li-free Li metal anode in forming reliable interfacial contacts, and strategies of excessive Li and better interfacial engineering need to be investigated.

  7. Diffusion-controlled garnet growth in siliceous dolomites of the Adamello contact aureole, N-Italy

    NASA Astrophysics Data System (ADS)

    Muller, T.; Fiebich, E.; Foster, C. T.

    2012-12-01

    Texture forming processes are controlled by many factors, such as material transport through polycrystalline materials, surface kinetics, fluid flow, and many others. In metamorphic rocks, texture forming processes typically involve local reactions linked to net mass transfer which allows constraining the actual reaction path in more detail. In this study, we present geochemical data combined with textural modeling to constrain the conditions and reaction mechanism during contact metamorphic garnet growth in siliceous dolomites in the southern Adamello Massif, Italy. The metamorphic garnet porphyroblasts are poikiloblastic and idiomorphic in shape with a typical grain size ranging between 0.6-1 cm in diameter sitting in a matrix of calcite+diopside+anorthite+wollastonite. Inclusions in the grossular-rich garnets are almost uniquely diopside. On the hand specimen, garnets are surrounded by visible rims of about 0.6 mm indicating a diffusion-limited reaction mechanism to be responsible for the garnet formation. In the course of this study samples have been characterized by polarization microscopy, element x-ray maps using EMPA, cathodulominescence images and stable isotope analyses of carbon and oxygen of matrix carbonates. In addition, pseudosections have been calculated using the software package PerpleX (Connolly, 2005) based on the bulk chemistry of collected samples. Results indicate that the visible margin consists of a small rim (< 1 mm) purely consisting of recrystallized calcite adjacent to the garnet edge. The major part of the observed halo, however, is characterized by the absence of anorthite and wollastonite. The observed texture of garnet porphyroblasts growing and simultaneously forming an anorthite and wollastonite free margin can successfully be reproduced using the SEG program (Foster, 1993), which assumes diffusive mass transport. Therefore the model constrains the diffusive fluxes of Ca, Mg, Al and Si by mass balance and the local Gibbs

  8. Multistage metasomatism in lithospheric mantle beneath V. Grib pipe (Arkhangelsk diamondiferous province, Russia): evidence from REE patterns in garnet xenocrysts.

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Alexei, Agashev; Nikolai, Pokhilenko

    2015-04-01

    150 garnet xenocrysts from V. Grib kimberlite pipe were analyzed for major and trace elements compositions. 70 % of garnet belong to lherzolite field; 14 % - megacrysts and pyroxenites; 11 % - eclogites; 4 % - harzburgite; 1 % (1- wehrlite defined by Sobolev (1973). Harzburgite garnets: sinusoidal REE patterns Smn/Ern > 5 (5.2 - 19.8). low Y (0.5 - 3.9 ppm), Zr (1.1 - 44.6 ppm), Ti (54 - 1322 ppm). Wehrlite garnetd: close to sinusoidal REE patterns, Smn/Ern - 1.8. Megacrysts and pyroxenites garnets: normal REE patterns Smn/Ern < 1 (0.2 - 0.6), high TiO2 (0.9 - 1.3 wt %). Lherzolite garnets 70 % show four groups of REE patterns similar to peridotite xenoliths (Shchukina et al., 2013, 2015). 1-st contains MREE at С1 level, Sm/Ern - 0.03, La/Ybn - 0.002. increasing La -Yb range, low Y, Zr, Ti indicating residual nature. 2-nd: MREE at 2 - 13 chondrite units, Smn/Ern (0.16 - 0.98), La/Ybn - 0.001 - 0.040 and flat pattern from MREE to HREE. 3-rd -MREE at 5 - 14 chondrite units, Sm/Ern > 1 (1.05 - 4.81) La/Ybn - 0.010-0.051 increasing an hump at MREE decreasing to HREE. 4-th: sinusoidal REE, Sm/Ern 4.2 - 27.2. and harzburgite Y, Zr, Ti . Average Cr2O3 content increases from 2-nd to the 3-rd group (3.3 to 5.7 wt%) and 4th (7.9 wt %). Average Y/Zr decreases from 2-nd (0.6) to 3rd (0.2) and 4th group (0.08). REE and Y, Zr, Ti indicate the metasomatic origin of garnets of 2, 3. 4 groups. Modeling of TREfor equilibrated melts and fractional crystallization 2nd group close to Turyino field basalts and 3-rd - to Izmozero field picrites of Arkhangelsk diamondiferous province (ADP). Basing on geochemical data of garnet xenocrysts and garnets and clinopyroxenes in peridotites (Shchukina et al., 2013, 2015) we suppose at least 3 stage of high-temperature metasomatic enrichment. 1st stage - is enrichment of residual garnets (found only in peridotite garnets) in LREE by the influence of carbonatite melt close to the Mela field carbonatites of ADP. REE patterns in clinopyroxenes from

  9. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  10. Optical properties of bismuth and gallium substituted thulium iron garnet films

    NASA Astrophysics Data System (ADS)

    Gerhardt, R.; Sure, S.; Dötsch, H.; Linkewitz, T.; Tolksdorf, W.

    1993-09-01

    Bismuth and gallium substituted films of thulium iron garnet, grown by liquid phase epitaxy on [111] oriented substrates of gadolinium gallium garnet, are investigated for optical isolator applications. At a wavelength of λ = 1.3 μm the optical damping, the refractive index, the optical anisotropy, and the Faraday rotation are measured as function of the substitution level. It turns out that the growth induced optical anisotropy is very small, similar to the magnetic anisotropy. The observed difference between forward and backward propagation constants of TM modes is in excellent agreement with calculations.

  11. Wear performance of garnet aluminium composites at high contact pressure

    NASA Astrophysics Data System (ADS)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  12. Defining conditions of garnet growth across the central and southern Menderes Massif, western Turkey

    NASA Astrophysics Data System (ADS)

    Etzel, T. M.; Catlos, E. J.; Kelly, E. D.; Cemen, I.; Ozerdem, C.; Atakturk, K. R.

    2017-12-01

    Here we apply thermodynamic modeling using Theriak-Domino to garnet-bearing rocks from the central and southern portions of the Menderes Massif to gain insight into the dynamics of western Turkey as the region experienced a transition from collisional to extensional tectonics. To this end, we report new pressure-temperature (P-T) paths from garnet-bearing rocks collected along the Alasehir detachment fault, a prominent exhumation structure in the central portion of the Menderes Massif in western Turkey, constituting the southern margin of the Alasehir Graben. These paths are compared to those from the Selimiye shear zone in the Southern (Cine) Massif. Two Alasehir garnets collected from the same outcrop record two P-T paths: 1) a prograde path beginning at 565oC and 6.4 kbar increasing to 592 oC and 7.5 kbar; and 2) near isobaric growth initiating at 531oC and 7.1 kbar and terminating at 571oC and 7.3 kbar. High-resolution P-T paths could not be modeled for the majority of Alasehir samples due to diffusional modification of garnet. However, conditions were estimated by garnet isopleth thermobarometry at the point of highest spessartine content for each crystal. Calculated P-T values for this subset of samples range between 566-651oC and 6.2-6.8 kbar. Despite this broad range, these P-T conditions are consistent with what is observed in the modeled paths. Th-Pb ages of matrix monazite range from 35.8±3.0 to 20.6±2.4 Ma, suggesting metamorphism in the central Menderes Massif occurred over a 15 m.y. period. Selimiye shear zone rocks show distinct N-shaped P-T paths, suggesting garnets in the central and southern portion of the Menderes Massif record distinctly different tectonic histories.

  13. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  14. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the

  15. Rare earth element abundances in rocks and minerals from the Fiskenaesset Complex, West Greenland. [comparison with lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Henderson, P.; Fishlock, S. J.; Laul, J. C.; Cooper, T. D.; Conard, R. L.; Boynton, W. V.; Schmitt, R. A.

    1976-01-01

    The paper reports activation-analysis determinations of rare-earth-element (REE) and other trace-element concentrations in selected rocks, plagioclase, and mafic separates from the Fiskenaesset Complex. The REE abundances are found to be very low and atypical in comparison with other terrestrial anorthosites. The plagioclases are shown to be characterized by a deficiency in heavy RE elements relative to light ones and a positive Eu anomaly, while the mafic separates are enriched in heavy rare earths and have no Eu anomaly, except in one sample. It is found that the bulk and trace-element abundances of the plagioclases are similar to those observed in some lunar anorthosites, but the degree of Eu anomaly is less in the plagioclases. The data are taken as confirmation of the idea that fractionation processes were involved in the origin of the Complex, and it is concluded that the Complex may have been produced from a magma generated by partial melting of a garnet-bearing source.

  16. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range

  17. Origin of sapphirine- and garnet-bearing clinopyroxenite xenoliths entrained in the Jiande basalts, SE China

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Zhang, Hong-Fu; Liang, Zi; Su, Ben-Xun; Zhu, Bin; Sakyi, Patrick Asamoah

    2018-04-01

    We present petrological and geochemical data of sapphirine- and garnet-bearing clinopyroxenite xenoliths entrained in the Jiande Cenozoic basalts, SE China, to investigate their igneous and metamorphic history, and reconstruct of the thermal-tectonic evolution of the lithospheric mantle. These xenoliths have an unusual mineral association consisting of clinopyroxene + garnet/kelyphite + spinel (±sapphirine). Clinopyroxene has high Mg# (89-93) and displays convex-upward REE pattern. Garnet, partially to completely kelyphitized, is rich in pyrope end-member. It usually includes relics of spinel, suggesting that garnet was formed at the expense of spinel. The spinel has high MgO (20.8-22.9 wt%) and Al2O3 (64.8-67.9 wt%) contents. Sapphirine, forming a rim on spinel, has homogeneous SiO2 (14.5-14.9 wt%), Al2O3 (60.9-61.7 wt%) and MgO (19.7-20.1 wt%) contents, interpreted to be of metamorphic origin. The subsolidus reaction for the formation of sapphirine is as follows: spinel + garnet = sapphirine + clinopyroxene + orthopyroxene. Thus, the earliest mineral assemblage recorded in these xenoliths was spinel + clinopyroxene. The clinopyroxene in the Jiande clinopyroxenite xenoliths has Li abundances (1.04-1.63 ppm) similar to high-P mafic cumulate but much lower than those in crustal eclogite. In addition, the clinopyroxene and garnet do not show positive Eu anomalies. Therefore, the protolith of these three clinopyroxenite xenoliths was most likely a pyroxenite, originating as clinopyroxene + spinel cumulates from mafic melts percolating through the mantle. Many reaction textures such as formation of garnet and sapphirine were developed during decompression possibly coupled with cooling and melt percolation. During this process, the earlier composition of clinopyroxene and spinel also changed. The latest P-T conditions recorded in these xenoliths were at pressure of 8-10 kbar and temperatures of 1069-1094 °C. These observations imply that these rocks have been

  18. Determination of Azimuth Angle at Burnout for Placing a Satellite Over a Selected Earth Position

    NASA Technical Reports Server (NTRS)

    Skopinski, T. H.; Johnson, Katherine G.

    1960-01-01

    Expressions are presented for relating the satellite position in the orbital plane with the projected latitude and longitude on a rotating earth surface. An expression is also presented for determining the azimuth angle at a given burnout position on the basis of a selected passage position on the earth's surface. Examples are presented of a satellite launched eastward and one launched westward, each passing over a selected position sometime after having completed three orbits. Incremental changes from the desired latitude and longitude due to the earth's oblateness are included in the iteration for obtaining the azimuth angles of the two examples. The results for both cases are then compared with those obtained from a computing program using an oblate rotating earth. Changes from the selected latitude and longitude resulting from incremental changes from the burn-out azimuth angle and latitude are also analyzed.

  19. U-Pb Geochronology of Grandite Skarn Garnet: Case Studies From Jurassic Skarns of California

    NASA Astrophysics Data System (ADS)

    Gevedon, M. L.; Seman, S.; Barnes, J.; Stockli, D. F.; Lackey, J. S.

    2016-12-01

    We present 3 case studies using a new method for U-Pb dating grossular-andradite (grandite) skarn garnet via LA-ICP-MS (Seman et al., in prep). Grandite is commonly rich in U, with high Fe3+ contents generally correlating with higher U concentrations. Micron-scale non-radiogenic Pb heterogeneities allow for regression of age data using Tera-Wasserberg concordia. Although others have dated accessory skarn minerals, garnet U-Pb ages are powerful because garnet grows early and is nearly ubiquitous in skarns, resists alteration, and provides a formation age independent of that of the causative pluton. The Darwin stock (Argus range, eastern CA) was likely a short-lived, single pulse of magmatism, genetically related to the Darwin skarn. A robust skarn garnet U-Pb age of 176.8 ± 1.3 Ma agrees well with the pluton U-Pb zircon age of 175 Ma (Chen and Moore, 1982). Furthermore, zircon separated from, and in textural equilibrium with, exoskarn garnetite yields a U-Pb age of 176.8 ± 1 Ma. Such agreement between plutonic and skarn zircon ages with a skarn garnet age in a geologically simple field area is the ideal scenario for establishing grandite U-Pb as a viable tool for directly dating skarns. The Black Rock skarn (BRS; eastern CA) is more complex: multiple plutons and ambiguous field relations complicate determination of a causative pluton. A skarn garnet U-Pb age of 172.0 ± 3 Ma confirms a middle Jurassic BRS formation age. Investigation of 4 local plutons yield zircon U-Pb ages of 222 ± 3 Ma, 213 ± 4 Ma, 207 ± 4 Ma and 176.2 ± 2 Ma. Comparison of the skarn garnet U-Pb and pluton ages suggest the BRS is genetically related to the youngest pluton, providing basis for further field and geochemical investigation. The Whitehorse skarn (WS; Mojave Desert, CA) lies in an important region for studying the changing tectono-magmatic regime of the Jurassic North American Cordillera; basin fill suggests a tectonically-controlled oscillating regional shoreline (Busby, 2012

  20. Size-Selective Modes of Aeolian Transport on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars

  1. Sm-Nd dating of multiple garnet growth events in an arc-continent collision zone, northwestern U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Getty, Stephen R.; Selverstone, Jane; Wernicke, Brian P.; Jacobsen, Stein B.; Aliberti, Elaine; Lux, Daniel R.

    1993-03-01

    Integrated petrologic and Sm-Nd isotopic studies in garnet amphibolites along the Salmon River suture zone, western Idaho, delineate two periods of amphibolite grade metamorphism separated by at least 16 million years. In one amphibolite, P-T studies indicate a single stage of metamorphism with final equilibration at ˜600°C and 8 9 kbar. The Sm-Nd isotopic compositions of plagioclase, apatite, hornblende, and garnet define a precise, 8-point isochron of 128±3 Ma (MSWD=1.2) interpreted as mineral growth at the metamorphic peak. A40Ar/39Ar age for this hornblende indicates cooling through ˜525°C at 119±2 Ma. In a nearby amphibolite, garnets with a two-stage growth history consist of inclusion-rich cores surrounded by discontinuous, inclusion-free overgrowths. Temporal constraints for core and overgrowth development were derived from Sm-Nd garnet — whole rock pairs in which the garnet fractions consist of varying proportions of inclusion-free to inclusion-bearing fragments. Three garnet fractions with apparent “ages” of 144, 141, and 136 Ma are thought to represent mixtures between late Jurassic (pre-144 Ma) inherited radiogenic components preserved within garnet cores and early Cretaceous (˜128 Ma) garnet overgrowths. These observations confirm the resilience of garnet to diffusive exchange of trace elements during polymetamorphism at amphibolite facies conditions. Our geochronologic results show that metamorphism of arc-derived rocks in western Idaho was episodic and significantly older than in arc rocks along the eastern margin of the Wrangellian Superterrane in British Columbia and Alaska. The pre-144 Ma event may be an expression of the late Jurassic amalgamation of marginal oceanic arc-related terranes (e.g., Olds Ferry, Baker, Wallowa) during the initial phases of their collision with North American rocks. Peak metamorphism at ˜128 Ma reflects tectonic burial along the leading edge of the Wallowa arc terrane during its final penetration and

  2. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  3. Trace element zoning as a record of chemical disequilibrium during garnet growth

    NASA Astrophysics Data System (ADS)

    Chernoff, Carlotta B.; Carlson, William D.

    1999-06-01

    Trace element concentrations in pelitic garnets from the Picuris Range of New Mexico display precipitous changes coincident with abrupt variations in Ca concentration. These patterns probably arise from the transitory participation of different trace element enriched phases in the garnet forming reaction. Changes in the reactant and product assemblages occur at different times during the reaction history for crystals of different size, so they cannot be the result of any event affecting the entire rock, such as a change in pressure, temperature, or fluid composition. Instead, they reflect kinetic factors that cause Ca, Y, Yb, P, Ti, Sc, Zr, Hf, Sr, Na, and Li to fail to achieve chemical equilibrium during garnet growth. Caution is needed to avoid misinterpreting excursions in the concentration of these elements as event markers recording simultaneous rockwide changes in intensive parameters, when in fact they may record transient disequilibrium states that are local in scope, and not contemporaneous.

  4. Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Mihalceanu, Laura; Vasyuchka, Vitaliy I.; Bozhko, Dmytro A.; Langner, Thomas; Nechiporuk, Alexey Yu.; Romanyuk, Vladyslav F.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    Low-energy consumption enabled by charge-free information transport, which is free from Joule heating, and the ability to process phase-encoded data through the use of nanometer-sized interference devices operating at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons—spin-wave quanta—is of high relevance for the fields of magnonics, magnon spintronics, and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wave numbers from zero up to 6 ×105rad cm-1 was experimentally investigated in the temperature range from 20 to 340 K in single-crystal yttrium iron garnet (YIG) films of different thickness epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal—the magnonic materials featuring the lowest magnetic damping thus far known. Due to magnon-magnon interactions, the relaxation rate of the parametric magnons increases with an increase of their wave numbers. In the thinner samples, this increase is less pronounced, which can be associated with a stronger quantization of their magnon spectra. For the YIG films, we have found a significant increase in the magnon relaxation rate below 150 K—up to eight times the reference value at 340 K—in the entire range of probed wave numbers, which is in direct opposition to that in ultrapure YIG crystals. This increase is related to rare-earth impurities contaminating the YIG samples with a slight contribution caused by the coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures.

  5. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  6. Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA

    USGS Publications Warehouse

    Whitney, P.R.; Olmsted, J.F.

    1998-01-01

    Wollastonite ores and garnet-pyroxene skarns in the Willsboro-Lewis district, New York, USA were formed in a complex hydrothermal system associated with the emplacement of a large anorthosite pluton. Contact-metamorphic marbles were replaced by wollastonite, garnet, and clinopyroxene during infiltration metasomatism involving large volumes of water of chiefly meteoric origin. Rare earth elements (REE) in these rocks show large departures from the protolith REE distribution, indicative of substantial REE mobility. Three types of chondrite-normalized REE distribution patterns are present. The most common, found in ores and skarns containing andradite-rich garnet, is convex-up in the light REE (LREE) with a maximum at Pr and a positive Eu anomaly. Europium anomalies and Pr/Yb ratios are correlated with X(Ad) in garnet. This pattern (type C) results from uptake of REE from hydrothermal fluids by growing crystals of calcsilicate minerals, principally andradite, with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet X sites. The Eu anomaly results either from prior interaction of the fluids with plagioclase-rich, Eu-positive anorthositic rocks in and near the ore zone, or by enrichment of divalent Eu on growth surfaces of garnet followed by entrapment, or both. Relative enrichment in heavy REE (type H) occurs in ores and skarn where calcsilicates, including grossularitic garnet, in contact-metamorphic marble have been concentrated by dissolution of calcite. In most cases a negative Eu anomaly is inherited from the marble protolith. Skarns containing titanite and apatite exhibit high total REE, relative light REE enrichment, and negative Eu anomalies (type L). These appear to be intrusive igneous rocks (ferrodiorites or anorthositic gabbros) that have been converted to skarn by Ca metasomatism. REE, sequestered in titanite, apatite, and garnet, preserve the approximate REE distribution pattern of the igneous protolith. Post

  7. Magnetic and fluorescence properties of cerium-doped yttrium gadolinium aluminum iron garnet crystals

    NASA Astrophysics Data System (ADS)

    Aoki, Daichi; Shima, Mutsuhiro

    2014-11-01

    Magnetic and fluorescence properties of chemically synthesized Ce:Gd-YAIG (Ce0.05GdxY2.95-xAl5-yFeyO12) nanocrystals have been investigated. The structural characterization by X-ray diffraction (XRD) shows that a garnet phase has been identified in samples with 0 ≤ x ≤ 2.95 and 0 ≤ y ≤ 3.0. When y = 0, only garnet peaks are observed for 0 ≤ x ≤ 2.5, while both garnet and perovskite phases are present for x > 2.5. It is found from XRD Rietveld analyses that the site occupancy of Fe3+ at the tetrahedral and octahedral sites in the garnet is independent of the amount of Y3+ substituted by Ce3+ and Gd3+ at the dodecahedral sites. The saturation magnetization for the sample with x = 0 and y = 3.0 is 4.35 emu/g, while that with x = 2.5 and y = 3.0 is 87.5 emu/g. When the Fe3+ composition y is varied from 0 to 3.0 at x = 2.5, the intensity of fluorescence at the emission wavelength ˜570 nm significantly decreases presumably due to absorption by Fe3+ that is increased in the crystal.

  8. Garnet breakdown in some deep seated garnetiferous xenoliths from the central Sierra Nevada: Petrologic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit

    1991-06-01

    Garnets in garnetiferous xenoliths from Big Creek, Pick and Shovel and Chinese Peak volcanic pipes, occurring along the axial region of the Sierra Nevada batholith, have broken down to variable degrees to optically opaque and extremely fine-grained kelyphitic rims and seams. In some cases, only opaque pseudomorphs of garnet remain; in others, garnet occurs only as a tiny relict within an opaque mass; in still others, the kelyphite forms a rim and pervades the garnet grain in a complex reticulate fashion. Backscattered-electron imaging and electron microprobe analyses reveal that the unaltered portions of garnets exhibit negligible compositional variations. The unaltered portion is often surrounded by a resorbed rim whose composition is slightly different from that of the bulk garnet; however no systematic difference occurs between the compositions of resorbed rims and those of the unaltered garnets. Around the resorbed rim, lies a zone composed of symplectic intergrowths of aluminous spinel, aluminous orthopyroxene and calcic plagioclase (An 91). Compositions of the symplectite spinels and orthopyroxenes are different from the compositions of those occurring as major discrete phases in the rocks. The possibility that the kelyphites results from oxidation is ruled out. Two alternatives for the origin of these kelyphites seem viable. In the first, they are the result of isochemical decomposition of garnet due to transport by the host lavas from depth to the surface. In the second, they are produced by breakdown and retrogression of garnet due to tectonic transport of the precursor rocks from high P- T conditions to lower P- T conditions before their incorporation into the host volcanics. The second alternative is favored and is supported by the following arguments: (1) Decompression due to transport of the xenoliths by the volcanics should essentially take place along an adiabat and would most likely cause partial melting. No melt phase was found in the symplectites

  9. Fluid-induced Crystallization of Majoritic Garnet During Deep Continental Subduction (Western Gneiss Region, Norway)

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Pettke, T.; van Roermund, H. L.

    2008-12-01

    In ultrahigh pressure (UHP) rocks, garnet containing pyroxene exsolutions derives from breakdown of majorite crystallized at depths > 200 km. Presence of microdiamonds in some of these rocks [1], including those of the Western Gneiss Region (WGR) of Norway [2], may suggest a fluid-bearing environment for the genesis of majorite. The WGR UHP gneisses host garnet peridotite and websterite recording uplift from extraordinary depths prior to uptake in a subducting slab [2]. These ultramafic rocks (islands of Otrøy and Bardane) derive from depleted Archean transition-zone mantle (350 km depth) upwelled and accreted to a cratonic lithosphere (M2 stage). Evidence for this are decimetric garnets (grt) preserved in Otrøy, hosting up to 20 volume% orthopyroxene (opx) and clinopyroxene (cpx) exsolved from precursor majoritic garnet (M1 stage). The pyroxene lamellae (20-30 ¥ìm thick, hundreds of ¥ìm long) [3] were exsolved under high-T, as shown by the garnet/cpx REE distribution [4]. This Archean-mid Proterozoic record is overprinted by the 425- 390 Ma Scandian continental subduction (M3 stage), forming new grt + cpx + opx + phlogopite (phl) + spinel (sp) that contain diamond-bearing micro-inclusions witnessing deep COH subduction fluids [2]. Here we document formation of new majoritic garnet in the M3 assemblage and in veins at Bardane [5]. Textural characteristics, together with the LREE and LILE enrichments of the M3 minerals, indicate that the new majorite is linked to infiltration of subduction fluids during renewed burial towards sub-lithospheric depths. It represents the deepest occurrence of fluid-related microstructures in mantle rocks. The new majoritic garnet crystallized at grain boundaries and in micro-veins at 7 Gpa and 900-1000 °C. It hosts thin pyroxene needles (5 mm thick, 100 mm long) exsolved under comparatively low-T, as indicated by the garnet/cpx REE distribution. The trace element signature of the majorite-bearing subduction assemblage is LREE

  10. Single and multiphase inclusions in metapelitic garnets of the Rhodope Metamorphic Province, NE Greece.

    PubMed

    Mposkos, Evripidis; Perraki, Maria; Palikari, Sarra

    2009-08-01

    Single and multiphase inclusions in garnet porphyroblasts from the diamond-bearing pelitic gneisses were studied by means of combined Raman Spectroscopy and Electron Scanning Microscopy (SEM/EDX). They are either randomly distributed or with preferred orientation within the garnet host and their dimensions vary from less than 5 up to 60 microm. In the single-phase inclusions quartz, rutile, kyanite and graphite dominate. Biotite, zircon, apatite, monazite and allanite are also common. Two types of multiphase inclusions were recognized, hydrous silicate (Type I) and silicate-carbonate (Type II) ones. The carbon-bearing multiphase inclusions predominantly consist of Mg-siderite+graphite+CO(2)+muscovite+quartz formed by a high density carboniferous fluid rich in Fe, Mg, Si and less Ca, Mn, Al and K trapped in the growing garnet in a prograde stage of metamorphism at high-pressure (HP) conditions. The carbon-free multiphase inclusions predominantly consist of biotite+quartz+rutile+/-kyanite+muscovite formed through decompression-dehydration/melting reactions of pre-existing phengite. Single and multiphase inclusions are characterized by polygonal to negative crystal shape formed by dissolution-reprecipitation mechanism between the garnet host and the inclusions during the long lasting cooling period (>100 Ma) of the Kimi Complex.

  11. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium

    NASA Astrophysics Data System (ADS)

    Hofstetter, Kyle; Samson, Alfred Junio; Narayanan, Sumaletha; Thangadurai, Venkataraman

    2018-06-01

    Fast lithium-ion conducting garnet-type metal oxides are promising membranes for next-generation all-solid-state Li batteries and beyond Li-ion batteries, including Li-air and Li-S batteries, due to their high total Li-ion conductivity and excellent chemical stability against reaction with elemental Li. Several studies have been reported on structure-chemical composition-ionic conductivity property in Li-stuffed garnet-type metal oxides. Here, an overview of the chemical and electrochemical stability of lithium-based garnets against moisture/humidity, aqueous solutions, carbon dioxide, sulfur, and metallic lithium are analyzed. Moisture and aqueous stability studies focus on understanding the crystal structure stability, the proton exchange capacity as a function of Li content in Li-stuffed garnets, and how the protonated species affect the crystal structure and mass transport properties. H+/Li+ exchange was found to be in the range of 2-100%. Stability concerning Li-ion conductivity and morphology under carbon dioxide are discussed. Interfacial chemical stability with lithium metal characterized by electrochemical stability window, Li dendrite formation and area specific resistance (ASR) for the reaction Li ⇌ Li+ +e- are presented. Recent attempts to suppress dendrite formation and to reduce ASR via surface modification are also highlighted. Li and Li-stuffed garnet interface ASR values are shown to be as high as >2000 Ω cm2 and as low as 1 Ω cm2 at room temperature for surface modified Li-stuffed samples. Furthermore, recent studies on Li-S battery utilizing chemically stable Li - garnet electrolyte are also discussed.

  12. H partitioning between NAMs in garnet-bearing peridotite at subsolidus conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S. A.; Shcheka, S.; Denis, C. M. M.; Thoraval, C.

    2017-12-01

    Hydrogen distribution between nominally anhydrous minerals (NAMs) of a garnet-lherzolite under subsolidus conditions has been investigated. Separated NAMs from a garnet-peridotite from Patagonia (Chile) are annealed together (olivine, orthopyroxene, clinopyroxene and garnet) using a piston-cylinder at 3 GPa and 1100 °C using talc-Pyrex cell assembly for 10, 25 and 100 hours. The talc-pyrex assembly provides enough hydrogen in the system to re-equilibrate the hydrogen concentrations at high pressure. The three co-existing nominally anhydrous minerals (NAMs, i.e., olivine, orthopyroxene and clinopyroxene) were successfully analyzed using FTIR. The resulting hydrogen concentrations exceed significantly the initial hydrogen concentration by a factor of 13 for olivine and a factor of 3 for both pyroxenes. Once mineral-specific infrared calibrations are applied, the average concentrations in NAMs are 115±12 ppm wt H2O for olivine, 635±75 ppm wt H2O for orthopyroxene and 1214±137 ppm wt H2O for clinopyroxene, garnet grains are dry. Since local equilibrium seems achieved over time (for 100 hours), the calculated concentration ratios are interpreted as mineral-to-mineral hydrogen partition coefficients (i.e., Nernst `s law) for a garnet-peridotite assemblage. It yields, based on mineral-specific infrared calibrations, Dopx/ol=5±1, Dcpx/ol= 10±2, and Dcpx/opx=1.9±0.4. While Dcpx/opx is in agreement (within error) with previous results from experimental studies and concentration ratios observed in mantle-derived peridotites, the Dpx/ol from this study are significantly lower than the values reported from mantle-derived xenoliths and also at odd with several previous experimental studies where melt and/or hydrous minerals co-exists with NAMs. The results confirm the sensitivity of hydrogen incorporation in olivine regarding the amount of water-derived species (H) in the system and/or the amount of water in the co-existing silicate melt. The results are in agreement with

  13. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract)

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.

    1991-04-01

    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  14. NASA selects scientific investigations for Earth dynamics studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Forty two domestic investigators affiliated with U.S. universities, governmental agencies, or private concerns and 14 investigators from France, West Germany, the Netherlands, Switzerland, Spain, Sweden, Australia, New Zealand, Venezuela, and Canada were selected to use precise geodetic data obtained by laser ranging and very long base interferometry in a study of the Earth's tectonic plate movement, crustal deformation, and rotational dynamics. The studies to be made and the principal investigators for each are listed.

  15. Rb-Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps

    NASA Astrophysics Data System (ADS)

    de Meyer, Caroline M. C.; Baumgartner, Lukas P.; Beard, Brian L.; Johnson, Clark M.

    2014-06-01

    The Zermatt-Saas Fee Zone (ZSZ) was subducted to eclogite-facies conditions, reaching peak pressures and temperatures of 20-28 kbar and 500-630 °C. The rocks were partially overprinted under greenschist-facies conditions during exhumation. Previous Rb-Sr isochron ages obtained on matrix phengites in metasediments of the ZSZ have been interpreted to date early exhumation of the ZSZ. Here we present new Rb-Sr geochronology on phengite inclusions in garnets to date prograde growth of garnets. We show that garnet acted as a shield for the included phengites, limiting Rb and Sr isotope exchange with the bulk rock, upon complete enclosure of the mica, during garnet growth, even if peak metamorphism exceeded the Rb-Sr blocking temperature. Similarly, garnet isolated the micas from the matrix during subsequent recrystallization due to fluid infiltration or deformation during exhumation. Phengite inclusion ages for two metapelitic samples from the same locality (Triftji) are 44.86±0.49 Ma and 43.6±1.8 Ma, and are about 4 m.y. older than the corresponding matrix mica ages of 40.01±0.51 Ma and 39.5±1.1 Ma, respectively. The results confirm previous Sm-Nd and Lu-Hf geochronology on the ZSZ that indicated protracted garnet growth during prograde metamorphism, and confirm that at least parts of the ZSZ underwent peak metamorphic HP conditions less than 43 m.y. ago, followed by rapid exhumation to upper greenschist-facies conditions around 40 Ma ago.

  16. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Prusa, P.; Kucera, M.; Mares, J. A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M.

    2013-10-01

    (Lu,Y,Gd)3(Al,Ga)5O12:Ce garnet scintillator single crystalline films were grown onto LuAG, YAG and GGG substrates by liquid phase epitaxy method. Absorption, radioluminescence spectra and photoluminescence excitation, emission spectra, and decay kinetics were measured. Photoelectron yield, its dependence on amplifier shaping time and energy resolution were determined to evaluate scintillation performance. Most of the samples exhibited strong UV emission caused by trapped excitons and/or Gd3+ 4f-4f transition. However, emission spectrum of the best performing Gd2YAl5O12:Ce is dominated by the Ce3+ fast 5d-4f luminescence. This sample has outperformed photoelectron yield of all the garnet films studied so far.

  17. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  18. Yttrium geothermometry: an approach to determine the oldest garnet growth recrystallization conditions from micaschists (Yunquera Unit, Betic Cordilleras, southern Spain

    NASA Astrophysics Data System (ADS)

    Esteban, J. J.; Cuevas, J.; Tubía, J. M.; Gil Ibarguchi, J. I.

    2012-04-01

    The garnet-xenotime geothermometry is nowadays been using as a tool to identify low-grade relic garnets and even to calculate garnet growth temperatures in metapelites that have undergone a polymetamorphic evolution (Pyle and Spear, 2000; Borghi et al., 2006). A prograde metamorphic evolution, under continuously increasing temperature, can induce garnet and accompanying phase's composition homogenization by intra-crystalline diffusion, leading to flat zoning profiles. Consequently, the application of conventional geothermobarometers on those mineral assemblages does establish minimum P-T conditions. Therefore, the less susceptible elements to diffusion processes, like trace elements, should be taken into account in order to reconstruct their metamorphic evolution. We studied a polymetamorphic micaschist recovered from the Yunquera Unit, one of the tectonic slices of the Internal Zone of the Betic Cordilleras (southern Spain) (Dürr, 1963). The Yunquera unit evidences three stages of recrystallization at different P-T conditions. According to conventional geothermobarometry (Esteban et al., 2005) the metamorphic peak, M2, is estimated at 1200-1300 MPa and 560-695 °C and the decompression path, M3, at 600 MPa and 700 °C. The lack of mineral paragenesis in apparent chemical equilibrium during M1, does not allow determining accurately its recrystallization conditions. Xenotime, identified by scanning electron microprobe, appears as matrix mineral and therefore the entire garnets are assumed to be in chemical equilibrium with it. Yttrium profiles of two garnets show a mean bell-shape compositional variation that differs significatively from the discontinuous profiles shown by Ca, Mg and Fe. This difference accounts for different diffusion rates for those elements and agree with the original Y-zoning preservation. A third Y-profile shows an oscillatory compositional variation. The internal part of garnets, bounded by sharp inclusion trails, are characterized by sawed

  19. Minor elements, HREE and d18O distribution in UHP garnets from the Dora-Maira massif (western Alps)

    NASA Astrophysics Data System (ADS)

    Brunet, F.; Chazot, G.; Vielzeuf, D.; Chopin, C.

    2003-04-01

    The spatial distribution of minor elements, HREE and δ18O in garnet can be used as a probe of the availability and mobility of those elements and isotopes at the time of crystal growth, provided that the initial record was not significantly modified by intracrystalline diffusion and that growth took place under nearly constant pressure and temperature conditions. Garnets from three different Dora-Maira rock-types have been studied, (1) nearly pure pyrope (GT1) from the magnesian coesite-bearing quartzites, (2) almandine/pyrope dominant garnets (GT2) from jadeite-quartzite veins which crosscut the Mg-quartzite body, (3) almandine/grossular dominant garnets (GT3) from the country-rock gneiss, sampled in the vicinity of the quartzites. In GT1, minor elements are mainly Fe, Na and P. Na and P are incorporated according to a Na^+ + P5+ = Me2+ + Si4+ substitution with P_2O_5 contents up to 2000 to 2500 ppm. HREE concentrations obtained by LA-ICP-MS, vary by 2 orders of magnitude from core to rim. The δ18O ratio (Cameca 1270, Nancy), around 5 ppm (SMOW), is constant within error throughout the analysed crystals. In GT2, the situation is different since HREE concentrations appear remarkably constant within a given crystal and from one crystal to the other. In contrast with GT1, Na in GT2 is partly charge-balanced by yttrium incorporation. The δ18O ratio in GT2 of around 7 ppm is close to that encountered in GT3 (gneiss) between 7 and 8 ppm. In GT3, phosphorus content is close to detection limit (P_2O_5 below 300 ppm). HREE concentrations are highly variable from one crystal to the other and unfortunately, the size of garnet crystals does not allow profiling. Although δ18O ratio in garnet is imposed by the bulk-rock isotopic composition, HREE distribution is dominated by element availability through the fluid composition and/or absence/presence of accessory phases. The decrease in HREE and P concentration from GT1 cores to rims suggest that these elements are

  20. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  1. Longitudinal spin Seebeck effect in various garnet ferrites

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Nonaka, T.; Kikkawa, T.; Kajiwara, Y.; Saitoh, E.

    2013-03-01

    The longitudinal spin Seebeck effect (LSSE) is investigated in various garnet ferrites Y3-xRxFe5-yMyO12 (R=Gd, Ca; M=Al, Mn, V, In, Zr) by means of the inverse spin Hall effect in Pt films. The magnitude of the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples is found to be enhanced with increasing concentration of Fe in the garnet ferrites, which can be explained by a change in the spin-mixing conductance at the Pt/Y3-xRxFe5-yMyO12 interfaces. We also investigate the dependence of the LSSE voltage on macroscopic magnetic parameters of Y3-xRxFe5-yMyO12. The experimental results show that the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples has a positive correlation with the Curie temperature and the saturation magnetization, but no clear correlation with the gyromagnetic ratio and the Gilbert damping constant of the samples.

  2. Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanic arc

    NASA Astrophysics Data System (ADS)

    Samuel, Vinod O.; Kwon, Sanghoon; Santosh, M.; Sajeev, K.

    2018-06-01

    Southern peninsular India preserves records of Late Neoarchean-Early Paleoproterozoic continental building and cratonization. A transect from the Paleoarchean Dharwar Craton to the Neoarchean arc magmatic complex in the Nilgiri Block across the intervening Moyar Suture Zone reveals an arc-accretionary complex composed of banded iron formation (BIF), amphibolite, metatuff, garnet-kyanite schist, metagabbro, pyroxenite and charnockite. Here we investigate the petrology, geochronology and petrogenesis of the pyroxenite and garnet-clinopyroxenite. The pyroxenite is mainly composed of orthopyroxene and clinopyroxene with local domains/pockets enriched in a clinopyroxene-garnet assemblage. Thermobarometric calculations and phase equilibria modeling suggest that the orthopyroxene- and clinopyroxene-rich domains formed at 900-1000 °C, 1-1.2 GPa whereas the garnet- and clinopyroxene-rich domains record higher pressure of about 1.8-2 GPa at similar temperature conditions (900-1000 °C). Zircon U-Pb SHRIMP dating show weighted mean 207Pb-206Pb age of 2532 ± 22 Ma, with metamorphic overgrowth at 2520 ± 27 Ma and 2478 ± 27 Ma. We propose a tectonic model involving decoupling and break-off of the oceanic plate along the southern flanks of the Dharwar Craton, which initiated oceanic plate subduction. Slab melting eventually built the Nilgiri volcanic arc on top of the over-riding plate along the flanks of the Dharwar Craton. Our study supports an active plate tectonic regime at the end of the Archean Era, aiding in the growth of paleo-continents and their assembly into stable cratons.

  3. Garnet peridotites from Williams kimberlites, north-central Montana, U.S.A

    USGS Publications Warehouse

    Hearn, B.C.; McGee, E.S.

    1983-01-01

    Two Williams kimberlites, 250x350m and 37x390m, in the eastern part of a swarm of 30 middle Eocene alnoitic diatremes in north-central Montana, USA, contain xenoliths of garnet-bearing lherzolites, harzburgites and dunites, in addition to spinel peridotites and upper and lower crustal amphibolites and granulites. Colluvial purple, red, and pink garnets are dominantly Mg- and Cr-rich, indicating their derivation From peridotites or megacrysts, and have CaO and Cr2O3 contents that fall in the lherzolite trend. Temperatures were calculated by the Lindsley-Dixon 20 kb method for lherzolites and by the O'Neill-Wood method for harzburgites and dunites, and pressures were calculated by the MacGregor method, or were assumed to be 50 kb for dunites. Most peridotites equilibrated at 1220-1350?C and 50-60 kb, well above a 44mW/m2 shield geotherm and on or at higher P than the graphite-diamond boundary. Four lherzolites are low T-P (830-990?C, 23-42 kb) and are close to the shield geotherm. All four low T-P lherzolites have coarse textures whereas the high T-P cluster has both coarse and porphyroclastic textures, indicating a range of conditions of deformation and recrystallization in a restricted high T-P range. The tiny size (0.01-0.2 mm) of granulated and euhedral olivines in several xenoliths shows that deformation was occurring just prior to incorporation in kimberlite and that ascent was rapid enough (40-70 km/hr) to retard Further coarsening of fine-grained olivine. For other high T-P peridotites, cessation of deformation and beginning of recrystallization before or during inclusion in kimberlite is suggested by larger (up to 3mm) euhedral olivines in a matrix of fine granulated olivine or by optical continuity of large and nearby small olivines. Two low T-P lherzolites contain distinctive, phlogopite-rimmed, 5-8mm clots of moderate-Cr garnet + Cr-spinel + Cr-diopside + enstatite that are inferred to have formed by reaction of an initial high-Cr garnet brought into the

  4. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  5. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review.

    PubMed

    Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana

    2014-07-07

    Batteries are electrochemical devices that store electrical energy in the form of chemical energy. Among known batteries, Li ion batteries (LiBs) provide the highest gravimetric and volumetric energy densities, making them ideal candidates for use in portable electronics and plug-in hybrid and electric vehicles. Conventional LiBs use an organic polymer electrolyte, which exhibits several safety issues including leakage, poor chemical stability and flammability. The use of a solid-state (ceramic) electrolyte to produce all-solid-state LiBs can overcome all of the above issues. Also, solid-state Li batteries can operate at high voltage, thus, producing high power density. Various types of solid Li-ion electrolytes have been reported; this review is focused on the most promising solid Li-ion electrolytes based on garnet-type metal oxides. The first studied Li-stuffed garnet-type compounds are Li5La3M2O12 (M = Nb, Ta), which show a Li-ion conductivity of ∼10(-6) at 25 °C. La and M sites can be substituted by various metal ions leading to Li-rich garnet-type electrolytes, such as Li6ALa2M2O12, (A = Mg, Ca, Sr, Ba, Sr0.5Ba0.5) and Li7La3C2O12 (C = Zr, Sn). Among the known Li-stuffed garnets, Li6.4La3Zr1.4Ta0.6O12 exhibits the highest bulk Li-ion conductivity of 10(-3) S cm(-1) at 25 °C with an activation energy of 0.35 eV, which is an order of magnitude lower than that of the currently used polymer, but is chemically stable at higher temperatures and voltages compared to polymer electrolytes. Here, we discuss the chemical composition-structure-ionic conductivity relationship of the Li-stuffed garnet-type oxides, as well as the Li ion conduction mechanism.

  6. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized

  7. Testing Mechanisms and Scales of Equilibrium Using Textural and Compositional Analysis of Porphyroblasts in Rocks with Heterogeneous Garnet Distributions

    NASA Astrophysics Data System (ADS)

    Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.

    2015-12-01

    Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.

  8. Origins of subcalcic garnets and their relation to diamond forming fluids—Case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Graham Pearson, D.

    2009-02-01

    Subcalcic, high-Cr (G10) garnets are found as inclusions within diamonds and in peridotitic xenoliths. The strong spatial associations between G10 garnets and diamond make them an important tool in the investigation of diamond genesis. We present an integrated study of the major and trace element composition and oxygen-Sr-Nd-Hf isotopic ratios of eight G10 garnets from the Ekati mine (NWT-Canada) and four from the Murowa mine (Zimbabwe) in an attempt to determine their petrogenetic evolution and to further examine a possible relationship between the metasomatic agents responsible for G10 garnet signatures and diamond forming fluids. All garnets display sinusoidal to mildly sinusoidal REE patterns and have negative Ti, Sr and positive U anomalies. They have variably radiogenic 87Sr/ 86Sr (0.703261-0.731191) and non-radiogenic ɛNd values (-8.1 to -27.1), except for one sample from Murowa that has a positive ɛNd of 2.5. One Ekati sample has an extremely low ɛHf value of -61.6. The Ekati garnets we have studied all appear to come from a single depth in the Slave lithospheric mantle. On the base of Cr-Ca relations they have crystallized at 4.9 GPa and display dunitic Ca intercept values. Their δ 18O values range between +5.23‰ and +5.42‰. The Ekati G10 garnets record a complex, multi-stage metasomatic history involving the interaction of several components during their genesis. One metasomatic agent was enriched in HFSE, LREE, Sr, and depleted in Nb. This agent had the least radiogenic Sr. Another metasomatic agent had highly radiogenic Sr, and was enriched in LREE, Sr, Nb, Th and U. The G10 garnets have very low ɛNd and ɛHf values combined with radiogenic Sr, thus, they require an early lithospheric mantle enrichment event at some stage during their genesis or during the evolution of any precursor material that they formed from. The only Hf isotope composition measurable from the Ekati suite is so unradiogenic ( ɛHf = -61) that it yields a Lu/Hf model age of

  9. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-03

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting.

  10. Chemical and oxygen isotope zonings in garnet from subducted continental crust record mineral replacement and metasomatism

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2017-04-01

    Garnet is a key mineral in metamorphic petrology for constraining pressure, temperature and time paths. Garnet can preserve multiple growth stages due to its wide P-T stability field and the relatively slow diffusivity for major and trace elements at sub-solidus temperatures. Pressure-temperature-time-fluid paths of the host rock may be reconstructed by combining metamorphic petrology with microscale trace element and oxygen isotope measurements in garnet. Subduction zones represent relevant geological settings for geochemical investigation of element exchanges during aqueous fluid-rock interactions. The Sesia Zone consists of a complex continental sequence containing a variety of mono-metamorphic and poly-metamorphic lithologies such as metagranitoids, sediments and mafic boudins. The precursor Varisican-Permian amphibolite-facies basement (6-9 kbar 650-850°C; Lardeaux and Spalla, 1991; Robyr et al., 2013) experienced high pressure metamorphism (15-22 kbar 500-550°C; Regis, et al. 2014; Robyr et al., 2013) during Alpine subduction. In different lithologies of the Internal Complex (Eclogitic Micaschist Complex), including metabasites from the Ivozio Complex, Ti-rich metasediments from Val Malone and pre-Alpine Mn-quartzites associated to metagabbros from Cima Bonze, garnet is abundant and shows a variety of complex textures that cannot be reconciled with typical growth zoning, but indicate resorption and replacement processes and possible metasomatism. In-situ, microscale oxygen isotopes analysis of garnet zones was performed by ion microprobe with the SwissSIMS Cameca IMS 1280-HR at University of Lausanne and SHRIMP-SI at the Australian National University. Each sample has a distinct δ18O composition, and the δ18O values show different degrees of variation between domains. Homogeneously low values of < 5‰ are measured in the garnets from the Ivozio Complex metagabbro. Intragrain variations of up to 3.5‰ in the porphyroblasts from Val Malone metasediments

  11. Composition engineering of single crystalline films based on the multicomponent garnet compounds

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Bilski, Paweł; Twardak, Anna; Voznyak, Taras; Sidletskiy, Oleg; Gerasimov, Yaroslav; Gryniov, Boris; Fedorov, Alexandr

    2016-11-01

    The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOsbnd B2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates. We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180-200 ns range.

  12. A Study of Defect Behavior in Almandine Garnet

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tipplet, G.; Rossman, G. R.

    2016-12-01

    Transport and diffusion in crystals are controlled by defects. However, a good understanding of the defect types in many silicates, including garnet, is not at hand. We undertook a study on synthetic almandine, ideal end-member Fe3Al2Si3O12, to better understand its precise chemical and physical properties and defect behavior. Crystals were synthesized at high pressures and temperatures under different fO2 conditions using various starting materials with H2O and without. The almandine obtained came in polycrystalline and single-crystal form. The synthetic reaction products and crystals were carefully characterized using X-ray powder diffraction, electron microprobe and TEM analysis and with 57Fe Mössbauer, UV/VIS single-crystal absorption and IR single-crystal spectroscopy. Various possible intrinsic defects, such as the Frenkel, Schottky and site-disorder types, along with Fe3+, in both synthetic and natural almandine crystals, were analyzed based on model defects expressed in Kröger-Vink notation. Certain types of minor microscopic- to macroscopic-sized precipitation or exsolution phases, including some that are nanosized, that are observed in synthetic almandine (e.g., magnetite), as well as in more compositionally complex natural crystals (e.g., magnetite, rutile, ilmenite), may result from defect reactions. An explanation for their origin through minor amounts of defects in garnet has certain advantages over other models that have been put forth in the literature that assume strict garnet stoichiometry for their formation and/or open-system atomic transport over relatively long length scales. Physical properties, including magnetic, electrical conductivity and diffusion behavior, as well as the color, of almandine are also analyzed in terms of various possible model defects. It is difficult, if not impossible, to synthesize stoichiometric end-member almandine, Fe3Al2Si3O12, in the laboratory, as small amounts of extrinsic OH- and/or Fe3+ defects, for example

  13. Mission requirements for a manned earth observatory. Volume 1, task 1: Experiment selection, definition, and documentation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information related to proposed earth observation experiments for shuttle sortie missions (SSM) in the 1980's is presented. The step-wise progression of study activities and the development of the rationale that led to the identification, selection, and description of earth observation experiments for SSM are listed. The selected experiments are described, defined, and documented by individual disciplines. These disciplines include: oceanography; meteorology; agriculture, forestry, and rangeland; geology; hydrology; and environmental impact.

  14. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{submore » 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).« less

  15. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  16. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Scooter D., E-mail: scooter.johnson@nrl.navy.mil; Glaser, Evan R.; Cheng, Shu-Fan

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques.more » We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.« less

  17. Investigating the origins of rhythmic major-element zoning in HP/LT garnets from worldwide subduction mélanges

    NASA Astrophysics Data System (ADS)

    Viete, D. R.; Hacker, B. R.; Seward, G.; Allen, M. B.

    2016-12-01

    Rhythmic major-element zoning has been documented in garnets from high pressure/low temperature (HP/LT) lenses within a number of worldwide subduction mélanges (e.g. California, Chinese Tianshan, Cuba, Greek Cyclades, Guatemala, Japan, Venezuela). The origin of these features has implications for the nature of subduction-zone processes. Conditions of rhythmic zoning acquirement in HP/LT garnets of California and Venezuela were investigated by use of Raman and FTIR microspectroscopy, and thermodynamic modelling of phase equilibria. Quartz-in-garnet Raman barometry reveals varying P—on the order of 100­-300 MPa, over radial distances of 10s of µm—in association with the high-Mn (and low-Mg) bands that define the fine-scale rhythmic zoning. Results from FTIR microspectroscopy demonstrate association between the high-Mn bands and locally depressed (structural) OH and elevated (molecular) H2O concentrations. The microspectroscopy results suggest changes in P and fluid activity attended development of the cryptic rhythmic zoning. Perple_X modelling of phase equilibria shows that, for specific rock chemistry and subduction P-T conditions, garnet modal abundance is extremely sensitive to changes in P (e.g. 10-20 vol.% growth/dissolution for ΔP = 200 MPa). Rhythmic major-element zoning may reflect P- and/or fluid-driven cycles of garnet stability-instability and/or varying reaction progress/kinetics during subduction. Steep compositional gradients that define the rhythmic major-element zoning limit time scales at subduction T, requiring that such individual stability-instability and/or accelerated reaction cycles were extremely brief. Seismic cycles or porosity waves represent ephemeral phenomena capable of accounting for development of rhythmic major-element zoning in HP/LT garnet, during subduction, as a result of fluctuations in both P and fluids. Metamorphic rocks may well carry detailed records of the catastrophism that punctuates longer-term tectonometamorphic

  18. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  19. Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Fisher, N. I.; Friedman, J. H.; O'Reilly, Suzanne Y.; Ryan, C. G.

    2002-12-01

    Three novel statistical approaches (Cluster Analysis by Regressive Partitioning [CARP], Patient Rule Induction Method [PRIM], and ModeMap) have been used to define compositional populations within a large database (n > 13,000) of Cr-pyrope garnets from the subcontinental lithospheric mantle (SCLM). The variables used are the major oxides and proton-microprobe data for Zn, Ga, Sr, Y, and Zr. Because the rules defining these populations (classes) are expressed in simple compositional variables, they are easily applied to new samples and other databases. The classes defined by the three methods show strong similarities and correlations, suggesting that they are statistically meaningful. The geological significance of the classes has been tested by classifying garnets from 184 mantle-derived peridotite xenoliths and from a smaller database (n > 5400) of garnets analyzed for >20 trace elements by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS). The relative abundances of these classes in the lithospheric mantle vary widely across different tectonic settings, and some classes are absent or very rare in either Archean or Phanerozoic SCLM. Their distribution with depth also varies widely within individual lithospheric sections and between different sections of similar tectonothermal age. These garnet classes therefore are a useful tool for mapping the geology of the SCLM. Archean SCLM sections show high degrees of depletion and varying degrees of metasomatism, and they are commonly strongly layered. Several Proterozoic SCLM sections show a concentration of more depleted material near their base, grading upward into more fertile lherzolites. The distribution of garnet classes reflecting low-T phlogopite-related metasomatism and high-T melt-related metasomatism suggests that many of these Proterozoic SCLM sections consist of strongly metasomatized Archean SCLM. The garnet-facies SCLM beneath Phanerozoic terrains is only mildly depleted

  20. The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets

    PubMed Central

    Rettenwander, D.; Geiger, C.A.; Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G.

    2015-01-01

    A series of Fe3+-bearing Li7La3Zr2O12 (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and 57Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe3+ pfu could be incorporated in Li7−3xFexLa3Zr2O12 garnet solid solutions. At Fe3+ concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe3+ contents lower than 0.52 Fe3+ pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a0, for all solid-solution garnets is similar with a value of a0≈12.98 Å regardless of the amount of Fe3+. 57Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO3 in syntheses with Fe3+ contents greater than 0.16 Fe3+ pfu. The composition of different phase pure Li7−3xFexLa3Zr2O12 garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li6.89Fe0.03La3.05Zr2.01O12, Li6.66Fe0.06La3.06Zr2.01O12, Li6.54Fe0.12La3.01Zr1.98O12, and Li6.19Fe0.19La3.02Zr2.04O12. The 57Fe Mössbauer spectrum of cubic Li6.54Fe0.12La3.01Zr1.98O12 garnet indicates that most Fe3+ occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe3+ in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li6.54Fe0.12La3.01Zr1.98O12 this Fe3+ has a distorted 4-fold coordination. PMID:26435549

  1. Paramagnetic Ce3 + optical emitters in garnets: Optically detected magnetic resonance study and evidence of Gd-Ce cross-relaxation effects

    NASA Astrophysics Data System (ADS)

    Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, G. R.; Badalyan, A. G.; Romanov, N. G.; Petrosyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2017-06-01

    Paramagnetic Ce3 +optical emitters have been studied by means of optically detected magnetic resonance (ODMR) via Ce3 + spin-dependent emission in cerium-doped garnet crystals which were both gadolinium free and contain gadolinium in a concentration from the lowest (0.1%) to 100%, i.e., to the superparamagnetic state. It has been shown that the intensity of photoluminescence excited by circularly polarized light into Ce3 + absorption bands can be used for selective monitoring the population of the Ce3 + ground-state spin sublevels. Direct evidence of the cross-relaxation effects in garnet crystals containing two electron spin systems, i.e., the simplest one of Ce3 + ions with the effective spin S =1/2 and the system of Gd3 + ions with the maximum spin S =7/2 , has been demonstrated. Magnetic resonance of Gd3 + has been found by monitoring Ce3 + emission in cerium-doped garnet crystals with gadolinium concentrations of 0.1 at. %, 4%-8%, and 100%, which implies the impact of the Gd3 + spin polarization on the optical properties of Ce3 +. Strong internal magnetic fields in superparamagnetic crystals were shown to modify the processes of recombination between UV-radiation-induced electron and hole centers that lead to the recombination-induced Ce3 + emission. Observation of spikes and subsequent decay in the cross-relaxation-induced ODMR signals under pulsed microwave excitation is suggested to be an informative method to investigate transient processes in the many-spin system of Ce3 +, Gd3 +, and electron and hole radiation-induced centers.

  2. Characterisation of a garnet population from the Sikkim Himalaya: implications for the mechanisms and rates of porphyroblast crystallisation

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2016-04-01

    Analysis of porphyroblast distribution in metamorphic rocks yields insight into the processes controlling metamorphic reaction rates. By coupling this textural record with microprobe analysis and phase-equilibria and diffusion modelling, a detailed view of the nucleation and growth history of metamorphic minerals can be obtained. In this study, we comprehensively characterise the 3D distribution and compositional variation of a garnet population in a garnet-grade pelitic schist of the Lesser Himalayan Sequence (Sikkim), in order to investigate both the rates and kinetic controls of porphyroblastic crystallisation. Quantification of the size, shape and spatial distribution of garnet using high-resolution μ-computed X-ray tomography and statistical analysis reveals a log-normal crystal size distribution, systematic variation of aspect ratio with crystal size, and a significantly clustered garnet texture in the study sample. The latter is indicative of interface-controlled nucleation and growth, with nucleation sites controlled principally by a heterogeneous precursor assemblage. At length-scales less than 0.7 mm, there is evidence for adjacent grains that are on average smaller than the mean size of the population; this minor ordering is attributed to secondary redistribution of porphyroblast centers and reduction of crystal sizes due to syn-kinematic growth and resorption, respectively. Geochemical traverses through centrally sectioned garnet crystals of variable size highlight several features: (1) core compositions of even the smallest crystals preserve primary prograde growth zonation, with little evidence for diffusional modification in any crystal size; (2) rim compositions are within error between grains, suggestive of sample-scale equilibration of the growth medium at the time of cessation of crystallisation; (3) different grains of equal radii display equivalent compositional zoning; and (4) gradients of compositional profiles display a steepening trend in

  3. Attainment of Selected Earth Science Concepts by Texas High School Seniors.

    ERIC Educational Resources Information Center

    Rollins, Mavis M.; And Others

    The purpose of this study was to determine whether high school seniors (N=492) had attained each of five selected earth science concepts and if said attainment was influenced by the number of science courses completed. A 72-item, multiple-choice format test (12 items for each concept) was developed and piloted previous to this study to measure…

  4. Magnon Mode Selective Spin Transport in Compensated Ferrimagnets.

    PubMed

    Cramer, Joel; Guo, Er-Jia; Geprägs, Stephan; Kehlberger, Andreas; Ivanov, Yurii P; Ganzhorn, Kathrin; Della Coletta, Francesco; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Kosel, Jürgen; Kläui, Mathias; Goennenwein, Sebastian T B

    2017-06-14

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.

  5. Magnon mode selective spin transport in compensated ferrimagnets

    DOE PAGES

    Cramer, Joel; Guo, Er -Jia; Geprags, Stephan; ...

    2017-04-13

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify themore » magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. As a result, the comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.« less

  6. Magnon mode selective spin transport in compensated ferrimagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Joel; Guo, Er -Jia; Geprags, Stephan

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify themore » magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. As a result, the comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.« less

  7. Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho

    We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.

  8. Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna

    DOE PAGES

    Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; ...

    2017-12-22

    We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.

  9. Rare-Earth Oxide (Yb2O3) Selective Emitter Fabrication and Evaluation

    NASA Technical Reports Server (NTRS)

    Jennette, Bryan; Gregory, Don A.; Herren, Kenneth; Tucker, Dennis; Smith, W. Scott (Technical Monitor)

    2001-01-01

    This investigation involved the fabrication and evaluation of rare-earth oxide selective emitters. The first goal of this study was to successfully fabricate the selective emitter samples using paper and ceramic materials processing techniques. The resulting microstructure was also analyzed using a Scanning Electron Microscope. All selective emitter samples fabricated for this study were made with ytterbium oxide (Yb2O3). The second goal of this study involved the measurement of the spectral emission and the radiated power of all the selective emitter samples. The final goal of this study involved the direct comparison of the radiated power emitted by the selective emitter samples to that of a standard blackbody at the same temperature and within the same wavelength range.

  10. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dongre, Ashish N.; Viljoen, K. S.; Rao, N. V. Chalapathi; Gucsik, A.

    2016-04-01

    Although Ti-rich garnets are commonly encountered in the groundmass of many alkaline igneous rocks, they are comparatively rare in kimberlites. Here we report on the occurrence of Ti-rich garnets in the groundmass of the P-15 and KL-3 kimberlites from the diamondiferous Wajrakarur field in the Eastern Dharwar craton of southern India. These garnets contain considerable Ti (11.7-23.9 wt.% TiO2), Ca (31.3-35.8 wt.% CaO), Fe (6.8-15.5 wt.% FeOT) and Cr (0.04-9.7 wt.% Cr2O3), but have low Al (0.2-5.7 wt.% Al2O3). In the case of the P-15 kimberlite they display a range in compositions from andradite to schorlomite, with a low proportion of grossular (andradite(17.7-49.9)schorlomite(34.6-49.5)-grossular(3.7-22.8)-pyrope(1.9-10.4)). A few grains also contain significant chromium and represent a solid solution between schorlomite and uvarovite. The Ti-rich garnets in the KL-3 kimberlite, in contrast, are mostly schorlomitic (54.9-90.9 mol %) in composition. The Ti-rich garnets in the groundmass of these two kimberlites are intimately associated with chromian spinels, perhaps suggesting that the garnet formed through the replacement of spinel. From the textural evidence, it appears unlikely that the garnets could have originated through secondary alteration, but rather seem to have formed through a process in which early magmatic spinels have reacted with late circulating, residual fluids in the final stages of crystallization of the kimberlite magma. Raman spectroscopy provides evidence for low crystallinity in the spinels which is likely to be a result of their partial transformation into andradite during their reaction with a late-stage magmatic (kimberlitic) fluid. The close chemical association of these Ti-rich garnets in TiO2-FeO-CaO space with those reported from ultramafic lamprophyres (UML) is also consistent with results predicted by experimental studies, and possibly implies a genetic link between kimberlite and UML magmas. The occurrence of Ti-rich garnets of

  11. Eclogites and garnet pyroxenites from Kimberley, Kaapvaal craton, South Africa: their diverse origins and complex metasomatic signatures

    NASA Astrophysics Data System (ADS)

    Shu, Qiao; Brey, Gerhard P.; Pearson, D. Graham

    2018-06-01

    We describe the petrography and mineral chemistry of sixteen eclogite and garnet pyroxenite xenoliths from the reworked Boshof road dump (Kimberley) and define three groups that stem from different depths. Group A, the shallowest derived, has low HREE (heavy rare earth element) abundances, flat middle to heavy REE patterns and high Mg# [= 100·Mg/(Mg + Fe)]. Their protoliths probably were higher pressure cumulates ( 0.7 GPa) of mainly clinopyroxene (cpx) and subordinate orthopyroxene (opx) and olivine (ol). Group B1 xenoliths, derived from the graphite/diamond boundary and below show similarities to present-day N-MORB that were modified by partial melting (higher Mg# and positively inclined MREE (middle REE) and HREE (heavy REE) patterns of calculated bulk rocks). Group B2 samples from greatest depth are unique amongst eclogites reported so far worldwide. The calculated bulk rocks have humped REE patterns with very low La and Lu and prominent maxima at Sm or Eu and anomalously high Na2O (up to 5 wt%) which makes protolith identification difficult. The complex trace element signatures of the full spectrum of Kimberley eclogites belie a multi-stage history of melt depletion and metasomatism with the introduction of new phases especially of phlogopite (phlog). Phlogopite appears to be characteristic for Kimberley eclogites and garnet peridotites. Modelling the metasomatic overprint indicates that groups A and B1 were overprinted by volatile- and potassium-rich melts probably by a process of chromatographic fractionation. Using constraints from other metasomatized Kimberley mantle rocks suggest that much of the metasomatic phlogopite in the eclogites formed during an intense episode of metasomatism that affected the mantle beneath this region 1.1 Gyr ago.

  12. Tectonothermal evolution of a garnet-bearing quartzofeldspathic gneiss from the Moyar shear zone, south India and its bearing on the Neoarchean accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Bhadra, Subhadip; Nasipuri, Pritam

    2017-03-01

    We present mesoscale structural development across the Nilgiri Block and the flanking Moyar and Bhavani shear zones in south India, and detailed mineral-chemical and geothermobarometric studies of a garnet-bearing quartzofeldspathic gneiss from the easternmost part of the Moyar shear zone. Barring a narrow (< 100 μm) rim domain, major element distribution within garnet porphyroblasts reveals complete chemical homogenization. The absence of growth zoning in garnet porphyroblasts may suggest a protracted post-garnet growth residence period of the rock at elevated temperatures. Chemical zoning near garnet rim reflects the signature of both retrograde net-transfer (ReNTR) and retrograde exchange (ReER) equilibria. The ReNTR-equilibrium is recognized by prominent Mn kick-up in garnet, whereas the ReER-equilibrium is identified by divergence of Fe and Mg between garnet and biotite. Diffusion modelling, though qualitative, of the observed chemical zoning in garnet suggests an initial phase of rapid ( 150 °C/Ma) cooling, which may have been achieved by tectonic-extrusion-induced exhumation. Pressure-temperature conditions for peak, ReNTR and ReER are constrained, respectively, at 900 °C; 9-11 kbar, 735 °C; 8 kbar and 685 °C; 7.8 kbar. Analyses of structural fabrics establish oppositely verging nature of the Moyar and Bhavani shear zone and may suggest a doubly vergent orogenic development, with the former as prowedge and the latter as retrowedge. The presence of the Nilgiri Block as a topographically elevated region between these oppositely dipping thrust faults indeed corroborates a doubly vergent orogenic setup. The tectonic scenario is comparable with a continent-continent collision type accretionary tectonics. Peak high-P granulite facies metamorphism and post-peak long residence period of the studied quartzofeldspathic gneiss at deep crustal level suitably fit into the Neoarchean crustal dynamics resulting in crustal thickening, in the order of 41 km, within the

  13. Shock wave compression of iron-silicate garnet.

    NASA Technical Reports Server (NTRS)

    Graham, E. K.; Ahrens, T. J.

    1973-01-01

    Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.

  14. Rare Earth Laser Engineering Program. Part II.

    DTIC Science & Technology

    YTTRIUM ALUMINUM GARNET , NEAR INFRARED RADIATION, CONCENTRATION(CHEMISTRY), YTTRIUM COMPOUNDS, ALUMINUM COMPOUNDS, OXIDES, RELAXATION, RATES...VANADATES, DOPING, LANTHANUM, ERBIUM, HOLMIUM, GADOLINIUM COMPOUNDS, GARNET , TRANSPORT PROPERTIES, OSCILLATORS, LANTHANUM COMPOUNDS, FLUORIDES.

  15. Development of Novel Garnet-Type Solid Electrolytes for Potential Application in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Narayanan, Sumaletha

    The development of promising solid electrolytes having a garnet-like structure has been successfully achieved through solid state (ceramic) method. Various approaches to improve the Li ion conductivity were employed. The first approach involved creating oxide ion vacancies into the crystal structure of parent garnet-like oxide, Li5La3Nb2O 12 to create a novel family of compounds with nominal composition, Li 5La3Nb2-xYxO12-δ (0 ≤ x ≤ 1). The second approach was Li stuffing into the garnet-like oxides to develop a series of Li stuffed novel Li5+2xLa3Nb 2-xYxO12 (0.05 ≤ x ≤ 0.75) and Li6.5 La2.5Ba0.5ZrTaO12. Powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) coupled with a wavelength-dispersive spectrometer (WDS), 7Li nuclear magnetic resonance (Li-NMR), and AC impedance spectroscopy were employed to characterize the structure, morphology, elemental composition, Li ion sites, and Li ion conductivity. Studies have shown that Li5+2xLa 3Nb2-xYxO12 have turned out to be promising solid electrolytes with high Li ion conductivity (10-4 Scm -1 at ambient temperatures). In addition, all families of garnets are found to be chemically stable with Li cathode materials (Li2MMn 3O8, where M = Fe, Co) up to 400 °C in air. The developed electrolyte materials have the potential to be used in all-solid-state Li ion batteries.

  16. First findings of monocrystalline aragonite inclusions in garnet from diamond-grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Vandenabeele, Peter; Perraki, Maria; Moens, Luc

    2011-10-01

    The presence of aragonite inclusions in garnet from diamond-grade metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan was identified for the first time by means of Raman analyses and mapping. Aragonite appears within the inclusions up to 50 μm in size as a single crystal. These inclusions have rounded shape. The grain boundary between the host-garnet is smooth. No cracks occur around the aragonite inclusions. No significant shift in the main aragonite Raman band was measured. These observations indicate that residual pressure within the inclusion is minor. These findings imply either non-UHPM origin of the host garnet or significant plastic deformation of host minerals during retrograde stage. These features should be taken into account for recovery peak metamorphic conditions and modeling of exhumation processes of UHPM complexes. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  19. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Zaki, Aliaa M.; Blythe, Harry J.; Heald, Steve M.; Fox, A. Mark; Gehring, Gillian A.

    2018-05-01

    Thin films with properties comparable to bulk single crystals were grown by pulsed laser deposition using a substrate temperature of only 500 °C. This was achieved by a careful choice of both the oxygen pressure in the deposition chamber and the temperature of the air anneal. The best films were grown on gadolinium gallium garnet substrates but we also report data for films grown on the diamagnetic substrate yttrium aluminium garnet. The films were analysed using X-ray diffraction, near edge X-ray absorption and magnetometry. Our best films had a magnetisation of 143 emu/cm3 and a coercive field of ∼1 Oe.

  20. Comparative Studies on Al-Based Composite Powder Reinforced with Nano Garnet and Multi-wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Basariya, M. Raviathul; Srivastava, V. C.; Mukhopadhyay, N. K.

    2015-11-01

    Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.

  1. Solid state lasers based on chromium- and neodymium-activated scandium garnets operating in the Q-switched mode

    NASA Astrophysics Data System (ADS)

    Denisov, A. L.; Zharikov, E. V.; Zavartsev, Iu. D.; Zagumennyi, A. I.; Lutts, G. B.

    1991-02-01

    The development of passively Q-switched and self-Q-switched lasers based on chromium-containing scandium garnets with phototropic centers is reported. The lasers operate over a wide frequency repetition rate with a mean output up to 100 W. The characteristics of phototropic absorption in the 1-micron region are examined, and the possibility of lasing at the weak transition of the Nd(3+) ion in chromium-containing scandium garnets with phototropic centers is discussed.

  2. Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Hoffmann, Axel; Ketterson, John B.

    2018-05-01

    We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 μm thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 μm spatially-resonant, antenna.

  3. Magnetooptics of single and microresonator iron-garnet films at low temperatures

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Mikhailova, T. V.; Karavainikov, A. V.; Kharchenko, M. F.; Belotelov, V. I.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, Yu. M.

    2016-02-01

    We have investigated the low-temperature behavior of the optical and magneto-optical properties of (Bi, Gd, Al)-substituted yttrium iron-garnet films that are either single or microresonator, i.e. sandwiched between two dielectric Bragg mirrors. It was shown that the magneto-optical properties of the microresonators with a magnetic film core are mainly determined by the properties of the constituent magnetic films. Special attention was paid to the compositions possessing magnetic compensation temperatures. The phenomenon of the temperature hysteresis was found and discussed for several samples. This testifies the fact that the magnetic moment reorientation in a magnetic field occurs by the full cycle of the first-order phase transitions "collinear phase - non-collinear phase - collinear phase". The Faraday hysteresis curves at around magnetic compensation temperatures are demonstrated to be very informative concerning composition of a sample. In particular, the hysteresis curves measured for the magnetic films on the garnet substrates showed bursts that indicates formation of a transition layer.

  4. Investigations on the Crystal-Chemical Behavior of Transition-Metal-Bearing Aluminosilicate Garnet Solid Solutions Using 27Al and 29Si NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Geiger, C. A.; Stebbins, J. F.

    2015-12-01

    The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a

  5. The Ins and Outs of Water in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Gaetani, G. A.; Shaw, A. M.; Kelley, K. A.; Saal, A. E.

    2005-12-01

    Most of the hydrogen in the Earth's upper mantle is dissolved in nominally anhydrous minerals such as olivine, orthopyroxene, clinopyroxene and garnet as structural OH [e.g. 1 ]. Considering the significant influence of hydrogen on mantle properties such as solidus temperature, rheology, conductivity and seismic velocity, it is important to understand both the distribution of water among mantle phases and the mass transfer processes that influence water distribution in the Earth's mantle. Despite the important role of water in the mantle, experimental determinations of the equilibrium distribution of trace amounts of hydrogen among coexisting silicate phases remain extremely limited. Improved analytical techniques have recently paved the way for quantitative investigations of water partitioning and abundances in nominally anhydrous mantle minerals [e.g. 2]. Several studies of submarine glasses have revealed correlated increases in incompatible elements and water contents along segments of mid-ocean ridges approaching hotspots [e.g. 3,4]. A source-related increase in the water content of the mantle is typically postulated to explain such observations, but elevated hotspot H2O contents may also relate to pressure differences in partitioning of water, analogous to the case for rare-earth elements (e.g. the "garnet signature"). New experimental water partitioning data illuminate these differences. Hydrogen isotope ratios vary in submarine glasses from ocean ridges, back-arc basins and hotspots, and in hydrous phases from arcs and hotspots, suggesting significant hydrogen isotopic variability in the mantle, which may be related to the subduction of water. Water clearly enters the upper mantle at subduction zones, however the full water budget for any single subduction zone is highly uncertain [e.g. 5]. This uncertainty in the water budget at convergent margins indicates that we do not even know whether the present-day net flux of water is into or out of the Earth. This

  6. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes

  7. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Stepanov, S. A.; Valiev, D. T.; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.

    2016-02-01

    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  8. Optical and scintillation properties of Nd-doped complex garnet

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Sato, Hiroki

    2014-12-01

    Nd 1% doped complex garnet scintillators were prepared by Furukawa and their optical and scintillation properties were investigated on a comparison with previously reported Nd-doped YAG. Chemical compositions of newly developed complex garnets were Lu2Y1Al5O12, Lu2Y1Ga3Al2O12, Lu2Gd1Al5O12, Lu2Gd1Ga3Al2O12, Gd1Y2Al5O12, Gd1Y2Ga3Al2O12, and Gd3Ga3Al2O12. They all showed 50-80% transmittance from ultraviolet to near infrared wavelengths with several absorption bands due to Gd3+ or Nd3+ 4f-4f transition. In X-ray induced radioluminescence spectra, all samples exhibited intense lines at 310 nm due to Gd3+ or 400 nm due to Nd3+ depending on their chemical composition. Among them, the highest scintillation light yield was achieved by Lu2Y1Al5O12. Typical scintillation decay times of them resulted 1.5-3 μs. Thermally stimulated glow curve after 1 Gy exposure and X-ray induced afterglow were also investigated.

  9. Stress induced modulation of magnetic domain diffraction of single crystalline yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Mito, Shinichiro; Yoshihara, Yuki; Takagi, Hiroyuki; Inoue, Mitsuteru

    2018-05-01

    Stress induced modulation of the diffraction angle and efficiency of the light reflected from a stripe-domain magnetic garnet was demonstrated. The spacing of the magnetic domain was changed using the inverse magnetostriction effect. The sample structure was a piezo actuator/Al reflection layer/magnetic garnet substrate. A diffraction angle between the 0th and 1st ordered light was changed from 9.12 deg. to 10.20 deg. This result indicates that the domain spacing was changed from 3.3 μm to 3.0 μm. The change of the diffraction angle was irreversible for the voltage. However, reversible, linear and continuous change of the diffraction efficiency was observed. These results could be applicable for a voltage-driven optical solid state light deflector with low power consumption and high switching speed.

  10. Early Triassic change in the erosional level in the eastern part of the Bohemian Massif revealed by detrital garnet assemblages from the Buntsandstein siliciclastics of southern Poland

    NASA Astrophysics Data System (ADS)

    Kowal-Linka, Monika; Walczak, Klaudia

    2017-04-01

    Garnets, as constituents of various magmatic and metamorphic rocks, show different chemical compositions depending on the type of magma or primary rock, the temperature, and the pressure. This diversity of chemical compositions makes detrital garnets a very useful tool for provenance analysis and deciphering changes in erosional levels of source areas. Preliminary works reveal that the Lower and Middle Buntsandstein terrigenous and marine sandstones cropping out in southern Poland (50˚ 28'20"N, 18˚ 04'33"E and 50˚ 27'35"N, 18˚ 07'23"E) are characterized by very different heavy mineral assemblages (HMA) and types of detrital garnets. The aim of the research is to recognize the source areas and causes of these distinct variations using petrographic analysis, heavy mineral analysis, and electron probe microanalysis. During the Early Triassic, the area under study was located between two landmasses: the eastern margin of the Bohemian Massif (BM) to the west and Pre-Carpathian Land (PCL) to the east. Presently, the sampled area is situated ˜50 km from the NE margin of the BM, which consists of many garnet-bearing rocks and is a presumable source area for the examined grains. The PCL was hidden under the Carpathians during the Alpine orogeny and knowledge of its composition is very limited. Petrographic analysis shows that the older sandstones are red to rusty quartz arenites with a hematite-rich matrix and well-rounded grains (aeolian deposits). The younger sandstones are bicolored quartz wackes (dirty pink with grey patches) with a calcite matrix and angular to rounded grains (shallow marine deposits). The arenites contain zircon, tourmaline, and rutile grains accompanied by garnet, staurolite, apatite, and topaz. The opaque heavy minerals include ilmenite, ilmenite-rutile aggregates, magnetite and rarely chromian spinel. In contrast, the HMA from the wackes consist mostly of garnets, while the minerals listed above occur in subordinate amounts. The garnets from

  11. Glass in garnet pyroxenite xenoliths from Kaula Island, Hawaii: Product of infiltration of host nephelinite

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Presti, A. A.

    1987-10-01

    Garnet-bearing, mantle-derived pyroxenites have been found at a new locality in Hawaii, Kaula Island. They occur as xenoliths in a nephelinite tuff. Some of the pyroxenites contain basaltic glasses, a common feature in mantle-derived xenoliths. Results of petrography, mineral chemistry, and least-squares mixing calculations show that the glasses are products of infiltration of the host nephelinite into the xenoliths and partial assimilation of garnet, spinel, and clinopyroxene. These results should encourage others to thoroughly test petrographically viable explanations for glasses in xenoliths before invoking absent phases or metasomatic fluids as explanations for the glasses. *Currently with Mobil Oil Company, Houston, Texas

  12. The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U-Pb ages: an example from high-grade basement in Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Fornelli, A.; Langone, A.; Micheletti, F.; Pascazio, A.; Piccarreta, G.

    2014-03-01

    The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U-Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U-Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core-overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327-320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core

  13. Timing capabilities of garnet crystals for detection of high energy charged particles

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Gundacker, S.; Lecoq, P.; Benaglia, A.; Nikl, M.; Kamada, K.; Yoshikawa, A.; Auffray, E.

    2017-04-01

    Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23-30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.

  14. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone)

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Flores, K. E.; Martin, C.; Harlow, G. E.

    2014-12-01

    The Guatemala Suture Zone is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schists, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). The North Motagua Mélange (NMM) outcrops north of the MFS and testifies the emplacement of exhumed subduction assemblages along a collisional tectonic setting. The NMM is composed of a serpentinite-matrix mélange that contains blocks of metabasites (subgreenschist facies metabasalt, grt-blueschist, eclogite, grt-amphibolite), vein-related rocks (jadeitite, omphacitite, albitite, mica-rock), and metatrondhjemites. Our new detailed petrographic and thermobarometric study on the garnet-bearing metabasites reveals a complex polymetamorphic history with multiple tectonic events. Eclogites show a classical clockwise PT path composed of (a) prograde blueschist/eclogite facies within garnet cores, (b) eclogite facies metamorphic peak at ~1.7 GPa and 620°C, (c) post-peak blueschist facies, (d) amphibolite facies overprint, and (e) late stage greenschist facies. Two types of garnet amphibolite blocks can be found, the first consist of (a) a relict eclogite facies peak at ~1.3 GPa and 550°C only preserved within anhedral garnet cores, and (b) surrounded by a post-peak amphibolite facies. In contrast, the second type displays a prograde amphibolite facies at 0.6-1.1 GPa and 400-650°C. The eclogites metamorphic peak suggests formation in a normal subduction zone at ~60 km depth, a subsequent exhumation to the middle section of the subduction channel (~35 km), and a later metamorphic reworking at lower P and higher T before its final exhumation. The first type of garnet amphibolite shows a similar trajectory as the eclogites but at warmer conditions. In

  15. Magmatic garnet in the Cordilleran-type Galiléia granitoids of the Araçuaí belt (Brazil): Evidence for crystallization in the lower crust

    NASA Astrophysics Data System (ADS)

    Narduzzi, F.; Farina, F.; Stevens, G.; Lana, C.; Nalini, H. A.

    2017-06-01

    Magmatic garnet, together with epidote, is a rare mineral association in cordilleran-I-type granitoids and of special petrogenetic significance. The metaluminous to slightly peraluminous (ASI = 0.97-1.07) Galiléia batholith (Brazil) is a large (ca. 30,000 km2), Neoproterozoic (ca. 632-570 Ma) weakly foliated calc-alkaline granitoid body, characterized by the widespread occurrence of garnet (grossular 25-43 mol%) and epidote (pistacite 9.3-22.7 mol%). Field, petrographic and mineral chemical evidence indicates that garnet, epidote, biotite as well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and trace element composition between the Galiléia granitoids and other garnet-free cordilleran-type granitoids worldwide. This evidence strongly suggests that the origin of the uncommon garnet + epidote parageneses is related to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison between the mineral assemblages and mineral compositions from this study and those recorded in crystallization experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic rocks and granitoids, indicates that the supersolidus coexistence of grossular-rich garnet, epidote and white mica is consistent with magma crystallization at pressures greater than 0.8 GPa (above 25 km depth) and at temperatures below 700 °C, i.e. near the water saturated solidus. Furthermore, resorption textures around garnet (plagioclase ± quartz coronas) and epidote suggest that these minerals have been partially consumed prior to complete crystallization. These findings demonstrate that at 630 Ma the crust underneath the Araçuaí Orogen was already at least 25-30 km thick and relatively cool. However, this contrasts with the marked high heat flow registered from the neighbour Carlos Chagas Batholith located 50 km to the east. In fact such granitoids record granulite

  16. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    PubMed

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  17. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  18. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  19. Intercomparison of garnet barometers and implications for garnet mixing models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, L.M.; Essene, E.J.

    1985-01-01

    Several well-calibrated barometers are available in the system Ca-Fe-Ti-Al-Si-O, including: Alm+3Ru-3Ilm+Sil+2Qtz (GRAIL), 2Alm+Grreverse arrow6Ru=6Ilm+3An+3Qtz (GRIPS); 2Alm+Gr=3Fa+3An (FAG); 3AnGr+Ky+Qtz (GASP); 2Fs-Fa+Qtz (FFQ); and Gr+Qtz=An+2Wo (WAGS). GRIPS, GRAIL and GASP form a linearly dependent set such that any two should yield the third given an a/X model for the grossular/almandine solid-solution. Application to barometry of garnet granulite assemblages from the Grenville in Ontario yields average pressures 0.1 kb lower for GRIPS and 0.4 kb higher for FAGS using our mixing model. Results from Parry Island, Ontario, yield 8.7 kb from GRAIL as opposed to 9.1 kb using Ganguly and Saxena's model. Formore » GASP, Parry Island assemblages yield 8.4 kb with the authors calibration. Ganguly and Saxena's model gives 5.4 kb using Gasparik's reversals and 8.1 kb using the position of GASP calculated from GRIPS and GRAIL. These corrections allow GRIPS, GRAIL, GASP and FAGS to yield consistent pressures to +/- 0.5 kb in regional metamorphic terranes. Application of their mixing model outside of the fitted range 700-1000 K is not encouraged as extrapolation may yield erroneous results.« less

  20. The timing of high-temperature retrogression in the Reynolds Range, central Australia: constraints from garnet and epidote Pb-Pb dating

    NASA Astrophysics Data System (ADS)

    Buick, Ian S.; Frei, Robert; Cartwright, Ian

    Lower Calcsilicate Unit metasediments and underlying migmatitic Napperby Gneiss metagranite at Conical Hill in the Reynolds Range, central Australia, underwent regional high-grade ( 680 to 720°C), low-pressure/high-temperature metamorphism at 1594+/- 6Ma. The Lower Calcsilicate Unit is extensively quartz veined and epidotised, and discordant grandite garnet+epidote quartz veins may be traced over tens of metres depth into pegmatites that pooled at the Lower Calcsilicate Unit-Napperby Gneiss contact. The quartz veins were probably precipitated by water-rich fluids that exsolved from partial melts derived from the Napperby Gneiss during cooling from the peak of regional metamorphism to the wet granite solidus. Pb stepwise leaching (PbSL) on garnet from three discordant quartz veins yielded comparable single mineral isochrons of 1566+/-32Ma, 1576+/-3Ma and 1577+/-5Ma, which are interpreted as the age of garnet growth in the veins. These dates are in good agreement with previous Sensitive High Resolution Ion Microprobe (SHRIMP) ages of zircon and monazite formed during high-temperature retrogression (1586+/-5 to 1568+/-4Ma) elsewhere in the Reynolds Range. The relatively small age difference between peak metamorphism and retrograde veining suggests that partial melting and melt crystallisation controlled fluid recycling in the high-grade rocks. However, PbSL experiments on epidote intergrown with, and partially replacing, garnet in two of the veins yielded isochrons of 1454+/-34 and 1469+/- 26Ma. The 100-120Ma age difference between intergrown garnet and late epidote from the same vein suggests that the vein systems may have experienced multiple episodes of fluid flow.

  1. Petrology and fluid inclusions of garnet-clinopyroxene rocks from the Gondwana suture zone in southern India: Implications for prograde high-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Tsunogae, T.

    2012-04-01

    The Palghat-Cauvery Suture Zone (PCSZ) in the southern granulite terrane, India, which separates Pan-African granulite blocks (e.g., Madurai and Trivandrum Blocks) to the south and Archean terrane (e.g., Salem Block and Dharwar Craton) to the north is regarded as a major suture zone in the Gondwana collisional orogeny. It probably continues westwards to the Betsimisaraka suture in Madagascar, and eastwards into Sri Lanka and possibly into Antarctica. The available geochronological data including U-Pb zircon and EPMA monazite ages indicate that the rocks along the PCSZ underwent an episode of high-grade metamorphism at ca. 530 Ma that broadly coincides with the time of final assembly of the Gondwana supercontinent. Recent investigations on high-grade metamorphic rocks in this region have identified several new occurrences of garnet-clinopyroxene rocks and associated meta-gabbros from Perundurai, Paramati, Aniyapuram, Vadugappatti, and Mahadevi areas in Namakkal region within the central domain of the PCSZ. They occur as elongated boudins of 1 m to 1 km in length within hornblende-biotite orthogneiss. The garnet-clinopyroxene mafic granulites contain coarse-grained (up to several cm) garnet (Alm30-50 Pyr30-40 Grs10-20) and clinopyroxene (XMg = 0.70-0.85) with minor pargasite, plagioclase (An30-40), orthopyroxene (hypersthene), and rutile. Garnet and clinopyroxene are both subidioblastic and contain few inclusions of clinopyroxene (in garnet) and plagioclase. Orthopyroxene occur only as Opx + Pl symplectite between garnet and clinopyroxene in almost all the localities, suggesting the progress of decompressional reaction: Grt + Cpx + Qtz => Opx + Pl, which is a dominant texture in the PCSZ. The prograde mineral assemblage of the rocks is therefore inferred to be Grt + Cpx + Qtz, although quartz was probably totally consumed by the progress of the reaction. The metamorphic P-T calculations using Grt-Cpx-Pl-Qtz geothermobarometers yield T = 850-900°C and P >13 kbar

  2. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guojian; Lou, Chaogang; Kang, Jian

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluatemore » roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.« less

  3. The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation

    NASA Astrophysics Data System (ADS)

    Brueckner, H. K.; Carswell, D. A.; Griffin, W. L.; Medaris, L. G., Jr.; Van Roermund, H. L. M.; Cuthbert, S. J.

    2010-06-01

    A compilation of published and unpublished geochronological and isotopic data from garnet-bearing orogenic peridotites in the HP/UHP Western Gneiss Region (WGR) of the Norwegian Caledonides indicate a common origin for all WGR peridotites, followed by different, though related, Proterozoic and Phanerozoic histories for those in the northwestern WGR (NW peridotites) compared to those in the central and western WGR (CW peridotites). All peridotites are refractory fragments of the subcontinental lithosphere generated by Archean melt extraction, which produced strongly depleted dunites and harzburgites with relict orthopyroxene and majoritic garnet megacrysts (M 1NW) within the NW peridotites. The Archean history is preserved by Re-Os sulfide and whole-rock ages from several WGR bodies and by Sm-Nd ages from the M 1NW megacrysts. Subsequently the CW peridotites were re-fertilized within the lithospheric mantle by mid-Proterozoic or older silicate melts that generated M 2CW garnet pyroxenites and adjacent garnet peridotites. Clinopyroxenes from these bodies show large variation in 143Nd/ 144Nd, but nearly constant 87Sr/ 86Sr, suggesting autometasomatism of depleted mantle by LREE-enriched, Rb-poor melts derived from equally depleted mantle. NW peridotites lack mid-Proterozoic garnet pyroxenite intrusions, but M 2NW garnet-rich assemblages that exsolved from relict M 1 megacrysts may have equilibrated at the same time as the M 2CW refertilization. Sm-Nd and Lu-Hf mineral apparent isochron ages from both suites range from 1.75 to ca. 0.87 Ga. The age spectrum suggests continuous diffusion among M 2 minerals that formed ≥ 1.75 Ga ago punctuated by partial re-equilibration during a 1.0 Ga thermal event. Much later the NW peridotites were transferred from the mantle wedge into the crust as the WGR was subducted into the mantle during the ca 400 Ma Scandian Orogeny. Further subduction heterogeneously metasomatized and recrystallized the NW peridotites to form M 3NW garnet

  4. Magnetocrystalline anisotropy of Fe2 + ion in silicon- or germanium-substituted yttrium iron garnet at zero temperature

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czeslaw

    1982-01-01

    The present work reports the theoretical considerations of the magnetocrystalline anisotropy of ferrous ions induced by tetravalent dopants in yttrium iron garnet. Using the spin Hamiltonian developed earlier by us and the molecular field (h) approximation we derive the cubic anisotropy constants K1 and K2 at zero temperature. We adopt the Alben's et al. model of twelve inequivalent Fe2+ sites in silicon-substituted yttrium iron garnet. Results are given for h = 400, 300, 200 and the spin Hamiltonian parameters with the trigonal Δ = 300, 400, 500, 600, 700 and the nontrigonal crystal field parameter Γ = 200, 300 cm-1. The agreement with the experimental K1 and K2 is quite good. The discussion reveals that the properties of the far and near sites in the two-center model can now be theoretically explained. The theoretical ratios of K1(far) to K1(near) agree well with experiment. Thus our results speak in favor of the orbital singlet rather than the doublet model assumed previously for Fe2+ in silicon- or germanium-substituted yttrium iron garnets.

  5. Magneto-optical study of holmium iron garnet Ho3Fe5O12

    NASA Astrophysics Data System (ADS)

    Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.

    2012-09-01

    Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.

  6. Properties of Ferrite Garnet (Bi, Lu, Y)3(Fe, Ga)5O12 Thin Film Materials Prepared by RF Magnetron Sputtering

    PubMed Central

    Nur-E-Alam, Mohammad; Belotelov, Vladimir; Alameh, Kamal

    2018-01-01

    This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO) applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films. PMID:29789463

  7. IBA investigations of loose garnets from Pietroasa, Apahida and Cluj-Someşeni treasures (5th century AD)

    NASA Astrophysics Data System (ADS)

    Bugoi, R.; Oanţă-Marghitu, R.; Calligaro, T.

    2016-03-01

    This paper reports the archaeometric investigations of 418 loose garnets from Pietroasa and Cluj-Someşeni treasures and Apahida II and III princely grave inventories (5th century AD). The chemical composition of the gems was determined by external beam micro-PIXE technique at the AGLAE accelerator of C2RMF, Paris, France. Complementary observations made by Optical Microscopy revealed details on the gemstones cutting and polishing and permitted to identify certain mineral inclusions. The compositional results evidenced several types of garnets from the pyralspite series, suggesting distinct provenances for these Early Medieval gems.

  8. High-spin europium and gadolinium centers in yttrium-aluminum garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Uspenskaya, Yu. A.; Petrosyan, A. G.; Fokin, A. V.

    2016-08-01

    Electron-spin resonance spectra of Eu2+ and Gd3+ centers substituting Y3+ ions in single-crystal yttrium-aluminum garnet have been studied and the parameters of their rhombic spin Hamiltonian have been determined. The fine-structure parameters of the above ions have been calculated in the superposition model disregarding changes in the angular coordinates of the ligand environment of the impurity defect thus demonstrating the necessity of taking these changes into account.

  9. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  10. Majorite-Garnet Partitioning of the Highly Siderophile Elements: New Results and Application to Mars

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Waeselmann, N.; Humayun, M.

    2015-01-01

    HSE and Os isotopes are used to constrain processes such as accretion, mantle evolution, crustal recycling, and core-mantle mixing, and to constrain the timing and depth of differentiation of Mars. Although showed that the HSE contents of the martian mantle could have been established by metal-silicate equilibrium in early Mars, the role of a cooling magma ocean and associated crystallization in further fractionating the HSEs is unclear. Garnet is thought to have played an important role in controlling trace element concentrations in the martian mantle reservoirs. However, testing these models, including Os isotopes, has been hindered by a dearth of partitioning data for the HSE in deep mantle phases - majorite, wadsleyite, ringwoodite, akimotoite - that may be present in the martian mantle. We examine the partitioning behavior of HSEs between majorite garnet (gt), olivine (oliv), and silicate liquid (melt).

  11. Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.

    Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.

  12. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, M.; Singh, Mahi R.

    2012-10-01

    The BixCe3-xFe5O12 (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y3Fe5O12 that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra were measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H2. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.

  13. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization.

    PubMed

    Wang, Yaxing; Lu, Huangjie; Dai, Xing; Duan, Tao; Bai, Xiaojing; Cai, Yawen; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Du, Shiyu; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Liu, Ning; Wang, Shuao

    2018-02-19

    The coexistence of radioactive contaminants (e.g., thorium, uranium, and their daughters) in rare earth minerals introduces significant environmental, economic, and technological hurdles in modern rare earth production. Efficient, low cost, and green decontamination strategies are therefore desired to ameliorate this problem. We report here a single-step and quantitative decontamination strategy of thorium from rare earths based on a unique periodic trend in the formation of crystalline selenite compounds across the lanthanide series, where Ce(III) is fully oxidized in situ to Ce(IV). This gives rise to a crystallization system that is highly selective to trap tetravalent f-blocks while all other trivalent lanthanides completely remain in solution when coexist. These results are bolstered by first-principles calculations of lattice energies and an examination of bonding in these compounds. This system is contrasted with typical natural and synthetic systems, where trivalent and tetravalent f-block elements often cocrystallize. The separation factors after one round of crystallization were determined from binary systems of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Yb(III) to reach 2.1 × 10 5 , 1.2 × 10 5 , and 9 × 10 4 , respectively. Selective crystallization of thorium from a simulated monazite composite yields a separation factor of 1.9 × 10 3 with nearly quantitative removal of thorium.

  14. Garnet Ring Measurements for the Fermilab Booster 2nd Harmonic Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuharik, J.; Dey, J.; Duel, K.

    A perpendicularly biased tuneable 2nd harmonic cavity is being constructed for use in the Fermilab Booster. The cavity's tuner uses National Magnetics AL800 garnet as the tuning media. For quality control, the magnetic properties of the material and the uniformity of the properties within the tuner must be assessed. We describe two tests which are performed on the rings and on their corresponding witness samples.

  15. Neodymium:yttrium-aluminum-garnet laser fusion of endarterectomy flaps.

    PubMed

    Humphrey, P W; Slocum, M M; Loy, T S; Silver, D

    1995-07-01

    This study evaluated the efficacy of neodymium:yttrium-aluminum-garnet laser welding of flaps in canine arteries and in securing the distal flap during human carotid endarterectomy. Endarterectomy flaps were created in both common carotid and both common femoral arteries in 12 dogs. The flaps were repaired with either the neodymium:yttrium-aluminum-garnet laser or with 6-0 polypropylene sutures. The arteries were removed after duplex scanning at either 7 or 28 days. Eighteen high carotid endarterectomy flaps in 16 patients have been subsequently secured with the laser welding technique. Laser repairs (125 +/- 19 joule) of the canine arteries were completed more quickly than suture repairs (mean 25 seconds vs 135 seconds, respectively; p < 0.04). Duplex ultrasonography revealed no discernable differences between the two groups of arteries. Arteries studied at 7 days revealed three microscopic flaps (two suture, one laser), more subintimal fibroblastic proliferation in suture than laser-repaired carotid arteries (3: 1, p = 0.0530), and similar amounts of inflammation in suture- and laser-repaired arteries. Arteries studied at 28 days revealed one microscopic intimal flap (suture-repaired); equal fibroblastic and inflammatory responses in suture- and laser-repaired vessels; and no evidence of laser thermal injury. Eighteen carotid endarterectomy flaps have been successfully fused with no immediate or long-term complications in 16 patients (follow-up of 0 to 24 months). Laser fusion appears to be a safe and effective method for securing distal carotid endarterectomy flaps.

  16. Constraining Metamorphic Timing and Processes by Dating Garnet, Zircon, Titanite and Monazite in UHP and HP Rocks from Weihai, Sulu UHP Terrane, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, D.; Vervoort, J. D.; Fisher, C. M.; Cao, H.

    2016-12-01

    The Sulu UHP terrane is the extension of the Dabie orogenic belt to the east, offset 500 km to the northeast by the Tanlu fault [1]. The focus of this study, the Weihai area, is located at the northernmost part of the Sulu UHP terrane, and consists mainly of gneisses overprinted by amphibolite-facies assemblages, in addition to minor eclogite, granulite, and some ultramafic rocks [1]. Time constrains are critical to our understanding of the processes of UHP metamorphism, as well as the tectonic evolution of the region. In the last decade, U-Pb dating of metamorphic domains of zircons has been widely applied to determine the history of the UHP metamorphism (240 - 220 Ma) [1]. Recent garnet Lu-Hf dating from the Dabie terrane (240 - 220Ma) suggests the initiation of prograde metamorphism to be prior to ca. 240 Ma [2]. In-situ U-Pb dating of accessary minerals using LA-ICPMS (i.e. monazite, titanite, rutile, etc.), can provide important information to augment and complement the zircon U-Pb metamorphic dates. In this study, we collected samples throughout the Weihai area. Protolith ages of these samples range from Paleoproterozoic to Neoproterozoic ( 1850 - 700 Ma) as indicated by U-Pb dating of zircon cores. Zircon metamorphic rims yield U-Pb ages of 240 - 220 Ma, likely indicating the UHP stage of the Sulu terrane [3]. Four eclogites yield Lu-Hf garnet isochrons with dates between 239 and 224 Ma, consistent with garnet Lu-Hf dates from Dabie UHP terrane [2]. Sm-Nd isochrons indicate systematic younger dates (220 - 210 Ma) interpreted as cooling ages. Titanites extracted from four samples give U-Pb ages ranging from 220 to 200 Ma, in agreement with the titanite dates from the southern Sulu terrane [4]. Monazites from three samples give precise dates between 214 and 211 Ma. Collectively, monazite and titanite U-Pb ages are broadly consistent with the garnet Sm-Nd isochrons, and thus we interpret these as cooling ages. Based on the dates of different systems

  17. Adsorption of Salicylhydroxamic Acid on Selected Rare Earth Oxides and Carbonates

    NASA Astrophysics Data System (ADS)

    Galt, Greer Elaine

    Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA and octylhydroxamic acid (OHA) on these four rare earth oxides and carbonates. Theoretical points of zero charge were also estimated via StabCal and compared to experimental values to establish validity. Results for oxides indicate that both the amount and rate of SHA adsorption are highest for lighter REOs, decreasing as ionic diameter increases, a chelation phenomenon common with hydroxamates. However, results for the carbonates exhibit the opposite trend: strongest SHA adsorption was seen in the heavy RECs. This pattern correlates to the increasing stability of the carbonate such that ionic diameter of the REs becomes more amenable to chelation due to differences in bonding chemistry. Overall, adsorption kinetics appear dependent on pH, coordination chemistry, and cation size.

  18. Eclogitization on the way up: Lu-Hf garnet chronology of metasomatic ultrahigh-pressure rocks from the Western Gneiss Complex, Norway

    NASA Astrophysics Data System (ADS)

    Cutts, J.; Smit, M. A.; Vrijmoed, J. C.

    2016-12-01

    The Western Gneiss Complex (WGC) is a fragment of continental crust that was subjected to high- and ultrahigh pressure (HP; UHP) conditions as a result of Caledonian continental collision (420-400 Ma). Most eclogite lenses and related high-pressure rocks have yielded petrological and chronological results that are consistent with a generalized model of Caledonian continental subduction. A distinct suite of eclogitic rocks - metasomatized (`Caledonized') Fe-Ti meta-peridotites - indicate extreme pressure conditions that do not fit the regional field gradient. The timing of these excursions is critical to their interpretation; however, so far limited age constraints exist for these rocks. In this study, we subject one such rock - the Magerøy orthopyroxene eclogite on the island of Otrøy - to Lu-Hf garnet chronology; a method that provides precise and robust data for garnet even at extreme temperatures. Conventional barometry indicates equilibration of the main garnet-bearing assemblage at c. 4.3 GPa and garnet geochronology yielded a date of c. 390 Ma. This result overlaps with Sm-Nd garnet and U-Pb zircon ages from the nearby diamond-bearing Svartberget peridotite body and leucosomes in its host gneiss. However, the age is ≥ 10 Ma younger than age data for most other eclogite lenses in WGC and corresponds to a time when the terrane was already exhumed to 30-35 km depth. The discrepancy in P-T-t evolution between the bulk of the WGC, and the (ultra-) mafic rocks at Magerøy and Svartberget indicates that the latter rocks reflect localized fluid-induced re-equilibration at pressures higher than lithostatic. The new data provide new support for the occurrence of this phenomenon in subducted continental crust undergoing exhumation and partial melting.

  19. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  20. P-T Path and Nd-isotopes of Garnet Pyroxenite Xenoliths From Salt Lake Crater, Oahu

    NASA Astrophysics Data System (ADS)

    Ichitsubo, N.; Takahashi, E.; Clague, D. A.

    2001-12-01

    Abundant garnet pyroxenite and spinel lherzolite xenoliths are found in Salt Lake Crater (SLC) in Oahu, Hawaii [Jackson and Wright, 1970]. The SLC pyroxenite suite xenoliths (olivine-poor type) have complex exsolution textures that were probably formed during a slow cooling. In this study, we used digital image software to obtain modal data of exsolved phases in the host pyroxene using backscattered electron images (BEIs). The abundances of the exsolved phases were multiplied by the phase compositions determined by electron probe micro-analyzer (EPMA) to reconstruct pyroxene compositions prior to exsolution. In order to evaluate the error in this calculation, we recalculated the reconstructed pyroxene compositions using the different pyroxene pairs. Reconstructed clinopyroxenes in each sample have almost no variations (MgO, CaO +/-1wt %, FeO +/-0.5wt % and the other oxides ~+/-0.1wt %). Reconstructed orthopyroxenes are more variable in MgO, CaO (+/-2wt %) and FeO (+/-1wt %) than reconstructed clinopyroxenes, but the other oxides have only limited variations ( ~+/-0.5wt %). These compositions were used to calculate igneous stage (magmatic) P-T conditions based on the geothermometers and geobarometers of Wells [1977] and Brey and Kohler [1990] Following assumptions are made: (1) the reconstructed pyroxene compositions are the final record in the primary igneous stage, and (2) cores of the largest garnet grains in each sample record the primary igneous stage composition.. The recalculation using the different pairs of reconstructed pyroxenes show the uncertainty to be +/- 30° C and 0.1 GPa. These appear to be small compared to the large intrinsic errors of geothermometer and geobarometers (+/-20° -35° C and +/- 0.3-0.5 GPa). Estimated P-T conditions for garnet pyroxenites are 1.5-2.2 GPa, 1000° -1100° C in the final reequilibration stage and 2.2-2.6 GPa (at maximum), 1150° -1300° C (at minimum) in the igneous stage. The all samples show ca. 200° C cooling and

  1. Superresolution Microscopy of Single Rare-Earth Emitters in YAG and H 3 Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Kolesov, R.; Lasse, S.; Rothfuchs, C.; Wieck, A. D.; Xia, K.; Kornher, T.; Wrachtrup, J.

    2018-01-01

    We demonstrate superresolution imaging of single rare-earth emitting centers, namely, trivalent cerium, in yttrium aluminum garnet crystals by means of stimulated emission depletion (STED) microscopy. The achieved all-optical resolution is ≈50 nm . Similar results were obtained on H 3 color centers in diamond. In both cases, STED resolution is improving slower than the conventional inverse square-root dependence on the depletion beam intensity. In the proposed model of this effect, the anomalous behavior is caused by excited state absorption and the interaction of the emitter with nonfluorescing crystal defects in its local surrounding.

  2. Electron traps in Gd3Ga3Al2O12:Ce garnets doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Khanin, V. M.; Rodnyi, P. A.; Wieczorek, H.; Ronda, C. R.

    2017-05-01

    The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80-550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.

  3. Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Jollands, Michael C.; Hanger, Brendan J.; Yaxley, Gregory M.; Hermann, Jörg; Kilburn, Matthew R.

    2018-01-01

    Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300 °C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around 1025 ± 25 °C and 4.2 ± 0.5 GPa. This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 μm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.

  4. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-01

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  5. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra Sekhar, M.; Singh, Mahi R.

    2012-10-15

    The Bi{sub x}Ce{sub 3-x}Fe{sub 5}O{sub 12} (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y{sub 3}Fe{sub 5}O{sub 12} that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra weremore » measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H{sub 2}. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.« less

  6. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  7. Application of domain structures elements of ferrite-garnet films for transport of magnetic microparticles

    NASA Astrophysics Data System (ADS)

    Gorobets, Yu. I.; Dzhezherya, Yu. I.; Melnichuk, I. A.; Cherepov, S. V.; Kuz', A. P.

    2010-12-01

    The physical background of the device for the transportation of magnetic microparticles which is using a domain structure of garnete-ferrite films with easy-plane anisotropy are developed and experimentally proved in the present paper. The proposed device can be used in microbiology, medicine, and genetic engineering.

  8. Charge-coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Anthony

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce), and thorium (Th), incorporated by a charge-coupled substitution with calci-um (Ca) for yttrium (Y) in YIG, namely 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single phase garnets Y3-xCa0.5xM0.5xFe5O12, synthesized by the citrate-nitrate combustion method, were obtained up to x = 0.7. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-raymore » photoelectron spectroscopy. X-ray diffraction and 57Fe-Mössbauer spectroscopy indicated that the samples are single phase, M4+ and Ca2+ cations are restricted to the c-site, the nature of M4+ has only a minor effect on the structure, and the local environments of both the tetrahedral and octahedral Fe3+ are systematically affected by the extent of substitution, especially on the tetrahedral sublattice. The charge coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases, compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature. These structural and thermodynamic findings shed light on possible incorporation of U in this garnet system.« less

  9. Sulfides in the Garnet Pyroxenite xenoliths from Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Sen, I. S.; Sen, G.; Bizimis, M.

    2007-12-01

    Oahu is known for its garnet bearing xenoliths that occur in the Honolulu Volcanics. Clinopyroxene is the dominant minerals of these rocks, and modes of other silicate minerals - orthopyroxene, olivine, garnet, amphibole, and phlogopite vary considerably. Ilmenite and Spinels of diverse variety also occur (Keshav et al. 2007, J. Petrol.). In this report we present new electron microprobe and LA-ICPMS data on the sulfides that are always present in these xenoliths although they make up only trace amounts. In terms of morphology and mode of occurrence the sulfides can be divided fundamentally into two types - Type I occurs as poikilitic inclusions in the silicate phases mostly in clinopyroxene and Type II occurs in the interstitial spaces between the silicates, along grain boundaries and along cracks within individual silicate grains. Sizes of both types vary considerably. Type I sulfides are generally globular and appear to have formed from immiscible sulfide melts that got enclosed by the silicate minerals that grew from the main body of silicate melt. Keshav et al. (2007) estimate the average solidus temperatures of garnet pyroxenites from Oahu to range from 1215 to 1600°C (average 1325°C) at 3-5 GPa. Therefore, the Type I sulfides are high temperature sulfides that formed above the silicate solidus. Type II sulfides take various forms - from vein-like to dendritic. Compositionally, both types include Ni rich pyrrhotites (Ni content varies from 3-5 wt%) and monosulfide solid solutions(MSS). The MSS are divided into Ni rich MSS containing as much as 20 wt% of Ni, the average is 15 wt% while the Ni poor MSS has 5-9 wt% of Ni in it. We have limited data on PGE so far but the Type II sulfides have a very low PGE content. Two recent papers have noted that Hawaiian plume-derived shield tholeiites are too rich in Ni for a given SiO2% to be produced by partial melting of a peridotite and called for an unusual Ni-rich pyroxenite source in which the large Ni content is

  10. Y3Fe5O12 nanoparticulate garnet ferrites: Comprehensive study on the synthesis and characterization fabricated by various routes

    NASA Astrophysics Data System (ADS)

    Niaz Akhtar, Majid; Azhar Khan, Muhammad; Ahmad, Mukhtar; Murtaza, G.; Raza, Rizwan; Shaukat, S. F.; Asif, M. H.; Nasir, Nadeem; Abbas, Ghazanfar; Nazir, M. S.; Raza, M. R.

    2014-11-01

    The effects of synthesis methods such as sol-gel (SG), self combustion (SC) and modified conventional mixed oxide (MCMO) on the structure, morphology and magnetic properties of the (Y3Fe5O12) garnet ferrites have been studied in the present work. The samples of Y3Fe5O12 were sintered at 950 °C and 1150 °C (by SG and SC methods). For MCMO route the sintering was done at 1350 °C for 6 h. Synthesized samples prepared by various routes were investigated using X-ray diffraction (XRD) analysis, Field emission scanning electron microscopy (FESEM), Impedance network analyzer and transmission electron microscopy (TEM). The structural analysis reveals that the samples are of single phase structure and shows variations in the particle sizes and cells volumes, prepared by various routes. FESEM and TEM images depict that grain size increases with the increase of sintering temperature from 40 nm to 100 nm.Magnetic measurements reveal that garnet ferrite synthesized by sol gel method has high initial permeability (60.22) and low magnetic loss (0.0004) as compared to other garnet ferrite samples, which were synthesized by self combustion and MCMO methods. The M-H loops exhibit very low coercivity which enables the use of these materials in relays and switching devices fabrications. Thus, the garnet nanoferrites with low magnetic loss prepared by different methods may open new horizon for electronic industry for their use in high frequency applications.

  11. Complexly zoned Ti-rich melanite-schorlomite garnets from Ambadungar carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, Western India

    NASA Astrophysics Data System (ADS)

    Gwalani, L. G.; Rock, N. M. S.; Ramasamy, R.; Griffin, B. J.; Mulai, B. P.

    2000-04-01

    Ti-rich garnet phenocrysts from a tephrite ('nephelinite') plug in the Ambadungar complex situated in the Chhota Udaipur alkalic subprovince show concentric zoning. Based on paired orthogonal traverses across three selected crystals (total 81 step-scan point analyses), andradite content ranges from 55 to 86 mol% (the remainder being almost entirely schorlomite), corresponding to the following wt% oxide variations: TiO 2 5.5-15.8, CaO 29.6-32.5, MgO 0.3-1.6, Fe 2O 3 20-26, Al 2O 3 0.7-3.5%; MnO, V 2O 3, Na 2O and ZrO 2 each rarely exceeds 0.5%. Zoning patterns in individual grains from this one rock differ considerably in several ways: (1) there may be 2-5 alternating pale and dark zones, the pale generally being more andradite-rich enriched in Ti, Mg and usually Zr but impoverished in Al; (2) the two orthogonal traverse may or may not be mirror images; (3) monotonic trends (decreasing Ca, Al, increasing Mg, Zr from core to rim) may or may not be present; (4) oscillatory zoning varies in amplitude; and (5) apparent substitutions differ, although all crystals clearly show the Si-Ti substitution inferred for Ti-rich garnets elsewhere. An idealized case is developed from an observed complexly zoned phenocryst population to piece together a history of the alkaline host magma that experienced several events such as polybaric differentiation, magma-mixing, and kinetic effects.

  12. Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites

    NASA Astrophysics Data System (ADS)

    Owona, Sebastien; Schulz, Bernhard; Ratschbacher, Lothar; Mvondo Ondoa, Joseph; Ekodeck, Georges E.; Tchoua, Félix M.; Affaton, Pascal

    2011-01-01

    Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D 1-D 2, D 3 and D 4. The garnet-bearing assemblages crystallized in course of the deformation stage D 1-D 2 which led to the formation of the regional main foliation S 2. In XCa- XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P- T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P- T trends. The P- T evolution started at ˜450 °C/7 kbar, passed high-pressure conditions at 11-12 kbar at variable temperatures (600-700 °C) and involved a marked decompression toward 6-7 kbar at high temperatures (700-750 °C). Th-U-Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature-intermediate pressure stage at the end of the prograde P- T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P- T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.

  13. Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation

    NASA Astrophysics Data System (ADS)

    Wallenhorst, M.; Niemöller, M.; Dötsch, H.; Hertel, P.; Gerhardt, R.; Gather, B.

    1995-04-01

    Garnet films of composition Lu3-xBixFe5-yGayO12 are grown by liquid-phase epitaxy on [111]-oriented substrates of gadolinium gallium garnet. Faraday rotation and saturation magnetization are measured as a function of substitution levels, which range up to x=1.4 and y=1.8, respectively. Nonreciprocal propagation of the TM0 is studied at a wavelength of 1.3 μm. It is shown that the difference between forward and backward propagation constants can be optimized using double layers with opposite sign of the Faraday rotation. Agreement between experiments and calculations is excellent.

  14. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits.

    PubMed

    Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A

    2012-12-17

    Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.

  15. Effect of the Pr3+ → Gd3+ energy transfer in multicomponent garnet single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Babin, V.; Nikl, M.; Kamada, K.; Beitlerova, A.; Yoshikawa, A.

    2013-09-01

    Luminescence processes in the undoped and Pr3+-doped (Gd,RE)3(Ga,Al)5O12, RE = Lu,Y, multicomponent garnets are studied by time-resolved photoluminescence spectroscopy. Energy transfer processes between Pr3+ and Gd3+ causing significant deterioration of the scintillation performance are considered in detail. As is shown in current work, an overlap of the 5d1-3H4 emission transition of Pr3+ and 8S-6Px absorption transition of Gd3+ results in unwanted depletion of Pr3+ 5d1 excited state and is further intensified by the concentration quenching in the Gd3+-sublattice. This process explains a drastic decrease of light yield in Pr3+-doped Gd3+-containing multicomponent garnets observed in a previous work.

  16. Garnet lherzolites from Louwrensia, Namibia: Bulk composition and P/T relations

    USGS Publications Warehouse

    Boyd, F.R.; Pearson, D.G.; Hoal, Karin O.; Hoal, B.G.; Nixon, P.H.; Kingston, M.J.; Mertzman, S.A.

    2004-01-01

    Bulk, mineral and trace element analyses of garnet lherzolite xenoliths from the Louwrensia kimberlite pipe, south-central Namibia, together with previously published Re-Os isotopic data [Chem. Geol. (2004)], form the most extensive set of chemical data for off-craton suites from southern Africa. The Louwrensia suite is similar to those from the Kaapvaal craton in that it includes both predominantly coarse-grained, equant-textured peridotites characterised by equilibration temperatures 1200 ??C. Redepletion ages range back to 2.1 Gy, concordant with the age of the crustal basement and about 1 Gy younger than the older peridotites of the adjacent Kaapvaal craton root. The coarse, low-temperature Louwrensia peridotites have an average Mg number for olivine of 91.6 in comparison to 92.6 for low-temperature peridotites from the craton. Orthopyroxene content averages 24 wt.% with a range of 11-40 wt.% for Louwrensia low-temperature peridotites, in comparison to a mean of 31.5 wt.% and a range of 11-44 wt.% for low-temperature peridotites from the Kaapvaal craton. Other major, minor and trace element concentrations in minerals forming Louwrensia lherzolites are more similar to values in corresponding Kaapvaal peridotite minerals than to those in lithospheric peridotites of Phanerozoic age as represented by off-craton basalt-hosted xenoliths and orogenic peridotites. Proportions of clinopyroxene and garnet in both the Louwrensia and Kaapvaal lherzolites overlap in the range up to 10 wt.% forming a trend extending towards pyrolite composition. Disequilibrium element partitioning between clinopyroxene and garnet for some incompatible trace elements is evidence that some of the trend is caused by enrichment following depletion. The disequilibrium is interpreted to have been caused by relatively recent growth of diopside, as previously suggested for cratonic peridotites. Attempts to constrain the depth of melting required to produce the Louwrensia peridotites suggests

  17. Garnet peridotite xenoliths in a Montana, U.S.A., kimberlite

    USGS Publications Warehouse

    Carter, Hearn B.; Boyd, F.R.

    1975-01-01

    Within a swarm of late middle Eocene subsilicic-alkalic diatremes, one diatreme 270 by 370 m and an associated dike contain common xenoliths of granulite and rare xenoliths of spinel peridotite and garnet peridotite. Six garnet lherzolite xenoliths have been found and these show a range of textures. Four are granular, and two are intensely sheared. Phlogopite is absent from the intensely sheared xenoliths and is thought to be primary in part in the granular xenoliths. Estimated temperatures and depths of equilibration of xenolith pyroxenes range from 920??C, 106 km (32 kbar) to 1315??C, 148 km (47 kbar). The xenoliths show increasing amounts of deformation with greater inferred depths of origin. The temperature-depth points suggest a segment of an Eocene geotherm for Montana which is similar in slope to the steep portion of the pyroxene-determined Lesotho geotherm (Boyd and Nixon, this volume) and is considerably steeper than typical calculated shield and continental geotherms at present. The steep trend could be a result of plate-tectonic shearing and magma ascension within an Eocene low-velocity zone. Preservation of intensely sheared textures requires rapid transport of material from about 150 km depth during active deformation of relatively dry rock. The occurrence of monticellite peridotite in this kimberlite diatreme suggests that magmas which crystallized to monticellite peridotite at relatively shallow depth could be one of the primitive types of kimberlite magma. ?? 1975.

  18. Pressures of skarn formation at Casting Copper NV, USA, based on Raman spectroscopy and elastic modeling of apatite inclusions in garnet

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, M.; Barkoff, D. W.; Ashley, K.

    2017-12-01

    Thermobarometry of metasomatic rocks is commonly challenging, owing to the high variance of hydrothermal mineral assemblages, thermodynamic disequilibrium and overprinting by subsequent hydrothermal episodes. Here, we estimate formation pressures of a Cu-Fe-sulfide-bearing andradite-diopside skarn deposit at Casting Copper (Yerington district, NV) using Raman spectroscopy and elastic modeling of apatite inclusions in garnet. Andradite garnet from the Casting Copper skarn contains inclusions of hydroxyl-fluorapatite, calcite, hematite, magnetite, and ilmenite. Raman spectroscopy reveals that the apatite inclusions are predominantly under tension of -23 to -123 MPa at ambient conditions. Elastic modeling of apatite-in-garnet suggest entrapment occurred at 10 to 115 MPa, assuming a trapping temperature of 400 °C, which is consistent with paleodepth estimates of 2-3 km. These results provide independent constraints on the conditions of hydrothermal skarn formation at Casting Copper, and suggest that this approach may be applied to other, less-constrained skarn systems.

  19. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less

  20. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    USGS Publications Warehouse

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  1. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  2. Alternations in burial and exhumation along the Selimiye (Kayabükü) shear zone in the Menderes Massif from detailed garnet pressure-temperature paths

    NASA Astrophysics Data System (ADS)

    Kelly, E. D.; Atakturk, K. R.; Catlos, E. J.; Lizzadro-McPherson, D. J.; Cemen, I.; Lovera, O. M.

    2015-12-01

    Pressure-temperature (P-T) paths derived from garnet chemical zoning and supported by thermal modeling record alternating burial and exhumation during Main Menderes Metamorphism in western Turkey. We studied six rocks along the Selimiye (Kayabükü) shear zone, three from the footwall (Çine nappe) and three from the hanging wall (Selimiye nappe). The shear zone bounds the southern Menderes Massif metamorphic core complex and has been suggested to record compression followed by extension. The rocks are lower-amphibolite facies garnet-bearing metapelites with nearly identical mineral suites. Retrograde overprinting hinders classical thermobarometry; to overcome this, preserved chemical zoning in garnet combined with a G-minimization approach was used to construct detailed P-T paths (e.g., 50 points in some paths). During continuous temperature increase, the Çine nappe paths show increasing, decreasing, and then increasing pressure (an N-shaped path) ending at 7-8 kbar and ~565-590 °C. The Selimiye nappe paths show a single increase in P-T ending at ~7.3 kbar and ~580 °C. Similar bulk-rock compositions in all samples and the separation by the shear zone suggest that garnets grew during distinct events in each nappe. The timing of garnet growth, and thus the P-T paths, is currently undetermined, as monazite inclusions in garnet appear secondary and complicated by excess common Pb. The Çine nappe N-shaped path describes alternations in burial and exhumation, possibly due to thrust motion along the shear zone. To demonstrate the physical plausibility of the P-T paths, a 2-D finite difference solution to the diffusion-advection equation was applied. The results of the thermal modeling suggest that thrusting, denudation, and renewed thrusting would produce similar changes in P-T to the N-shaped path. Thus, the Çine nappe N-shaped P-T path appears to record a gap in thrust motion along the Selimiye (Kayabükü) shear zone prior to ultimate unroofing of the massif.

  3. The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettenwander, D., E-mail: daniel.rettenwander@sbg.ac.at; Geiger, C.A.; Tribus, M.

    2015-10-15

    A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses withmore » starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in

  4. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd3Ga5O12 substrate

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwang; Zheng, Hui; Han, Mangui

    2017-07-01

    In this work, yttrium iron garnet nanodot array has been deposited on Gd3Ga5O12 substrate by pulsed laser deposition through an ultrathin alumina mask. The morphology and magnetic properties of YIG nanodot array have been investigated. Scanning electron microscopy displays the prepared nanodot array has a sharp distribution in diameter centered at 330 nm with standard deviation of 20 nm. X-ray diffraction θ-2θ and pole figure analysis show the yttrium iron garnet nanodot array has oriented growth. Moreover, typical hysteresis loops and ferromagnetic resonance spectra display larger coercivity and multi-resonance peaks which are ascribed to this unique structure.

  5. Charge-coupled substituted garnets (Y 3–x Ca 0.5x M 0.5x )Fe₅O₁₂ (M = Ce, Th): Structure and stability as crystalline nuclear waste forms

    DOE PAGES

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; ...

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y³⁺ = Ca²⁺ + M⁴⁺, where M⁴⁺ = Ce⁴⁺ or Th⁴⁺. Single-phase garnets Y 3–xCa 0.5xM 0.5xFe₅O₁₂ (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectronmore » spectroscopy. X-ray diffraction and ⁵⁷Fe–Mössbauer spectroscopy indicated that M⁴⁺ and Ca²⁺ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe³⁺ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high-temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.« less

  6. Lu/Hf dating of garnet constrains timing of metamorphism and deformation, Prince Rupert Area, British Columbia

    NASA Astrophysics Data System (ADS)

    Wolf, D. E.; Andronicos, C. L.; Vervoort, J. D.; Mansfield, M.

    2008-12-01

    We present new Lu-Hf garnet ages that constrain the timing of deformation and metamorphism in the Western Metamorphic Belt (WMB), near Prince Rupert, British Columbia. We examined four samples of grt- bearing schist collected within the aureole to the Ecstall Pluton in the WMB. Garnets were separated from these rocks and dated using the Lu-Hf method at Washington State University. We determined geologically meaningful ages from three of these samples. The tectonic history of the Prince Rupert area is marked by phases of transpressive deformation, which included the development of crustal scale strike-slip shear zones and thrust slices with inverted metamorphic gradients. The Grenville Channel shear zone (GCSZ) is a crustal-scale sinistral-slip shear zone over 300 km long that strikes NW with a steep dip and shallow lineation. The GCSZ cuts through the WMB, a ductile fold and thrust belt composed of gneiss and schist with an inverted metamorphic sequence. Index minerals range from: chl and chd-grade units at the bottom of the sequence, str-bearing rocks in the middle, and ky-grt schist and local migmatites at the top of the thrust stack. The WMB was deformed and intruded by the Ecstall Pluton after the inverted metamorphic sequence had formed. The Ecstall is an epi-bearing hbl-qtz diorite emplaced between 91 and 93.5±1 Ma (Butler et al., 2001). Sample G-16A from Kumeleon Inlet (W of the Ecstall pluton) is a schist containing grt+biot+musc+qtz+epi+amph+sil, with small (<1 mm) euhedral grt. Kinematic indicators, including grt porphyroclasts, indicate left-lateral, top to the south, strike-slip shear. This sample yields a Lu-Hf age of 102±3.6 Ma (2σ, MSWD=1.5) based on seven grt and three whole-rock fractions, and a P-T estimate of 5.5±1 kbar and 590°±50° C from garnet-biotite thermobarometry. Sample 98-114A from Ridley Island (NW of Ecstall pluton) is a schist containing musc+biot+qtz+grt+ky+plag+chl+ill and with syn-tectonic euhedral garnet (1 cm). Grt

  7. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  8. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications

    NASA Astrophysics Data System (ADS)

    Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.

    2018-03-01

    The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.

  9. Honeycomb-alumina supported garnet membrane: Composite electrolyte with low resistance and high strength for lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Wang, Chang-An

    2015-05-01

    Li-ion ceramic electrolyte material is considered the key for advanced lithium metal batteries, and garnet-type oxides are promising ceramic electrolyte materials. To disentangle the thinness-strength dilemma in garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte, we designed and successfully synthesized a ceramic-ceramic composite electrolyte, i.e. a honeycomb-Al2O3 pellet supported LLZTO membrane. The honeycomb-Al2O3 pellet acts as a supporter to the thin LLZTO membrane and makes the whole composite electrolyte strong enough, while the straight holes in the Al2O3 supporter can be filled with liquid electrolyte and acts as channels for Li+ transportation. Such a composite design eliminates the concern over the LLZTO membrane's fragility, and keeps its good electrical property.

  10. Damage induced in garnets by heavy ion irradiations: a study by optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Lelong, Gérald; Guillaumet, Maxime; Toulemonde, Marcel

    2018-02-01

    The damage induced by heavy-ion irradiation has been studied in yttrium iron garnet (Y3Fe5O12 or YIG) films, doped with Ca, Tb and Tm, grown by liquid-phase epitaxy on gadolinium gallium garnet (Gd3Ga5O12 or GGG) substrates. Irradiations of doped-YIG epitaxial films and GGG substrates with 36-MeV 183W and 12-MeV 197Au ions were applied for fluences between 1 × 1013 and 3 × 1015 cm-2 near room temperature. The radiation damage was monitored by micro-Raman spectroscopy and UV-visible optical absorption spectroscopy. Raman spectra revealed that amorphisation was achieved in YIG for both ions, whereas a high lattice disorder was induced in GGG without reaching amorphisation for the Au ion irradiation. Raman spectra also showed that a major damage of the tetrahedral sites was induced in GGG, as previously found for YIG. It is concluded that with such ions reaching the stopping power threshold of track formation in YIG and GGG the observed rate of amorphisation may result from a combination of electronic and nuclear energy losses as calculated using the unified thermal spike model.

  11. Local stress distribution around garnet inclusions during hydration of granulite in the Bergen Arcs, Norway

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Vrijmoed, Johannes C.; Putnis, Andrew; Austrheim, Håkon

    2017-04-01

    The importance of heterogeneous stress and pressure distribution within a rock has been established over the last decades (see review in Tajčmanová et al., 2015). During a hydration reaction, depending on whether the system is open to mass transfer, the volume changes of the reaction may be accommodated by removing material into the fluid phase that leaves the system (Centrella et al., 2015; Centrella et al., 2016). The magnitudes and the spatial distribution of stress and pressure that evolve during such processes is largely unknown. We present here a natural example where a granulite is hydrated at amphibolite facies conditions from the Bergen Arcs in Norway. Granulitic garnet is associated with kyanite and quartz on one side, and amphibole-biotite on the other side. The first couple replaces the plagioclase of the granulite matrix whereas the second replaces the garnet. We use electron probe microanalysis (EPMA) and X-ray mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to kyanite+quartz induces a loss in volume compared to the original plagioclase whereas the second reaction amphibole+biotite gains volume compared to the original garnet. The specific mass evolution associated with both reactions suggests a local mass balance probably associated with a single hydration event. Using the methodology of Vrijmoed & Podladchikov (2015) we test whether the microstructure may be partly related to the local stress heterogeneity around the garnet inclusion. We evaluate the phase assemblage and distribution at chemical equilibrium under a given input pressure field that can be computed with the Thermolab software. By varying the input pressure field using the Finite Element Method and comparing the resulting equilibrium assemblage to the real data an estimate of the local stress

  12. Using ArcMap, Google Earth, and Global Positioning Systems to select and locate random households in rural Haiti.

    PubMed

    Wampler, Peter J; Rediske, Richard R; Molla, Azizur R

    2013-01-18

    A remote sensing technique was developed which combines a Geographic Information System (GIS); Google Earth, and Microsoft Excel to identify home locations for a random sample of households in rural Haiti. The method was used to select homes for ethnographic and water quality research in a region of rural Haiti located within 9 km of a local hospital and source of health education in Deschapelles, Haiti. The technique does not require access to governmental records or ground based surveys to collect household location data and can be performed in a rapid, cost-effective manner. The random selection of households and the location of these households during field surveys were accomplished using GIS, Google Earth, Microsoft Excel, and handheld Garmin GPSmap 76CSx GPS units. Homes were identified and mapped in Google Earth, exported to ArcMap 10.0, and a random list of homes was generated using Microsoft Excel which was then loaded onto handheld GPS units for field location. The development and use of a remote sensing method was essential to the selection and location of random households. A total of 537 homes initially were mapped and a randomized subset of 96 was identified as potential survey locations. Over 96% of the homes mapped using Google Earth imagery were correctly identified as occupied dwellings. Only 3.6% of the occupants of mapped homes visited declined to be interviewed. 16.4% of the homes visited were not occupied at the time of the visit due to work away from the home or market days. A total of 55 households were located using this method during the 10 days of fieldwork in May and June of 2012. The method used to generate and field locate random homes for surveys and water sampling was an effective means of selecting random households in a rural environment lacking geolocation infrastructure. The success rate for locating households using a handheld GPS was excellent and only rarely was local knowledge required to identify and locate households. This

  13. COMPARATIVE EVALUATION OF R3f GARNET BEAD FILTRATION AND MULTIMEDIA FILTRATION SYSTEMS; FINAL REPORT

    EPA Science Inventory

    This report summarizes the results of tests conducted to date at the EPA T&E Facility on the R3f filtration system utilizing fine beads (such as garnet beads or glass beads) and a conventional multimedia filtration system. Both systems have been designed and built by Enprotec, a...

  14. In Situ Measurements of the Post-Spinel and Post-Garnet Phase Boundaries in Pyrolite at 17-32 GPa and 1500-2400 K

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Gu, C.; Shim, S. H.; Prakapenka, V.; Meng, Y.

    2014-12-01

    Recent seismic studies have revealed complex structures near 660-km depth. In order to understand the effects of composition and temperature, we measured the depth and Clapeyron slope of the post-spinel and post-garnet boundaries at the pressure-temperature conditions of 600-700 km depths in pyrolitic compositions: (1) MgO-Al2O3-SiO2 (MAS) and (2) CaO-MgO-Al2O3-SiO2-FeO (CMASF). Glass starting materials were mixed with either gold or platinum powder (10 wt%) for laser coupling and internal pressure scale. Cold compressed foils of the mixtures were loaded in the diamond-anvil cell together with Ar or KCl for thermal insulation and pressure transmission. X-ray diffraction patterns were measured for the samples in the diamond-anvil cell at in situ high pressure and high temperature combined with double side laser heating at beamlines 13-IDD (GSECARS) and 16-IDB (HPCAT) in the Advanced Photon Source. Within 5 to 8 minutes of heating, stable crystalline phase assemblages were formed and persisted with further heating for 20 to 30 minutes. A total of 160 heating cycles were conducted at different pressures and temperatures, providing tight constrains on the phase boundaries. Our data show that the post-spinel transition occurs at 23.6-24.5 GPa and 1850 K with a Clapeyron slope of -2.5(4) MPa/K if the Pt pressure scales are used, consistent with the seismic observation of the 660 discontinuity. The post-garnet boundary occurs at 24.2-27.5 GPa and 1900 - 2450 K. We found that the Clapeyron slope of the post-garnet transition increases with Fe: from 2.4 MPa/K for MAS to 6.2 MPa/K for CMASF. Below 1900 K, garnet disappears near the post-spinel boundary within the resolution of our measurements. Our new data supports the notion that the 660 discontinuity is dominated by the post-spinel phase transition below 1900 K while dominated by the post-garnet phase transition above 1900 K. However, our data indicate much larger Clapeyron slope of the post-garnet transition, suggesting

  15. Laser intervention on trabeculo-Descemet's membrane after resistant viscocanalostomy: Selective 532 nm gonioreconditioning or conventional 1064 nm neodymium-doped yttrium aluminum garnet laser goniopuncture?

    PubMed Central

    Sabur, Huri; Baykara, Mehmet; Can, Basak

    2016-01-01

    Purpose: To compare the results of conventional 1064 nm neodymium-doped yttrium-aluminum garnet laser goniopuncture (Nd:YAG-GP) and selective 532 nm Nd:YAG laser (selective laser trabeculoplasty [SLT]) gonioreconditioning (GR) on trabeculo-Descemet's membrane in eyes resistant to viscocanalostomy surgery. Methods: Thirty-eight eyes of 35 patients who underwent laser procedure after successful viscocanalostomy surgery were included in the study. When postoperative intraocular pressure (IOP) was above the individual target, the eyes were scheduled for laser procedure. Nineteen eyes underwent 532 nm SLT-GR (Group 1), and the remaining 19 eyes underwent conventional 1064 nm Nd:YAG-GP (Group 2). IOPs before and after laser (1 week, 1 month, 3 months, 6 months, 1 year, and last visit), follow-up periods, number of glaucoma medications, and complications were recorded for both groups. Results: Mean times from surgery to laser procedures were 17.3 ± 9.6 months in Group 1 and 13.0 ± 11.4 months in Group 2. Mean IOPs before laser procedures were 21.2 ± 1.7 mmHg in Group 1 and 22.8 ± 1.9 mmHg in Group 2 (P = 0.454). Postlaser IOP measurements of Group 1 were 12.1 ± 3.4 mmHg and 13.8 ± 1.7 mmHg in the 1st week and last visit, respectively; in Group 2, these measurements were 13.6 ± 3.7 mmHg and 14.9 ± 4.8 mmHg, respectively. There were statistically significant differences (P < 0.001) in IOP reduction at all visits in both groups; the results of the two groups were similar (P > 0.05). Mean follow-up was 16.6 ± 6.4 months after SLT-GR and 18.9 ± 11.2 months after Nd:YAG-GP. Conclusions: While conventional Nd:YAG-GP and SLT-GR, a novel procedure, are both effective choices in eyes resistant to viscocanalostomy, there are fewer complications with SLT-GR. SLT-GR can be an alternative to conventional Nd:YAG-GP. PMID:27688277

  16. Deformation behavior of migmatites: insights from microstructural analysis of a garnet-sillimanite-mullite-quartz-feldspar-bearing anatectic migmatite at Rampura-Agucha, Aravalli-Delhi Fold Belt, NW India

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Piazolo, Sandra; Saha, Lopamudra; Bhattacharya, Abhijit; Pal, Durgesh Kumar; Sarkar, Saheli

    2018-03-01

    In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age shear zone in the Aravalli-Delhi Fold Belt. The migmatite exhibits three main deformation structures and fabrics (S1, S2, S3). Elongated garnet porphyroblasts are aligned parallel to the metatexite S2 layers and contain crenulation hinges defined by biotite-sillimanite-mullite-quartz (with S1 axial planar foliation). Microstructural evidence and phase equilibrium relations establish the garnet as a peritectic phase of incongruent melting by breakdown of biotite, sillimanite ± mullite and quartz at peak P-T of 8 kbar, 730 °C along a tight-loop, clockwise P-T path. Monazite dating establishes that the partial melting occurred between 1000 and 870 Ma. The absence of subgrains and systematic crystal lattice distortions in these garnets despite their elongation suggests growth pseudomorphing pre-existing 3-D networks of S1 biotite aggregates rather than high-temperature crystal plastic deformation which is noted in the S1 quartz grains that exhibit strong crystallographic preferred orientation (CPO), undulatory extinction and subgrains. Mode-I fractures in these garnet porphyroblasts induced by high melt pressure during late stage of partial melt crystallization are filled by retrograde biotite-sillimanite. Weak CPO and non-systematic crystal lattice distortions in the coarse quartz grains within the S2 leucosome domains indicate these crystallized during melt solidification without later crystal plastic deformation overprint. In the later stages of deformation (D3), strain was mostly accommodated in the mullite-biotite-sillimanite-rich restite domains forming S3 which warps around garnet and leucosome domains; consequently, fine-grained S3 quartz does not exhibit strong CPOs.

  17. P-T-t metamorphic evolution of highly deformed metapelites from the Pinkie unit of western Svalbard using quartz-in-garnet barometry, trace element thermometry, P-T-X-M diagrams and monazite in-situ dating

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Spear, Frank; Majka, Jarosław

    2017-04-01

    We present the results of quartz-in-garnet (QuiG) Raman barometry coupled with P-T-X-M diagrams, trace element thermometry, and monazite dating from metapelites of the Pinkie unit on Prins Karls Forland, western Svalbard. This unconventional approach, which combines traditional and novel thermobarometry techniques as well as dating results, provides the opportunity to decipher the pressure-temperature-time (P-T-t) metamorphic evolution of these highly deformed rocks, for which the P-T conditions could not have been obtained using traditional techniques. The Pinkie unit is comprised of Barrovian-type zones expressed by the following three mineral assemblages: Grt+St+Ms+Bt+Pl+Q, Grt+St+Ky+Ms+Bt+Pl+Q and Grt+Ky+Ms+Bt+Pl+Q. The metamorphic assemblages have been strongly affected by pervasive mylonitization. Two generations of garnet are present. Early garnet-I forms large (up to 2 mm) anhedral and inclusion-rich porphyroblasts that are strongly deformed with resorbed rims. Its composition varies from Alm81Grs5Prp11Sps3 in the core to Alm84Grs4Prp10Sps2 in the rim for a St-bearing sample. St-Ky bearing metapelites contain garnet-I, which is characterized by Alm88Grs2Prp8Sps2 in the core and Alm89Grs2Prp8Sps1 in the rim. In the Ky-bearing sample garnet-I composition is varying from Alm77Grs4Prp11Sps8 in the core to Alm83Grs4Prp9Sps4 in the rim. Garnet-II is characterized by small (up to 0.5 mm) euhedral grains that locally overgrows garnet-I. It contains very scarce inclusions, mostly quartz. Grt-II composition is very similar in all Pinkie unit samples and is characterized by Alm80Grs11Prp8Sps1(0). The measured maximum shift of the 464 cm-1 Raman band for quartz in garnet-I is 1.05 cm-1 for St-bearing samples, 1.80 cm-1 for St-Ky bearing rocks, and 2.10 cm-1 for Ky-bearing samples, respectively. The highest shift obtained for inclusions in garnet-II is 2.7 cm-1. Monazite-in-garnet thermometry combined with the QuiG yielded P-T conditions of garnet-I nucleation as

  18. Calcium Isotopic Composition of Bulk Silicate Earth

    NASA Astrophysics Data System (ADS)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  19. Refractory open-angle glaucoma after neodymium-yttrium-aluminum-garnet laser lysis of vitreous floaters.

    PubMed

    Cowan, Lisa A; Khine, Kay T; Chopra, Vikas; Fazio, Doreen T; Francis, Brian A

    2015-01-01

    To illustrate 3 cases of chronic open-angle glaucoma secondary to the neodymium-yttrium-aluminum-garnet (Nd:YAG) laser vitreolysis procedure for symptomatic vitreous floaters. Observational case series. Location of the study was the Doheny Eye Institute. Three eyes of 2 patients who developed chronic open-angle glaucoma after Nd:YAG vitreolysis for symptomatic floaters presenting with very high intraocular pressure (IOP >40 mm Hg) were selected. The time from the laser treatment to the onset of elevated pressure ranges from 1 week to 8 months. There was no associated inflammation, steroid use, or other identifiable cause of chronic IOP elevation. All eyes were treated initially with glaucoma medication, followed by selective laser trabeculoplasty (SLT) and eventually glaucoma surgery (Trabectome) in 2 eyes for disease management. In all eyes, intraocular pressures were eventually stabilized within a normal pressure range from 18 to 38 months following Nd:YAG vitreolysis. At the latest follow-up post surgery, all eyes had intraocular pressures of 22 mm Hg or less with or without medications. Secondary open-angle glaucoma is a complication of Nd:YAG vitreolysis for symptomatic floaters that may present with an increase in intraocular pressure immediately, or many months after the surgery. Furthermore this complication may be permanent and require chronic medical therapy or glaucoma surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  1. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onbasli, M. C., E-mail: onbasli@mit.edu; Kim, D. H.; Ross, C. A.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation ofmore » the origins of novel magnetic phenomena and magnetization dynamics.« less

  2. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  3. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses

    NASA Astrophysics Data System (ADS)

    Dubs, Carsten; Surzhenko, Oleksii; Linke, Ralf; Danilewsky, Andreas; Brückner, Uwe; Dellith, Jan

    2017-05-01

    Using a liquid phase epitaxy (LPE) technique (1 1 1) yttrium iron garnet (YIG) films with thicknesses of  ≈100 nm and surface roughnesses as low as 0.3 nm have been grown on (1 1 1) gadolinium gallium garnet (GGG) substrates as a basic material for spin-wave propagation experiments in microstructured waveguides. The continuously strained films exhibit nearly perfect crystallinity without significant mosaicity and with effective lattice misfits of Δ {{a}\\bot}/{{a}s}≈ {{10}-4} and below. The film/substrate interface is extremely sharp without broad interdiffusion layer formation. All LPE films exhibit a nearly bulk-like saturation magnetization of (1800+/- 20 ) Gs and an ‘easy cone’ anisotropy type with extremely small in-plane coercive fields  <0.2 Oe. There is a rather weak in-plane magnetic anisotropy with a pronounced six-fold symmetry observed for the saturation field  <1.5 Oe. No significant out-of-plane anisotropy is observed, but a weak dependence of the effective magnetization on the lattice misfit is detected. The narrowest ferromagnetic resonance linewidth is determined to be 1.4 Oe @ 6.5 GHz which is the lowest value reported so far for YIG films of 100 nm thicknesses and below. The Gilbert damping coefficient for investigated LPE films is estimated to be close to 1× {{10}-4} .

  4. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  5. Caledonian evolution of the Moine Supergroup: Prograde garnet growth and context for quartz fabric-based deformation thermometry

    NASA Astrophysics Data System (ADS)

    Law, Richard; Ashley, Kyle; Thigpen, Ryan

    2014-05-01

    Despite the detailed Caledonian structural/tectonic framework developed for the Moine Supergroup of northern Scotland, debate continues over the tectonic processes that drove metamorphism. Rapid temporal evolution of the metamorphic sequence has led some geologists to suggest that crustal thickening alone cannot provide sufficient heat flow to reach the metamorphic grades observed. Rather, they postulate that large-scale contact metamorphism or initial heating in an extensional, back-arc setting is required. We present coupled petrographic analyses and forward phase stability modeling for quantifying prograde metamorphic evolution in pelite horizons dispersed across the Caledonian thrust sheets. Results suggest garnet growth was syn-kinematic during prograde decompression. Rutile and ilmenite inclusions in garnet cores and rims, respectively, support this claim, while chemical profiles and crystal morphology argue against a detrital origin for these garnet grains. The observed clockwise P-T path for these garnets is incompatible with extensional or contact metamorphic models (would require counter-clockwise paths). Rather, the P-T data suggests advection of isotherms during thrusting as the dominant mechanism for metamorphism (Thigpen et al., 2013). Recent studies in other orogens (e.g., Spear et al., 2012) suggest that heating over long time scales under mid-crustal conditions may not be needed to reach the metamorphic grades observed. Therefore the structurally higher, more hinterland Caledonian thrust sheets may have reached peak metamorphism in a much shorter time period than previously expected. The paucity of pelitic horizons across the foreland-positioned Moine thrust sheet has previously limited insight into the prograde evolution of these rocks. However, the dominance of quartz-rich units has allowed the thermal structure of the thrust sheet to be evaluated using quartz c-axis fabric opening angle-based deformation thermometry. Microstructures in the

  6. Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Nikl, Martin; Mares, Jiri A.; Bilski, Pawel; Twardak, Anna; Sidletskiy, Oleg; Gerasymov, Iaroslav; Grinyov, Boris; Fedorov, Alexandr

    2016-04-01

    The paper is dedicated to development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped Lu3 - xTbxAl5 - yGayO12 multicomponent garnets at x = 2 - 3 and y = 0 - 2.5 onto Y3Al5O12 (YAG) and Gd3Al2.5Ga2.5O12 (GAGG) substrates using the liquid phase epitaxy (LPE) method. We report the optimized content and high scintillation figure of merit of SCF of these garnets grown by the LPE method with using PbO based flux. Namely, the Tb3Al2.5Ga2.5O12:Ce SCFs possess the highest values of light yield (LY) compared to all earlier investigated SCF samples, with their LY exceeding by 2.35 and 1.15 times the LY values for YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCFs of the mentioned compounds show very lower thermoluminescence in the above room temperature range and relatively fast scintillation decay.

  7. Absence of magnetic ordering and field-induced phase diagram in the gadolinium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Florea, O.; Lhotel, E.; Jacobsen, H.; Knee, C. S.; Deen, P. P.

    2017-12-01

    The robustness of spin liquids with respect to small perturbations, and the way magnetic frustration can be lifted by slight changes in the balance between competing magnetic interactions, remains a rich and open issue. We address this question through the study of the gadolinium aluminum garnet Gd3Al5O12 , a related compound to the extensively studied Gd3Ga5O12 . We report on its magnetic properties at very low temperatures. We show that despite a freezing at about 300 mK, no magnetic transition is observed, suggesting the presence of a spin-liquid state down to the lowest temperatures, similarly to Gd3Ga5O12 , in spite of a larger ratio between exchange and dipolar interactions. Finally, the phase diagram as a function of field and temperature is strongly reminiscent of the one reported in Gd3Ga5O12 . This study reveals the robust nature of the spin-liquid phase for Gd ions on the garnet lattice, in stark contrast to Gd ions on the pyrochlore lattice for which a slight perturbation drives the compound into a range of magnetically ordered states.

  8. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    PubMed

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  9. Effects of Gd/Lu ratio on the luminescence properties and garnet phase stability of Ce3+ activated GdxLu3-xAl5O12 single crystals

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Beitlerova, A.; Nikl, M.

    2018-06-01

    The luminescence properties of Ce3+ activated (Gd,Lu)3Al5O12 single crystals are investigated as a function of the Gd/Lu ratio with the aim of an improved understanding of the luminescence quenching, energy transfer processes, and garnet phase stability. Upon heavy substitution of Lu with Gd, the target garnet phase becomes thermodynamically unstable and unwanted secondary phase inclusions arise. The secondary phase shows luminescence properties in the UV spectral range. The thermal quenching process of the 5d→4f emission of Ce3+ in the garnet phase is determined by the temperature dependence of the photoluminescence decay time and delayed radiative recombination decays. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing the Gd3+ content. The main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between secondary and garnet phase are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements.

  10. Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: Constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland

    NASA Astrophysics Data System (ADS)

    Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela; Košler, Jan

    2017-11-01

    Garnet and zircon geochronology combined with trace element partitioning and petrological studies provide tight constraints on evolution of the UHT-(U)HP terrain of the Orlica-Śnieżnik Dome (OSD) in the NE Bohemian massif. Lu-Hf dating of peritectic garnet from two mesocratic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma recording peak 2.5 GPa pressure and 950 °C temperature. In situ, U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 341.9 ± 3.4 Ma. Ti-in-zircon thermometry indicates crystallization at 810-860 °C pointing to zircon formation on the retrograde path. Lu partitioning between garnet rim and zircon suggest equilibrium growth and thus U-Pb zircon age constrain the terminal phase of garnet crystallization which lasted about 6 Ma. All Sm-Nd garnet ages obtained for mesocratic and mafic granulites are identical and consistently younger than the corresponding Lu-Hf dates. They are interpreted as reflecting cooling of granulites through the Sm-Nd closure temperature at about 337 Ma. The estimated PTt path documents the ca. 10 Ma evolution cycle of the OSD characterized by two distinct periods: (1) 347 - > 342 Ma period corresponds to nearly isothermal decompression resulting from crustal scale folding and vertical extrusion of granulites, and (2) at > 342-337 Ma which corresponds to a fast, nearly isobaric cooling.

  11. Mantle eclogites and garnet pyroxenites - the meaning of two-point isochrons, Sm-Nd and Lu-Hf closure temperatures and the cooling of the subcratonic mantle

    NASA Astrophysics Data System (ADS)

    Shu, Qiao; Brey, Gerhard P.; Gerdes, Axel; Hoefer, Heidi E.

    2014-03-01

    The Earth's mantle is a huge metamorphic complex which undergoes permanent changes ruled by plate tectonics. It also has enclaves underneath Archean crust which are exempt from the convecting mantle since at least 2.5 Ga. Since then, this mantle may cool slowly as a result of diminishing heat input from the asthenosphere, of declining heat production from radioactive decay and of denudation of the crust. Under such circumstances, two point garnet-clinopyroxene isochrons from mantle xenoliths (here garnet pyroxenites and eclogites) reflect either cooling ages or eruption ages depending on whether the mantle portion under consideration was below or above the closure temperature of a radiogenic system. Available literature data from the Slave and Kaapvaal craton for the Sm-Nd and Lu-Hf isotope systems and our own new data from Bellsbank (Kaapvaal) provide a whole range of two-point isochron ages from younger than the kimberlite eruption age to early Proterozoic. The meaning of ages other than the kimberlite eruption age is unclear. We use here a compilation of Sm-Nd and Lu-Hf two-point isochron age data from this study and the literature, to assess the meaning of such isochrons. This is achieved by plotting the temperature of last equilibration as derived from the Fe-Mg exchange between garnet and clinopyroxene versus the two-point isochron age. There is a low temperature alignment for both systems of increasing age with decreasing temperature and an alignment around the kimberlite eruption ages at high temperatures. We interpret the intersect between the low temperature limb and the kimberlite eruption age as closure temperature which gives about 920 °C for the Lu-Hf system and about 850 °C for the Sm-Nd system. The differences of the cooling ages between the two isotope systems for individual samples combined with the closure temperatures from this study are used to deduce the cooling of the Slave and Kaapvaal subcratonic mantle from the early Proterozoic until

  12. P-T evolution of slivers of garnet-bearing micaschist in the sole of the Western Vardar Ophiolite Unit at Brezovica, Kosovo

    NASA Astrophysics Data System (ADS)

    Massonne, Hans-Joachim; Koller, Friedrich; Onuzi, Kujtim

    2016-04-01

    Rocks of the metamorphic sole of ophiolite complexes are regarded as an important factor to understand the process of obduction of former oceanic lithosphere on top of continental crust. The metamorphic evolution of these rocks can give, for instance, hints at the thickness of the obducted oceanic lithosphere. We have started to study the sole of the Western Vardar Ophiolitic Unit at the municipality of Bresovica, Kosovo. This unit is regarded as part of the former Vardar Ocean, a branch of the Neotethys, which was obducted onto the margin of the Adriatic microplate in Jurassic times. The sole in our study area, below strongly serpentinized ultramafic rocks, is characterized by a melange of various rock types, which are of medium metamorphic grade only in the vicinity of the ultramafic rocks. Our field work resulted in the recognition of several slivers of garnet-bearing micaschist among these medium-grade rocks which are dominated by amphibolite. In such a medium-grade rock from Bresovica the mineral assemblage talc + phengite was reported (Abraham and Schreyer, 1976, J. Petrol. 17, 421-439), which turned out by experiments in a piston-cylinder apparatus to be a high-pressure (HP: > 10 kbar) assemblage (Massonne and Schreyer, 1989, Eur. J. Mineral. 1, 391-410). We studied a garnet-bearing micaschist in detail. Elemental mapping and spot analyses of garnet obtained with an electron microprobe yielded core compositions of Alm0.695Gross(+Andr)0.11Pyr0.185Spes0.01. The composition of the garnet rim is Alm0.71Gross(+Andr)0.065Pyr0.21Spes0.015. On the basis of the bulk-rock composition of the micaschist, a P-T pseudosection was constructed with PERPLEX in the system K-Na-Ca-Mg-Mn-Fe-Al-Si-Ti-O-H. This pseudosection was contoured by isopleths for various parameters among them were the molar fractions of garnet components. According to such isopleths and the compositional variation of garnet, a more or less isobaric heating is likely. This heating to 650 °C has occurred

  13. Spin waves in micro-structured yttrium iron garnet nanometer-thick films

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...

    2015-03-24

    Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.

  14. High-frequency magnetodielectric response in yttrium iron garnet at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming

    2018-05-01

    Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.

  15. INTEGRATED AND FIBER OPTICS: Investigation of the refractive index profile of inhomogeneous iron garnet films containing bismuth

    NASA Astrophysics Data System (ADS)

    Arzamastseva, G. V.; Kravchenko, V. B.; Filimonova, L. M.

    1989-02-01

    The refractive index n of quasihomogeneous iron garnet films with the composition (YGdYb)3 - xBixFe5 - yAlyO12 increased considerably as a result of reduction in the growth temperature Tg. This was attributed mainly by an increase in x and a reduction in y. The dependences n(Tg) were used to select the conditions for growth of inhomogeneous (across the thickness) films and to predict the refractive index profile n(z), where z was measured from the free surface along the normal to the film. The spectra of optical modes were analyzed in the WKB approximation and this yielded the n(z) profiles for films with a refractive index n decreasing monotonically from the free surface and for films with the symmetric profile n(z) (buried waveguides). The n(z) profiles were compared with the distributions of the compensation temperature Tc(z), and of x(z) and y(z) across the thickness.

  16. Combined garnet and zircon geochronology and trace elements studies - constraints of the UHP-(U)HT evolution of Orlica-Śnieżnik Dome (NE Bohemian Massif).

    NASA Astrophysics Data System (ADS)

    Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela

    2017-04-01

    The Orlica-Śnieżnik Dome (OSD), located on the NE margin of the Bohemian Massif, is predominantly composed of amphibolite-facies orthogneiss that contain bodies of HP and UHP eclogites and granulites. Numerous geochronological studies have been undertaken to constrain the timing of the ultra-high grade metamorphic event. Despite this, the exact timing of UHP-(U)HT conditions remain dubious (e.g. Brueckner et al., 1991; Anczkiewicz et al., 2007; Bröcker et al., 2009 & 2010). We have utilized garnet and zircon geochronology to provide time constraints on the evolution of the UHT-(U)HP rocks of the OSD. We have combined the ages with trace element analyses in garnet and zircon to better understand the significance of the obtained ages in petrological context. Lu-Hf grt-wr dating of peritectic garnet from two felsic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma, recording peak conditions of 2.7 GPa and 950°C (e.g. Ferrero et al., 2015). In situ U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 342.2 ± 3.4 Ma. HREE partitioning between garnet rim and metamorphic zircon indicate their growth in equilibrium, hence, the U-Pb zircon date constrains the terminal phase of garnet crystallization. Similar ages were obtained from two eclogite bodies from Międzygórze and Nowa Wieś localities; Lu-Hf (grt-cpx-wr) dating provided ages of 346.5 ± 2.4 and 348.1 ± 9.1 Ma for samples from Międzygórze and Nowa Wieś, respectively. The same age (within error) of 346.3 ± 5.2 Ma was reported by Bröcker et al. (2010) for zircon from the Międzygórze eclogite. Comparison of REE concentrations in garnet (this study) and in metamorphic zircon (reported in Bröcker et al., 2010) indicate that garnet and zircon crystallized in equilibrium. Furthermore, M-HREE patterns observed in both garnet and zircon strongly suggest their growth at eclogite facies conditions. Sm-Nd garnet ages obtained for both felsic and mafic

  17. Rationally designed mineralization for selective recovery of the rare earth elements

    NASA Astrophysics Data System (ADS)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  18. Rationally designed mineralization for selective recovery of the rare earth elements.

    PubMed

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-26

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  19. Thorium-uranium fractionation by garnet - Evidence for a deep source and rapid rise of oceanic basalts

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.

    1993-01-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  20. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less

  1. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; Liang, Chengdu; ...

    2015-08-06

    Substitution of a native ion in the crystals with a foreign ion that differs in valence ( aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such asmore » those for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.« less

  2. Neutron scattering study of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru

    2018-02-01

    The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.

  3. Earth Orientation Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Earth Orientation Help USNO Logo USNO Info Earth Orientation Help Send an e-mail regarding Earth Orientation products. Privacy Advisory Your E-Mail Address Subject ■ Select

  4. Rationally designed mineralization for selective recovery of the rare earth elements

    PubMed Central

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-01-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input. PMID:28548098

  5. Experimental investigation of low temperature garnet-melt partitioning in CMASH, with application to subduction zone processes.

    NASA Astrophysics Data System (ADS)

    Morizet, Y.; Blundy, J.; McDade, P.

    2003-04-01

    During subduction, the slab undergoes several processes such as dehydration and partial melting at pressures of 2-3 GPa and temperatures of 600-900^oC. Under these conditions, there is little or no distinction between melt and fluid phases (Bureau &Keppler, 1999, EPSL 165, 187-196). To investigate the behaviour of trace elements under these conditions we have carried out partitioning experiments in the system CMASH at 2.2 GPa, 700-920^oC. CMAS starting compositions were doped with trace elements, and loaded together with quartz and water into a Pt capsule, which was in turn contained within a Ni-lined Ti capsule. Run durations were 3-7 days. A run at 810^oC produced euhedral calcic garnet, zoisite, quartz, hydrous melt and tiny clinopyroxene interpreted as quench crystals. LA-ICPMS and SIMS were used to quantify trace element concentrations of the phases. Garnet-melt D's for the HREE decrease from ˜300 for Lu to less than 0.2 for La. DSc and D_V are less than 5, consistent with the large X-site dimension in the garnet. DLi DSr and DBa are considerably less than the adjacent REE. There is a very slight negative partitioning anomaly for Zr and Hf relative to Nd and Sm; DHf is slightly greater than DZr. D_U < DTh, due largely to the oxidizing conditions of the experiment (NNO). The most striking result is very high D's for Nb and Ta: 18±10 and 5.4±1.9 (LA-ICPMS), 25.8±11.9 and 6.6±1.3 (SIMS) for Nb and Ta respectively. These are considerably larger than any previously measured (at much higher temperatures). The observed partitioning behaviour is consistent with the large temperature dependence for DREE proposed by Van Westrenen et al. (2001, Contrib Min Pet, 142, 219-234), and an even larger temperature dependence for DNb and DTa. These preliminary results suggest that garnet (rather than rutile) may play the key role in controlling the Nb and Ta budget of arc magmas and the Nb/Ta ratio of residual eclogites. For example, modelling of eclogite melting, using a N

  6. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    PubMed

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  7. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  8. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence

  9. Coexisting cummingtonite and aluminous hornblende from garnet amphibolite, Boehls Butte area, Idaho, USA

    USGS Publications Warehouse

    Hietanen, A.

    1973-01-01

    Electron microprobe analyses of green hornblende and coexisting cummingtonite from garnet amphibolite show identical Fe/Mg ratios ( = 0.9). Cummingtonite is iron-magnesium silicate with very little calcium and aluminum and practically no alkalies. In contrast, the hornblende has 1.5 tetrahedral Al, 0.9 octahedral Al and a considerable amount of Ca and alkalies. Comparison with the hornblendes from the Sierra Nevada shows a higher relative amount of tschemakite molecule in the hornblendes from Idaho where pressures during the recrystallization were higher. ?? 1973.

  10. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    PubMed

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  11. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    PubMed Central

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  12. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    PubMed

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  13. Composite Polymer-Garnet Solid State Electrolytes

    NASA Astrophysics Data System (ADS)

    Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott

    Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.

  14. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  15. Low temperature Voigt effect in the terbium gallium garnet crystal.

    PubMed

    Akbar, Ali; Khalid, Muhammad Waleed; Anwar, Muhammad Sabieh

    2017-11-27

    Magnetic linear birefringence and dichroism are investigated for the paramagnetic terbium gallium garnet (TGG) single crystal in the temperature range 8-100 K. The reciprocal nature is confirmed for the linear birefringence. Furthermore a theoretical model is validated that describes the intermixing of linear and circular birefringence. The ellipticity and rotation of the polarization ellipse are investigated in the light of these measurements. These otherwise minuscule magnetically induced effects are amplified at cryogenic temperatures and are determined by a phase-sensitive technique based on the Fourier decomposition of detected signal intensities. The correspondent measurements also allow us to determine the Curie-Weiss constant corroborating the presence of a magnetically frustrated spin system. Additionally we show how the Voigt geometry enables determining the direction of a magnetic field.

  16. Selective Tuning of Gilbert Damping in Spin-Valve Trilayer by Insertion of Rare-Earth Nanolayers.

    PubMed

    Zhang, Wen; Zhang, Dong; Wong, Ping Kwan Johnny; Yuan, Honglei; Jiang, Sheng; van der Laan, Gerrit; Zhai, Ya; Lu, Zuhong

    2015-08-12

    Selective tuning of the Gilbert damping constant, α, in a NiFe/Cu/FeCo spin-valve trilayer has been achieved by inserting different rare-earth nanolayers adjacent to the ferromagnetic layers. Frequency dependent analysis of the ferromagnetic resonances shows that the initially small magnitude of α in the NiFe and FeCo layers is improved by Tb and Gd insertions to various amounts. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the observed increase in α can be attributed primarily to the orbital moment enhancement of Ni and Co, rather than that of Fe. The amplitude of the enhancement depends on the specific rare-earth element, as well as on the lattice and electronic band structure of the transition metals. Our results demonstrate an effective way for individual control of the magnetization dynamics in the different layers of the spin-valve sandwich structures, which will be important for practical applications in high-frequency spintronic devices.

  17. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  18. Magneto-Optic Materials for Biasing Ring Laser Gyros. Report Number 3. (Computer Model for Evaluating Scattering from Multi-Layer Dielectric Thin Film Structures Containing a Magnetic Layer.

    DTIC Science & Technology

    1980-09-30

    16. "Substituted Rare Earth Garnet Substrate Crystals and LPE Films for Magneto-optic Applications," M. Kestigian, W.R. Bekebrede and A.B. Smith, J...transparent garnet magnetic films have been discussed by workers at Sperry [4,5]. The above considerations indicate that it is highly desirable to have...metallic magnetic film , such as a garnet , on top of an MLD stack. C. A partially transparent (very thin) magnetic metal film on top of an MLD stack. We

  19. Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.

    2018-06-01

    We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.

  20. Spatial and size distributions of garnets grown in a pseudotachylyte generated during a lower crust earthquake

    NASA Astrophysics Data System (ADS)

    Clerc, Adriane; Renard, François; Austrheim, Håkon; Jamtveit, Bjørn

    2018-05-01

    In the Bergen Arc, western Norway, rocks exhumed from the lower crust record earthquakes that formed during the Caledonian collision. These earthquakes occurred at about 30-50 km depth under granulite or amphibolite facies metamorphic conditions. Coseismic frictional heating produced pseudotachylytes in this area. We describe pseudotachylytes using field data to infer earthquake magnitude (M ≥ 6.6), low dynamic friction during rupture propagation (μd < 0.1) and laboratory analyses to infer fast crystallization of microlites in the pseudotachylyte, within seconds of the earthquake arrest. High resolution 3D X-ray microtomography imaging reveals the microstructure of a pseudotachylyte sample, including numerous garnets and their corona of plagioclase that we infer have crystallized in the pseudotachylyte. These garnets 1) have dendritic shapes and are surrounded by plagioclase coronae almost fully depleted in iron, 2) have a log-normal volume distribution, 3) increase in volume with increasing distance away from the pseudotachylyte-host rock boundary, and 4) decrease in number with increasing distance away from the pseudotachylyte -host rock boundary. These characteristics indicate fast mineral growth, likely within seconds. We propose that these new quantitative criteria may assist in the unambiguous identification of pseudotachylytes in the field.

  1. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  2. Sm-Nd Mineral Isochron Age Patterns from Garnet-bearing Peridotite of the Western Gneiss Region, Norwegian Caledonides: Discrete Mantle Events or Continuous Re- equilibration?

    NASA Astrophysics Data System (ADS)

    Brueckner, H. K.

    2007-12-01

    The garnet peridotites (and pyroxenites) of the UHP Western Gneiss Region of Norway give Sm-Nd garnet, clinopyroxene, whole rock, orthopyroxene, amphibole ages that range from ca. 1.7 Ga to 424 Ma. Most of these twenty seven ages are much older than the continent-continent collision that transferred these peridoitites from the mantle into the crust (i.e. the 400 Ma Scandian Orogeny) suggesting the garnet peridotites of the WGR are unique relative to those in other UHP terranes, which invariably give ages that overlap the time of UHP metamorphism of the enclosing country rocks. All but the youngest ages given by WGR peridotites reflect processes that occurred deep in the mantle beneath the Baltic Shield, but it is unclear if they date a series of discrete events related to the tectonic evolution of the Baltic Shield or if the ages reflect continuous, but variable, re-equilibration of the Sm-Nd system between phases during the residence of the peridotites in the mantle. Three ages overlap the 1.75 to 1.55 Ga Gothian Orogeny while twelve ages are within error of the 1.2 to 0.9 Ga Sveconorwegian Orogeny. The three youngest ages (438 to 424 Ma) are associated with a younger generation of garnets and may mark the beginning of eclogite-facies metamorphism of Baltica as it was subducted beneath Laurentia during the Scandian Orogeny. However, the remaining nine ages spread more or less continuously between these three major events. The overall pattern on a histogram is a range of ages with a pronounced peak at and near the Sveconorwegian Orogeny. The ages therefore appear to date continuous diffusion between minerals from garnet-bearing assemblages that formed originally during or, less likely, before the Gothian Orogeny interrupted by a pronounced thermal event during the Svconorwegian Orogeny and a recrystallization event during the early stages of the Scandian orogeny. The degree of re-equilibration was probably controlled by the ambient temperature of the peridotite

  3. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism

    USGS Publications Warehouse

    Zhang, R.Y.; Yang, J.S.; Wooden, J.L.; Liou, J.G.; Li, T.F.

    2005-01-01

    We studied the Zhimafang ultrahigh-pressure metamorphic (UHP) peridotite from pre-pilot drill hole PP-1 of Chinese Continental Scientific Drilling project in the Sulu UHP terrane, eastern China. The peridotite occurs as lens within quartofeldspathic gneiss, and has an assemblage of Ol + Opx + Cpx + Phl + Ti-clinohumite (Ti-Chu) + Grt (or chromite) ?? magnesite (Mgs). Zircons were separated from cores at depths of 152 m (C24, garnet lhezolite), 160 m (C27, strongly retrograded phlogopite-rich peridotite) and 225 m (C50, banded peridotite), and were dated by SHRIMP mass spectrometer. Isometric zircons without inherited cores contain inclusions of olivine (Fo91-92), enstatite (En91-92), Ti-clinohumite, diopside, phlogopite and apatite. The enstatite inclusions have low Al2O3 contents of only 0.04-0.13 wt.%, indicating a UHP metamorphic origin. The weighted mean 206Pb/238U zircon age for garnet lherzolite (C24) is 221 ?? 3 Ma, and a discordia lower intercept age for peridotite (C50) is 220 ?? 2 Ma. These ages are within error and represent the time of subduction-zone UHP metamorphism. A younger lower intercept age of 212 ?? 3 Ma for a foliated wehrlite (C27) was probably caused by Pb loss during retrograde metamorphism. The source of zirconium may be partially attributed to melt/fluid metasomatism within the mantle wedge. Geochronological and geochemical data confirm that the mantle-derived Zhimafang garnet peridotites (probably the most representative type of Sulu garnet peridotites) were tectonically inserted into a subducting crustal slab and subjected to in situ Triassic subduction-zone UHP metamorphism. ?? 2005 Elsevier B.V. All rights reserved.

  4. Garnet and clinopyroxene pseudomorphs: example of local mass balance in the Caledonides of western Norway.

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Austrheim, Håkon; Putnis, Andrew

    2015-04-01

    The Precambrian granulite facies rocks of Lindås Nappe, Bergen Arcs, Caledonides of W.Norway are partially hydrated at amphibolites and eclogite facies conditions. The Lindås Nappe outcrop over an area of ca 1000 km2 where relict granulite facies lenses make up only ca 10%. At Hillandsvatnet, garnetite displays sharp hydration fronts across which the granulite facies assemblage composed of garnet (70%) and clinopyroxene (30%) is replaced by an amphibolite facies mineralogy defined by chlorite, epidote and amphibole. This setting allows us to assess the mechanism of fluid transport through an initially low permeability rock and how this induces changes of texture and element transport. The replacement of garnet and clinopyroxene is pseudomorphic so that the grain shapes of the garnet and clinopyroxene are preserved even if when they are completely replaced. This requires that the reactive fluids must pass through the solid crystal grains and this can be achieved by an interface coupled dissolution-precipitation mechanism. Porosity generation is a key feature of this mechanism (Putnis and Austrheim 2012). The porosity is not only a consequence of reduction in solid molar volume but depends on the relative solubilities of parent and product phases in the reactive fluid. Putnis et al. 2007 and Xia et al. 2009 have shown that even in pseudomorphic reactions where the molar volume increases, porosity may still be generated by the reaction. This is fundamental in understanding the element mobility and the mass transfer in a low permeability rock even more when the bulk rock composition of these two rocks stay unchanged; except a gain in water during amphibolitisation. The textural evolution during the replacement of garnet by pargasite, epidote and chlorite and pyroxene by hornblende and quartz in our rock sample conforms to that expected by a coupled dissolution-precipitation mechanism. SEM and Microprobe analysis coupled with the software XMapTools V 1.06.1 .(Lanari

  5. Trans-Amazonian U-Th-Pb monazite ages and P-T-d exhumation paths of garnet-bearing leucogranite and migmatitic country rock of the southeastern Tandilia belt, Rio de la Plata craton in Argentina

    NASA Astrophysics Data System (ADS)

    Martínez, Juan Cruz; Massonne, Hans-Joachim; Frisicale, María Cristina; Dristas, Jorge A.

    2017-03-01

    A garnet-bearing leucogranite and two country rocks from the Transamazonian Tandilia belt of the Rio de la Plata craton were studied in detail. The leucogranite contains garnet with homogeneous composition of pyr6(gros + andr)2spes5alm87. In a garnet-biotite migmatite, the core and rim compositions of garnet are pyr1.7(gros + andr)5spes5.6alm87.7 and pyr1.2(gros + andr)5.5spes6.7alm86.6, respectively. These compositions in a sillimanite-garnet-muscovite migmatite are pyr4(gros + andr)2.7spes2.7alm90.6 and pyr2.7(gros + andr)4spes3.2alm90.1, respectively. We used this information to decipher the P-T evolution of the rocks applying P-T and T-H2O pseudosections with the PERPLE_X computer software package taking into consideration deformational microstructures. The leucogranite records an isothermal decompression from 5.3 to 3.8 kbar at 665 °C. The garnet-biotite migmatite was exhumed from 5.5 kbar at 630 °C to 4.3 kbar at 615 °C and the sillimanite-garnet-muscovite migmatite from supersolidus conditions of 670 °C and 3.6 kbar to 625 °C at 2.4 kbar. Late andalusite formed in this rock. Seventy four analyses of 28 monazite grains of the country rocks yielded three groups of U-Th-Pb ages which were related to a collisional event (I: ca. 2.13-2.14 Ga.), a postcollisional thermal overprint (II: ca. 2.01 Ga) and slow cooling of the orogen (III: 1.80-1.90 Ga). Inherited ages of 2.28 and 2.25 Ga could refer to an early accretionary stage of the orogen. An age of 2.41 Ga indicates the presence of recycled Siderian continental crust. Synkinematic crystallization of melts and the subsolidus development of an S2-foliation, demonstrated by deformational microstructures, occurred during the exhumation of the studied area from depths of 18 km to 8 km in the time interval 2.01-1.90 Ga.

  6. A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Geiger, C. A.; Benisek, A.

    2012-12-01

    The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag

  7. Transparent ceramic garnet scintillator optimization via composition and co-doping for high-energy resolution gamma spectrometers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.

    2016-09-01

    Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.

  8. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  9. Direct 40Ar/39Ar age determination of fluid inclusions using in-vacuo¬ stepwise crushing - Example of garnet from the Cycladic Blueschist Unit on Syros

    NASA Astrophysics Data System (ADS)

    Uunk, Bertram; Postma, Onno; Wijbrans, Jan; Brouwer, Fraukje

    2017-04-01

    Metamorphic minerals and veins commonly trap attending hydrous fluids in fluid inclusions, which yield a wealth of information on the history of the hosting metamorphic system. When these fluids are sufficiently saline, the KCl in the inclusions can be used as a K/Ar geochronologic system, potentially dating inclusion incorporation. Whilst primary fluid inclusions (PFIs) can date fluid incorporation during mineral or vein growth, secondary fluid inclusion trails (SFIs) can provide age constraints on later fluid flow events. At VU Amsterdam, a new in-vacuo crushing apparatus has been designed to extract fluid inclusions from minerals for 40Ar/39Ar analysis. Separates are crushed inside a crusher tube connected to a purification line and a quadrupole mass spectrometer. In-vacuo crushing is achieved by lifting and dropping a steel pestle using an externally controlled magnetic field. As the gas can be analyzed between different crushing steps, the setup permits stepwise crushing experiments. Additionally, crushed powder can be heated by inserting the crusher tube in an externally controlled furnace. Dating by 40Ar/39Ar stepwise crushing has the added advantage that, during neutron irradiation to produce 39Ar from 39K, 38Ar and 37Ar are also produced from 38Cl and 40Ca, respectively. Simultaneous analysis of these argon isotopes permits constraining the chemistry of the argon source sampled during the experiment. This allows a distinction between different fluid or crystal lattice sources. Garnet from three samples of the HP metamorphic Cycladic Blueschist Unit on Syros, Greece was stepwise crushed to obtain fluid inclusion ages. Initial steps for all three experiments yield significant components of excess argon, which are interpreted to originate from grain boundary fluids and secondary fluid inclusions trails. During subsequent steps, age results stabilize to a plateau age. One garnet from North Syros yields an unusually old 80 Ma plateau age. However, isochrons

  10. Crystal structure refinements of tetragonal (OH,F)-rich spessartine and henritermierite garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Cruickshank, Laura A.

    Cubic garnet (space group Ia\\overline 3 d) has the general formulaX 3Y 2Z 3O 12, whereX,YandZare cation sites. In the tetragonal garnet (space groupI4 1/acd), the corresponding cation sites areX1 andX2,Y, andZ1 andZ2. In both space groups only theYsite is the same. The crystal chemistry of a tetragonal (OH,F)-rich spessartine sample from Tongbei, near Yunxiao, Fujian Province, China, with composition X(Mn 2.82Fe^{2+}_{0.14}Ca 0.04) Σ3 Y{Al 1.95Fe^{3+}_{0.05}} Σ2 Z[(SiO 4) 2.61(O 4H 4) 0.28(F 4) 0.11] Σ3(Sps 94Alm 5Grs 1) was studied with single-crystal X-ray diffraction and space groupI4 1/acd. The deviation of the unit-cell parameters from cubic symmetry is smallmore » [a= 11.64463(1),c= 11.65481 (2) Å,c/a= 1.0009]. Point analyses and back-scattered electron images, obtained by electron-probe microanalysis, indicate a homogeneous composition. TheZ2 site is fully occupied, but theZ1 site contains vacancies. The occupiedZ1 andZ2 sites with Si atoms are surrounded by four O atoms, as in anhydrous cubic garnets. Pairs of split sites are O1 with F11 and O2 with O22. When theZ1 site is vacant, a larger [(O 2H 2)F 2] tetrahedron is formed by two OH and two F anions in the O22 and F11 sites, respectively. This [(O 2H 2)F 2] tetrahedron is similar to the O 4H 4tetrahedron in hydrogarnets. These results indicate ^{X}{{\\rm Mn}^ {2+}_{3}}\\,^{Y}{\\rm Al}_{2}^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{2}{\\rm H}_{2})_{0.5}({\\rm F}_{2})_{0.5}]_{\\Sigma3} as a possible end member, which is yet unknown. The H atom that is bonded to the O22 site is not located because of the small number of OH groups. In contrast, tetragonal henritermierite, ideally ^{X}{\\rm Ca}_{3}\\,^{Y}{\\rm Mn}^{3+}_{2}\\,^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{4}{\\rm H}_{4})_1]_{\\Sigma3}, has a vacantZ2 site that contains the O 4H 4tetrahedron. The H atom is bonded to an O3 atom [O3—H3 = 0.73 (2) Å]. Because of O2—Mn 3+—O2 Jahn–Teller elongation of the Mn 3+O 6octahedron, a weak hydrogen bond is

  11. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  12. Theoretical and experimental studies of electronic, optical and luminescent properties for Tb-based garnet materials

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Zhang, Haotian; Dou, Renqin; Liu, Wenpeng; Sun, Dunlu; Zhang, Qingli

    2018-07-01

    Terbium-aluminum (Tb3Al5O12: TAG) as well as Terbium-scandium-aluminum (Tb3Sc2Al3O12: TSAG) garnet materials have attracted tremendous attention around the world owing to their multifunctional applications. However, the electronic structure, optical and luminescent properties for TAG and TSAG are still requiring elucidation. To solve these intriguing problems, firstly, a systematic theoretical calculation based on the density functional theory methods were carried out on them and their electronic structure and optical properties were obtained. The calculated results indicating that both TAG and TSAG belongs to direct band gap materials category with band gap of 4.46 and 4.05 eV, respectively. Secondly, we compared the calculated results with the experimental results (including band gap, refractive index and reflectivity) and found that they were in good coincident. Lastly, we investigated the luminescence properties of TSAG and evaluated its probability for using as visible phosphor and laser matrix. In addition, a Judd-Ofelt theory calculation was performed on TSAG to reveal the radioactive transition of Tb-4f configuration and the three Judd-Ofelt intense parameters were obtained to be 4.47, 1.37 and 4.23 × 10-20 cm2, respectively. All of the obtained results can provide an essential understanding of TAG and TSAG garnet materials and also useful for the further exploration of them.

  13. Syntheses, structure and magnetic properties of two vanadate garnets Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Nannan; College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108; He, Zhangzhen, E-mail: hcz1988@hotmail.com

    2015-08-15

    Two vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesized by a high-temperature solid-state reaction. The compounds are found to crystallize in the cubic system with a space group Ia-3d, which exhibit a typical garnet structural framework. Magnetic measurements show that Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) exhibit similar magnetic behaviors, in which Ca{sub 5}Co{sub 4}V{sub 6}O{sub 24} possesses an antiferromagnetic ordering at T{sub N}=~6 K while Ca{sub 5}Ni{sub 4}V{sub 6}O{sub 24} shows an antiferromagnetic ordering at T{sub N}=~7 K. - Graphical abstract: Garnet vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesizedmore » by a high-temperature solid-state reaction. Structural features and magnetic behaviors are also investigated. - Highlights: • New type of garnet vanadates Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) are synthesized by a high-temperature solid-state reaction. • Structural features are confirmed by single crystal samples. • Magnetic behaviors are firstly investigated in the systems.« less

  14. Revising the magnetic structure and dynamics of Yttrium Iron Garnet

    NASA Astrophysics Data System (ADS)

    Princep, Andrew; Boothroyd, Andrew; Ewings, Russell; Ward, Simon; Dubs, Carsten

    Yttrium iron garnet (YIG) is the `miracle material' of microwave magnetics. Since its synthesis by Geller and Gilleo in 1957, it is widely acknowledged to have contributed more to the understanding of electronic spin-wave and magnon dynamics than any other substance. Its astonishingly narrow excitation linewidth allows magnon propagation to be observed over centimetre distances, making it both a superior model system for the experimental study of fundamental aspects of microwave magnetic dynamics and an ideal platform for the development of microwave magnetic technologies. Our experiments on a large, pristine single crystal at the ISIS facility using both diffraction and time-of-flight spectroscopy have provided new results on both the magnetic structure and the excitation spectrum, which revise nearly 60 years of scientific research and will be essential insights for the fledgling scientific field of Magnonics. EPSRC, UK.

  15. Primary differentiation in the early Earth: Nd and Sr isotopic evidence from diamondiferous eclogites for both old depleted and old enriched mantle, Yakutia, Siberia

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Jerde, Eric A.; Taylor, Lawrence A.; Halliday, Alex N.; Sobolev, Vladimir N.; Sobolev, Nickolai V.; Clayton, Robert N.; Mayeda, Toshiko K.; Deines, Peter

    1993-01-01

    Ancient, stable, continental cratons possess thick, subcontinental-lithospheric mantle 'keels' which favor particularly the emplacement of diamondiferous kimberlites and included peridotites and eclogites. These refractory mantle samples of the roots provide hard constraints on the theories of formation, growth, and evolution of these cratons. Xenoliths containing only primary garnet and clinopyroxene (eclogites), although rare in most kimberlites, can retain the geochemical signatures of their parent protoliths (e.g., subducted oceanic crust, ancient mantle) thus offering the opportunity to address mantle processes which may have taken place at earlier times in the Earth's history. In fact, it has been postulated that some eclogites are residues from the accretion of the early Earth. Nd and Sr isotopic data are presented which may be interpreted as evidence of an early (greater than 4 Ga) mantle differentiation event. The kimberlites of Yakutia are located both marginal and central to the Siberian craton, and a wide variety of xenoliths are present within them. The Siberian mantle samples have received little attention in the western world, largely because suitable suites of Yakutian samples have not been readily available. Importantly, there is evidence that metasomatism of the Siberian lithosphere has been considerably less intense or extensive than for the Kaapvaal craton. Therefore, it should be considerably easier to elicit the igneous/metamorphic histories of Siberian kimberlitic xenoliths. One of the notable features of the Siberian eclogites is the common appearance of diamonds, especially in the Mir and Udachnaya pipes. In all, eight eclogite samples (eight garnet separates and eight clinopyroxene separates) have been analyzed to date on the Udachnaya pipe, seven from our group.

  16. MAGNETIC RELAXATION IN RARE EARTH DOPED GARNET.

    DTIC Science & Technology

    in resonance measurements by the constant low temperature linewidth due to two magnon scattering. In contrast, the PPI relaxation rate is independent...of two magnon scattering. The 4.5K doublet may well be related to a near crossing of energy levels which probably causes the anomalous low temperature peaks in delta H and resonance field observed by Dillon. (Author)

  17. CLMSZ, Garnet Mountain area, southern California: A collisionally generated contractional shear zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracchi, K.A.; Girty, G.H.; Girty, M.S.

    1993-04-01

    The Harper Creek gneiss (HCg) and Oriflamme Canyon unit (OCu) underlie the central portion of the Cuyamaca Laguna Mountains shear zone (CLMSZ) in and around Garnet Mountain, Peninsular Ranges, California, and may have been deformed during Cretaceous arc-continent collision. U-Pb zircon work and petrological and geochemical analyses suggest that in the Garnet Mountain area, the 140 Ma HCg is derived from granite and granodiorite, whereas the 122 [+-] 1 Ma OCu is a protomylonite derived from a granite. Both units appear to be per aluminous calc-alkaline magmatic arc granitoids. Mineral assemblages suggest uppermost greenschist to lower amphibolite grade conditions duringmore » deformation. In the HCg, S-1hc is a mylonitic gneissosity with a mean attitude of N11W, 60 NE. A mineral streaking lineation lies within the plane of S-1hc and has a mean attitude of 61[degree] N76E. In the OCu, S-1oc strikes about N13W and dips 52 NE and contains a mineral streaking lineation with an attitude of 49 N52E. Dextral and sinistral shear bands, S-2d and S-2s (looking NW), transect S-1hc and S-1oc. S-2d and S-2s strike subparallel to S-1. In the HCg S-2s is weakly developed and dips about 32 NE, whereas S-2d is more dominant and dips about 76 NE. On the OCu these relationships are reversed. S-2d does not cross cut S-2s: hence, the two sets of shear bands are interpreted to be conjugates reflecting NE-SW contraction and subvertical extension during collisional development of the CLMSZ.« less

  18. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  19. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  20. Major and trace element modeling of mid-ocean ridge mantle melting from the garnet to the plagioclase stability fields: Generating local and global compositional variability

    NASA Astrophysics Data System (ADS)

    Brown, S. M.; Behn, M. D.; Grove, T. L.

    2017-12-01

    We present results of a combined petrologic - geochemical (major and trace element) - geodynamical forward model for mantle melting and subsequent melt modification. The model advances Behn & Grove (2015), and is calibrated using experimental petrology. Our model allows for melting in the plagioclase, spinel, and garnet fields with a flexible retained melt fraction (from pure batch to pure fractional), tracks residual mantle composition, and includes melting with water, variable melt productivity, and mantle mode calculations. This approach is valuable for understanding oceanic crustal accretion, which involves mantle melting and melt modification by migration and aggregation. These igneous processes result in mid-ocean ridge basalts that vary in composition at the local (segment) and global scale. The important variables are geophysical and geochemical and include mantle composition, potential temperature, mantle flow, and spreading rate. Accordingly, our model allows us to systematically quantify the importance of each of these external variables. In addition to discriminating melt generation effects, we are able to discriminate the effects of different melt modification processes (inefficient pooling, melt-rock reaction, and fractional crystallization) in generating both local, segment-scale and global-scale compositional variability. We quantify the influence of a specific igneous process on the generation of oceanic crust as a function of variations in the external variables. We also find that it is unlikely that garnet lherzolite melting produces a signature in either major or trace element compositions formed from aggregated melts, because when melting does occur in the garnet field at high mantle temperature, it contributes a relatively small, uniform fraction (< 10%) of the pooled melt compositions at all spreading rates. Additionally, while increasing water content and/or temperature promote garnet melting, they also increase melt extent, pushing the

  1. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    PubMed

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.

  2. Calculation of coal resources using ARC/INFO and Earth Vision; methodology for the National Coal Resource Assessment

    USGS Publications Warehouse

    Roberts, L.N.; Biewick, L.R.

    1999-01-01

    This report documents a comparison of two methods of resource calculation that are being used in the National Coal Resource Assessment project of the U.S. Geological Survey (USGS). Tewalt (1998) discusses the history of using computer software packages such as GARNET (Graphic Analysis of Resources using Numerical Evaluation Techniques), GRASS (Geographic Resource Analysis Support System), and the vector-based geographic information system (GIS) ARC/INFO (ESRI, 1998) to calculate coal resources within the USGS. The study discussed here, compares resource calculations using ARC/INFO* (ESRI, 1998) and EarthVision (EV)* (Dynamic Graphics, Inc. 1997) for the coal-bearing John Henry Member of the Straight Cliffs Formation of Late Cretaceous age in the Kaiparowits Plateau of southern Utah. Coal resource estimates in the Kaiparowits Plateau using ARC/INFO are reported in Hettinger, and others, 1996.

  3. On the timing of high-pressure metamorphism in Alpine Corsica: the first Lu-Hf garnet and lawsonite ages

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, A.; Herwartz, D.; Castelli, D.; Malavieille, J.

    2012-04-01

    Timing of HP metamorphism in Alpine Corsica is highly debated. Controversial biostratigraphic and radiometric constraints results in a poor understanding of the evolution of Alpine Corsica and its meaning in the Western Mediterranean dynamics. Age estimates provided by means of several techniques (e.g. Ar-Ar, Sa-Nd, U-Pb) vary form Late Cretaceous to Late Eocene. Some authors favor a Late Cretaceous peak metamorphism under HP conditions followed by Late Eocene and Early Oligocene blueschist and greenschist retrogression, respectively. Others favor a Late Eocene peak metamorphism and consider the older estimates as affected by analytical inaccuracy. In order to unravel this debate, we provide new Lu-Hf constraints on garnet and lawsonite from the lawsonite-eclogite and lawsonite-blueschist units of Alpine Corsica, which represent a part of the so-called Schistes Lustrés complex. The two investigated units are interpreted to represent remnants of the former Corsican ocean-continent transition zone [2]. As Lu concentrates in the cores of the selected minerals during the early stages of growth and blocking temperatures are high, this method provides robust insight on the timing of prograde/peak metamorphism [1]. Garnet and lawsonite separated form three lawsonite-eclogite samples yield systematic Late Eocene ages at ~ 34 Ma, while lawsonite from the lawsonite-blueschist unit yields a slightly older age at ~ 37 Ma. These data are in agreement with U-Pb data on zircon from the lawsonite-eclogite unit (~ 34 Ma) [3], but are in contrast with a recent U-Pb estimate on the Corsican continental margin unit metamorphosed under blueschist condition, yielding an age of ~ 55 Ma [4]. These discrepancies indicate a complex paleogeographic setting and a diachronous metamorphic evolution along the Corsican ocean-continent transition zone. The Late Eocene HP metamorphism in the Schistes Lustrés of Alpine Corsica also provides important constraints in the evolution of the Alps

  4. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    PubMed

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  5. Selection of extreme environmental conditions, albedo coefficient and Earth infrared radiation, for polar summer Long Duration Balloon missions

    NASA Astrophysics Data System (ADS)

    González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel

    2018-07-01

    The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.

  6. Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.

    2006-12-01

    The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations

  7. Nonthermal ultrafast optical control of the magnetization in garnet films

    NASA Astrophysics Data System (ADS)

    Hansteen, Fredrik; Kimel, Alexey; Kirilyuk, Andrei; Rasing, Theo

    2006-01-01

    We demonstrate coherent optical control of the magnetization in ferrimagnetic garnet films on the femtosecond time scale through a combination of two different ultrafast and nonthermal photomagnetic effects and by employing multiple pump pulses. Linearly polarized laser pulses are shown to create a long-lived modification of the magnetocrystalline anisotropy via optically induced electron transfer between nonequivalent ion sites while circularly polarized pulses additionally act as strong transient magnetic field pulses originating from the nonabsorptive inverse Faraday effect. Due to the slow phonon-magnon interaction in these dielectrics, thermal effects of the laser excitation are clearly distinguished from the ultrafast nonthermal effects and can be seen only on the time scale of nanoseconds for sample temperatures near the Curie point. The reported effects open exciting possibilities for ultrafast manipulation of spins by light, and provide insight into the physics of magnetism on ultrafast time scales.

  8. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    NASA Astrophysics Data System (ADS)

    Semuk, E. Yu.; Berzhansky, V. N.; Prokopov, A. R.; Shaposhnikov, A. N.; Karavainikov, A. V.; Salyuk, O. Yu.; Golub, V. O.

    2015-11-01

    Magnetic properties of Bi1.5Gd1.5Fe4.5Al0.5O12 (84 nm) and Bi2.8Y0.2Fe5O12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi1.5Gd1.5Fe4.5Al0.5O12/Bi2.8Y0.2Fe5O12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction.

  9. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization

    Treesearch

    Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel

    2013-01-01

    Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...

  10. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  11. Method for selectively orienting induced fractures in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-02-01

    The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.

  12. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe

  13. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOEpatents

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  14. Optical investigation of domain resonances in magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Bahlmann, N.; Gerhardt, R.; Dötsch, H.

    1996-08-01

    Magnetic garnet films of composition (Y,Bi) 3(Fe,Al) 5O 12 are grown by liquid phase epitaxy on [111] oriented substrates of Gd 3Ga 5O 12. Lattices of parallel stripe domains are stabilized by a static induction applied in the film plane. The two branches DR ± of the domain resonance and the domain wall resonance DWR are excited by microwave magnetic fields in the frequency range up to 6 GHz. Light passing the stripe domain lattice parallel to the film normal is modulated at the excitation frequency. A modulation bandwidth of more than 2 GHz is observed. The resonances can be calculated with high accuracy by a hybridization model, if the quality factor Q of the film exceeds 0.5. For Q < 0.5 a simple approximation is used to describe the superposition of the DR + and DR - resonances. The superposition model predicts two stability states of the resonance DR + which are observed experimentally. From the optical measurements precession angles of the resonance DR - of nearly 6° and wall oscillation amplitudes up to 25 nm are derived.

  15. Miocene denudation history of Himalaya deduced from IODP Exp. 354 Bengal Fan

    NASA Astrophysics Data System (ADS)

    Kohki, Y.; Cruz, J. W.; Osaki, A.; Manoj, M. C.; Hatano, N.; France-Lanord, C.; Spiess, V.; Klaus, A.

    2017-12-01

    The submarine Bengal Fan is the largest submarine fan on Earth and covers the whole Bay of Bengal. The sediments are fed by the Ganges and Brahmaputra rivers reflecting India-Asia plate collision. The sediments recovered from IODP Expedition 354 Bengal Fan record the uplift history of the Himalayan orogenic system. We examined the chemical composition of detrital garnets in the Miocene deposits from Site U1451, where drilling reached to basal horizon of the fan deposits, in order to reveal the detailed denudation history of Himalayan metamorphic rocks. For this purpose, the comparison of chemical composition between detrital garnet in the Bengal Fan deposits and metamorphic garnet in Himalayan metamorphic rocks was carried out. The chemical composition of the metamorphic garnet from Higher Himalayan Crystalline (HHC) in Karnali and Kaligandaki areas, western Nepal, was examined for chemical reference to detrital garnets in Bengal Fan. The metamorphic garnets in "Formation I (Le Fort, 1975)" in HHC are characterized by almandine-rich garnet with high pyrope content. Also, the garnets in "Formation II" are remarked by two types of garnets, i.e., almandine-rich and grandite-rich garnets. Meanwhile, the composition of garnets in "Formation III" is almandine-rich garnet with low pyrope content. In the Bengal Fan deposits, the characteristic garnets, which show the similarity to the metamorphic garnet in HHC, is not found from the Lower Miocene (Burdigalian) deposits. In the Middle and Upper Miocene deposits, the almandine-rich garnets characteristic in Formation I, are normally included. At the basal part of the Middle Miocene (Langhian), almandine-rich garnets with low pyrope content, suggesting the derivation from Formation III, are remarkable. The grandite-rich garnets from Formation II are sporadically found In the Upper Miocene deposits (Tortonian-Messinian). Above chemical comparison between the detrital garnets in Bengal Fan and metamorphic garnets from HHC

  16. A Liquid Chromatography Detector for Transition and Rare-Earth Metal Ions Based on a Cupric Ion-Selective Electrode

    DTIC Science & Technology

    1981-05-01

    RARE-EARTH METAL IONS BASED ON A CUPRIC ION-SELECTIVE ELECTRODE By - 4 R. CAMERON DOREY TECHNICAL REPORT FJSRL-TR-81-0005 MAY 1981 Approved for public...FORM . REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER FJSRL-TR-81-0005BO CO ENGO 4 . TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD...common anions, including halide ions, is shown, and the advantages and limitations of the system are discussed. II ’ 4 UNCLASSIFIED SECURITY

  17. Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film

    PubMed Central

    Li, Fuxiang; Saslow, Wayne M.; Pokrovsky, Valery L.

    2013-01-01

    Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H, and a new type of collective oscillation. PMID:23455849

  18. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less

  19. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  20. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments.

    PubMed

    Mishima, Shinpei; Ohtomo, Yoko; Kakegawa, Takeshi

    2016-06-01

    Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been

  1. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE PAGES

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  2. Partitioning of Nd, Tb, Lu, and Hf Between Garnet and Ordinary Chondrite Melt at 5 to 9 GPa: Applications to Martian Differentiation

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Chabot, N. L.; Xirouchakis, D.; Wasserman, A. A.; Agee, C. B.

    2001-01-01

    One explanation for Al and REE depletions in SNC meteorites is early majorite fractionation in a deep martian magma ocean. We report initial results from an experimental investigation of partitioning between majoritic garnet and ordinary chondrite liquid. Additional information is contained in the original extended abstract.

  3. Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries

    NASA Astrophysics Data System (ADS)

    Huo, Hanyu; Sun, Jiyang; chen, Cheng; Meng, Xianglu; He, Minghui; Zhao, Ning; Guo, Xiangxin

    2018-04-01

    Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) (PPCs) and garnets have been fabricated. The solid polymer electrolytes (SPEs) of PPC/garnet/LiTFSI show the conductivity of 4.2 × 10-4 S cm-1 at room temperature. Their combination with the Si layer anodes allows great alleviation of internal stress resulting from the large volume variation during lithiation and delithiation process of Si anodes. As a result, the Si/SPE/Li cells exhibit 2520 mAh g-1, 2260 mAh g-1, 1902 mAh g-1, 1342 mAh g-1 at 0.1 C, 0.2 C, 0.5 C, and 1 C, respectively. Furthermore, with such compatible and stable interfaces of Si/SPE and the LiFePO4 cathodes in solid-state batteries, the specific capacity of 2296 mAh g-1 in terms of Si is obtained, which remains 82.6% after 100 cycles at room temperature and 0.1 C. The results here indicate that constructing of flexible interfaces between Si anodes and SPEs is a promising strategy to develop high performance solid-state batteries.

  4. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  5. From crustal protoliths to mantle garnet pyroxenites: a highly siderophile elements and Os isotope perspective from the Ligurian mantle section (N. Apennine, Italy)

    NASA Astrophysics Data System (ADS)

    Montanini, A.; Luguet, A.; van Acken, D.; Tribuzio, R.

    2017-12-01

    Pyroxenites are a major form of mantle heterogeneity and may originate through migration of melts or recycling of mafic crustal lithologies. Here, we present HSE (Os, Ir, Pt, Pd, Re) and 187Os/188Os isotopic systematics of "aged" pyroxenites (Mg-rich, Al-poor garnet websterites and Al-rich garnet clinopyroxenites) enclosed in fertile mantle sequences of the Jurassic Alpine-Apennine ophiolites. The garnet clinopyroxenites have heterogeneous mafic crustal precursors that experienced a long-lived evolution of recycling into the mantle (1.5-1.0 Ga) as inferred from Lu-Hf isotope systematics. They originated as melt-dominated systems by crystallization of eclogite-derived melts. The websterites were interpreted as hybrid lithologies with a crustal geochemical fingerprint and a larger peridotite wall rock contribution. The host lherzolites show flat CI-chondrite-normalized HSE patterns. All the pyroxenites are variably depleted in Os and Ir and enriched in the incompatible HSE (Pt, Pd and Re) with respect to host peridotites and have flat to negatively sloping Pd-Re segments. Centimetre- to metre-scale 187Os isotopic heterogeneity is observed in the investigated mantle sequence. The initial 187Os/188Os ratios recalculated for the age of the Mesozoic partial melting event inferred from Nd-Hf isotope systematics are unradiogenic to slightly radiogenic in the peridotites (0.124-0.134) and vary from moderately to highly radiogenic in the pyroxenites (0.149-2.190). Bulk rock HSE compositions of the pyroxenites do not match gabbroic eclogites nor residua after eclogite partial melting, in agreement with lithophile element geochemistry. The HSE patterns of the garnet clinopyroxenites are related to sulphur saturation and sulfide crystallization from partial melts of gabbro-derived eclogites. Decoupling between Re/Os (TMa = 2.0-2.8 Ga) and Lu-Hf isotope systematics of the pyroxenites may be due to fractionation of Re/Os ratios with no Os isotopic homogenization of the sulfide

  6. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator.

    PubMed

    Yoshida, Hidetsugu; Tsubakimoto, Koji; Fujimoto, Yasushi; Mikami, Katsuhiro; Fujita, Hisanori; Miyanaga, Noriaki; Nozawa, Hoshiteru; Yagi, Hideki; Yanagitani, Takagimi; Nagata, Yutaka; Kinoshita, Hiroo

    2011-08-01

    The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.

  7. SOFIA EXES Observations of Herschel’s Garnet Star and the two α Red Supergiants

    NASA Astrophysics Data System (ADS)

    Harper, Graham M.; DeWitt, Curtis N.; Richter, Matthew; Guinan, Edward F.; Montiel, Edward; Bennett, Philip D.; EXES Instrument Team

    2018-06-01

    We report EXES Cycle 4 and 5 observations of M supergiants, made at high spectral resolution (R > 50,000), and obtained from NASA-DLR SOFIA.Emission profiles from Herschel’s Garnet Star (μ Cephei: M2 Ia) show distinct structure and asymmetry in the [S I] 25.25 micron and [Fe II] 25.99 micron lines. These profiles are unlike the remarkably symmetric [Fe II] profile observed from Betelgeuse (α Orionis: M2 Iab) at R=65,000. These diagnostics both arise from upper energy levels with Eup ≈ 550 K and they probe the inner circumstellar envelope. The flux ratios of [S I]/[Fe II] are very different for μ Cep, α Ori, and Antares (α Scorpii: M1.5 Iab), suggesting that the intrinsic far ultraviolet photoionization field of μ Cep is weaker than that of α Ori, and that α Sco’s hot companion may contribute to ionizing neutral sulfur. We find that the mid-IR emission from μ Cep is centered close to the optical radial velocity of V(LSR)=33.0 km s-1 [V(Helio)=19.3 km s-1] reported in the General Catalogue of Stellar Radial Velocities (Wilson 1953), and which is substantially different to that inferred from low-J CO radio emission, i.e. V(LSR)=25 km s-1. It appears that Herschel's Garnet Star has undergone discrete events of asymmetric mass loss.Acknowledgements: This work has made extensive use of the SAO/NASA ADS and VizieR search tools, and the ASTRAL and SIMBAD databases. Financial support has been provided by NASA SOFIA Cycle 4 and 5 grants SOF 04-0136 and 05-0073 issued by USRA.

  8. An Initial Comparison of Selected Earth Departure Options for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond Gabriel; Komar, D. R.; Qu, Min; Chrone, Jon; Strange, Nathan; Landau, Damon

    2012-01-01

    Earth departure options such as the location for deployment, aggregation, and crew rendezvous as well as the type of propulsion leveraged for each mission phase effect overall mission performance metrics such as number of critical maneuvers, mass of propellant to achieve departure, and initial mass required in low Earth orbit. This paper identifies and compares a subset of tactical options for deployment, crew rendezvous, and Earth departure that leverage electric propulsion and hybrid chemical electric propulsion with a goal of improving system efficiency. Departure maneuver specific limitations and penalties are then identified for missions to specific targets for human interplanetary missions providing a better understanding of the impact of decisions related to aggregation and rendezvous locations as well as Earth departure maneuvers on overall system performance.

  9. Selection considerations between ZERODUR® and silicon carbide for dimensionally-stable spaceborne optical telescopes in two-earth-orbits

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter

    2015-09-01

    A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.

  10. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  11. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  12. Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals: Magnetization-induced second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.

    2006-01-01

    Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.

  13. Optical MEMS for earth observation payloads

    NASA Astrophysics Data System (ADS)

    Rodrigues, B.; Lobb, D. R.; Freire, M.

    2017-11-01

    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  14. Earth as art 4

    USGS Publications Warehouse

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  15. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides

    NASA Astrophysics Data System (ADS)

    Golovkina, L. S.; Orlova, A. I.; Boldin, M. S.; Sakharov, N. V.; Chuvil'deev, V. N.; Nokhrin, A. V.; Konings, R.; Staicu, D.

    2017-06-01

    Powders based on the complex garnet-type oxide Y2.5Nd0.5Al5O12 - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm3 (0%)), 97.6% (TD = 4.88 g/cm3 (10%)), 94.4% (TD = 5.06 g/cm3 (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied.

  16. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  17. Laser and thermal properties of Nd:YGd2Sc2Al2GaO12 garnet ceramic Laser and thermal properties of Nd:YSGG garnet ceramic

    NASA Astrophysics Data System (ADS)

    Brenier, A.; Alombert-Goget, G.; Guyot, Y.; Boulon, G.

    2012-10-01

    The absorption and fluorescence properties of the Nd-doped YGd2Sc2Al2GaO12 mixed garnet ceramics have been measured at different temperatures. Under laser diode pumping an efficient laser emission has been demonstrated with 45% slope efficiency. The emission is constituted by two lines at 1058.6 and 1061.3 nm, subjected to a red shift and a variable relative intensity versus pump power. The role of the temperature has been investigated playing with the cavity parameters. The thermal conductivity of the 1% Nd-doped material has been determined (3.2 W/m/K) measuring the radial temperature distribution of the exit face of the sample including the axial heat flow in the analysis. The M2 beam quality factor and the dioptric power of the thermal lens have been investigated versus the pump power. The thermo-optic coefficient χ was determined as 44.4×10-6 K-1.

  18. Crystallographic Orientation Relationships (CORs) between rutile inclusions and garnet hosts: towards using COR frequencies as a petrogenetic indicator

    NASA Astrophysics Data System (ADS)

    Griffiths, Thomas; Habler, Gerlinde; Schantl, Philip; Abart, Rainer

    2017-04-01

    Crystallographic orientation relationships (CORs) between crystalline inclusions and their hosts are commonly used to support particular inclusion origins, but often interpretations are based on a small fraction of all inclusions in a system. The electron backscatter diffraction (EBSD) method allows collection of large COR datasets more quickly than other methods while maintaining high spatial resolution. Large datasets allow analysis of the relative frequencies of different CORs, and identification of 'statistical CORs', where certain limited degrees of freedom exist in the orientation relationship between two neighbour crystals (Griffiths et al. 2016). Statistical CORs exist in addition to completely fixed 'specific' CORs (previously the only type of COR considered). We present a comparison of three EBSD single point datasets (all N > 200 inclusions) of rutile inclusions in garnet hosts, covering three rock systems, each with a different geological history: 1) magmatic garnet in pegmatite from the Koralpe complex, Eastern Alps, formed at temperatures > 600°C and low pressures; 2) granulite facies garnet rims on ultra-high-pressure garnets from the Kimi complex, Rhodope Massif; and 3) a Moldanubian granulite from the southeastern Bohemian Massif, equilibrated at peak conditions of 1050°C and 1.6 GPa. The present study is unique because all datasets have been analysed using the same catalogue of potential CORs, therefore relative frequencies and other COR properties can be meaningfully compared. In every dataset > 94% of the inclusions analysed exhibit one of the CORs tested for. Certain CORs are consistently among the most common in all datasets. However, the relative abundances of these common CORs show large variations between datasets (varying from 8 to 42 % relative abundance in one case). Other CORs are consistently uncommon but nonetheless present in every dataset. Lastly, there are some CORs that are common in one of the datasets and rare in the remainder

  19. Sensitivity of magnetic properties to chemical pressure in lanthanide garnets Ln 3 A 2 X 3O12, Ln  =  Gd, Tb, Dy, Ho, A  =  Ga, Sc, In, Te, X  =  Ga, Al, Li

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Sackville Hamilton, A. C.; Glass, H. F. J.; Dutton, S. E.

    2017-10-01

    A systematic study of the structural and magnetic properties of three-dimensionally frustrated lanthanide garnets Ln 3 A 2 X 3O12, Ln  =  Gd, Tb, Dy, Ho, A  =  Ga, Sc, In, Te, X  =  Ga, Al, Li is presented. Garnets with Ln  =  Gd show magnetic behaviour consistent with isotropic Gd3+ spins; no magnetic ordering is observed for T  ⩾  0.4 K. Magnetic ordering features are seen for garnets with Ln  =  Tb, Dy, Ho in the temperature range 0.4  <  T  <  2.5 K, however the nature of the magnetic ordering varies for the different Ln as well as for different combinations of A and X. The magnetic behaviour can be explained by tuning of the magnetic interactions and changes in the single-ion anisotropy. The change in magnetic entropy is evaluated from isothermal magnetisation measurements to characterise the magnetocaloric effect in these materials. Among the Gd garnets, the maximum change in magnetic entropy per mole (15.45 J K-1 molGd-1 ) is observed for Gd3Sc2Ga3O12 at 2 K, in a field of 9 T. The performance of Dy3Ga5O12 as a magnetocaloric material surpasses the other garnets with Ln  =  Tb, Dy, Ho.

  20. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    PubMed

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Growth and luminescent properties of scintillators based on the single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorenko, Yu, E-mail: zorenko@ukw.edu.pl; Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv; Gorbenko, V.

    Highlights: • Single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12} garnets at x = 0 ÷ 3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12}:Ce film and the misfit m between films and YAG substrate changed linearly with increasing of Gd content. • Effective Gd{sup 3+}–Ce{sup 3+} energy transfer occurs in the Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. • Best scintillation light yield is observed in the Lu{sub 3}Al{sub 5}O{sub 12}:Ce and Lu{sub 2.4}Gd{sub 0.6}Al{sub 5}O{sub 12}:Ce films. • Increase of the Gd content in x = 1.5–2.5 range resultsmore » in decreasing the scintillation LY of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. - Abstract: The work is related to the growth of scintillators based on the single crystalline films (SCF) of Ce{sup 3+} doped Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} mixed rare-earth garnets by Liquid Phase Epitaxy (LPE) method. We have shown, that full set of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} SCFs with x values ranging from 0 to 3.0 can be successfully crystallized by the LPE method onto Y{sub 3}Al{sub 5}O{sub 12} (YAG) substrates from the melt-solutions based on PbO-B{sub 2}O{sub 3} flux. The absorption, X-ray excited luminescence, photoluminescence, thermoluminescence and light yield measurements, the latter under excitation by α-particles of {sup 239}Pu and {sup 241}Am radioisotopes, were applied for their characterization.« less

  2. Metamorphic conditions during formation of a metapelitic sillimanite-garnet gneiss from Clemence Massif, Prince Charles Mountains, East Antarctica

    USGS Publications Warehouse

    Corvino, A.F.; Boger, S.D.; Wilson, C.J.L.

    2007-01-01

    SiO2–H2O–TiO2–Fe2O3 (MnNCKFMASHTO). Calculated mineral equilibria for the appropriate bulk composition predict that the observed assemblage, of K-feldspar–garnet–quartz–sillimanite–biotite–ilmenite–rutile, stabilised at approximately 8–9 kbar and 760–790ºC. Reaction microstructures are rare, but the preservation of relic spinel inclusions in garnet indicates an earlier low-P, high-T component and possible anticlockwise path.

  3. Spin wave propagation in perpendicularly magnetized nm-thick yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Heimbach, Florian; Liu, Tao; Yu, Haiming; Liu, Chuanpu; Chang, Houchen; Stückler, Tobias; Hu, Junfeng; Zeng, Lang; Zhang, Youguang; Liao, Zhimin; Yu, Dapeng; Zhao, Weisheng; Wu, Mingzhong

    2018-03-01

    Magnonics offers a new way for information transport that uses spin waves (SWs) and is free of charge currents. Unlike Damon-Eshbach SWs, the magneto-static forward volume SWs offer the reciprocity configuration suitable for SW logic devices with low power consumption. Here, we study forward volume SW propagation in yttrium iron garnet (YIG) thin films with an ultra-low damping constant α = 8 ×10-5 . We design different integrated microwave antenna with different k-vector excitation distributions on YIG thin films. Using a vector network analyzer, we measured SW transmission with the films magnetized in perpendicular orientation. Based on the experimental results, we extract the group velocity as well as the dispersion relation of SWs and directly compare the power efficiency of SW propagation in YIG using coplanar waveguide and micro stripline for SW excitation and detection.

  4. Resolving the grain boundary and lattice impedance of hot-pressed Li 7La 3Zr 2O 12 garnet electrolytes

    DOE PAGES

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; ...

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li 6.28Al 0.24La 3Zr 2O 12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  5. Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations

    NASA Astrophysics Data System (ADS)

    Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.

    2016-08-01

    A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.

  6. A tale of two sites: On defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries

    DOE PAGES

    Thompson, Travis; Sharafi, Asma; Johannes, Michelle D.; ...

    2015-03-21

    Solid electrolytes based on the garnet crystal structure have recently been identified as a promising material to enable advance Li battery cell chemistries because of the unprecedented combination of high ionic conductivity and electrochemical stability against metallic Li. To better understand the mechanisms that give rise to high conductivity, the goal of this work is to correlate Li site occupancy with Li-ion transport. Toward this goal, the Li site occupancy is studied in cubic garnet as a function of Li concentration over the compositions range: Li 7-xLa 3Zr 2-xTa xO 12 (x = 0.5, 0.75, and 1.5). The distribution ofmore » Li between the two interstitial sites (24d and 96h) is determined using neutron and synchrotron diffraction. The bulk conductivity is measured on >97% relative density polycrystalline specimens to correlate Li-ion transport as a function of Li site occupancy. It is determined that the conductivity changes nonlinearly with the occupancy of the octahedral (96h) Li site. It is shown that the effective carrier concentration is dependent on the Li site occupancy and suggests that this is a consequence of significant carrier-carrier coulombic interactions. Moreover, the observation of maximum conductivity near Li = 6.5 mol is explained.« less

  7. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  8. Testing anthropic selection: a climate change example.

    PubMed

    Waltham, Dave

    2011-03-01

    Planetary anthropic selection, the idea that Earth has unusual properties since, otherwise, we would not be here to observe it, is a controversial idea. This paper proposes a methodology by which to test anthropic proposals by comparison of Earth to synthetic populations of Earth-like planets. The paper illustrates this approach by investigating possible anthropic selection for high (or low) rates of Milankovitch-driven climate change. Three separate tests are investigated: (1) Earth-Moon properties and their effect on obliquity; (2) Individual planet locations and their effect on eccentricity variation; (3) The overall structure of the Solar System and its effect on eccentricity variation. In all three cases, the actual Earth/Solar System has unusually low Milankovitch frequencies compared to similar alternative systems. All three results are statistically significant at the 5% or better level, and the probability of all three occurring by chance is less than 10(-5). It therefore appears that there has been anthropic selection for slow Milankovitch cycles. This implies possible selection for a stable climate, which, if true, undermines the Gaia hypothesis and also suggests that planets with Earth-like levels of biodiversity are likely to be very rare. © Mary Ann Liebert, Inc.

  9. Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser.

    PubMed

    Yu, Haohai; Wang, Shuxian; Han, Shuo; Wu, Kui; Su, Liangbi; Zhang, Huaijin; Wang, Zhengping; Xu, Jun; Wang, Jiyang

    2014-03-15

    We report a laser-diode pumped continuous-wave (cw) and passively Q-switched eye-safe laser at about 1.42 μm with the neodymium-doped yttrium gallium garnet (Nd:YGG) crystal for the first time to our knowledge. The composite Nd:YGG crystal was developed originally. A systematic comparison of laser performance between the homogeneously doped and composite Nd:YGG crystal was made, which showed that the composite Nd:YGG manifested less thermally induced effects. Cw output power of 2.06 W was obtained with the slope efficiency of 20.7%. With a V:YAG as a saturable absorber, the passive Q-switching at 1.42 μm was gotten with the pulse width, pulse energy, and peak power of 34 ns, 46.7 μJ, and 1.4 kW, respectively. The present work should provide a potential candidate for the generation of eye-safe lasers.

  10. Morphology and magnetic characterisation of aluminium substituted yttrium-iron garnet nanoparticles prepared using sol gel technique.

    PubMed

    Yahya, Noorhana; Al Habashi, Ramadan Masoud; Koziol, Krzysztof; Borkowski, Rafal Dunin; Akhtar, Majid Niaz; Kashif, Muhammad; Hashim, Mansor

    2011-03-01

    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.

  11. Mineral equilibria and zircon, garnet and titanite U-Pb ages constraining the PTt path of granite-related hydrothermal systems at the Big Bell gold deposit, Western Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas G.; McNaughton, Neal J.

    2018-01-01

    The Big Bell deposit (75 t gold) is located in a narrow spur of the Meekatharra greenstone belt, Yilgarn Craton, Western Australia. Two ore bodies are located in a calcic-potassic contact alteration zone overprinting lineated granodiorite dykes and amphibolite: almandine-cummingtonite-hornblende skarn (1-3 g/t Au, 1700 g/t As, 330 g/t W) and the muscovite-microcline gneiss (3-5 g/t Au, 580 g/t Sb, 620 g/t W) of the Main Lode. Genetic models vary from pre- to post-metamorphic replacement. Hornblende-plagioclase pairs in amphibolite constrain peak metamorphic temperature to 670 ± 50 °C. In contrast, garnet-biotite thermometry provides estimates of 578 ± 50 and 608 ± 50 °C for garnet-cordierite-biotite schist bordering the skarn and enveloping the Main Lode. Garnet-cordierite and garnet-hornblende pairs extend the range of fluid temperature to 540 ± 65 °C, well below peak metamorphic temperature. At 540-600 °C, the alteration assemblage andalusite + sillimanite constrains pressure to 300-400 MPa corresponding to 11-14 km crustal depth. Published U-Pb ages indicate that metamorphism took place in the aureole of the southeast granodiorite-tonalite batholith (2740-2700 Ma), followed by gold mineralization at 2662 ± 5 Ma and by the emplacement of biotite granite and Sn-Ta-Nb granite-pegmatite dykes at 2625-2610 Ma. Amphibolite xenoliths in granite northwest of the deposit record the lowest temperature (628 ± 50 °C), suggesting it lacks a metamorphic aureole. The rare metal dykes are spatially associated with epidote-albite and andradite-diopside skarns (≤1.5 g/t Au), mined where enriched in the weathered zone. We analysed hydrothermal zircon intergrown with andradite. Concordant U-Pb ages of 2612 ± 7 and 2609 ± 10 Ma confirm the presence of a second granite-related system. The zircons display oscillatory zoning and have low Th/U ratios (0.05-0.08). Low-Th titanite from an albite granite dyke has a concordant but reset U-Pb age of 2577 ± 7 Ma.

  12. Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitaliy; Savchyn, Volodymyr; Zorenko, Tanya; Fedorov, Alexander; Sidletskiy, Oleg

    2014-09-01

    The paper is dedicated to development of scintillators based on single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets onto Gd3Ga5O12 substrates using the liquid phase epitaxy method.

  13. Finite temperature magnon spectra in yttrium iron garnet from a mean field approach in a tight-binding model

    NASA Astrophysics Data System (ADS)

    Shen, Ka

    2018-04-01

    We study magnon spectra at finite temperature in yttrium iron garnet using a tight-binding model with nearest-neighbor exchange interaction. The spin reduction due to thermal magnon excitation is taken into account via the mean field approximation to the local spin and is found to be different at two sets of iron atoms. The resulting temperature dependence of the spin wave gap shows good agreement with experiment. We find that only two magnon modes are relevant to the ferromagnetic resonance.

  14. Another Earth 2.0? Not So Fast

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive (2016). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty.

  15. Near Earth asteroid rendezvous

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Spacecraft Design Course is the capstone design class for the M.S. in astronautics at the Naval Postgraduate School. The Fall 92 class designed a spacecraft for the Near Earth Asteroid Rendezvous Mission (NEAR). The NEAR mission uses a robotic spacecraft to conduct up-close reconnaissance of a near-earth asteroid. Such a mission will provide information on Solar System formation and possible space resources. The spacecraft is intended to complete a NEAR mission as a relatively low-budget program while striving to gather as much information about the target asteroid as possible. A complete mission analysis and detailed spacecraft design were completed. Mission analysis includes orbit comparison and selection, payload and telemetry requirements, spacecraft configuration, and launch vehicle selection. Spacecraft design includes all major subsystems: structure, electrical power, attitude control, propulsion, payload integration, and thermal control. The resulting spacecraft demonstrates the possibility to meet the NEAR mission requirements using existing technology, 'off-the-shelf' components, and a relatively low-cost launch vehicle.

  16. EarthEd Online: Open Source Online Software to Support Large Courses

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2003-12-01

    The purpose of the EarthEd Online software project is to support a modern instructional pedagogy in a large, college level, earth science course. It is an ongoing development project that has evolved in a large general education oceanography course over the last decade. Primary goals for the oceanography course are to support learners in acquiring a knowledge of science process, an appreciation for the relevance of science to society, and basic content knowledge. In order to support these goals, EarthEd incorporates: a) integrated access to various kinds of real earth data (and links to web-based data browsers), b) online discussions, live chat, with integrated graphics editing, linking, and upload, c) online writing, reviewing, and grading, d) online homework assignments, e) on demand grade calculation, and f) instructor grade entry and progress reports. The software was created using Macromedia Director. It is distributed to students on a CDROM and updates are downloaded and installed automatically. Data browsers for plate tectonics relevant data ("Our Dynamic Planet"), a virtual exploration of the East Pacific Rise, the World Ocean Atlas-98, and a fishing simulation game are integrated with the EarthEd software. The system is modular which allows new capabilities, such as new data browsers, to be added. Student reactions to the software are positive overall. They are especially appreciative of the on demand grade computation capability. The online writing, commenting and grading is particularly effective in managing the large number of papers that get submitted. The TA's grade the papers, but the instructor can provide feedback to them as they grade the papers, and a record is maintained of all comments and rubric item grades. Commenting is made easy by simply "dragging" a selection of pre-defined comments into the student's text. Scoring is supported by an integrated scoring rubric. All assignments, rubrics, etc. are configured in text files that are downloaded

  17. Testing Anthropic Selection: A Climate Change Example

    PubMed Central

    2011-01-01

    Abstract Planetary anthropic selection, the idea that Earth has unusual properties since, otherwise, we would not be here to observe it, is a controversial idea. This paper proposes a methodology by which to test anthropic proposals by comparison of Earth to synthetic populations of Earth-like planets. The paper illustrates this approach by investigating possible anthropic selection for high (or low) rates of Milankovitch-driven climate change. Three separate tests are investigated: (1) Earth-Moon properties and their effect on obliquity; (2) Individual planet locations and their effect on eccentricity variation; (3) The overall structure of the Solar System and its effect on eccentricity variation. In all three cases, the actual Earth/Solar System has unusually low Milankovitch frequencies compared to similar alternative systems. All three results are statistically significant at the 5% or better level, and the probability of all three occurring by chance is less than 10−5. It therefore appears that there has been anthropic selection for slow Milankovitch cycles. This implies possible selection for a stable climate, which, if true, undermines the Gaia hypothesis and also suggests that planets with Earth-like levels of biodiversity are likely to be very rare. Key Words: Planetary habitability and biosignatures—Intelligence—Paleoenvironment and paleoclimate—Co-evolution of Earth and life—Complex life. Astrobiology 11, 105–114. PMID:21401338

  18. Color Tuning in Garnet Oxides: The Role of Tetrahedral Coordination Geometry for 3 d Metal Ions and Ligand-Metal Charge Transfer (Band-Gap Manipulation).

    PubMed

    Bhim, Anupam; Laha, Sourav; Gopalakrishnan, Jagannatha; Natarajan, Srinivasan

    2017-10-18

    We explored garnet-structured oxide materials containing 3d transition-metal ions (e.g., Co 2+ , Ni 2+ , Cu 2+ , and Fe 3+ ) for the development of new inorganic colored materials. For this purpose, we synthesized new garnets, Ca 3 Sb 2 Ga 2 ZnO 12 (I) and Ca 3 Sb 2 Fe 2 ZnO 12 (II), that were isostructural with Ca 3 Te 2 Zn 3 O 12 . Substitution of Co 2+ , Ni 2+ , and Cu 2+ at the tetrahedral Zn 2+ sites in I and II gave rise to brilliantly colored materials (different shades of blue, green, turquoise, and red). The materials were characterized by optical absorption spectroscopy and CIE chromaticity diagrams. The Fe 3+ -containing oxides showed band-gap narrowing (owing to strong sp-d exchange interactions between Zn 2+ and the transition-metal ion), and this tuned the color of these materials uniquely. We also characterized the color and optical absorption properties of Ca 3 Te 2 Zn 3-x Co x O 12 (0garnet-based materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Another Earth 2.0? Not So Fast.

    PubMed

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive ( 2016 ). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty. Key Words: Habitable zone-Second Earth-Habitable planet-Habitability-Life. Astrobiology 16, 817-821.

  20. Laser technology developments in support of ESA's earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Y.; Bézy, J.-L.; Meynart, R.

    2008-02-01

    Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.

  1. Eyes on Planet Earth! Exploring Your Local Watershed

    ERIC Educational Resources Information Center

    Smith, Michael J.; Southard, John B.

    2003-01-01

    The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…

  2. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  3. Putting Technology to Work in Science - How to Select Unmanned Aerial Vehicles (UAV) and their Instrumentation for Atmospheric and Earth Surface Observations

    NASA Astrophysics Data System (ADS)

    Teller, Amit; Lange, Manfred; Ioannou, Stelios; Keleshis, Christos

    2010-05-01

    The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO platforms will offer the unique potential to determine physical, chemical and radiative atmospheric properties, aerosol and dust concentrations, atmospheric dynamics, surface morphology, vegetation and land use patterns as well as ocean surface properties (biology, waves, currents) and to carry out archaeological site reconnaissance and contaminant detection at high spatial resolution. The first phase of APAESO was dedicated to the preliminary design and the selection of an Unmanned Aerial Vehicle (UAV) as the backbone of the APAESO infrastructure. Selection of a UAV suitable for the many research objectives as outlined above is challenging because the UAV technology is new and rapidly evolving. This notwithstanding, a very large number of systems, mostly utilized for defense purposes, are currently available. The major challenge in the selection process lies in considering the trade-off between different platform characteristics (e.g. payload weight, endurance, max. altitude for operation and price) and in optimizing the potential performance of the UAV. Based on the required characteristics for the UAV platform, a survey of possible UAVs and suitable sensors was prepared based on various data sources. We used an elimination process in order to consider only a few models for the final selection process out of about 1000 commercially available UAV models that were initially investigated. The presentation will discuss the main scientific objectives that determine the specification of the UAV platform, major considerations in selecting best available technology for our needs and will briefly describe the next phases of the project.

  4. TERSSE. Definition of the total earth resources system for the shuttle era. Volume 9: Earth resources shuttle applications

    NASA Technical Reports Server (NTRS)

    Alverado, U.

    1975-01-01

    The use of the space shuttle for the Earth Resources Program is discussed. Several problems with respect to payload selection, integration, and mission planning were studied. Each of four shuttle roles in the sortie mode were examined and projected into an integrated shuttle program. Several representative Earth Resources missions were designed which would use the shuttle sortie as a platform and collectively include the four shuttle roles. An integrated flight program based on these missions was then developed for the first two years of shuttle flights. A set of broad implications concerning the uses of the shuttle for Earth Resources studies resulted.

  5. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    DTIC Science & Technology

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  6. Anthropic selection for the Moon's mass.

    PubMed

    Waltham, Dave

    2004-01-01

    This paper investigates whether anthropic selection explains the unusually large size of our Moon. It is shown that obliquity stability of the Earth is possible across a wide range of different starting conditions for the Earth-Moon system. However, the lunar mass and angular momentum from the actual Earth-Moon system are remarkable in that they very nearly produce an unstable obliquity. This may be because the particular properties of our Earth-Moon system simultaneously allow a stable obliquity and a slow rotation rate. A slow rotation rate may have been anthropically selected because it minimizes the equator-pole temperature difference, thus minimizing climatic fluctuations. The great merit of this idea is that it can be tested using extrasolar planet search programs planned for the near future. If correct, such anthropic selection predicts that most extrasolar planetary systems will have significantly larger perturbation frequencies than our own Solar System.

  7. P-T-t paths from polyphased garnets of the Yenisey Ridge: evidence for three tectonothermal events along the western margin of Siberian craton

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor

    2015-04-01

    Studies of pelitic gneisses and schists within the Yenisey regional shear zone (Garevka complex) at the western margin of the Siberian craton provide important constraints on the tectonothermal events and geodynamic processes in the Yenisey Ridge. In situ U-Th-Pb geochronology of monazite and xenotime from different growth zones of the garnet porphyroblasts coupled with P-T path calculations derived from garnet zoning patterns records three superimposed metamorphic event [1]. The different field gradients reflect contrasting tectonic settings. The first stage occurred as a result of the Grenville-age orogeny during late Meso-early Neoproterozoic (1050-850 Ma) and was marked by low-pressure zoned metamorphism at c. 4.8-5.0 kbar and 565-580 °C with a metamorphic field gradient of dT/dZ = 20-30 °C/km. At the second stage, the rocks experienced middle Neoproterozoic (801-793 Ma) collision-related medium-pressure metamorphism at c. 7.7-7.9 kbar and 630 °C with dT/dZ < 10 °C/km. The final stage evolved as a synexhumation retrograde metamorphism (785-776 Ma) at c. 4.8-5.4 kbar and 500 °C with dT/dZ < 14 °C/km and recorded uplift of the rocks to upper crustal levels in shear zones. The duration of post-collisional thrust exhumation does not exceed 16 Myr, which gives an exhumation rate of the metamorphic rocks of about 500-700 m/Myr [2]. This is in good agreement with the rate of exhumation (400 m/Myr) calculated for coeval collision-related metamorphic events in the Teya complex of the Yenisey Ridge [3] resulted from crustal thickening due to overthrusting [4] and also agrees with the results of thermomechanical numerical modeling (350 m/Myr) [5]. The final stages of collisional orogeny were followed by the development of rift-related bimodal dyke swarms of the Baikal-Yenisey belt, resulting from Neoproterozoic (790-780 Ma) extensional processes along the western margin of the Siberian craton and the onset of Rodinia's breakup [6]. Post-Grenville metamorphic

  8. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  9. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    PubMed

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.

  10. Late Paleozoic onset of subduction and exhumation at the western margin of Gondwana (Chilenia Terrane): Counterclockwise P-T paths and timing of metamorphism of deep-seated garnet-mica schist and amphibolite of Punta Sirena, Coastal Accretionary Complex, central Chile (34° S)

    NASA Astrophysics Data System (ADS)

    Hyppolito, T.; García-Casco, A.; Juliani, C.; Meira, V. T.; Hall, C.

    2014-10-01

    In this study, the Paleozoic albite-epidote-amphibolite occurring as meter-sized intercalations within garnet-mica schist at Punta Sirena beach (Pichilemu region, central Chile) is characterized for the first time. These rocks constitute an unusual exposure of subduction-related rocks within the Paleozoic Coastal Accretionary Complex of central Chile. Whereas high pressure (HP) greenschist and cofacial metasediments are the predominant rocks forming the regional metamorphic basement, the garnet-mica schist and amphibolite yield higher P-T conditions (albite-epidote amphibolite facies) and an older metamorphic age. Combining detailed mineral chemistry and textural information, P-T calculations and Ar-Ar ages, including previously published material from the Paleozoic Accretionary Complex of central Chile, we show that the garnet-mica schist and associated amphibolite (locally retrograded to greenschist) are vestiges of the earliest subducted material now forming exotic bodies within the younger HP units of the paleo-accretionary wedge. These rocks are interpreted as having been formed during the onset of subduction at the southwestern margin of Gondwana. However, we show that the garnet-mica schist formed at a slightly greater depth (ca. 40 km) than the amphibolite (ca. 30 km) along the same hot-subduction gradient developed during the onset of subduction. Both lithotypes reached their peak-P conditions at ca. 335-330 Ma and underwent near-isobaric cooling followed by cooling and decompression (i.e., counterclockwise P-T paths). The forced return flow of the garnet-mica schist from the subduction channel started at ca. 320 Ma and triggered the exhumation of fragments of shallower accreted oceanic crust (amphibolite). Cores of phengite (garnet-mica schist) and amphibole (amphibolite) grains have similar chemical compositions in both the S1 and S2 domains, indicating rotation of these grains during the transposition of the burial-related (prograde peak-T) foliation S1

  11. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  12. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-01

    Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  13. The switching of strong spin wave beams in patterned garnet films.

    PubMed

    Gieniusz, R; Gruszecki, P; Krawczyk, M; Guzowska, U; Stognij, A; Maziewski, A

    2017-08-18

    The application of spin waves in communication with information encoded in amplitude and phase could replace or enhance existing microelectronic and microwave devices with significantly decreased energy consumption. Spin waves (SW) are usually transported in a magnetic material shaped to act as a waveguide. However, the implementation of SW transport and switching in plane homogeneous magnetic films and running as a narrow beam with a small divergence angle still present a challenge. We propose a realization of a strong SW switchers based on a patterned yttrium iron garnet (YIG) film that could serve as a magnonic fundamental building block. Our concept relies on the creation of a narrow beam of relatively short-wavelength SW by effect of a total non-reflection, found to be tied to refraction on the decreasing internal magnetic field, near a line of antidots at YIG. Nonreciprocal SW excitation by a microstrip antenna is used for controlling the direction of the signal flow. We demonstrate unique features of the propagation of microwave-excited SW beams, provide insight into their physics and discuss their potential applications in high-frequency devices.

  14. Canted ferrimagnetism in Ca2+Sc3+ substituted yttrium-iron-garnet

    NASA Astrophysics Data System (ADS)

    Pardavi-Horváth, M.; Thavendrarajah, A.; Wigen, P. E.; DeGasperis, P.

    1988-11-01

    The temperature dependence of the magnetization of Y3-y-zCayLuzFe5-xScxO12 (0.6≤x≤1.2, 0≤y≤0.3, 0≤z≤0.9) epitaxial garnet films was measured from 4.2 K up to the Curie temperature. For x=0.7 and T≥50 K, 4πMs is enhanced by about 10% compared to the magnetization of Sc0.7 YIG. At T<50 K, a reduction of the magnetization, increasing with increasing substitution, was observed for all the measured samples. Agreement between the experimental results and molecular field models was obtained by taking into account the canting of the unsubstituted sublattice, the presence of charge compensating Fe4+ ions, a low-temperature ordering of Fe3+ ions with less than two magnetic nearest neighbors, and assuming a lattice parameter-dependent exchange interaction ratio with d(Jdd/Jad)/da =28 nm.-1 For x=1.2 and T<10 K the magnetization can be influenced by cooling through the Curie point in a magnetic field.

  15. Investigation of chemical vapor deposition of garnet films for bubble domain memories

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.

    1973-01-01

    The important process parameters and control required to grow reproducible device quality ferrimagnetic films by chemical vapor deposition (CVD) were studied. The investigation of the critical parameters in the CVD growth process led to the conclusion that the required reproducibility of film properties cannot be achieved with individually controlled separate metal halide sources. Therefore, the CVD growth effort was directed toward replacement of the halide sources with metallic sources with the ultimate goal being the reproducible growth of complex garnet compositions utilizing a single metal alloy source. The characterization of the YGdGaIG films showed that certain characteristics of this material, primarily the low domain wall energy and the large temperature sensitivity, severely limited its potential as a useful material for bubble domain devices. Consequently, at the time of the change from halide to metallic sources, the target film compositions were shifted to more useful materials such as YGdTmGaIG, YEuGaIG and YSmGaIG.

  16. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  17. Boron codoping of Czochralski grown lutetium aluminum garnet and the effect on scintillation properties

    NASA Astrophysics Data System (ADS)

    Foster, Camera; Koschan, Merry; Wu, Yuntao; Melcher, Charles L.

    2018-03-01

    Many single crystal scintillators, such as Lu3Al5O12, have intrinsic defects that impede their performance. In addition to doping with activators such as cerium, codoping can be used to improve the scintillation properties of a variety of scintillators. In particular, boron has been shown to improve the light yield, energy resolution, and self-absorption of other garnet scintillators, such as GGAG, when incorporated into the lattice via codoping. In this study, single crystals of LuAG: 0.2 at.% Ce codoped with varying concentrations of boron were grown via the Czochralski method at a rate of 1.2 mm/h. Results will show the effect boron codoping has on the scintillation properties of LuAG: Ce, including light yield, decay time, and self-absorption.

  18. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  19. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  20. Rare earth separations by selective borate crystallization

    PubMed Central

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448

  1. Near-earth asteroids - Possible sources from reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Mcfadden, L. A.; Gaffey, M. J.; Mccord, T. B.

    1985-01-01

    The diversity of reflectance spectra noted among near-earth asteroids that were compared with selected asteroids, planets and satellites to determine possible source regions is indicative of different mineralogical composition and, accordingly, of more than one source region. Spectral signatures that are similar to those of main belt asteroids support models deriving some of these asteroids from the 5:2 Kirkwood gap and the Flora family, by way of gravitational perturbations. The differences in composition found between near-earth asteroids and planetary and satellite surfaces are in keeping with theoretical arguments that such bodies should not be sources. While some near-earth asteroids furnish portions of the earth's meteorite flux, other sources must also contribute.

  2. Assessment of trading partners for China's rare earth exports using a decision analytic approach.

    PubMed

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies.

  3. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  4. Grain growth kinetics of ringwoodite and majorite garnet mixtures and implications for the rheology of the transition zone

    NASA Astrophysics Data System (ADS)

    Ezad, I.; Dobson, D. P.; Brodholt, J. P.; Thomson, A.; Hunt, S.

    2017-12-01

    The grain size of the transition zone is a poorly known but important geophysical parameter. Among others, the grain size may control the rheology, seismic attenuation and radiative thermal conductivity of the mantle. However, the grain size of the transition zone minerals ringwoodite (Mg,Fe)2SiO4 and majorite garnet MgSiO3 under appropriate zone conditions is currently unknown and there are very few experiments with which to constrain it. In order to determine the grain size of the transition zone, the grain growth kinetics must be determined for a range of mantle compositions. We have, therefore, experimentally determined the grain growth kinetics of the lowermost transition zone minerals through multi anvil experiments at University College London (UCL). This is achieved through a comprehensive set of time series experiments at pressures of 21 GPa and temperatures relevant to the transition zone. We have also determined the effect of varying water content, oxygen fugacity, iron content and aluminium content also discussed by Dobson and Mariani., (2014). Our initial grain growth experiments conducted at 1200°C and 1400°C at 18 GPa show extremely slow grain growth kinetics; time series experiments extended to 105.8 seconds are unable to produce grains larger than 100 nm. This suggests that fine-grained material at the base of the transition zone will persist on geological timescales. Such small grains size suggests that diffusion creep might be the dominant deformation mechanism in this region. Reference: Dobson, D.P., Mariani, E., 2014. The kinetics of the reaction of majorite plus ferropericlase to ringwoodite: Implications for mantle upwellings crossing the 660 km discontinuity. Earth Planet. Sci. Lett. 408, 110-118. doi:10.1016/j.epsl.2014.10.009

  5. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  6. Attainment of Selected Earth Science Concepts by Texas High School Seniors.

    ERIC Educational Resources Information Center

    Rollins, Mavis M.; And Others

    1983-01-01

    Attainment of five earth science concepts by high school seniors depended on the amount of previous science coursework by the students and on the size of their school's enrollment. Seniors in Texas high schools were subjects of the study. (Author/PP)

  7. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua

    2018-06-01

    Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.

  8. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  9. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy.

  10. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  11. Garnets within geode-like serpentinite veins: Implications for element transport, hydrogen production and life-supporting environment formation

    NASA Astrophysics Data System (ADS)

    Plümper, Oliver; Beinlich, Andreas; Bach, Wolfgang; Janots, Emilie; Austrheim, Håkon

    2014-09-01

    Geochemical micro-environments within serpentinizing systems can abiotically synthesize hydrocarbons and provide the ingredients required to support life. Observations of organic matter in microgeode-like hydrogarnets found in Mid-Atlantic Ridge serpentinites suggest these garnets possibly represent unique nests for the colonization of microbial ecosystems within the oceanic lithosphere. However, little is known about the mineralogical and geochemical processes that allow such unique environments to form. Here we present work on outcrop-scale vein networks from an ultramafic massif in Norway that contain massive amounts of spherulitic garnets (andradite), which help to constrain such processes. Vein andradite spherulites are associated with polyhedral serpentine, brucite, Ni-Fe alloy (awaruite), and magnetite indicative of low temperature (<200 °C) alteration under low fO2 and low aSiO2,aq geochemical conditions. Together with the outcrop- and micro-scale analysis geochemical reaction path modeling shows that there was limited mass transport and fluid flow over a large scale. Once opened the veins remained isolated (closed system), forming non-equilibrium microenvironments that allowed, upon a threshold supersaturation, the rapid crystallization (seconds to weeks) of spherulitic andradite. The presence of polyhedral serpentine spheres indicates that veins were initially filled with a gel-like protoserpentine phase. In addition, massive Fe oxidation associated with andradite formation could have generated as much as 600 mmol H2,aq per 100 cm3 vein. Although no carboneous matter was detected, the vein networks fulfill the reported geochemical criteria required to generate abiogenic hydrocarbons and support microbial communities. Thus, systems similar to those investigated here are of prime interest when searching for life-supporting environments within the deep subsurface.

  12. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer.

    PubMed

    Munaweera, Imalka; Levesque-Bishop, Daniel; Shi, Yi; Di Pasqua, Anthony J; Balkus, Kenneth J

    2014-12-24

    Radiation therapy is used as a primary treatment for inoperable tumors and in patients that cannot or will not undergo surgery. Radioactive holmium-166 ((166)Ho) is a viable candidate for use against skin cancer. Nonradioactive holmium-165 ((165)Ho) iron garnet nanoparticles have been incorporated into a bandage, which, after neutron-activation to (166)Ho, can be applied to a tumor lesion. The (165)Ho iron garnet nanoparticles ((165)HoIG) were synthesized and introduced into polyacrylonitrile (PAN) polymer solutions. The polymer solutions were then electrospun to produce flexible nonwoven bandages, which are stable to neutron-activation. The fiber mats were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma mass spectrometry. The bandages are stable after neutron-activation at a thermal neutron-flux of approximately 3.5 × 10(12) neutrons/cm(2)·s for at least 4 h and 100 °C. Different amounts of radioactivity can be produced by changing the amount of the (165)HoIG nanoparticles inside the bandage and the duration of neutron-activation, which is important for different stages of skin cancer. Furthermore, the radioactive bandage can be easily manipulated to irradiate only the tumor site by cutting the bandage into specific shapes and sizes that cover the tumor prior to neutron-activation. Thus, exposure of healthy cells to high energy β-particles can be avoided. Moreover, there is no leakage of radioactive material after neutron activation, which is critical for safe handling by healthcare professionals treating skin cancer patients.

  13. The Effect of Neodymium: Yttrium Aluminum Garnet and Fractional Carbon Dioxide Lasers on Alopecia Areata: A Prospective Controlled Clinical Trial.

    PubMed

    Yalici-Armagan, Basak; Elcin, Gonca

    2016-04-01

    Effective treatment options for alopecia areata (AA) are missing. Whether lasers might be effective is a topic of debate. We aimed to evaluate whether neodymium: yttrium aluminum garnet (Nd:YAG) or fractional carbon dioxide lasers might stimulate the development of new hair. Thirty-two patients who had long-standing and treatment refractory diseases were recruited for the study. Three different patches on the scalp were selected, 1 of which served as control. The mean outcome measure was the hair count, which was calculated with the digital phototrichogram. Response was defined as at least 25% increase in the mean hair count at the treated patch compared with the control patch. At the end of the study, there was no statistically significant difference in the mean hair count for the 3 patches. In 7 of 32 patients (22%), an increase in the mean hair count was observed on the whole scalp including the control patch, which resulted in an improved Severity of Alopecia Tool (SALT) score. We have observed that Nd:YAG or fractional carbon dioxide lasers did not increase the mean hair count on the treated AA patches when compared with the control patch. However, an SALT score improvement in 22% of the patients suggested spontaneous remission.

  14. New service of Earth Interactions offers sneak peek at work in progress

    NASA Astrophysics Data System (ADS)

    A new service of the all-electronic journal Earth Interactions (Web site http://EarthInter-actions.org) now provides online access to abstracts or preprints of selected papers being presented at various Earth system science conferences. The new service, “Earth Abstractions,” is separate from the peer-reviewed articles in Earth Interactions. The editors select the sessions that will be featured. AGU Spring Meeting abstracts are now highlighted on the site.The abstract titles in Earth Abstractions will link directly to online extended abstracts or preprints located on the authors' home servers if such abstracts are made available. As the author updates the preprint and posts it to the same URL, Earth Abstractions will continue to feature the most recent information from the author related to that work. Readers can preview an author's work as it evolves prior to the meeting as well as refer to it for a year after the meeting has ended. This exchange also provides a means for authors to receive positive feedback on their papers independent of the conference session, which may help those who plan to submit papers about their work to a peer-reviewed journal.

  15. Assessment of Trading Partners for China's Rare Earth Exports Using a Decision Analytic Approach

    PubMed Central

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534

  16. The B-dot Earth Average Magnetic Field

    NASA Technical Reports Server (NTRS)

    Capo-Lugo, Pedro A.; Rakoczy, John; Sanders, Devon

    2013-01-01

    The average Earth's magnetic field is solved with complex mathematical models based on mean square integral. Depending on the selection of the Earth magnetic model, the average Earth's magnetic field can have different solutions. This paper presents a simple technique that takes advantage of the damping effects of the b-dot controller and is not dependent of the Earth magnetic model; but it is dependent on the magnetic torquers of the satellite which is not taken into consideration in the known mathematical models. Also the solution of this new technique can be implemented so easily that the flight software can be updated during flight, and the control system can have current gains for the magnetic torquers. Finally, this technique is verified and validated using flight data from a satellite that it has been in orbit for three years.

  17. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  18. Highly efficient passive mode locking of Nd:Lu2.9Gd0.1Al5O12 garnet crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Tan, W. D.; Zhang, J.; Tang, D. Y.; Li, D. Z.; Zhou, D. H.; Wu, F.; Xu, J.

    2013-05-01

    Passive mode locking of Nd:Lu2.9Gd0.1Al5O12 (Nd:LuGdAG) crystal lasers was experimentally investigated. Stable mode-locked pulses with pulse widths as short as 9.7 ps were obtained for the Nd:LuGdAG crystal; the corresponding maximum output powers were 0.93 W while the mode-locked slope efficiencies were 43%, among the highest efficiencies ever reported for Nd3+ ps lasers. The results demonstrate that Nd:LuGdAG garnet crystal is a promising gain medium for efficient picosecond laser use.

  19. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  1. The Earth Microbiome Project: Meeting report of the "1 EMP meeting on sample selection and acquisition" at Argonne National Laboratory October 6 2010.

    PubMed

    Gilbert, Jack A; Meyer, Folker; Jansson, Janet; Gordon, Jeff; Pace, Norman; Tiedje, James; Ley, Ruth; Fierer, Noah; Field, Dawn; Kyrpides, Nikos; Glöckner, Frank-Oliver; Klenk, Hans-Peter; Wommack, K Eric; Glass, Elizabeth; Docherty, Kathryn; Gallery, Rachel; Stevens, Rick; Knight, Rob

    2010-12-25

    This report details the outcome the first meeting of the Earth Microbiome Project to discuss sample selection and acquisition. The meeting, held at the Argonne National Laboratory on Wednesday October 6(th) 2010, focused on discussion of how to prioritize environmental samples for sequencing and metagenomic analysis as part of the global effort of the EMP to systematically determine the functional and phylogenetic diversity of microbial communities across the world.

  2. Method of Evaluating the Life Cycle Cost of Small Earth Dams Considering the Risk of Heavy Rainfall and Selection Method of the Optimum Countermeasure

    NASA Astrophysics Data System (ADS)

    Hori, Toshikazu; Mohri, Yoshiyuki; Matsushima, Kenichi; Ariyoshi, Mitsuru

    In recent years the increase in the number of heavy rainfall occurrences such as through unpredictable cloudbursts have resulted in the safety of the embankments of small earth dams needing to be improved. However, the severe financial condition of the government and local autonomous bodies necessitate the cost of improving them to be reduced. This study concerns the development of a method of evaluating the life cycle cost of small earth dams considered to pose a risk and in order to improve the safety of the downstream areas of small earth dams at minimal cost. Use of a safety evaluation method that is based on a combination of runoff analysis, saturated and unsaturated seepage analysis, and slope stability analysis enables the probability of a dam breach and its life cycle cost with the risk of heavy rainfall taken into account to be calculated. Moreover, use of the life cycle cost evaluation method will lead to the development of a technique for selecting the method of the optimal improvement or countermeasures against heavy rainfall.

  3. Relaxation of the environment of Gd3+ and Eu2+ impurity ions in the Y3Al5O12 garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Artyomov, M. Yu.; Potapov, A. P.; Chernyshev, V. A.; Fokin, A. V.; Serdtsev, A. V.

    2017-05-01

    The second-rank spin Hamiltonian parameters of Gd3+ and Eu2+ orthorhombic centers in crystals of the yttrium aluminum garnet Y3Al5O12 have been analyzed within the framework of the superposition model for the zero-field splitting of the ground state. It has been shown that the description of the experimental data in this model is possible only under the assumption of relaxation of the ligand environment of the paramagnetic impurity.

  4. Management Approach for Earth Venture Instrument

    NASA Technical Reports Server (NTRS)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  5. An Integrated Rare Earth Elements Supply Chain Strategy

    DTIC Science & Technology

    2011-02-24

    iron boron magnets in Joint Direct Attack Munitions (JDAM) smart bombs; neodymium-yttrium- aluminum - garnet lasers and range finders in multiple weapon...components Europium 63 computer screens, fluorescent lights Gadolinium 64 magnetic applications, phosphors Terbium 65 phosphors, projection TV’s...Defense Stockpile report advised several production delays of weapons systems were caused by lanthanum, cerium, europium and gadolinium supply

  6. Earth Scanner Bearing Accelerated Life Test

    NASA Technical Reports Server (NTRS)

    Dietz, Brian J.; VanDyk, Steven G.; Predmore, Roamer E.

    2000-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) optical instrument for NASA Goddard will measure biological and physical processes on the Earth's surface and in the lower atmosphere. A key component of the instrument is an extremely accurate scan mirror motor/encoder assembly. Of prime concern in the performance and reliability of the scan motor/encoder is bearing selection and lubrication. This paper describes life testing of the bearings and lubrication selected for the program.

  7. Earth Observing System Data Gateway

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark

    2006-01-01

    The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.

  8. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.

    PubMed

    Cheng, Lei; Chen, Wei; Kunz, Martin; Persson, Kristin; Tamura, Nobumichi; Chen, Guoying; Doeff, Marca

    2015-01-28

    Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Ω cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.

  9. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  10. Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine

    2018-05-01

    The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.

  11. Earth orbiting Sisyphus system study

    NASA Technical Reports Server (NTRS)

    Jurkevich, I.; Krause, K. W.; Neste, S. L.; Soberman, R. K.

    1971-01-01

    The feasibility of employing an optical meteoroid detecting system, known as Sisyphus, to measure the near-earth particulates from an earth orbiting vehicle, is considered. A Sisyphus system can discriminate between natural and man-made particles since the system measures orbital characteristics of particles. A Sisyphus system constructed for the Pioneer F/G missions to Jupiter is used as the baseline, and is described. The amount of observing time which can be obtained by a Sisyphus instrument launched into various orbits is determined. Observation time is lost when, (1) the Sun is in or near the field of view, (2) the lighted Earth is in or near the field of view, (3) the instrument is eclipsed by the Earth, and (4) the phase angle measured at the particle between the forward scattering direction and the instrument is less than a certain critical value. The selection of the launch system and the instrument platform with a dedicated, attitude controlled payload package is discussed. Examples of such systems are SATS and SOLRAD 10(C) vehicles, and other possibilities are AVCO Corp. S4 system, the OWL system, and the Delta Payload Experiment Package.

  12. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Hinged Capsulotomy--Does it Decrease Floaters After Yttrium Aluminum Garnet Laser Capsulotomy?

    PubMed

    Alipour, Fatemeh; Jabbarvand, Mahmoud; Hashemian, Hesam; Hosseini, Simindokht; Khodaparast, Mehdi

    2015-01-01

    The objective was to compare conventional circular yttrium aluminum garnet (YAG) laser capsulotomy with hinged capsulotomy to manage posterior capsular opacification (PCO). This prospective, randomized clinical trial enrolled pseudophakic patients with visually significant posterior capsule opacification. Patients were randomized to undergo posterior YAG laser capsulotomy with either conventional circular technique or a new technique with an inferior hinge. At 1-month postoperatively, patients were asked if they had any annoying floaters and the responses were compared between groups. P < 0.05 was considered statistically significant. A total of 83 patients were enrolled. Forty-three patients underwent hinged posterior YAG capsulotomy and 40 patients underwent routine circular capsulotomy. At 1-month postoperatively, there was a statistically significant decrease in annoying floaters in the group that underwent circular capsulotomy (P = 0.02). There was no statistically significant association in the total energy delivered (P = 0.4) or the number of spots (P = 0.2) and patient perception of annoying floaters. Hinged YAG capsulotomy was effective at decreasing the rate of floaters in patients with PCO.

  14. Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.

    2018-02-01

    We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.

  15. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  16. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  17. Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process

    PubMed Central

    2017-01-01

    The thermal conductivity of a nanoscale yttrium iron garnet (Y3Fe5O12, YIG) thin-film prepared by a sol-gel method was evaluated using the ultrafast pump-probe technique in the present study. The thermoreflectance change on the surface of a 250 nm thick YIG film, induced by the irradiation of femtosecond laser pulses, was measured, and curve fitting of a numerical solution for the transient heat conduction equation to the experimental data was performed using the finite difference method in order to extract the thermal property. Results show that the film’s thermal conductivity is 22–83% higher than the properties of bulk YIG materials prepared by different fabrication techniques, reflecting the microstructural characteristics and quality of the film. PMID:28858249

  18. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for hypertrophic port-wine stains on the lips.

    PubMed

    Kono, Taro; Frederick Groff, William; Chan, Henry H; Sakurai, Hiroyuki; Yamaki, Takashi

    2009-03-01

    Pulsed dye laser (PDL) treatment of hypertrophic port-wine stains (PWSs) on the lips has demonstrated poor efficacy and a potential risk of dyspigmentation. PDL-resistant hypertrophic PWS may require treatment with deeper penetrating lasers such as a 1064-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. The objective of this clinical study was to evaluate the efficacy and safety of a Nd:YAG laser for the treatment of hypertrophic PWSs on the lips. Ten patients (four were male and six were female) with hypertrophic PWSs on the lips were recruited in this study. Eight patients showed good to excellent improvement without complications. In conclusion, the Nd:YAG laser is safe and effective for treating hypertrophic PWSs on the lips.

  19. Ultrafast eclogite formation via melting-induced overpressure

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Ague, Jay J.; Podladchikov, Yury Y.; Tian, Meng

    2017-12-01

    The conventional wisdom holds that metamorphic reactions take place at pressures near-lithostatic so that the thermodynamic pressure, reflected by the mineral assemblage, is directly correlated with depth. On the other hand, recent field-based observations and geodynamic simulations suggest that heterogeneous stress and significant pressure deviations above lithostatic (overpressure) can occur in Earth's crust. Here we show that eclogite, normally interpreted to form at great depths in subduction zones and Earth's mantle, may form at much shallower depths via local overpressure generated in crustal shear zones. The eclogites studied crop out as lenses hosted by felsic paragneiss in a sheared thrust slice and represent a local pressure and temperature anomaly in the Taconic orogenic belt, southern New England. Sharply-defined chemical zones in garnet, which record ∼5 kbar pressure rise and fall accompanied by a temperature increase of 150-200 °C, demonstrate extremely short timescales of diffusion. This requires anomalously fast compression (∼500 yrs) and decompression. We use coupled phase equilibria and garnet diffusion forward modeling to fit the observed garnet profiles and test the likely P- T- t paths using a Monte Carlo-type approach, accounting for off-center sectioning of garnet. The simulation shows that a ∼5 kbar pressure increase after the temperature peak is necessary to reproduce the garnet zoning. Remarkably, this post-peak-T compression (from 9 kbar to 14 kbar) lasted only ∼500 yrs. If the compression was due to burial along a lithostatic pressure gradient, the descent speed would exceed 30 m yr-1, defying any observed or modeled subduction rates. Local overpressure in response to partial melting in a confined volume (Vrijmoed et al., 2009) caused by transient shear heating can explain the ultra-fast compression without necessitating burial to great depth.

  20. Mission design for a halo orbiter of the earth

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Muhonen, D. P.; Richardson, D. L.

    1976-01-01

    The International Sun-Earth Explorer (ISEE) scientific satellite to be stationed in 1978 in the vicinity of the sun-earth interior libration point to continuously monitor the space between the sun and the earth, including the distant geomagnetic tail is described. Orbit selection considerations for the ISEE-C are discussed along with stationkeeping requirements and fuel-optimal trajectories. Due to the alignment of the interior libration point with the sun as viewed from the earth, it will be necessary to place the satellite into a 'halo orbit' around the libration point, in order to eliminate solar interference with down-link telemetry. Parametric data for transfer trajectories between an earth parking orbit (altitude about 185 km) and a libration-point orbit are presented. It is shown that the insertion magnitude required for placing a satellite into an acceptable halo orbit is rather modest.