Sample records for earth ground clamp

  1. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  2. Welding fixture for joining bar-wound stator conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, Urban J.; Rhoads, Frederick W.; Hanson, Justin

    A fixture assembly for welding a plurality of stator wire end pairs may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state. The moveable clamp includes a separator feature that generally extends toward the anvil. Each of the first grounding electrode and second grounding electrodes may be configured to translate between a clamped state and an unclamped state. When in themore » clamped state, each of the first and second grounding electrodes is configured to urge a pair of the plurality of stator wire end pairs against the separator feature.« less

  3. Cooling/grounding mount for hybrid circuits

    NASA Technical Reports Server (NTRS)

    Bagstad, B.; Estrada, R.; Mandel, H.

    1981-01-01

    Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.

  4. Collection and review of metals data obtained from LDEF experiment specimens and support hardware

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger; Pippin, H. Gary

    1995-01-01

    LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.

  5. Calculating the Lightning Protection System Downconductors' Grounding Resistance at Launch Complex 39B, Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Mata, Angel G.

    2012-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. Nine downconductors (each about 250 meters long) are connected to the catenary wire system. Each downconductor is connected to a 7.62-meter-radius circular counterpoise conductor with six equally spaced, 6-meter-long vertical grounding rods. Grounding requirements at LC39B call for all underground and aboveground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bonded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple directions around LC39B. The complexity of this grounding system makes the fall-of-potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the grounding impedance of the downconductors, an Earth Ground Clamp (EGC) (a stakeless device for measuring grounding impedance) and an Alternative Transient Program (ATP) model of the LPS are used. The EGC is used to measure the loop impedance plus the grounding impedance of each downconductor, and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding resistance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the EGC measurements.

  6. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 2: Clamps from Bay B of the satellite

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low-Earth orbit (LEO) in 1984 and recovered 5.7 years later. The LDEF was host to several individual experiments specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. However, it was realized from the beginning that the most efficient use of the satellite would be to examine the entire surface for impact features. In this regard, particular interest centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials was the tray clamps. Therefore, in an effort to better understand the nature of particulates in LEO and their effects on spacecraft hardware, residues found in impact features on LDEF tray clamp surfaces are being analyzed. This catalog presents all data from clamps from Bay B of the LDEF. NASA Technical Memorandum 104759 has cataloged impacts that occurred on Bay B (published March 1993). Subsequent catalogs will include clamps from succeeding bays of the satellite.

  7. Ground-state calculations of confined hydrogen molecule H2 using variational Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Doma, S. B.; El-Gammal, F. N.; Amer, A. A.

    2018-07-01

    The variational Monte Carlo method is used to evaluate the ground-state energy of a confined hydrogen molecule H2. Accordingly, we considered the.me case of hydrogen molecule confined by a hard prolate spheroidal cavity when the nuclear positions are clamped at the foci (on-focus case). Also, the case of off-focus nuclei in which the two nuclei are not clamped to the foci is studied. This case provides flexibility for the treatment of the molecular properties by selecting an arbitrary size and shape for the confining spheroidal box. A simple chemical analysis concerning the catalytic role of enzyme is investigated. An accurate trial wave function depending on many variational parameters is used for this purpose. The obtained results for the case of clamped foci exhibit good accuracy compared with the high precision variational data presented previously. In the case of off-focus nuclei, an improvement is obtained with respect to the most recent uncorrelated results existing in the literature.

  8. Down-hole periodic seismic generator

    DOEpatents

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  9. Advanced downhole periodic seismic generator

    DOEpatents

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  10. Down hole periodic seismic generator

    DOEpatents

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  11. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  12. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  13. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  14. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  15. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less

  16. Safety evaluation of large external fixation clamps and frames in a magnetic resonance environment.

    PubMed

    Luechinger, Roger; Boesiger, Peter; Disegi, John A

    2007-07-01

    Large orthopedic external fixation clamps and related components were evaluated for force, torque, and heating response when subjected to the strong electromagnetic fields of magnetic-resonance (MR) imaging devices. Forces induced by a 3-Tesla (T) MR scanner were compiled for newly designed nonmagnetic clamps and older clamps that contained ferromagnetic components. Heating trials were performed in a 1.5 and in a 3 T MR scanner with two assembled external fixation frames. Forces of the newly designed clamps were more than a factor 2 lower as the gravitational force on the device whereas, magnetic forces on the older devices showed over 10 times the force induced by earth acceleration of gravity. No torque effects could be found for the newly designed clamps. Temperature measurements at the tips of Schanz screws in the 1.5 T MR scanner showed a rise of 0.7 degrees C for a pelvic frame and of 2.1 degrees C for a diamond knee bridge frame when normalized to a specific absorption rate (SAR) of 2 W/kg. The normalized temperature increases in the 3 T MR scanner were 0.9 degrees C for the pelvic frame and 1.1 degrees C for the knee bridge frame. Large external fixation frames assembled with the newly designed clamps (390 Series Clamps), carbon fiber reinforced rods, and implant quality 316L stainless steel Schanz screws met prevailing force and torque limits when tested in a 3-T field, and demonstrated temperature increase that met IEC-60601 guidelines for extremities. The influence of frame-induced eddy currents on the risk of peripheral nerve stimulation was not investigated. Copyright 2006 Wiley Periodicals, Inc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackrel, Sara L.; Owens, Sarah M.; Gilbert, Jack A.

    Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free-living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host-associated sequences. We assessed the efficacy of chloroplast and mitochondria-blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robustmore » method for assessing animal-associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast-blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14-bp sequence in the Proteobacteria that matches the 17-bp chloroplast-blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14-bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle-blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n-mer oligonucleotides of each PNA sequence.« less

  18. 49 CFR 587.19 - Mounting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... structure attached thereto. The front of the fixed rigid barrier to which the deformable face is attached is... ground. These bolts are at least 8 mm (0.3 in) in diameter. Steel clamping strips are used for both the...

  19. 49 CFR 587.19 - Mounting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... structure attached thereto. The front of the fixed rigid barrier to which the deformable face is attached is... ground. These bolts are at least 8 mm (0.3 in) in diameter. Steel clamping strips are used for both the...

  20. 49 CFR 587.19 - Mounting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... structure attached thereto. The front of the fixed rigid barrier to which the deformable face is attached is... ground. These bolts are at least 8 mm (0.3 in) in diameter. Steel clamping strips are used for both the...

  1. 49 CFR 587.19 - Mounting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... structure attached thereto. The front of the fixed rigid barrier to which the deformable face is attached is... ground. These bolts are at least 8 mm (0.3 in) in diameter. Steel clamping strips are used for both the...

  2. 49 CFR 587.19 - Mounting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... structure attached thereto. The front of the fixed rigid barrier to which the deformable face is attached is... ground. These bolts are at least 8 mm (0.3 in) in diameter. Steel clamping strips are used for both the...

  3. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M; Randerson, James T; Thornton, Peter E

    2009-12-01

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Projectmore » (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.« less

  4. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E

    2009-01-01

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) providesmore » a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.« less

  5. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  6. An Investigation into Ground Effect for an Underwater Biologically Inspired Flapping Foil

    DTIC Science & Technology

    2014-01-01

    strength that it could be used as a parameter on a future underwater vehicle to control altitude above the ground. The benefit to flapping in...16 Figure 10. Clamped vs . pinned pitch shaft support bearings ........................................ 17 Figure 11. Comparison between old (large... altitude near the bottom surface (Licht & Dahl, 2013). This work is a humble beginning to investigating the benefits and challenges that may be

  7. Miniature, shielded electrical connector with strain relief

    NASA Technical Reports Server (NTRS)

    Diep, Chuong H. (Inventor)

    2006-01-01

    An electrical connector assembly includes a wire bundle having at least one wire with a metal shield surrounding at least a portion of the wire. The shield has an end portion and provides electromagnetic interference protection to the wire. A backshell includes a body and a cover secured to the body together defining an internal cavity with the wire at least partially arranged within the cavity. The backshell provides EMI protection for the portion of the wire bundle not covered by the shield. The backshell includes a hole in a wall of either the body or the cover with the end portion of the shield extending through the hole. The clamp is secured about the body and the cover with the end portion of the shield arranged between the clamp and the backshell grounding the shield to the backshell. The clamp forces the backshell into engagement with the wire bundle to provide strain relief for the wire bundle.

  8. Clamped seismic metamaterials: ultra-low frequency stop bands

    NASA Astrophysics Data System (ADS)

    Achaoui, Y.; Antonakakis, T.; Brûlé, S.; Craster, R. V.; Enoch, S.; Guenneau, S.

    2017-06-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1-10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0-30 Hz.

  9. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  10. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development has demonstrated that EA can function effectively in space, even in the presence of strong ultraviolet radiation, atomic oxygen, and free electrons. We created a test setup in an existing vacuum chamber to simulate low-Earth-orbit conditions. An EA mechanism was fabricated and installed in the chamber, instrumented, operated in a vacuum, and subjected to ultraviolet photons and free electrons generated by an in-chamber multipactor electron emitter. Extensions to EA that can add value include proximity and contact sensing and transverse motion or rotation, both of which could enhance docking or assembly applications. Possible next steps include development of targeted applications for ground investigation or on-orbit subsystem performance demonstrations using low cost access to space such as CubeSats.

  11. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development has demonstrated that EA can function effectively in space, even in the presence of strong ultraviolet radiation, atomic oxygen, and free electrons. We created a test setup in an existing vacuum chamber to simulate low-Earth-orbit conditions. An EA mechanism was fabricated and installed in the chamber, instrumented, operated in a vacuum, and subjected to ultraviolet photons and free electrons generated by an in-chamber multipactor electron emitter. Extensions to EA that can add value include proximity and contact sensing and transverse motion or rotation, both of which could enhance docking or assembly applications. Possible next steps include development of targeted applications for ground investigation or on-orbit subsystem performance demonstrations using low cost access to space such as CubeSats.

  12. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  13. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... casing having low resistance to earth; (c) A solid connection to metal waterlines having low resistance to earth; (d) A solid connection to a grounding conductor extending to a low resistance ground field... earth. ...

  14. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... casing having low resistance to earth; (c) A solid connection to metal waterlines having low resistance to earth; (d) A solid connection to a grounding conductor extending to a low resistance ground field... earth. ...

  15. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... casing having low resistance to earth; (c) A solid connection to metal waterlines having low resistance to earth; (d) A solid connection to a grounding conductor extending to a low resistance ground field... earth. ...

  16. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...

  17. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...

  18. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...

  19. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Part of the philosophy which guided the examination of hardware from the Long Duration Exposure Facility (LDEF) was that materials present at multiple locations should have fairly high priority for investigation. Properties of such materials were characterized as a function of exposure conditions to obtain as much data as possible for predicting performance lifetimes. Results from examination of several materials from interior locations of LDEF, selected measurements on silverized teflon blanket specimens, and detailed measurements on the copper grounding strap from tray D11 are summarized. Visual observations of interior locations of LDEF made during deintegration at KSC showed apparent changes in particular specimens. This inspection lead to testing of selected nylon clamps, fiberglass shims, and heat shrink tubing from wire harness clamps, and visually discolored silver coated hex nuts.

  20. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    PubMed

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  1. Ground penetrating radar antenna system analysis for prediction of earth material properties

    USGS Publications Warehouse

    Oden, C.P.; Wright, D.L.; Powers, M.H.; Olhoeft, G.

    2005-01-01

    The electrical properties of the ground directly beneath a ground penetrating radar (GPR) antenna very close to the earth's surface (ground-coupled) must be known in order to predict the antenna response. In order to investigate changing antenna response with varying ground properties, a series of finite difference time domain (FDTD) simulations were made for a bi-static (fixed horizontal offset between transmitting and receiving antennas) antenna array over a homogeneous ground. We examine the viability of using an inversion algorithm based on the simulated received waveforms to estimate the material properties of the earth near the antennas. Our analysis shows that, for a constant antenna height above the earth, the amplitude of certain frequencies in the received signal can be used to invert for the permittivity and conductivity of the ground. Once the antenna response is known, then the wave field near the antenna can be determined and sharper images of the subsurface near the antenna can be made. ?? 2005 IEEE.

  2. Geophysics From Terrestrial Time-Variable Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Van Camp, Michel; de Viron, Olivier; Watlet, Arnaud; Meurers, Bruno; Francis, Olivier; Caudron, Corentin

    2017-12-01

    In a context of global change and increasing anthropic pressure on the environment, monitoring the Earth system and its evolution has become one of the key missions of geosciences. Geodesy is the geoscience that measures the geometric shape of the Earth, its orientation in space, and gravity field. Time-variable gravity, because of its high accuracy, can be used to build an enhanced picture and understanding of the changing Earth. Ground-based gravimetry can determine the change in gravity related to the Earth rotation fluctuation, to celestial body and Earth attractions, to the mass in the direct vicinity of the instruments, and to vertical displacement of the instrument itself on the ground. In this paper, we review the geophysical questions that can be addressed by ground gravimeters used to monitor time-variable gravity. This is done in relation to the instrumental characteristics, noise sources, and good practices. We also discuss the next challenges to be met by ground gravimetry, the place that terrestrial gravimetry should hold in the Earth observation system, and perspectives and recommendations about the future of ground gravity instrumentation.

  3. 3D printing of surgical instruments for long-duration space missions.

    PubMed

    Wong, Julielynn Y; Pfahnl, Andreas C

    2014-07-01

    The first off-Earth fused deposition modeling (FDM) 3D printer will explore thermoplastic manufacturing capabilities in microgravity. This study evaluated the feasibility of FDM 3D printing 10 acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments on Earth. Three-point bending tests compared stiffness and yield strength between FDM 3D printed and conventionally manufactured ABS thermoplastic. To evaluate the relative speed of using four printed instruments compared to conventional instruments, 13 surgeons completed simulated prepping, draping, incising, and suturing tasks. Each surgeon ranked the performance of six printed instruments using a 5-point Likert scale. At a thickness of 5.75 mm or more, the FDM printing process had a less than 10% detrimental effect on the tested yield strength and stiffness of horizontally printed ABS thermoplastic relative to conventional ABS thermoplastic. Significant weakness was observed when a bending load was applied transversely to a 3D printed layer. All timed tasks were successfully performed using a printed sponge stick, towel clamp, scalpel handle, and toothed forceps. There was no substantial difference in time to completion of simulated surgical tasks with control vs. 3D printed instruments. Of the surgeons, 100%, 92%, 85%, 77%, 77%, and 69% agreed that the printed smooth and tissue forceps, curved and straight hemostats, tissue and right angle clamps, respectively, would perform adequately. It is feasible to 3D print ABS thermoplastic surgical instruments on Earth. Loadbearing structures were designed to be thicker, when possible. Printing orientations were selected so that the printing layering direction of critical structures would not be transverse to bending loads.

  4. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.

    2016-01-01

    Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.

  5. 7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  6. 30 CFR 75.700-1 - Approved methods of grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a borehole casing having low resistance to earth; (b) A solid connection to metal waterlines having low resistance to earth; (c) A solid connection to a grounding conductor, other than the neutral... ensures that there is no difference in potential between such metallic enclosures and the earth. ...

  7. 30 CFR 75.700-1 - Approved methods of grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a borehole casing having low resistance to earth; (b) A solid connection to metal waterlines having low resistance to earth; (c) A solid connection to a grounding conductor, other than the neutral... ensures that there is no difference in potential between such metallic enclosures and the earth. ...

  8. Mechanism of opening a sliding clamp

    PubMed Central

    Douma, Lauren G.; Yu, Kevin K.; England, Jennifer K.

    2017-01-01

    Abstract Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated. Mutations were introduced into the Escherichia coli β-sliding clamp that destabilize the dimer interface to determine whether the formation of an open clamp loader–clamp complex is dependent on spontaneous clamp opening events. In other work, we showed that mutation of a positively charged Arg residue at the β-dimer interface and high NaCl concentrations destabilize the clamp, but neither facilitates the formation of an open clamp loader–clamp complex in experiments presented here. Clamp opening reactions could be fit to a minimal three-step ‘bind-open-lock’ model in which the clamp loader binds a closed clamp, the clamp opens, and subsequent conformational rearrangements ‘lock’ the clamp loader–clamp complex in a stable open conformation. Our results support a model in which the E. coli clamp loader actively opens the β-sliding clamp. PMID:28973453

  9. Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Burnett, Michael

    2013-01-01

    The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.

  10. Surface characterization of LDEF materials

    NASA Astrophysics Data System (ADS)

    Wightman, J. P.; Grammer, Holly Little

    1993-10-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  11. Surface characterization of LDEF materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P.; Grammer, Holly Little

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  12. Design requirements for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J.; Bradford, L. H.; Burnett, E. S.; Hutson, D. E.; Kinsler, B. A.; Kugle, D. R.; Webber, D. S.

    1972-01-01

    Realistic tradeoff data and evaluation techniques were studied that permit conceptual design of operational earth resources ground processing systems. Methodology for determining user requirements that utilize the limited information available from users is presented along with definitions of sensor capabilities projected into the shuttle/station era. A tentative method is presented for synthesizing candidate ground processing concepts.

  13. System issues and considerations associated with design of ground mobile strategic satellite communication terminals

    NASA Astrophysics Data System (ADS)

    Poliakon, J. A.

    The current national defense doctrine calls for increased use of ground mobile strategic satellite communication earth terminals. This paper discusses some of the key communication terminal system issues and considerations associated with the design of nuclear hardened strategic ground mobile earth terminals. It considers system requirements such as nuclear hardness, rapid mobility, low profile, signal interference resistance, high availability, and long term independent operation. It also discusses impacts and implications associated with these requirements when imposed on a satellite earth terminal. It gives special focus to the ramifications of imposing mobility on earth terminals and its relationship to the system design approach used to arrive at an optimal system solution.

  14. Earthing (Grounding) the Human Body Reduces Blood Viscosity—a Major Factor in Cardiovascular Disease

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Delany, Richard M.

    2013-01-01

    Abstract Objectives Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. Design/interventions Subjects were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Settings/location Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Subjects Ten (10) healthy adult subjects were recruited by word-of-mouth. Results Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Conclusions Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events. PMID:22757749

  15. Earthing (grounding) the human body reduces blood viscosity-a major factor in cardiovascular disease.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Delany, Richard M

    2013-02-01

    Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. SUBJECTS were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Ten (10) healthy adult subjects were recruited by word-of-mouth. Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events.

  16. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment.

    PubMed

    Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina

    2018-01-16

    The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.

  17. Is early cord clamping, delayed cord clamping or cord milking best?

    PubMed

    Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan

    2018-04-01

    To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p < .05) lower in the early cord clamping group compared with the other two groups. The disulfide/total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.

  18. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    PubMed

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  19. The effect of the earth's rotation on ground water motion.

    PubMed

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  20. Space-to-Ground: Back to Earth: 12/15/2017

    NASA Image and Video Library

    2017-12-15

    Expedition 53 crewmembers return to Earth, while the SpaceX Dragon heads to orbit...and how does a body first react to space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  1. The effect of aerosols on the earth-atmosphere albedo

    NASA Technical Reports Server (NTRS)

    Herman, B. M.; Browning, S. R.

    1975-01-01

    The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).

  2. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  3. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enclosures and the earth. (b) A method of grounding of metallic frames, casings, and other enclosures of... there is no difference in potential between such frames, casings, and other enclosures, and the earth. ...

  4. Laminar Instability and Transition on the X-51A

    DTIC Science & Technology

    2009-08-01

    AIM15 controller. Surface thermocouples are affixed to the contraction by hose clamps and are used by the controllers to determine when each heater...installed in the model. One 20- gauge, braided , high-voltage wire is soldered to the inner electrode. This wire then passes through the model, angle...and another 20-gauge, braided , high-voltage wire leading from the sting to the ground of the glow electronics. From the back of the sting to the glow

  5. Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Dumesnil, K.; Mangin, Ph

    2006-07-01

    Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.

  6. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  7. Grounding after moderate eccentric contractions reduces muscle damage

    PubMed Central

    Brown, Richard; Chevalier, Gaétan; Hill, Michael

    2015-01-01

    Grounding a human to the earth has resulted in changes in the physiology of the body. A pilot study on grounding and eccentric contractions demonstrated shortened duration of pain, reduced creatine kinase (CK), and differences in blood parameters. This follow-up study was conducted to investigate the effects of grounding after moderate eccentric contractions on pain, CK, and complete blood counts. Thirty-two healthy young men were randomly divided into grounded (n=16) and sham-grounded (n=16) groups. On days 1 through 4, visual analog scale for pain evaluations and blood draws were accomplished. On day 1, the participants performed eccentric contractions of 200 half-knee bends. They were then grounded or sham-grounded to the earth for 4 hours on days 1 and 2. Both groups experienced pain on all posttest days. On day 2, the sham-grounded group experienced significant CK increase (P<0.01) while the CK of the grounded group did not increase significantly; the between-group difference was significant (P=0.04). There was also an increase in the neutrophils of the grounded group on day 3 (P=0.05) compared to the sham-grounded group. There was a significant increase in platelets in the grounded group on days 2 through 4. Grounding produced changes in CK and complete blood counts that were not shared by the sham-grounded group. Grounding significantly reduced the loss of CK from the injured muscles indicating reduced muscle damage. These results warrant further study on the effects of earthing on delayed onset muscle damage. PMID:26443876

  8. Post clamp

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Inventor); Meyn, Erwin H. (Inventor)

    1990-01-01

    A pair of spaced collars are mounted at right angles on a clamp body by retaining rings which enable the collars to rotate with respect to the clamp body. Mounting posts extend through aligned holes in the collars and clamp body. Each collar can be clamped onto the inserted post while the clamp body remains free to rotate about the post and collar. The clamp body is selectively clamped onto each post.

  9. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time

    NASA Astrophysics Data System (ADS)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  10. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time.

    PubMed

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  11. The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

    PubMed Central

    Ji, Aihong; Yuan, Shanshan; Hill, Iain; Wang, Huan; Barnes, W. Jon P.; Dai, Zhendong; Sitti, Metin

    2017-01-01

    Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces. PMID:28228509

  12. Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms

    NASA Technical Reports Server (NTRS)

    Wetherington, R. D.; Walsh, J. R.

    1974-01-01

    The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.

  13. Seismic sources

    DOEpatents

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  14. Use of the Satinsky clamp for hilar clamping during robotic partial nephrectomy: indications, technique, and multi-center outcomes.

    PubMed

    Abdullah, Newaj; Rahbar, Haider; Barod, Ravi; Dalela, Deepansh; Larson, Jeff; Johnson, Michael; Mass, Alon; Zargar, Homayoun; Kaouk, Jihad; Allaf, Mohamad; Bhayani, Sam; Stifelman, Michael; Rogers, Craig

    2017-03-01

    A Satinsky clamp may be a backup option for hilar clamping during robotic partial nephrectomy (RPN) if there are challenges with application of bulldog clamps, but there are potential safety concerns. We evaluate outcomes of RPN using Satinsky vs. bulldog clamps, and provide tips for safe use of the Satinsky as a backup option. Using a multi-center database, we identified 1073 patients who underwent RPN between 2006 and 2013, and had information available about method of hilar clamping (bulldog clamp vs. Satinsky clamp). Patient baseline characteristics, tumor features, and perioperative outcomes were compared between the Satinsky and bulldog clamp groups. A Satinsky clamp was used for hilar clamping in 94 (8.8 %) RPN cases, and bulldog clamps were used in 979 (91.2 %) cases. The use of a Satinsky clamp was associated with greater operative time (198 vs. 175 min, p < 0.001), estimated blood loss (EBL, 200 vs. 100 ml, p < 0.001), warm ischemia time (WIT, 20 vs. 19 min, p = 0.036), transfusion rate (12.8 vs. 4.8 %, p = 0.001), and hospital stay (3 vs. 2 days, p < 0.001). Tumor characteristics and number of renal vessels were similar between groups. There were six intraoperative complications in the Satinsky clamp group, but none were directly related to the Satinsky clamp. On multivariable analysis, the use of the Satinsky clamp was not associated with increase in intraoperative or Clavien ≥3 postoperative complications, positive surgical margin rate or percentage change in estimated glomerular filtration rate. A Satinsky clamp can be a backup option for hilar clamping during challenging RPN cases, but requires careful technique, and was rarely necessary.

  15. The biologic effects of grounding the human body during sleep as measured by cortisol levels and subjective reporting of sleep, pain, and stress.

    PubMed

    Ghaly, Maurice; Teplitz, Dale

    2004-10-01

    Diurnal cortisol secretion levels were measured and circadian cortisol profiles were evaluated in a pilot study conducted to test the hypothesis that grounding the human body to earth during sleep will result in quantifiable changes in cortisol. It was also hypothesized that grounding the human body would result in changes in sleep, pain, and stress (anxiety, depression, irritability), as measured by subjective reporting. Twelve (12) subjects with complaints of sleep dysfunction, pain, and stress were grounded to earth during sleep for 8 weeks in their own beds using a conductive mattress pad. Saliva tests were administered to establish pregrounding baseline cortisol levels. Levels were obtained at 4-hour intervals for a 24-hour period to determine the circadian cortisol profile. Cortisol testing was repeated at week 6. Subjective symptoms of sleep dysfunction, pain, and stress were reported daily throughout the 8-week test period. Measurable improvements in diurnal cortisol profiles were observed, with cortisol levels significantly reduced during night-time sleep. Subjects' 24-hour circadian cortisol profiles showed a trend toward normalization. Subjectively reported symptoms, including sleep dysfunction, pain, and stress, were reduced or eliminated in nearly all subjects. Results indicate that grounding the human body to earth ("earthing") during sleep reduces night-time levels of cortisol and resynchronizes cortisol hormone secretion more in alignment with the natural 24-hour circadian rhythm profile. Changes were most apparent in females. Furthermore, subjective reporting indicates that grounding the human body to earth during sleep improves sleep and reduces pain and stress.

  16. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods.

    PubMed

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.

  17. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods

    PubMed Central

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth. PMID:29176916

  18. Effect of sterilization on stiffness and dimensional stability of rubber-dam clamps.

    PubMed

    Giebink, D L; Mathieu, G P; Hondrum, S O

    1996-01-01

    Simulated clinical conditions were used to test the effect of sterilization on rubber-dam clamp stiffness and dimension. Sixty Hygienic and Ivory W7 clamps were either steam or dry heat sterilized and compared to controls. Stiffness and dimensional change between Ivory clamp groups was significant (p<.0001); the sterilized clamps showed less change than the controls. Hygienic groups showed a significant different between the control and dry heat groups (p<.05); the sterilized clamps showed less change than the controls. The change in stiffness and interjaw width for all Ivory clamps compared to all Hygienic clamps was significant (p<.0001). The Hygienic clamps changes less than the Ivory clamps. The results indicate that steam and dry heat sterilization do not affect retention of rubber-dam clamps.

  19. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  20. Earthing: health implications of reconnecting the human body to the Earth's surface electrons.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits-including better sleep and reduced pain-from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  1. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Oschman, James L.; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance. PMID:22291721

  2. Earth resources ground data handling systems for the 1980's

    NASA Technical Reports Server (NTRS)

    Vanvleck, E. M.; Sinclair, K. F.; Pitts, S. W.; Slye, R. E.

    1973-01-01

    The system requirements of an operational data handling system for earth resources in the decade of the 1980's are investigated. Attention is drawn to problems encountered in meeting the stringent agricultural user requirements of that time frame. Such an understanding of requirements is essential not only in designing the ground system that will ultimately handle the data, but also in design studies of the earth resources platform, sensors, and data relay satellites which may be needed.

  3. TUNNEL LINING DESIGN METHOD BY FRAME STRUCTURE ANALYSIS USING GROUND REACTION CURVE

    NASA Astrophysics Data System (ADS)

    Sugimoto, Mitsutaka; Sramoon, Aphichat; Okazaki, Mari

    Both of NATM and shield tunnelling method can be applied to Diluvial and Neogene deposit, on which mega cities are located in Japan. Since the lining design method for both tunnelling methods are much different, the unified concept for tunnel lining design is expected. Therefore, in this research, a frame structure analysis model for tunnel lining design using the ground reaction curve was developed, which can take into account the earth pressure due to excavated surface displacement to active side including the effect of ground self-stabilization, and the excavated surface displacement before lining installation. Based on the developed model, a parameter study was carried out taking coefficient of subgrade reaction and grouting rate as a parameter, and the measured earth pressure acting on the lining at the site was compared with the calculated one by the developed model and the conventional model. As a result, it was confirmed that the developed model can represent earth pressure acting on the lining, lining displacement, and lining sectional force at ground ranging from soft ground to stiff ground.

  4. Clamping characteristics study on different types of clamping unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhiwei; Liu, Haichao; Xie, Pengcheng

    2015-05-22

    Plastic products are becoming more and more widely used in aerospace, IT, digital electronics and many other fields. With the development of technology, the requirement of product precision is getting higher and higher. However, type and working performance of clamping unit play a decisive role in product precision. Clamping characteristics of different types of clamping unit are discussed in this article, which use finite element numerical analysis method through the software ABAQUS to study the clamping uniformity, and detect the clamping force repeatability precision. The result shows that compared with toggled three-platen clamping unit, clamping characteristics of internal circulation two-platenmore » clamping unit are better, for instance, its mold cavity deformation and force that bars and mold parting surface suffered are more uniform, and its clamping uniformity and repeatability precision is also better.« less

  5. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  6. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  7. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  8. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  9. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  10. A Study on Effect of Concrete Foundations on Resistance and Surface Potentials of Gas Insulated Substation Grounding Systems

    NASA Astrophysics Data System (ADS)

    Rao, Mandava Mohana

    2017-10-01

    Ground resistance of high voltage substations must be as low as possible for safe grounding of their equipment both during normal and fault conditions. However, in gas insulated substations (GIS), even though resistance is low, it does not ensure the step and touch potentials of the grounding system within permissible levels. In the present study, an analytical model has been developed to calculate ground resistance, step and touch potentials of a grounding system used for GIS. Different models have been proposed for the evaluation of number of grounding rods to be inserted in to the ground. The effect of concrete foundations on above performance parameters has been analyzed by considering various fault currents, soil/earth resistivities and number of grounding rods. Finally, design optimization of GIS grounding system has been reported for fault currents in the order of 63 kA located in earth resistivity of 100Ω-m and above.

  11. Sensor lighting considerations for earth observatory satellite missions

    NASA Technical Reports Server (NTRS)

    Cooley, J. L.

    1972-01-01

    Facets of sensor lighting conditions for Earth observatory satellite missions are considered. Assuming onboard sensors of a given width viewing perpendicular to the subsatellite ground track along sun-synchronous orbits with various nodes, the ground trace of the ends of the sensor coverage were found, as well as the variation in solar illumination on the ground across the line covered by the sensor during the day for any point along the orbit. The changes with season and variation during the year were also found.

  12. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Earth Structures and Engineering Characterization of Ground Motion

    USGS Publications Warehouse

    Holzer, Thomas L.

    1998-01-01

    This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.

  13. Atmospheric propagation issues relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Churnside, James H.; Shaik, Kamran

    1989-01-01

    Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application.

  14. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  15. Ground-based Search of Earth-mass Exoplanets using Transit-Timing Variations

    NASA Astrophysics Data System (ADS)

    Fernandez, J. M.

    2010-10-01

    This work presents recent results from a ground-based transit follow-up program of the extrasolar planet XO-2b in order to find Earth-mass companions. It also introduces the future use of the MONET 1m-class robotic telescopes as part of the effort to overcome the difficulties of this kind of project.

  16. Laser communication experiments between Sota and Meo optical ground station

    NASA Astrophysics Data System (ADS)

    Artaud, G.,; Issler, J.-L.; Védrenne, N.; Robert, C.; Petit, C.; Samain, E.; Phung, D.-H.; Maurice, N.; Toyoshima, M.; Kolev, D.

    2017-09-01

    Optical transmissions between earth and space have been identified as key technologies for future high data rate transmissions between satellites and ground. CNES is investigating the use of optics both for High data rate direct to Earth transfer from observation satellites in LEO, and for future telecommunications applications using optics for the high capacity Gateway link.

  17. Satellite-Relayed Intercontinental Quantum Network.

    PubMed

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-19

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  18. Satellite-Relayed Intercontinental Quantum Network

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-01

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  19. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  20. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  1. Protocol Architecture Model Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.

  2. Functional design for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.

    1972-01-01

    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.

  3. Impact of Renal Hilar Control on Outcomes of Robotic Partial Nephrectomy: Systematic Review and Cumulative Meta-analysis.

    PubMed

    Cacciamani, Giovanni E; Medina, Luis G; Gill, Tania S; Mendelsohn, Alec; Husain, Fatima; Bhardwaj, Lokesh; Artibani, Walter; Sotelo, Renè; Gill, Inderbir S

    2018-02-05

    During robotic partial nephrectomy (RPN), various techniques of hilar control have been described, including on-clamp, early unclamping, selective/super-selective clamping, and completely-unclamped RPN. To evaluate the impact of various hilar control techniques on perioperative, functional, and oncological outcomes of RPN for tumors. We conducted a systematic literature review and meta-analysis of all comparative studies on various hilar control techniques during RPN using PubMed, Scopus, and Web of Science according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement, and Methods and Guide for Effectiveness and Comparative Effectiveness Review of the Agency for Healthcare Research and Quality. Cumulative meta-analysis of comparative studies was conducted using Review Manager 5.3. Of 987 RPN publications in the literature, 19 qualified for this analysis. Comparison of off-clamp versus on-clamp RPN (n=9), selective clamping versus on-clamp RPN (n=3), super selective clamping versus on-clamp RPN (n=5), and early unclamped versus on-clamp (n=3) were reported. Patients undergoing RPN using off-clamp, selective/super selective, or early unclamp techniques had higher estimated blood loss compared with on-clamp RPN (weight mean difference [WMD]: 47.83, p=0.000, WMD: 41.06, p=0.02, and WMD: 37.50, p=0.47); however, this did not seem clinically relevant, since transfusion rates were similar (odds ratio [OR]: 0.98, p=0.95, OR: 0.72, p=0.7, and OR: 1.36, p=0.33, respectively). All groups appeared similar with regards to hospital stay, transfusions, overall and major complications, and positive cancer margin rates. Short- and long-term renal functional outcomes appeared superior in the off-clamp and super selective clamp groups compared with the on-clamp RPN cohort. Off-clamp, selective/super selective clamp, and early unclamp hilar control techniques are safe and feasible approaches for RPN surgery, with similar perioperative and oncological outcomes compared with on-clamp RPN. Minimizing global renal ischemia may provide superior renal function preservation. However, higher quality data are necessary for definitive conclusions in this regard. The objective of partial nephrectomy is to treat the cancer while maximizing renal function preservation. Clamping the main vessels is done primarily to reduce the blood loss during partial nephrectomy; however, vascular clamping can compromise kidney function. In order to avoid clamping, various techniques have been described. Our analysis showed that techniques that avoid main renal artery clamping during RPN are associated with better renal function preservation, yet deliver non-inferior perioperative and oncological outcomes as compared with robotic partial nephrectomy procedures that clamp the main vessels. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  4. Clamp usable as jig and lifting clamp

    DOEpatents

    Tsuyama, Yoshizo

    1976-01-01

    There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.

  5. Cable clamp bolt fixture facilitates assembly in close quarters

    NASA Technical Reports Server (NTRS)

    Sunderland, G. H.

    1967-01-01

    Cable clamp bolt holding fixture facilitates forming of electrical cable runs in limited equipment space. The fixture engages the threads of the short clamp bolt through the clamp and maintains tension against clamp tendency to open while the operator installs the nut without difficulty.

  6. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  7. Split-tapered joint clamping device

    DOEpatents

    Olsen, Max J.; Schwartz, Jr., John F.

    1988-01-01

    This invention relates to a clamping device for removably attaching a tool element to a bracket element wherein a bracket element is disposed in a groove in the tool and a clamping member is disposed in said groove and in engagement with a clamping face of the bracket and a wall of the groove and with the clamping member having pivot means engaging the bracket and about which the clamping member rotates.

  8. Effect of complete hilar versus only renal artery clamping on renal histomorphology following ischemia/reperfusion injury in an experimental model.

    PubMed

    Umul, M; Cal, A C; Turna, B; Oktem, G; Aydın, H H

    2016-01-01

    To evaluate the effect of temporary complete hilar versus only renal artery clamping with different duration of warm ischemia on renal functions, and possibly identify a "safe" clamping type and duration of renal ischemia. Fifty male rabbits have been incorporated to study. Rabbits were subjected to ischemia/reperfusion injury by temporary vascular clamping. Reagents were randomized to 3 experimental groups (only renal artery clamping, complete hilar clamping, sham surgery) and sub-groups were determined according to different clamping times (30 and 60 minutes). Median laparotomy and left renal hilus dissection were performed to sham group. Only artery or complete hilar clamping was performed for 30 or 60 minutes by microvascular bulldog clamps to other reagents. Rabbits were sacrificed 10 days after primary surgery and left nephrectomy performed. Nephrectomy materials were evaluated for the level of nitric-oxide synthase (NOS) immunoreactivity, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity and an electron microscopic examination was performed. NOS immunoreactivity was correlated with the temporary clamping time. We also observed that complete hilar vascular clamping entails an increase on NOS immunoreactivity. MDA levels were similar for all experimental surgery groups (p = 0.42). The SOD activity was decreased among all subgroups compared with sham surgery. But the significant decrease occurred in 30 minutes only artery and 30 minutes complete hilar clamping groups in proportion to sham surgery (p = 0.026 and p = 0.019, respectively). This current study suggested that only renal artery clamping under 30 minutes is more appropriate during renal surgical procedures requiring temporary vascular clamping.

  9. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  10. Use of global positioning system measurements to determine geocentric coordinates and variations in Earth orientation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.; Lichten, S. M.

    1993-01-01

    Geocentric tracking station coordinates and short-period Earth-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in Earth orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in Earth orientation presently show centimeter-level precision. Comparison between GPS-estimated Earth-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean tide models suggests that observed subdaily variations in Earth rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for Earth orientation and geocenter improves significantly when data collected from low Earth-orbiting satellites as well as from ground sites are combined. The low Earth GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.

  11. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.

    1987-01-01

    Mapping the earth from space stations can be approached in two areas. One is to collect gravity data for defining a new topographic datum using the earth's gravitational field in terms of spherical harmonics. The other, which should be considered as a very significant contribution of the Space Station, is to search and explore techniques of mapping the earth's topography using either optical or radar images with or without references to ground control points. Geodetic position of ground control points can be predetermined by the Global Positioning System (GPS) for the mapping experiment with the Space Station. It is proposed to establish four ground control points in North America or Africa (including the Sahara Desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting service.

  12. Optimal link budget to maximize data receiving from remote sensing satellite at different ground stations

    NASA Astrophysics Data System (ADS)

    Godse, Vinay V.; Rukmini, B.

    2016-10-01

    Earth observation satellite plays a significant role for global situation awareness. The earth observation satellite uses imaging payloads in RF and IR bands, which carry huge amount of data, needs to be transferred during visibility of satellite over the ground station. Location of ground station plays a very important role in communication with LEO satellites, as orbital speed of LEO satellite is much higher than earth rotation speed. It will be accessible for particular equatorial ground station for a very short duration. In this paper we want to maximize data receiving by optimizing link budget and receiving data at higher elevation links. Data receiving at multiple ground stations is preferred to counter less pass duration due to higher elevation links. Our approach is to calculate link budget for remote sensing satellite with a fixed power input and varying different minimum elevation angles to obtain maximum data. The minimum pass duration should be above 3 minutes for effective communication. We are proposing to start process of command handling as soon as satellite is visible to particular ground station with low elevation angle up to 5 degree and start receiving data at higher elevation angles to receive data with higher speed. Cartosat-2B LEO earth observation satellite is taken for the case study. Cartosat-2B will complete around 14 passes over equator in a day, out of which only 4-5 passes will be useful for near equator ground stations. Our aim is to receive data at higher elevation angles at higher speed and increase amount of data download, criteria being minimum pass duration of 3 minutes, which has been set for selecting minimum elevation angle.

  13. Lifting clamp positively grips structural shapes

    NASA Technical Reports Server (NTRS)

    Reinhardt, E. C.

    1966-01-01

    Welded steel clamps securely grip structural shapes of various sizes for crane operations. The clamp has adjustable clamping jaws and screw-operated internal v-jaws and provides greater safety than hoisting slings presently used. The structural member can be rotated in any manner, angle, or direction without being released by the clamp.

  14. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  15. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.

  16. Selective Arterial Clamping Versus Hilar Clamping for Minimally Invasive Partial Nephrectomy.

    PubMed

    Yezdani, Mona; Yu, Sue-Jean; Lee, David I

    2016-05-01

    Partial nephrectomy has become an accepted treatment of cT1 renal masses as it provides improved long-term renal function compared to radical nephrectomy (Campbell et al. J Urol. 182:1271-9, 2009). Hilar clamping is utilized to help reduce bleeding and improve visibility during tumor resection. However, concern over risk of kidney injury with hilar clamping has led to new techniques to reduce length of warm ischemia time (WIT) during partial nephrectomy. These techniques have progressed over the years starting with early hilar unclamping, controlled hypotension during tumor resection, selective arterial clamping, minimal margin techniques, and off-clamp procedures. Selective arterial clamping has progressed significantly over the years. The main question is what are the exact short- and long-term renal effects from increasing clamp time. Moreover, does it make sense to perform these more time-consuming or more complex procedures if there is no long-term preservation of kidney function? More recent studies have shown no difference in renal function 6 months from surgery when selective arterial clamping or even hilar clamping is employed, although there is short-term improved decline in estimated glomerular filtration rate (eGFR) with selective clamping and off-clamp techniques (Komninos et al. BJU Int. 115:921-8, 2015; Shah et al. 117:293-9, 2015; Kallingal et al. BJU Int. doi: 10.1111/bju.13192, 2015). This paper reviews the progression of total hilar clamping to selective arterial clamping (SAC) and the possible difference its use makes on long-term renal function. SAC may be attempted based on surgeon's decision-making, but may be best used for more complex, larger, more central or hilar tumors and in patients who have renal insufficiency at baseline or a solitary kidney.

  17. Whole-Cell Electrical Activity Under Direct Mechanical Stimulus by AFM Cantilever Using Planar Patch Clamp Chip Approach

    PubMed Central

    Upadhye, Kalpesh V.; Candiello, Joseph E.; Davidson, Lance A.; Lin, Hai

    2011-01-01

    Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins. PMID:22174731

  18. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  19. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures. (b...

  20. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases

    PubMed Central

    Oschman, James L; Chevalier, Gaétan; Brown, Richard

    2015-01-01

    Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing) produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1) inform researchers about what appears to be a new perspective to the study of inflammation, and 2) alert researchers that the length of time and degree (resistance to ground) of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. PMID:25848315

  1. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording

    PubMed Central

    Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.

    2014-01-01

    Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119

  2. Photovoltaic panel clamp

    DOEpatents

    Mittan, Margaret Birmingham [Oakland, CA; Miros, Robert H. J. [Fairfax, CA; Brown, Malcolm P [San Francisco, CA; Stancel, Robert [Loss Altos Hills, CA

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  3. Photovoltaic panel clamp

    DOEpatents

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  4. Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.

    2012-01-01

    As imagery is collected from an airborne platform, an individual viewing the images wants to know from where on the Earth the images were collected. To do this, some information about the camera needs to be known, such as its position and orientation relative to the Earth. This can be provided by common inertial navigation systems (INS). Once the location of the camera is known, it is useful to project an image onto some representation of the Earth. Due to the non-smooth terrain of the Earth (mountains, valleys, etc.), this projection is highly non-linear. Thus, to ensure accurate projection, one needs to project onto a digital elevation map (DEM). This allows one to view the images overlaid onto a representation of the Earth. A code has been developed that takes an image, a model of the camera used to acquire that image, the pose of the camera during acquisition (as provided by an INS), and a DEM, and outputs an image that has been geo-rectified. The world coordinate of the bounds of the image are provided for viewing purposes. The code finds a mapping from points on the ground (DEM) to pixels in the image. By performing this process for all points on the ground, one can "paint" the ground with the image, effectively performing a projection of the image onto the ground. In order to make this process efficient, a method was developed for finding a region of interest (ROI) on the ground to where the image will project. This code is useful in any scenario involving an aerial imaging platform that moves and rotates over time. Many other applications are possible in processing aerial and satellite imagery.

  5. Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan

    2017-01-01

    Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.

  6. Pumping-induced stress and strain in aquifer systems in Wuxi, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Jun; Gong, Xulong; Wu, Jichun; Wang, Zhecheng

    2018-05-01

    Excessive groundwater withdrawal from an aquifer system leads to three-dimensional displacement, causing changes in the states of stress and strain. Often, land subsidence and sometimes earth fissures ensue. Field investigation indicates that land subsidence and earth fissures in Wuxi, a city in eastern China, are mainly due to excessive groundwater withdrawal, and that they are temporally and spatially related to groundwater pumping. Groundwater withdrawal may cause tensile strain to develop in aquifer systems, but tensile strain does not definitely mean tensile stress. Where earth fissures are concerned, the stress state should be adopted in numerical simulations instead of the strain state and displacement. The numerical simulation undertaken for the Wuxi area shows that the zone of tensile strain occupies a large area on the ground surface; nevertheless, the zone of tensile stress is very limited. The zone of tensile stress often occurs near the ground surface, beneath which the depth to the bedrock surface is relatively small and has considerable variability. Earth fissures often initiate near the ground surface where tensile stress occurs. Tensile stress and earth fissures rarely develop at the centers of land subsidence bowls, where compressive stress is dominant.

  7. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for future HEDS missions.

  8. Using the Earth to Heat and Cool Homes.

    ERIC Educational Resources Information Center

    Thomas, Stephen G.

    The heat collecting capacity of the earth and or the earth's ground waters and surface waters exist as potential energy sources for home heating and cooling. Techniques and devices associated with use of the earth's thermal energy capabilities are presented and evaluated in this four-chapter report. Included in these chapters are: (1) descriptions…

  9. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    NASA Astrophysics Data System (ADS)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  10. Saddle clamp assembly

    NASA Technical Reports Server (NTRS)

    Belrose, Charles R. (Inventor)

    1994-01-01

    A saddle clamp assembly is presented. The assembly is comprised of a hollow cylindrical body centered about a longitudinal axis and being diametrically split into semicircular top and bottom sections. Each section has a pair of connection flanges, at opposite ends, that project radially outward. A pair of bolts are retained on the top section flanges and are threadable into nuts retained on the bottom section flanges. A base member is anchored to a central underside portion of the bottom clamp body section and has a pair of connection tabs positioned beneath the bottom clamp body section connection flanges on opposite sides of the clamp axis. A pair of bolts are retained on the base member connection tabs and are threadable into a pair of nuts retainable on a support structure. The connection tab and connection flanges on each side of the clamp body are axially offset in a manner permitting downward installation/removable tool access to the lower bolts past the connection flanges. An elongated retention tether is used to connect the top clamp body section to the balance of the clamp assembly. This prevents loss of the top clamp body section when it is removed from the bottom clamp body section.

  11. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report. Appendixes A through D

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the systems involved in the operation and support of the Earth Observatory Satellite (EOS) is presented. Among the systems considered are the following: (1) the data management system, (2) observatory to primary ground station communications links, (3) local user system, (4) techniques for recognizing ground control points, (5) the central data processing-implementation concept, and (6) program effectiveness analysis.

  12. New developments in ground probing radar for Earth resource mapping and planetology

    NASA Astrophysics Data System (ADS)

    Cattermole, P. J.; Junkin, G.; Finkelstein, M. I.; Kingsley, S. P.

    1992-07-01

    Ground probing radar is a well established technique for locating buried objects and has found application in resource mapping. The development of this technology for the Mars exploration programme has lead to lightweight systems with potential applications for investigating shallow geological structures on Earth, Mars and Venus. Recent advances in ground probing radar technology for planetary exploration include the development of single-antenna systems with improved beam focussing into the ground and a move to lower frequencies which considerably extends the depth penetration in dry ground. These systems are designed for mobility and could form the basis of autonomous mapping systems for terrestrial exploration. Such systems would be particularly valuable for water resource surveying in arid and semi-arid regions, where there is a need to have lightweight instrumentation that can be moved into sometimes inhospitable terrain.

  13. Simultaneous recording of the action potential and its whole-cell associated ion current on NG108-15 cells cultured over a MWCNT electrode

    NASA Astrophysics Data System (ADS)

    Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.

    2016-08-01

    It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.

  14. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.

    PubMed

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S

    2014-03-24

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

  15. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  16. 46 CFR 128.420 - Keel cooler installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-metallic hose-clamps may be used at machinery connections if— (1) The clamps are of a corrosion-resistant material; (2) The clamps do not depend on spring tension for their holding power; and (3) Two of the clamps...

  17. High throughput ion-channel pharmacology: planar-array-based voltage clamp.

    PubMed

    Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk

    2003-02-01

    Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.

  18. Use of CYPRES™ cutters with a Kevlar clamp band for hold-down and release of the Icarus De-Orbit Sail payload on TechDemoSat-1

    NASA Astrophysics Data System (ADS)

    Kingston, J.; Hobbs, S.; Roberts, P.; Juanes-Vallejo, C.; Robinson, F.; Sewell, R.; Snapir, B.; Llop, J. Virgili; Patel, M.

    2014-07-01

    TechDemoSat-1 is a UK-funded technology demonstration satellite, carrying 8 payloads provided by UK organisations, which is due to be launched in the first quarter of 2014. Cranfield University has supplied a De-Orbit Sail (DOS) payload to allow the mission to comply with end-of-life debris mitigation guidelines. The payload provides a passive, simple, and low-cost means of mitigating debris proliferation in Low Earth Orbit, by enhancing spacecraft aerodynamic drag at end-of-life and reducing time to natural orbital decay and re-entry. This paper describes the use of small commercial electro-explosive devices (EEDs), produced for use as parachute tether-cutters in reserve chute deployment systems, as low-cost but high-reliability release mechanisms for space applications. A testing campaign, including thermal vacuum and mechanical vibration, is described, which demonstrates the suitability of these CYPRES™ cutters, with a flexible Kevlar clamp band, for use as a hold-down and release mechanism (HDRM) for a deployable de-orbit sail. The HDRM is designed to be three-failure-tolerant, highly reliable, yet simple and low-cost.

  19. Detachable clamps for minimal access surgery.

    PubMed

    Frank, T; Willetts, G J; Cuschieri, A

    1995-01-01

    A detachable clamp and applicator have been developed for use in minimal access surgical operations involving hollow visceral transection and anastomosis. The clamp has parallel jaws which ensure uniform distribution of the occlusive force. Following application on the bowel, the clamp is released from the applicator, thus freeing the access port. On completion of the anastomosis, the clamp is docked to the applicator, its jaws opened for release from the bowel and then closed prior to removal. The jaws of the clamp are kept closed by a pseudoelastic nickel-titanium (NiTi) alloy spring which imparts advantageous force characteristics when compared to stainless steel. The excellent holding and atraumatic characteristics of the detachable clamp have been confirmed by use in laparoscopic and thoracoscopic surgery on the gastrointestinal tract.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, John; Gilchrist, Phillip Charles

    Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solarmore » panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.« less

  1. Modeling and characterization of the Earth Radiation Budget Experiment (ERBE) nonscanner and scanner sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.

    1989-01-01

    The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.

  2. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  3. A novel high performance ESD power clamp circuit with a small area

    NASA Astrophysics Data System (ADS)

    Zhaonian, Yang; Hongxia, Liu; Li, Li; Qingqing, Zhuo

    2012-09-01

    A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.

  4. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  5. Drum ring removal/installation tool

    DOEpatents

    Andrade, William Andrew [Livermore, CA

    2006-11-14

    A handheld tool, or a pair of such tools, such as for use in removing/installing a bolt-type clamping ring on a container barrel/drum, where the clamping ring has a pair of clamping ends each with a throughbore. Each tool has an elongated handle and an elongated lever arm transversely connected to one end of the handle. The lever arm is capable of being inserted into the throughbore of a selected clamping end and leveraged with the handle to exert a first moment on the selected clamping end. Each tool also has a second lever arm, such as a socket with an open-ended slot, which is suspended alongside the first lever arm. The second lever arm is capable of engaging the selected clamping end and being leveraged with the handle to exert a second moment which is orthogonal to the first moment. In this manner, the first and second moments operate to hold the selected clamping end fixed relative to the tool so that the selected clamping end may be controlled with the handle. The pair of clamping ends may also be simultaneously and independently controlled with the use of two handles/tools so as to contort the geometry of the drum clamping ring and enable its removal/installation.

  6. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication.

    PubMed

    Kawakami, Hironori; Su'etsugu, Masayuki; Katayama, Tsutomu

    2006-10-01

    In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.

  7. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  8. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.

  9. Optimized autonomous space in-situ sensor web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  10. Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp.

    PubMed

    Purohit, Anirban; England, Jennifer K; Douma, Lauren G; Tondnevis, Farzaneh; Bloom, Linda B; Levitus, Marcia

    2017-08-22

    Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Experience with duplex bearings in narrow angle oscillating applications

    NASA Technical Reports Server (NTRS)

    Phinney, D. D.; Pollard, C. L.; Hinricks, J. T.

    1988-01-01

    Duplex ball bearings are matched pairs on which the abutting faces of the rings have been accurately ground so that when the rings are clamped together, a controlled amount of interference (preload) exists across the balls. These bearings are vulnerable to radial temperature gradients, blocking in oscillation and increased sensitivity to contamination. These conditions decrease the service life of these bearings. It was decided that an accelerated thermal vacuum life test should be conducted. The test apparatus and results are described and the rationale is presented for reducing a multiyear life test on oil lubricated bearings to less than a year.

  12. Renal Vascular Clamp Placement: A Potential Cause of Incomplete Hilar Control during Partial Nephrectomy.

    PubMed

    Tryon, David; Myklak, Kristene; Alsyouf, Muhannad; Conceicao, Carol; Peplinski, Brandon; Arenas, Javier L; Faaborg, Daniel; Ruckle, Herbert C; Baldwin, D Duane

    2016-03-01

    Previous benchtop studies have shown that robotic bulldog clamps provide incomplete vascular control of a Penrose drain. We determined the efficacy of robotic and laparoscopic bulldog clamps to ensure hemostasis on the human renal artery. The effect of clamp position on vascular control was also examined. Fresh human cadaveric renal arteries were used to determine the leak point pressure of 7 bulldog clamps from a total of 3 manufacturers. Five trials were performed per clamp at 4 locations, including the fulcrum, proximal, middle and distal positions. Comparison was done using the Kruskal-Wallis test with p <0.05 considered significant. None of the bulldog clamps leaked at a pressure less than 215 mm Hg when applied at the proximal, middle or distal position. In general leak point pressure decreased as the artery was positioned more distal along the clamp. The exception was when the vessel was placed at the fulcrum position. At that position 80% to 100% of trials with the Klein laparoscopic, 100% with the Klein robotic (Klein Robotic, San Antonio, Texas) and 60% to 80% with the Scanlan robotic (Scanlan International, Saint Paul, Minnesota) clamp leaked at pressure below 215 mm Hg. Each vascular clamp adequately occluded flow at physiological pressure when placed at the proximal, middle or distal position. Furthermore, these results demonstrate that there is leakage at physiological pressure when the artery is placed at the fulcrum of certain clamp types. These results suggest that applying a bulldog clamp at the fulcrum could potentially lead to inadequate vessel occlusion and intraoperative bleeding. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study.

    PubMed

    Saad, M F; Anderson, R L; Laws, A; Watanabe, R M; Kades, W W; Chen, Y D; Sands, R E; Pei, D; Savage, P J; Bergman, R N

    1994-09-01

    An insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis was compared with the glucose clamp in 11 subjects with normal glucose tolerance (NGT), 20 with impaired glucose tolerance (IGT), and 24 with non-insulin-dependent diabetes mellitus (NIDDM). The insulin sensitivity index (SI) was calculated from FSIGTT using 22- and 12-sample protocols (SI(22) and SI(12), respectively). Insulin sensitivity from the clamp was expressed as SI(clamp) and SIP(clamp). Minimal model parameters were similar when calculated with SI(22) and SI(12). SI could not be distinguished from 0 in approximately 50% of diabetic patients with either protocol. SI(22) correlated significantly with SI(clamp) in the whole group (r = 0.62), and in the NGT (r = 0.53), IGT (r = 0.48), and NIDDM (r = 0.41) groups (P < 0.05 for each). SI(12) correlated significantly with SI(clamp) in the whole group (r = 0.55, P < 0.001) and in the NGT (r = 0.53, P = 0.046) and IGT (r = 0.58, P = 0.008) but not NIDDM (r = 0.30, P = 0.085) groups. When SI(22), SI(clamp), and SIP(clamp) were expressed in the same units, SI(22) was 66 +/- 5% (mean +/- SE) and 50 +/- 8% lower than SI(clamp) and SIP(clamp), respectively. Thus, minimal model analysis of the insulin-modified FSIGTT provides estimates of insulin sensitivity that correlate significantly with those from the glucose clamp. The correlation was weaker, however, in NIDDM. The insulin-modified FSIGTT can be used as a simple test for assessment of insulin sensitivity in population studies involving nondiabetic subjects. Additional studies are needed before using this test routinely in patients with NIDDM.

  14. Arterial waves in humans during peripheral vascular surgery.

    PubMed

    Khir, A W; Henein, M Y; Koh, T; Das, S K; Parker, K H; Gibson, D G

    2001-12-01

    The purpose of this study was to investigate the effect of aortic clamping on arterial waves during peripheral vascular surgery. We measured pressure and velocity simultaneously in the ascending aorta, in ten patients (70+/-5 years) with aortic-iliac disease intra-operatively. Pressure was measured using a catheter tip manometer, and velocity was measured using Doppler ultrasound. Data were collected before aortic clamping, during aortic clamping and after unclamping. Hydraulic work in the aortic root was calculated from the measured data, the reflected waves were determined by wave-intensity analysis and wave speed was determined by the PU-loop (pressure-velocity-loop) method; a new technique based on the 'water-hammer' equation. The wave speed is approx. 32% (P<0.05) higher during clamping than before clamping. Although the peak intensity of the reflected wave does not alter with clamping, it arrives 30 ms (P<0.05) earlier and its duration is 25% (P<0.05) longer than before clamping. During clamping, left ventricule (LV) hydraulic systolic work and the energy carried by the reflected wave increased by 27% (P<0.05) and 20% (P<0.05) respectively, compared with before clamping. The higher wave speed during clamping explains the earlier arrival of the reflected waves suggesting an increase in the afterload, since the LV has to overcome earlier reflected compression waves. The longer duration of the reflected wave during clamping is associated with an increase in the total energy carried by the wave, which causes an increase in hydraulic work. Increased hydraulic work during clamping may increase LV oxygen consumption, provoke myocardial ischaemia and hence contribute to the intra-operative impairment of LV function known in patients with peripheral vascular disease.

  15. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  16. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  17. Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake

    USGS Publications Warehouse

    Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n

    2005-01-01

    Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.

  18. Clamp-mount device

    NASA Technical Reports Server (NTRS)

    Clark, K. H. (Inventor)

    1983-01-01

    A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein.

  19. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp.

    PubMed

    Duchi, Diego; Mazumder, Abhishek; Malinen, Anssi M; Ebright, Richard H; Kapanidis, Achillefs N

    2018-06-06

    RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.

  20. Structural analysis of a eukaryotic sliding DNA clamp-clamp loadercomplex.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Gregory D.; O'Donnell, Mike; Kuriyan, John

    2006-06-17

    Sliding clamps are ring-shaped proteins that encircle DNA and confer high processivity on DNA polymerases. Here we report the crystal structure of the five-protein clamp loader complex (replication factor-C, RFC) of the yeast Saccharomyces cerevisiae, bound to the sliding clamp (proliferating cell nuclear antigen, PCNA). Tight interfacial coordination of the ATP analogue ATP-?-S by RFC results in a spiral arrangement of the ATPase domains of the clamp loader above the PCNA ring. Placement of a model for primed DNA within the central hole of PCNA reveals a striking correspondence between the RFC spiral and the grooves of the DNA doublemore » helix. This model, in which the clamp loader complex locks onto primed DNA in a screw-cap-like arrangement, provides a simple explanation for the process by which the engagement of primer-template junctions by the RFC:PCNA complex results in ATP hydrolysis and release of the sliding clamp on DNA.« less

  1. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  2. Hazard Mitigation Potential of Earth-Sheltered Residences

    DTIC Science & Technology

    1983-11-01

    the Unitld Stat ..Govetrnment Neither thu Unised Stfates Government nor any agency thereof, nor any of their employees, makes any warranty. expres or...of companies (Earth Shelter Corporation; Terra-Dome Corporation; Trn-Steel Structures) are providing franchise services including: (1) Construction...ABOVEGROUND VS EARTH-SHELTERED The assertion that earth-sheltered structures cost less or only a little more than above ground structures is often

  3. Ground Water Studies. Earth Science Module for Grades 7-9.

    ERIC Educational Resources Information Center

    Baldwin, Roland L.; And Others

    Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…

  4. Cavity Control and Cooling of Nanoparticles in High Vacuum

    NASA Astrophysics Data System (ADS)

    Millen, James

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  5. Cavity Cooling of Nanoparticles: Towards Matter-Wave experiments

    NASA Astrophysics Data System (ADS)

    Millen, James; Kuhn, Stefan; Arndt, Markus

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres a few hundred nanometers in size. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  6. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  7. Evaluation of Introduction of a Delayed Cord Clamping Protocol for Premature Neonates in a High-Volume Maternity Center.

    PubMed

    Liu, Lilly Y; Feinglass, Joe M; Khan, Janine Y; Gerber, Susan E; Grobman, William A; Yee, Lynn M

    2017-05-01

    To evaluate adherence to a delayed cord clamping protocol for preterm births in the first 2 years after its introduction, perform a quality improvement assessment, and determine neonatal outcomes associated with protocol implementation and adherence. This is a retrospective cohort study of women delivering singleton neonates at 23-32 weeks of gestation in the 2 years before (preprotocol) and 2 years after (postprotocol) introduction of a 30-second delayed cord clamping protocol at a large-volume academic center. This policy was communicated to obstetric and pediatric health care providers and nurses and reinforced with intermittent educational reviews. Barriers to receiving delayed cord clamping were assessed using χ tests and multivariable logistic regression. Neonatal outcomes then were compared between all neonates in the preprotocol period and all neonates in the postprotocol period and between all neonates in the preprotocol period and neonates receiving delayed cord clamping in the postprotocol period using multivariable linear and logistic regression analyses. Of the 427 eligible neonates, 187 were born postprotocol. Of these, 53.5% (n=100) neonates received delayed cord clamping according to the protocol. The rate of delayed cord clamping preprotocol was 0%. Protocol uptake and frequency of delayed cord clamping increased over the 2 years after its introduction. In the postprotocol period, cesarean delivery was the only factor independently associated with failing to receive delayed cord clamping (adjusted odds ratio [OR] 0.49, 95% confidence interval [CI] 0.25-0.96). In comparison with the preprotocol period, those who received delayed cord clamping in the postprotocol period had significantly higher birth hematocrit (β=2.46, P=.007) and fewer blood transfusions in the first week of life (adjusted OR 0.49, 95% CI 0.25-0.96). After introduction of an institutional delayed cord clamping protocol followed by continued health care provider education and quality feedback, the frequency of delayed cord clamping progressively increased. Compared with historical controls, performing delayed cord clamping in eligible preterm neonates was associated with improved neonatal hematologic indices, demonstrating the effectiveness of delayed cord clamping in a large-volume maternity unit.

  8. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  9. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  10. Relevance of near-Earth magnetic field modeling in deriving SEP properties using ground-based data

    NASA Astrophysics Data System (ADS)

    Kanellakopoulos, Anastasios; Plainaki, Christina; Mavromichalaki, Helen; Laurenza, Monica; Gerontidou, Maria; Storini, Marisa; Andriopoulou, Maria

    2014-05-01

    Ground Level Enhancements (GLEs) are short-term increases observed in cosmic ray intensity records of ground-based particle detectors such as neutron monitors (NMs) or muon detectors; they are related to the arrival of solar relativistic particles in the terrestrial environment. Hence, GLE events are related to the most energetic class of solar energetic particle (SEP) events. In this work we investigate how the use of different magnetospheric field models can influence the derivation of the relativistic SEP properties when modeling GLE events. As a case study, we examine the event of 2012 May 17 (also known as GLE71), registered by ground-based NMs. We apply the Tsyganenko 89 and the Tsyganenko 96 models in order to calculate the trajectories of the arriving SEPs in the near-Earth environment. We show that the intersection of the SEP trajectories with the atmospheric layer at ~20 km from the Earth's surface (i.e., where the flux of the generated secondary particles is maximum), forms for each ground-based neutron monitor a specified viewing region that is dependent on the magnetospheric field configuration. Then, we apply the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010, Solar Phys, 264, 239), in order to derive the spectral properties of the related SEP event and the spatial distributions of the SEP fluxes impacting the Earth's atmosphere. We examine the dependence of the results on the used magnetic field models and evaluate their range of validity. Finally we discuss information derived by modeling the SEP spectrum in the frame of particle acceleration scenarios.

  11. Analysis of the charge exchange between the human body and ground: evaluation of "earthing" from an electrical perspective.

    PubMed

    Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul

    2014-12-01

    The purpose of this study was to investigate "earthing" from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion.

  12. Delayed clamping of the umbilical cord after delivery and implications for public cord blood banking.

    PubMed

    Allan, David S; Scrivens, Nicholas; Lawless, Tiffany; Mostert, Karen; Oppenheimer, Lawrence; Walker, Mark; Petraszko, Tanya; Elmoazzen, Heidi

    2016-03-01

    Public banking of umbilical cord blood units (CBUs) containing higher numbers of cells ensures timely engraftment after transplantation for increasing numbers of patients. Delayed clamping of the umbilical cord after birth may benefit some infants by preventing iron deficiency. Implications of delayed cord clamping for public cord blood banking remains unclear. CBUs collected by Canadian Blood Services at one collection site between November 1, 2014, and March 17, 2015, were analyzed. The delay in cord clamping after birth was timed and classified as "no delay," 20 to 60 seconds, more than 60 seconds, or more than 120 seconds. Of 367 collections, 100 reported no delay in clamping while clamping was delayed by 20 to 60 seconds (n = 69), more than 60 seconds (n = 98), or more than 120 seconds (n = 100) in the remaining cases. The mean volume and total nucleated cells (TNCs) in units with no delay in clamping were significantly greater than mean volumes for all categories of delayed clamping (Tukey's test, p < 0.05 for each comparison). The proportion of units with more than 1.5 × 10(9) TNCs was significantly reduced when clamping was delayed (p = 5.5 × 10(-8) ). The difference was most marked for cords that were clamped more than 120 seconds after delivery (6.2% compared with 39%). Delayed cord clamping greatly diminishes the volume and TNC count of units collected for a public cord blood bank. Creating an inventory of CBUs with high TNC content may take more time than expected. © 2015 AABB.

  13. Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented.

  14. 30 CFR 75.605 - Clamping of trailing cables to equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clamping of trailing cables to equipment. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.605 Clamping of trailing cables to equipment. [Statutory Provisions] Trailing cables shall be clamped to...

  15. Satellite and Ground System Solutions at Your Fingertips

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the summer of 1998, the blockbuster action movie Armageddon captivated audiences with a thrilling doomsday plot about a meteor the size of Texas that was racing towards the Earth. Though the premise of the movie was purely fictional, the unfortunate reality is that near-Earth asteroids such as the one portrayed in the film do exist. On December 23, 2004, NASA announced that an asteroid it anticipated to pass near the Earth on April 13, 2029, had been assigned the highest score to date on the universally used Torino Impact Hazard Scale. At first, the flyby distance for the asteroid, dubbed MN4, was uncertain and an Earth impact could not be ruled out. The odds of impact were initially believed to be 1 in 300, high enough to merit special monitoring by astronomers around the world, but were then escalated to 1 in 37 on December 27. NASA officials noted, however, that these odds should not be of public concern, since they were likely to change on a day-to-day basis as new data were received. The officials were correct in their assertion, as any chances of an impact with Earth in 2029 were completely ruled out later that same day. Integral Systems, Inc., a leading provider of satellite ground systems and the first company to offer an integrated suite of commercial-off-the-shelf software products for satellite command and control, is helping NASA keep a careful watch for any close-encountering asteroids with its tracking technology. The company supported the first NASA Discovery mission, the Near Earth Asteroid Rendezvous (NEAR) program, back in 1996, and has expanded its business by building more ground systems for a greater variety of satellites than any other company in the world. (NASA has since launched seven more Discovery missions, with the eighth lifting off earlier this year.) The experience gained from the company s participation in developing satellite command and control ground systems for the NEAR program has bolstered its flagship product line, the EPOCH Integrated Product Suite (IPS), first featured in Spinoff 1997, and led to the creation of its latest product, the Skylight Direct Broadcast Ground Terminal.

  16. Modeling and design of a capacitive microwave power sensor for X-band applications based on GaAs technology

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Liao, Xiaoping

    2012-05-01

    In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped-clamped and free-free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh-Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W-1 and superior return and insertion losses (S11 and S21), less than -22.16 dB and -0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range.

  17. Mechanical support of a ceramic gas turbine vane ring

    DOEpatents

    Shi, Jun; Green, Kevin E.; Mosher, Daniel A.; Holowczak, John E.; Reinhardt, Gregory E.

    2010-07-27

    An assembly for mounting a ceramic turbine vane ring onto a turbine support casing comprises a first metal clamping ring and a second metal clamping ring. The first metal clamping ring is configured to engage with a first side of a tab member of the ceramic turbine vane ring. The second metal clamping ring is configured to engage with a second side of the tab member such that the tab member is disposed between the first and second metal clamping rings.

  18. Active energy recovery clamping circuit to improve the performance of power converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  19. Payload Launch Lock Mechanism

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  20. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  1. 21 CFR 876.5160 - Urological clamp for males.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urological clamp for males. 876.5160 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5160 Urological clamp for males. (a) Identification. A urological clamp for males is a device used to close the urethra of a male to...

  2. Experimental Modal Analysis of Rectangular and Circular Beams

    ERIC Educational Resources Information Center

    Emory, Benjamin H.; Zhu, Wei Dong

    2006-01-01

    Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…

  3. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed

    Major, G

    1993-07-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.

  4. Dynamic analysis of clamp band joint system subjected to axial vibration

    NASA Astrophysics Data System (ADS)

    Qin, Z. Y.; Yan, S. Z.; Chu, F. L.

    2010-10-01

    Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.

  5. 1. VIEW OF ARVFS BUNKER TAKEN FROM GROUND ELEVATION. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF ARVFS BUNKER TAKEN FROM GROUND ELEVATION. CAMERA FACING NORTH. VIEW SHOWS PROFILE OF BUNKER IN RELATION TO NATURAL GROUND ELEVATION. TOP OF BUNKER HAS APPROXIMATELY THREE FEET OF EARTH COVER. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  6. 30 CFR 77.700-1 - Approved methods of grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in resistance grounded systems, where the enclosed conductors are a part of the system, will be approved if a solid connection is made to the neutral conductor; in all other systems, the following... earth; (b) A solid connection to a grounding conductor, other than the neutral conductor of a resistance...

  7. 30 CFR 77.700-1 - Approved methods of grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in resistance grounded systems, where the enclosed conductors are a part of the system, will be approved if a solid connection is made to the neutral conductor; in all other systems, the following... earth; (b) A solid connection to a grounding conductor, other than the neutral conductor of a resistance...

  8. Orbiting Deep Space Relay Station (ODSRS). Volume 1: Requirement determination

    NASA Technical Reports Server (NTRS)

    Hunter, J. A.

    1979-01-01

    The deep space communications requirements of the post-1985 time frame are described and the orbiting deep space relay station (ODSRS) is presented as an option for meeting these requirements. Under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance, but has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include: the ability to track a spacecraft 24 hours per day with ground stations located only in the USA; the ability to operate at higher frequencies that would be attenuated by Earth's atmosphere; and the potential for building very large structures without the constraints of Earth's gravity.

  9. Exchange interactions in two-state systems: rare earth pyrochlores.

    PubMed

    Curnoe, S H

    2018-06-13

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  10. Exchange interactions in two-state systems: rare earth pyrochlores

    NASA Astrophysics Data System (ADS)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  11. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.

    PubMed

    Gómez-González, J F; Destexhe, A; Bal, T

    2014-10-01

    Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  12. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results.

  13. Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.

  14. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  15. Mapping the downwelling atmospheric radiation at the Earth's surface: A research strategy

    NASA Technical Reports Server (NTRS)

    Raschke, E.

    1986-01-01

    A strategy is presented along with background material for determining downward atmospheric radiation at the Earth's surface on a regional scale but over the entire globe, using available information on the temperature and humidity of the air near the ground and at cloud base altitudes. Most of these parameters can be inferred from satellite radiance measurements. Careful validation of the derived radiances will be required using ground-based direct measurements of radiances, to avoid systematic biases of these derived field quantities.

  16. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  17. High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.

    2005-01-01

    Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.

  18. Space to Ground: Launches and Landings: 06/08/2018

    NASA Image and Video Library

    2018-06-08

    This week, one crew launched to the International Space Station, while another returned to Earth. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  19. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1986-01-01

    Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems.

  20. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  1. Maps showing water-level declines, land subsidence, and earth fissures in south-central Arizona

    USGS Publications Warehouse

    Laney, R.L.; Raymond, R.H.; Winikka, C.C.

    1978-01-01

    From 1915 to 1975, more than 109 million acre-feet of ground water was withdrawn from about 4,500 square miles in Pinal and Maricopa Counties in south-central Arizona. The volume of water withdrawn greatly exceeds the volume of natural recharge, and water levels have been declining since 1923. As a result of the water-level declines, the land surface has subsided, the alluvial deposits have been subjected to stress, and earth fissures have developed. Land subsidence and earth fissures have damaged public and private properties. Subsidence and fissures will continue to occur as long as ground water is being mined and water levels continue to decline. As urban development expands, land subsidence and earth fissures will have an increasing socioeconomic impact. Information on maps includes change in water levels, measurements of land subsidence, and location of earth fissures. A section showing land subsidence between Casa Grande and the Picacho Peak Interchange also is included. Scale 1:250,000. (Woodard-USGS)

  2. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  3. Earth and ocean dynamics program

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1976-01-01

    The objectives and requirements of the Earth and Ocean Dynamics Programs are outlined along with major goals and experiments. Spaceborne as well as ground systems needed to accomplish program goals are listed and discussed along with program accomplishments.

  4. Optimal Surgical Therapy in a Porcine (Sus scrofa) Model of Extra-Thoracic Penetrating Trauma Resulting in Hemorrhagic Shock: ED Thoracotomy vs. Immediate Trans-Abdominal Vascular Control. A Porcine Model for Evaluating the Management of Non-Compressible Torso Hemorrhage

    DTIC Science & Technology

    2010-11-08

    celiac aortic clamping (n=6), direct vascular control (n=6), and endovascular aortic occlusion n=6). This study presents a large animal model of class...including thoracic aortic clamping, supra- celiac aortic clamping, direct vascular control, and proximal endovascular balloon occlusion. Following vascular...subsequently underwent non-compressible hemorrhage with thoracic aortic clamping (n=6), supra- celiac aortic clamping (n=6), direct vascular control (n=6

  5. Device for remote operation of electrical disconnect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Jody Rustyn; Bobbitt, III, John Thomas

    Provided is a device for remote operation of an electrical disconnect. The device can include a handle clamp configured to be secured to an extending member of the electrical disconnect. The device can further include a case clamp configured to be secured to a rigid portion of the electrical disconnect. The device can further include a cable having an exterior sheath coaxially surrounding an inner cable. The inner cable can be coaxially slidable with respect to the exterior sheath. The inner cable can extend through an opening of the case clamp and be secured to the handle clamp. The devicemore » can further include an actuator configured to coaxially slide the inner cable such that the handle clamp is actuated towards the case clamp.« less

  6. High-Altitude, Long-Endurance UAVs vs. Satellites: Potential Benefits for U.S. Army Applications

    DTIC Science & Technology

    2009-05-01

    Refractive Imaging System ....... Point Spread Function ......................... Transmission Characteristics of the Earth’s Atmosphere ...... Scanning...Angle in degrees Commwt Communications Payload Weight p Angular Radius of the Earth in degrees Palbedo Earth’s Albedo Patm Atmospheric Density in...femto-watt (10-15) FY Fiscal Year Gbps Gigabits per Second GBS Global Broadcast System GCS Ground Control Station GEO Geosynchronous Earth Orbit

  7. On Directional Measurement Representation in Orbit Determination

    DTIC Science & Technology

    2016-09-13

    representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their...Earth Orbit (LEO) and a Geostationary Earth Orbit (GEO) satellite. Section IV discusses the results from the numerical simulations and finally Section V... Geostationary Earth Orbit (GEO) satellite with the initial orbital parameters shown in Table 1. Different ground sites are used for the LEO and ahttps

  8. Optical space-to-ground link availability assessment and diversity requirements

    NASA Technical Reports Server (NTRS)

    Chapman, William; Fitzmaurice, Michael

    1991-01-01

    The application of optical space-to-ground links (SGLs) for high speed data distribution from geosynchronous and low earth orbiting satellites (e.g., sensor data from the planned Earth Observing System), for lunar and Mars links, and for links from interplanetary probes has been a topic of considerable recent interest. These optical SGLs could conceivably represent the system's operational baseline, or could represent backup links in the event of a GEO relay terminal failure. In this paper the availability of optical SGLs for various system/orbit configurations is considered. Single CONUS sites are assessed for their probability of cloud free line of sight (PCFLOS), and cloud free field of view (PCFFOV). PCFLOS represents an availability metric for geosynchronous platforms, while PCFFOV is a relevant performance metric for non-geostationary platforms (e.g., low earth orbiting satellites). Additionally, the availability of multiple ground terminals utilized in a diversity configuration is considered. Availability statistics vs. the number of diversity sites are derived from climatological data bases for CONUS sites.

  9. A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation.

    PubMed

    Dai, Peng; Williams, Jonathan K; Zhang, Chi; Welborn, Matthew; Shepherd, James J; Zhu, Tianyu; Van Voorhis, Troy; Hong, Mei; Pentelute, Bradley L

    2017-08-11

    Natural enzymes use local environments to tune the reactivity of amino acid side chains. In searching for small peptides with similar properties, we discovered a four-residue π-clamp motif (Phe-Cys-Pro-Phe) for regio- and chemoselective arylation of cysteine in ribosomally produced proteins. Here we report mutational, computational, and structural findings directed toward elucidating the molecular factors that drive π-clamp-mediated arylation. We show the significance of a trans conformation prolyl amide bond for the π-clamp reactivity. The π-clamp cysteine arylation reaction enthalpy of activation (ΔH ‡ ) is significantly lower than a non-π-clamp cysteine. Solid-state NMR chemical shifts indicate the prolyl amide bond in the π-clamp motif adopts a 1:1 ratio of the cis and trans conformation, while in the reaction product Pro3 was exclusively in trans. In two structural models of the perfluoroarylated product, distinct interactions at 4.7 Å between Phe1 side chain and perfluoroaryl electrophile moiety are observed. Further, solution 19 F NMR and isothermal titration calorimetry measurements suggest interactions between hydrophobic side chains in a π-clamp mutant and the perfluoroaryl probe. These studies led us to design a π-clamp mutant with an 85-fold rate enhancement. These findings will guide us toward the discovery of small reactive peptides to facilitate abiotic chemistry in water.

  10. Combination Space Station Handrail Clamp and Pointing Device

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J. (Inventor)

    1999-01-01

    A device for attaching an experiment carrier to a space station handrail is provided. The device has two major components, a clamping mechanism for attachment to a space station handrail, and a pointing carrier on which an experiment package can be mounted and oriented. The handrail clamp uses an overcenter mechanism and the carrier mechanism uses an adjustable preload ball and socket for carrier positioning. The handrail clamp uses a stack of disk springs to provide a spring loaded button. This configuration provides consistent clamping force over a range of possible handrail thicknesses. Three load points are incorporated in the clamping mechanism thereby spreading the clamping load onto three separate points on the handrail. A four bar linkage is used to provide for a single actuation lever for all three load points. For additional safety, a secondary lock consisting of a capture plate and push lock keeps the clamp attached to the handrail in the event of main clamp failure. For the carrier positioning mechanism, a ball in a spring loaded socket uses friction to provide locking torque; however. the ball and socket are torque limited so that the ball ran slip under kick loads (125 pounds or greater). A lead screw attached to disk spring stacks is used to provide an adjustable spring force on the socket. A locking knob is attached to the lead screw to allow for hand manipulation of the lead screw.

  11. Cardiovascular transition at birth: a physiological sequence.

    PubMed

    Hooper, Stuart B; Te Pas, Arjan B; Lang, Justin; van Vonderen, Jeroen J; Roehr, Charles Christoph; Kluckow, Martin; Gill, Andrew W; Wallace, Euan M; Polglase, Graeme R

    2015-05-01

    The transition to newborn life at birth involves major cardiovascular changes that are triggered by lung aeration. These include a large increase in pulmonary blood flow (PBF), which is required for pulmonary gas exchange and to replace umbilical venous return as the source of preload for the left heart. Clamping the umbilical cord before PBF increases reduces venous return and preload for the left heart and thereby reduces cardiac output. Thus, if ventilation onset is delayed following cord clamping, the infant is at risk of superimposing an ischemic insult, due to low cardiac output, on top of an asphyxic insult. Much debate has centered on the timing of cord clamping at birth, focusing mainly on the potential for a time-dependent placental to infant blood transfusion. This has prompted recommendations for delayed cord clamping for a set time after birth in infants not requiring resuscitation. However, recent evidence indicates that ventilation onset before cord clamping mitigates the adverse cardiovascular consequences caused by immediate cord clamping. This indicates that the timing of cord clamping should be based on the infant's physiology rather than an arbitrary period of time and that delayed cord clamping may be of greatest benefit to apneic infants.

  12. Planar patch clamp for neuronal networks--considerations and future perspectives.

    PubMed

    Bosca, Alessandro; Martina, Marzia; Py, Christophe

    2014-01-01

    The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.

  13. Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius.

    PubMed

    Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han

    2013-01-01

    In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.

  14. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  15. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  16. Theoretical study of the alkaline-earth metal superoxides BeO2 through SrO2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    Three competing bonding mechanisms have been identified for the alkaline-earth metal superoxides: these result in a change in the optimal structure and ground state as the alkaline-earth metal becomes heavier. For example, BeO2 has a linear 3Sigma(-)g ground-state structure, whereas both CaO2 and SrO2 have C(2v)1A1 structures. For MgO2, the theoretical calculations are less definitive, as the 3A2 C(2v) structure is computed to lie only about 3 kcal/mol above the 3Sigma(-)g linear structure. The bond dissociation energies for the alkaline-earth metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional or coupled-cluster singles and doubles level with a perturbational estimate of the triple excitations.

  17. Clinical aspects of incorporating cord clamping into stabilisation of preterm infants.

    PubMed

    Knol, Ronny; Brouwer, Emma; Vernooij, Alex S N; Klumper, Frans J C M; DeKoninck, Philip; Hooper, Stuart B; Te Pas, Arjan B

    2018-04-21

    Fetal to neonatal transition is characterised by major pulmonary and haemodynamic changes occurring in a short period of time. In the international neonatal resuscitation guidelines, comprehensive recommendations are available on supporting pulmonary transition and delaying clamping of the cord in preterm infants. Recent experimental studies demonstrated that the pulmonary and haemodynamic transition are intimately linked, could influence each other and that the timing of umbilical cord clamping should be incorporated into the respiratory stabilisation. We reviewed the current knowledge on how to incorporate cord clamping into stabilisation of preterm infants and the physiological-based cord clamping (PBCC) approach, with the infant's transitional status as key determinant of timing of cord clamping. This approach could result in optimal timing of cord clamping and has the potential to reduce major morbidities and mortality in preterm infants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Sound absorption by clamped poroelastic plates.

    PubMed

    Aygun, H; Attenborough, K

    2008-09-01

    Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.

  19. The first products made in space: Monodisperse latex particles

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C.-M.; Sheu, H.-R.; Kornfeld, D. M.

    1988-01-01

    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles.

  20. A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.

    2016-12-01

    Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.

  1. Double arch mirror study. Part 1: Preliminary engineering report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    In the proposed design, the NASA AMES 20-in double arch mirror is supported by three clamp and flexure assemblies. The mirror clamp consists of a T-shaped Invar-36 member that goes into a similarly shaped socket in the back of the mirror. The mirror socket is made oversize and contacts the clamp only along the conical surface. The clamp is preloaded by a spring washer and pulls the mirror into contact with the flexure. The clamp is then inserted into the mirror socket through a cutout, is rotated 90 deg, and is then pinned in place. Loading conditions considered in socket design are discussed as well as stress in the socket and clamp. Flexure geometry and stress are examined as well as the effects of flexure error and of mirror cell error.

  2. Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen

    2018-05-01

    This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.

  3. Rigid clamp

    DOEpatents

    Benavides, G.L.; Burt, J.D.

    1994-07-12

    The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object. 12 figs.

  4. Rigid clamp

    DOEpatents

    Benavides, Gilbert L.; Burt, Jack D.

    1994-01-01

    The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object.

  5. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  6. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermalmore » advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.« less

  8. Infrared cloud imaging in support of Earth-space optical communication.

    PubMed

    Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino

    2009-05-11

    The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

  9. Performance of the cometary experiment MUPUS on the body Earth

    NASA Astrophysics Data System (ADS)

    Marczewski, W.; Usowicz, B.; Schröer, K.; Seiferlin, K.; Spohn, T.

    2003-04-01

    Thermal experiment MUPUS for the Rosetta mission was extensively experience in field and laboratory conditions to predict its performance under physical processes available on the Earth. The goal was not guessing a cometary material in the ground but available behavior of thermal sensor responses monitoring mass and energy transfer. The processes expected on a comet are different in composition and environmental from those met on the Earth but basically similar in physics. Nature of energy powering the processes is also essentially the same - solar radiation. Several simple laboratory experiments with freezing and thawing with water ice, with mixture of water and oil and water layers strongly diverged by salinity revealed capability of recognition layered structure of the medium under test. More over effects of slow convection and latent heat related to the layers are also observed well. Cometary environment without atmosphere makes process of sublimation dominant. Open air conditions on the Earth may also offer a change of state in matter but between different phases. Learning temperature gradient in snow layers under thawing show that effects stimulated by a cause of daily cycling may be detected thermally. Results from investigations in snow made on Spitzbergen are good proofs on capability of the method. Relevance of thermal effects to heat powered processes of mass transport in the matter of ground is meaningful for the cometary experiment of MUPUS and for Earth sciences much concerned on water, gas and solid matter transport in the terrestrial ground. Results leading to energy balance studied on the Earth surface may be interesting also for the experiment on the comet and are to be discussed.

  10. Urinary urea nitrogen excretion during the hyperinsulinemic euglycemic clamp in type 1 diabetic patients and healthy subjects.

    PubMed

    Wohl, P; Krusinová, E; Klementová, M; Wohl, P; Kratochvílová, S; Pelikánová, T

    2008-01-01

    The hyperinsulinemic euglycemic clamp (HEC) combined with indirect calorimetry (IC) is used for estimation of insulin-stimulated substrate utilization. Calculations are based on urinary urea nitrogen excretion (UE), which is influenced by correct urine collection. The aims of our study were to improve the timing of urine collection during the clamp and to test the effect of insulin on UE in patients with type 1 diabetes (DM1; n=11) and healthy subjects (C; n=11). Urine samples were collected (a) over 24 h divided into 3-h periods and (b) before and during two-step clamp (1 and 10 mIU.kg(-1).min(-1); period 1 and period 2) combined with IC. The UE during the clamp was corrected for changes in urea pool size (UEc). There were no significant differences in 24-h UE between C and DM1 and no circadian variation in UE in either group. During the clamp, serum urea decreased significantly in both groups (p<0.01). Therefore, UEc was significantly lower as compared to UE not adjusted for changes in urea pool size both in C (p<0.001) and DM1 (p<0.001). While UE did not change during the clamp, UEc decreased significantly in both groups (p<0.01). UEc during the clamp was significantly higher in DM1 compared to C both in period 1 (p<0.05) and period 2 (p<0.01). The UE over 24 h and UEc during the clamp were statistically different in both C and DM1. We conclude that urine collection performed during the clamp with UE adjusted for changes in urea pool size is the most suitable technique for measuring substrate utilization during the clamp both in DM1 and C. Urine collections during the clamp cannot be replaced either by 24-h sampling (periods I-VII) or by a single 24-h urine collection. Attenuated insulin-induced decrease in UEc in DM1 implicates the impaired insulin effect on proteolysis.

  11. Space-to-Ground: Prepping for a Spacewalk: 01/19/2018

    NASA Image and Video Library

    2018-01-18

    Some station science has successfully returned to Earth, and crewmembers are gearing up for a pair of spacewalks. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. Space-to-Ground: Busy Crew: 09/22/2017

    NASA Image and Video Library

    2017-09-21

    The SpaceX Dragon returns to Earth...the crew prepares for three spacewalks...and do you get scared in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  13. Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty: A meta-analysis.

    PubMed

    Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua

    2017-06-01

    Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA.

  14. Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty

    PubMed Central

    Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua

    2017-01-01

    Abstract Background: Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. Methods: In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Results: Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). Conclusions: TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA. PMID:28658157

  15. High quality cord blood banking is feasible with delayed clamping practices. The eight-year experience and current status of the national Swedish Cord Blood Bank.

    PubMed

    Frändberg, Sofia; Waldner, Berit; Konar, Jan; Rydberg, Lennart; Fasth, Anders; Holgersson, Jan

    2016-09-01

    The National Swedish Cord Blood Bank (NS-CBB) is altruistic and publicly funded. Herein we describe the status of the bank and the impact of delayed versus early clamping on cell number and volume. Cord Blood Units (CBUs) were collected at two University Hospitals in Sweden. Collected volume and nucleated cell content (TNC) were investigated in 146 consecutive Cord Blood (CB) collections sampled during the first quarter of 2012 and in 162 consecutive CB collections done in the first quarter of 2013, before and after clamping practices were changed from immediate to late (60 s) clamping. NS-CBB now holds close to 5000 units whereof 30 % are from non-Caucasian or mixed origins. Delayed clamping had no major effect on collection efficiency. The volume collected was slightly reduced (mean difference, 8.1 ml; 95 % CI, 1.3-15.0 ml; p = 0.02), while cell recovery was not (p = 0.1). The proportion of CBUs that met initial total TNC banking criteria was 60 % using a TNC threshold of 12.5 × 10(8), and 47 % using a threshold of 15 × 10(8) for the early clamping group and 52 and 37 % in the late clamping group. Following implementation of delayed clamping practices at NS-CBB; close to 40 % of the collections in the late clamping group still met the high TNC banking threshold and were eligible for banking, implicating that that cord blood banking is feasible with delayed clamping practices.

  16. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  17. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecraft into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  18. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.

  19. Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets

    PubMed Central

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704

  20. A Comparison of the Performance and Application Differences Between Manual and Automated Patch-Clamp Techniques

    PubMed Central

    Yajuan, Xiao; Xin, Liang; Zhiyuan, Li

    2012-01-01

    The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269

  1. MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C

    PubMed Central

    Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.

    2012-01-01

    We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681

  2. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets.

    PubMed

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.

  3. Flow resistivity instrument in the earth

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor)

    1984-01-01

    Method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface. The novel feature of the invention is two concentric cylinders, 22 and 23, inserted into the ground surface 24 with a measured pressure 21 applied to the surface inside the inner cylinder 22. The outer cylinder 23 vents a plane B-B beneath the surface to the atmosphere through an air space 28. The flow to the inner cylinder is measured (16) thereby indicating the flow from the surface to the plane beneath the surface.

  4. Earth melter with rubble walls and method of use

    DOEpatents

    Chapman, Chris C.

    1998-01-01

    The present invention is an improvement to the earth melter described and claimed in U.S. Pat. No. 5,443,618. The improvement is the use of rubble for retaining walls. More specifically, the retaining walls rest on ground level and extend above ground level piling rubble around a melt zone. A portion of the melter may be below grade wherein sidewalls are formed by the relatively undisturbed native soil or rock, and the rubble may be used as a backfill liner for the below grade sidewalls.

  5. Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing.

    PubMed

    Kim, Jin S; Nanfara, Michael T; Chodavarapu, Sundari; Jin, Kyeong S; Babu, Vignesh M P; Ghazy, Mohamed A; Chung, Scisung; Kaguni, Jon M; Sutton, Mark D; Cho, Yunje

    2017-04-20

    Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda-sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda-β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda-β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda-β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing

    PubMed Central

    Kim, Jin S.; Nanfara, Michael T.; Chodavarapu, Sundari; Jin, Kyeong S.; Babu, Vignesh M. P.; Ghazy, Mohamed A.; Chung, Scisung

    2017-01-01

    Abstract Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda–sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda–β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda–β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda–β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. PMID:28168278

  7. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  8. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  9. Plots of ground coverage achieveable by global change monitoring instruments and spacecraft

    NASA Technical Reports Server (NTRS)

    Knight, Heather R.; Foernsler, Lynda

    1991-01-01

    Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) satellite plots are given. All satellites are in an 800 km circular orbit at an inclination of 98.6 deg (sun synchronous). Specifics of the instrument package are given. Additionally, the time period of the plot and the percentage of the Earth covered during the time period are listed.

  10. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  11. Sperm Patch-Clamp

    PubMed Central

    Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy

    2014-01-01

    Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465

  12. Blazing a Trail: Towards Imaging Super-Earths from the Ground and Space

    NASA Astrophysics Data System (ADS)

    Meyer, M. R.; Quanz, S. P.; Kasper, M.; Guyon, O.; Monnier, J.

    2017-11-01

    We will review recent progress in imaging super-earths around the very nearest stars, new opportunities for 10 microns imaging, contributions JWST will make to imaging ice giants, and complementary work to be done by WFIRST-AFTA.

  13. Ground albedo neutrons produced by cosmic radiations

    NASA Astrophysics Data System (ADS)

    Kodama, M.

    1983-05-01

    Day-to-day variations of cosmic-ray-produced neutron fluxes near the earth's ground surface are measured by using three sets of paraffin-moderated BF3 counters, which are installed in different locations, 3 m above ground, ground level, and 20 cm under ground. Neutron flux decreases observed by these counters when snowcover exists show that there are upward-moving neutrons, that is, ground albedo neutron near the ground surface. The amount of albedo neutrons is estimated to be about 40 percent of total neutron flux in the energy range 1-10 to the 6th eV.

  14. Finding Common Ground Between Earth Scientists and Evangelical Christians

    NASA Astrophysics Data System (ADS)

    Grant Ludwig, L.

    2015-12-01

    In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.

  15. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth

    NASA Astrophysics Data System (ADS)

    Maloof, Adam C.; Kellogg, James B.; Anders, Alison M.

    2002-11-01

    Thermal contraction cracking of permafrost produced sand-wedge polygons at sea level on the paleo-equator during late Neoproterozoic glacial episodes. These sand wedges have been used as evidence for high (≥54°) paleo-obliquity of the Earth's ecliptic, because cracks that form wedges are hypothesized to require deep seasonal cooling so the depth of the stressed layer in the ground reaches ≥1 m, similar to the measured depths of cracks that form wedges. To test the counter hypothesis that equatorial cracks opened under a climate characterized by a strong diurnal cycle and low mean annual temperature (snowball Earth conditions), we examine crack formation in frozen ground subject to periodic temperature variations. We derive analytical expressions relating the Newtonian viscosity to the potential crack depth, concluding that cracks will form only in frozen soils with viscosities greater than ˜10 14 Pa s. We also show numerical calculations of crack growth in frozen soils with stress- and temperature-dependent rheologies and find that fractures may propagate to depths 3-25 times the depth of the thermally stressed layer in equatorial permafrost during a snowball Earth because the mean annual temperature is low enough to keep the ground cold and brittle to relatively great depths.

  16. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  17. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  18. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.

    PubMed

    Lau, Adrian Y; Hung, Paul J; Wu, Angela R; Lee, Luke P

    2006-12-01

    A novel open-access microfluidic patch-clamp array chip with lateral cell trapping sites raised above the bottom plane of the chip was developed by combining both a microscale soft-lithography and a macroscale polymer fabrication method. This paper demonstrates the capability of using such an open-access fluidic system for patch-clamp measurements. The surface of the open-access patch-clamp sites prepared by the macroscale hole patterning method of soft-state elastic polydimethylsiloxane (PDMS) is examined; the seal resistances are characterized and correlated with the aperture dimensions. Whole cell patch-clamp measurements are carried out with CHO cells expressing Kv2.1 ion channels. Kv2.1 ion channel blocker (TEA) dosage response is characterized and the binding activity is examined. The results demonstrate that the system is capable of performing whole cell measurements and drug profiling in a more efficient manner than the traditional patch-clamp set-up.

  19. RNA polymerase pausing and nascent RNA structure formation are linked through clamp domain movement

    PubMed Central

    Hein, Pyae P.; Kolb, Kellie E.; Windgassen, Tricia; Bellecourt, Michael J.; Darst, Seth A.; Mooney, Rachel A.; Landick, Robert

    2014-01-01

    The rates of RNA synthesis and nascent RNA folding into biologically active structures are linked via pausing by RNA polymerase (RNAP). Structures that form within the RNA exit channel can increase pausing by interacting with bacterial RNAP or decrease pausing by preventing backtracking. Conversely, pausing is required for proper folding of some RNAs. Opening of the RNAP clamp domain is proposed to mediate some effects of nascent RNA structures. However, the connections among RNA structure formation, clamp movement, and catalytic activity remain uncertain. We assayed exit-channel structure formation in Escherichia coli RNAP together with disulfide crosslinks that favor closed or open clamp conformations and found that clamp position directly influences RNA structure formation and catalytic activity. We report that exit-channel RNA structures slow pause escape by favoring clamp opening and through interactions with the flap that slow translocation. PMID:25108353

  20. Cell-Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image data are analyzed by software that implements the present machine-vision technique. This analysis results in the identification of cells that are "good" candidates for patch clamping (see figure). Once a "good" cell is identified, a patch clamp can be effected by an automated patchclamping apparatus or by a human operator. This technique has been shown to enable reliable identification of "good" and "bad" candidate cells for patch clamping. The ultimate goal in further development of this technique is to combine artificial-intelligence processing with instrumentation and controls in order to produce a complete "turnkey" automated patch-clamping system capable of accurately and reliably patch clamping cells with a minimum intervention by a human operator. Moreover, this technique can be adapted to virtually any cellular-analysis procedure that includes repetitive operation of microscope hardware by a human.

  1. Neutron Monitors as a Tool for Specifying Solar Energetic Particle Effects on Earth and in Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Clem, J.; Evenson, P.; Kuwabara, T.; Pyle, R.; Ruffolo, D.; Saiz, A.

    2007-12-01

    Neutron monitors are ground-based instruments that record the byproducts of collisions between cosmic rays and molecules in Earth's atmosphere. When linked together in real-time coordinated arrays, these instruments can make valuable contributions to the specification of major solar energetic particle events. Neutron monitors can provide the earliest alert of elevated radiation levels in Earth's atmosphere caused by the arrival of relativistic solar particles (Ground Level Enhancement or GLE). Early detection of GLE is of interest to the aviation industry because of the associated radiation hazard for pilots and air crews, especially for those flying polar routes. Network observations can also be used to map, in principle in real time, the distribution of radiation in Earth's atmosphere, taking into account the particle anisotropy which can be very large in early phases of the event. Observations from the large GLE of January 20, 2005 and December 13, 2006 will be used to illustrate these applications of neutron monitors. Supported by NSF grant ATM-0527878, the Thailand Research Fund, and the Mahidol University Postdoctoral Fellowship Program.

  2. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  3. Systems tunnel linear shaped charge lightning strike

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.

  4. Earth-Facing Antenna Characterization in Complex Ground Plane/Multipath Rich Environment

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth-Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been used successfully to characterize the NEN-LGA's in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned

  5. Earth-Facing Antenna Characterization in a Complex Ground Plane/Multipath Rich Environment

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational space environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been successfully used to characterize the NEN-LGAs in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned.

  6. Evolving the NASA Near Earth Network for the Next Generation of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Carter, David L.; Hudiburg, John J.; Tye, Robert N.; Celeste, Peter B.

    2014-01-01

    The purpose of this paper is to present the planned development and evolution of the NASA Near Earth Network (NEN) launch communications services in support of the next generation of human space flight programs. Following the final space shuttle mission in 2011, the two NEN launch communications stations were decommissioned. Today, NASA is developing the next generation of human space flight systems focused on exploration missions beyond low-earth orbit, and supporting the emerging market for commercial crew and cargo human space flight services. The NEN is leading a major initiative to develop a modern high data rate launch communications ground architecture with support from the Kennedy Space Center Ground Systems Development and Operations Program and in partnership with the U.S. Air Force (USAF) Eastern Range. This initiative, the NEN Launch Communications Stations (LCS) development project, successfully completed its System Requirements Review in November 2013. This paper provides an overview of the LCS project and a summary of its progress. The LCS ground architecture, concept of operations, and driving requirements to support the new heavy-lift Space Launch System and Orion Multi-Purpose Crew Vehicle for Exploration Mission-1 are presented. Finally, potential future extensions to the ground architecture beyond EM-1 are discussed.

  7. Human-in-the-Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Westheimer, David T.

    2011-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chamber) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international partners.

  8. Timekeeping for the Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Raphael, Dave; Luers, Phil; Sank, Victor; Jackson, George

    2002-01-01

    Space Technology 5, or better known as ST-5, is a space technology development mission in the New Millennium Program (NMP) and NASA s first experiment in the design of miniaturized satellite constellations. The mission will design, integrate and launch multiple spacecraft into an orbit high above the Earth s protective magnetic field known as the magnetosphere. Each spacecraft incorporates innovative technology and constellation concepts which will be instrumental in future space science missions. A total of three ST-5 spacecraft will be launched as secondary payloads into a highly elliptical geo-synchronous transfer orbit, and will operate as a 3-element constellation for a minimum duration of 90 days. In order to correlate the time of science measurements with orbit position relative to the Earth, orbit position in space (with respect to other objects in space) and/or with events measured on Earth or other spacecraft, accurate knowledge of spacecraft and ground time is needed. Ground time as used in the USA (known as Universal Time Coordinated or UTC) is maintained by the U.S. Naval Observatory. Spacecraft time is maintained onboard within the Command and Data Handling (C&DH) system. The science requirements for ST-5 are that spacecraft time and ground time be correlatable to each other, with some degree of accuracy. Accurate knowledge of UTC time on a spacecraft is required so that science measurements can be correlated with orbit position relative to the Earth, orbit position in space and with events measured on Earth or other spacecraft. The most crucial parameter is not the clock oscillator frequency, but more importantly, how the clock oscillator frequency varies with time or temperature (clock oscillator drift). Even with an incorrect clock oscillator frequency, if there were no drift, the frequency could be assessed by comparing the spacecraft clock to a ground clock during a few correlation events. Once the frequency is accurately known, it is easy enough to make a regular adjustment to the spacecraft clock or to calculate the correct ground time for a given spacecraft clock time. The oscillator frequency, however, is temperature dependent, drifts with age and is affected by radiation; hence, repeated correlation measurements are required.

  9. Lotus birth, a holistic approach on physiological cord clamping.

    PubMed

    Zinsser, Laura A

    2018-04-01

    The positive effects of delayed cord clamping (DCC) has been extensively researched. DCC means: waiting at least one minute after birth before clamping and cutting the cord or till the pulsation has stopped. With physiological clamping and cutting (PCC) the clamping and cutting can happen at the earliest after the pulsation has stopped. With a Lotus birth, no clamping and cutting of the cord is done. A woman called Clair Lotus Day imitated the holistic approach of PCC from an anthropoid ape in 1974. The chimpanzee did not separate the placenta from the newborn. The aim of this case report is to discuss and learn a different approach in the third stage of labour. Three cases of Lotus birth by human beings were observed. All three women gave birth in an out-of-hospital setting and had ambulant postnatal care. The placenta was washed, salted and herbs were put on 2-3h post partum. The placenta was wrapped in something that absorbs the moisture. The salting was repeated with a degreasing frequency depending on moistness of the placenta. On life day six all three Lotus babies experiences a natural separation of the cord. All three Lotus birth cases were unproblematic, no special incidence occurred. One should differentiate between early cord clamping (ECC), delayed cord clamping (DCC) and physiological cord clamping (PCC). Lotus birth might lead to an optimisation of the bonding and attachment. Research is needed in the areas of both PCC and Lotus birth. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  10. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.

    PubMed

    Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu

    2004-06-01

    In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited

  11. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  12. Space-to-Ground: Home at Last: 03/02/2018

    NASA Image and Video Library

    2018-03-01

    With one crew back home on Earth, another crew is prepping to launch to space...and what do astronauts do with the garbage? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  13. Arsenic in Ground Water of the United States

    MedlinePlus

    ... a hard problem : Geotimes Newsmagazine of the Earth Sciences, v.46 no.11, p.34-36. (2001) DATA Arsenic in ground-water resources of the United States : U.S. Geological Survey Fact Sheet 063-00. (2000) A retrospective analysis on ...

  14. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  15. Relativistic effects in earth-orbiting Doppler lidar return signals.

    PubMed

    Ashby, Neil

    2007-11-01

    Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.

  16. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.

    1986-01-01

    Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.

  17. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  18. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOEpatents

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  19. Laser beam guard clamps

    DOEpatents

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  20. Launch Lock Assemblies with Reduced Preload and Spacecraft Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Barber, Tim Daniel (Inventor); Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2016-01-01

    Launch lock assemblies with reduced preload are provided. The launch lock assembly comprises first and second mount pieces, a releasable clamp device, and a pair of retracting assemblies. Each retracting assembly comprises a pair of toothed members having interacting toothed surfaces. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement. When the releasable clamp device is actuated, the first and second mount pieces are released from clamped engagement and one toothed member of each retracting assembly moves in an opposite direction relative to the other one toothed member of the other retracting assembly to define an axial gap on each side of the first mount piece.

  1. Internal V-Band Clamp

    DOEpatents

    Vaughn, Mark R.; Hafenrichter, Everett S.; Chapa, Agapito C.; Harris, Steven M.; Martinez, Marcus J.; Baty, Roy S.

    2006-02-28

    A system for clamping two tubular members together in an end-to-end relationship uses a split ring with a V-shaped outer rim that can engage a clamping surface on each member. The split ring has a relaxed closed state where the ends of the ring are adjacent and the outside diameter of the split ring is less than the minimum inside diameter of the members at their ends. The members are clamped when the split ring is spread into an elastically stretched position where the ring rim is pressed tightly against the interior surfaces of the members. Mechanisms are provided for removing the spreader so the split ring will return to the relaxed state, releasing the clamped members.

  2. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  3. Propagation of sound through the Earth's atmosphere. 1: Measurement of sound absorption in the air. 2: Measurement of ground impedance

    NASA Technical Reports Server (NTRS)

    Becher, J.; Meredith, R. W.; Zuckerwar, A. J.

    1981-01-01

    The fabrication of parts for the acoustic ground impedance meter was completed, and the instrument tested. Acoustic ground impedance meter, automatic data processing system, cooling system for the resonant tube, and final results of sound absorption in N2-H2O gas mixtures at elevated temperatures are described.

  4. Tracking the Momentum Flux of a CME and Quantifying Its Influence on Geomagnetically Induced Currents at Earth

    NASA Technical Reports Server (NTRS)

    Savani, N. P.; Vourlidas, A.; Pulkkinen, A.; Nieves-Chinchilla, T.; Lavraud, B.; Owens, M. J.

    2013-01-01

    We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shockfront as detected by in situ measurements at L1. A time series of mass measurements from the STEREOCOR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dBdt) on the ground. The predicted dBdt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

  5. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Freund, F.; Ouzounov, D.

    2001-12-01

    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  6. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  7. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE PAGES

    Abreu, P.; Aglietta, M.; Ahlers, M.; ...

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversedmore » a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  8. Polar Polygons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    26 December 2003 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture displays polygons outlined by cracks in the martian south polar region. This southern summer view was acquired in October 2003 and is located near 86.9oS, 170.6oW. Polygons similar in size and shape to these are common in the arctic and antarctic regions of Earth. On Earth, they indicate the presence (or the past presence) of ground ice and the freeze-thaw cycles that accompany this ice. On Mars, whether ground ice was responsible for these landforms is uncertain, but their presence is suggestive that ground ice may exist or may once have existed in this region. The picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  9. CCSDS telemetry systems experience at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  10. Skylab program earth resources experiment package: Ground truth data for test sites (SL-2)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Field measurements were performed at selected ground sites in order to provide comparative calibration measurements of sensors for the Earth Resources Experiment Package. Specifically, the solar radiation (400 to 1300 namometers) and thermal radiation (8-14 micrometers) were measured. Sites employed for the thermal measurements consisted of warm and cold water lakes. The thermal brightness temperature of the lake water, the temperature and humidity profile above the lake, and near surface meteorology (wind speed, pressure, etc.) were measured near the time of overpass. Sites employed for the solar radiation measurements were two desert type sites. Ground measurements consisted of: (1) direct solar radiation - optical depth; (2) diffuse solar radiation; (3) total solar radiation, (4) target directional (normal) reflectance; (5) target hemispherical reflectance; and (6) near surface meteorology.

  11. Self-aligning fixture used in lathe chuck jaw refacing

    NASA Technical Reports Server (NTRS)

    Linn, C. C.

    1965-01-01

    Self-aligning tool positions and rigidly holds lathe chuck jaws for refacing and truing of the clamping surface. The jaws clamp the fixture in the manner of clamping a workpiece. The fixture can be modified to accommodate four-jawed checks.

  12. Sensitivity of grounding line dynamics to viscoelastic deformation of the solid Earth: Inferences from a fully coupled ice sheet - solid Earth model

    NASA Astrophysics Data System (ADS)

    Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.

    2013-12-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  13. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  14. The optimal protocol to reduce blood loss and blood transfusion after unilateral total knee replacement: Low-dose IA-TXA plus 30-min drain clamping versus drainage clamping for the first 3 h without IA-TXA.

    PubMed

    Park, Joo Hyun; Choi, Sung Wook; Shin, Eun Ho; Park, Myung Hoon; Kim, Myung Ku

    2017-01-01

    Although intraarticular tranexamic acid (IA-TXA) administration or drainage clamping are popular methods used to reduce blood loss after total knee replacement (TKR), the protocol remains controversial. We aimed (1) to establish new protocols through investigating whether two methods, that is, low-dose (500 mg) IA-TXA plus 30-min drain clamping and drainage clamping for the first 3 h without IA-TXA, can reduce blood loss and blood transfusion after unilateral TKR and (2) to make recommendations related to clinical application. This study, conducted from September 2014 to June 2016 related to enrolled 95 patients with primary osteoarthritis who were to have a unilateral cemented TKR, was nonrandomized and retrospective. In group A, the drain was released following tourniquet deflation. In group B, 500-mg TXA was injected into the knee joint via a drain tube after fascia closure and the drain was clamped for the first 30 min to prevent leakage. In group C, the drain was clamped for the first 3-h postoperation. Demographic characteristics and clinical data were collected, including the levels of hematocrit (Hct), the total blood loss (TBL), drained blood volume (BV), the amount of blood transfused, and any complications that developed. We found a significantly lower postoperative TBL, drained BV, decreasing Hct level, and less transfused BV in the IA-TXA injection group (group B) and the 3-h drainage clamping group (group C) compared to the conventional negative drainage group (group A; p < 0.001). There was no significant difference between groups B and C ( p = 0.99). The drainage clamping method can be safer than IA-TXA administration in patients with risk factor of venous thromboembolic complication. Furthermore, the IA-TXA administration can be more optimal than drainage clamping in patients with high bleeding tendency or lateral retinacular release during TKR, who would be concerned about postoperative wound complication.

  15. Temporary clamping of external carotid artery in convexity, parasagittal and temporal base meningioma.

    PubMed

    Yadav, Yad Ram; Parihar, Vijay; Agarwal, Moneet; Bhatele, Pushp Raj

    2012-01-01

    The management of intraoperative bleeding during removal of a large hyper vascular meningioma is crucial for safe and efficient surgery. Preoperative embolization of meningioma is the best way to reduce vascularity of meningiomas but this technique is not readily available, costly and has its own limitations. The study is aimed to evaluate the use of temporary clamping of external carotid artery to reduce blood loss and operating time during excision of large convexity, parasagittal or temporal base meningiomas. A prospective study of 115 consecutively operated meningiomas of size 5 cms or more were operated from January 2002 to December2010. Temporary clamping of external carotid artery was done in 61 while 51 cases were managed without clamping. There was significant reduction of blood loss, operative time and blood transfusion given in the temporary clipping group compared to non clipping group. There was stitch abscess in two patients each in clamping, and non clamping group. There was no scalp necrosis or mortality in any of the group. Temporary clamping of external carotid artery is a safe, simple and cost-effective alternative to embolization for the surgery of large meningiomas. This can be practiced at all the centers.

  16. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.

    PubMed

    Qin, Qingquan; Xu, Feng; Cao, Yongqing; Ro, Paul I; Zhu, Yong

    2012-08-20

    The effect of clamping on resonance frequency and thus measured Young's modulus of nanowires (NWs) is systematically investigated via a combined experimental and simulation approach. ZnO NWs are used in this work as an example. The resonance tests are performed in situ inside a scanning electron microscope and the NWs are cantilevered on a tungsten probe by electron-beam-induced deposition (EBID) of hydrocarbon. EBID is repeated several times to deposit more hydrocarbons at the same location. The resonance frequency increases with the increasing clamp size until approaching that under the "fixed" boundary condition. The critical clamp size is identified as a function of NW diameter and NW Young's modulus. This work: 1) exemplifies the importance of considering the effect of clamping in measurements of Young's modulus using the resonance method, and 2) demonstrates that the true Young's modulus can be measured if the critical clamp size is reached. Design guidelines on the critical clamp size are provided. Such design guidelines can be extended to other one-dimensional nanostructures such as carbon nanotubes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Force-controlled patch clamp of beating cardiac cells.

    PubMed

    Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso

    2015-03-11

    From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.

  18. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes

    PubMed Central

    Das, Debasis; Krantz, Bryan A.

    2016-01-01

    Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins—protective antigen (PA), lethal factor (LF), and edema factor—translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790

  19. Plasma Chamber Restraints in Ignitor and Relevant Disruption Analysis

    NASA Astrophysics Data System (ADS)

    Gasparotto, M.; Cucchiaro, A.; Capriccioli, A.; Celentano, G.; Rita, C.; Roccella, M.; Macco, B.; Micheli, I.; Ferrari, G.; Orlandi, S.; Coppi, B.

    2000-10-01

    The plasmas chamber (PC) of Ignitor is made of 12 D-shaped toroidal sectors of Inconel 625 welded together by automatic remote equipment. The thickness of the inboard wall is 17 mm while the middle and outboard walls are 26 mm thick. The PC is supported through the ports by the C-Clamp structure of the toroidal magnet. The main function of the PC supports is to resist the vertical and radial electromagnetic loads and to allow for free movement under thermal loads while providing electrical insulation from the C-Clamps and cryostat. The largest estimated loads are due to a Vertical Displacement Event (VDE) disruption that is followed by a thermal quench and then by the current quench. The vertical supports involve a connection of each radial port to the C-Clamp structure by a link system that withstands the calculated loads. The radial supports resist, with high stiffness, the centripetal and centrifugal forces. The end flange of each radial port is connected to the C-Clamp structure by a clamping sleeve device. The clamping sleeves are hydraulically operated to provide locking during discharge. The clamping sleeves of the radial support system have been validated by an appropriate series of tests.

  20. Making Waves

    ERIC Educational Resources Information Center

    Fink, Kristi R.

    2017-01-01

    Earth's easily seen surface features (mountains, volcanoes, and islands)--and the movement of the tectonic plates that lie below--offer hints about the processes that produced them. Inquiries in seismology, the study of earthquakes and other ground movements, can help students learn about Earth's geologic processes. This article describes an…

  1. Ground terminal expert (GTEX). Part 2: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    NASA Technical Reports Server (NTRS)

    Durkin, John; Schlegelmilch, Richard; Tallo, Donald

    1992-01-01

    A research effort was undertaken to investigate how expert system technology could be applied to a satellite communications system. The focus of the expert system is the satellite earth station. A proof of concept expert system called the Ground Terminal Expert (GTEX) was developed at the University of Akron in collaboration with the NASA Lewis Research Center. With the increasing demand for satellite earth stations, maintenance is becoming a vital issue. Vendors of such systems will be looking for cost effective means of maintaining such systems. The objective of GTEX is to aid in diagnosis of faults occurring with the digital earth station. GTEX was developed on a personal computer using the Automated Reasoning Tool for Information Management (ART-IM) developed by the Inference Corporation. Developed for the Phase 2 digital earth station, GTEX is a part of the Systems Integration Test and Evaluation (SITE) facility located at the NASA Lewis Research Center.

  2. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  3. Quick action clamp

    NASA Technical Reports Server (NTRS)

    Calco, Frank S. (Inventor)

    1991-01-01

    A quick release toggle clamp that utilizes a spring that requires a deliberate positive action for disengagement is presented. The clamp has a sliding bolt that provides a latching mechanism. The bolt is moved by a handle that tends to remain in an engaged position while under tension.

  4. Rotary slot dog

    DOEpatents

    Cutburth, Ronald W.; Smauley, David A.

    1987-01-01

    A clamp or dog is disclosed which preferably comprises a slotted stepped cylindrical body which is inserted into a hole in a workpiece and then fastened to a base or fixture using a screw which is inserted through the slot. The stepped configuration provides an annular clamping surface which securely clamps the workpiece against the base or fixture. The slotted cylindrical configuration permits adjustment of the workpiece and retaining clamp in any direction, i.e., over 360.degree., relative to the mounting position of the screw in the base or fixture.

  5. LEO Download Capacity Analysis for a Network of Adaptive Array Ground Stations

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Barott, William C.; Popovic, Zoya; Rondineau, Sebastien; Langley, John; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Steffes, Paul; Mandl, Dan

    2005-01-01

    To lower costs and reduce latency, a network of adaptive array ground stations, distributed across the United States, is considered for the downlink of a polar-orbiting low earth orbiting (LEO) satellite. Assuming the X-band 105 Mbps transmitter of NASA s Earth Observing 1 (EO-1) satellite with a simple line-of-sight propagation model, the average daily download capacity in bits for a network of adaptive array ground stations is compared to that of a single 11 m dish in Poker Flats, Alaska. Each adaptive array ground station is assumed to have multiple steerable antennas, either mechanically steered dishes or phased arrays that are mechanically steered in azimuth and electronically steered in elevation. Phased array technologies that are being developed for this application are the space-fed lens (SFL) and the reflectarray. Optimization of the different boresight directions of the phased arrays within a ground station is shown to significantly increase capacity; for example, this optimization quadruples the capacity for a ground station with eight SFLs. Several networks comprising only two to three ground stations are shown to meet or exceed the capacity of the big dish, Cutting the data rate by half, which saves modem costs and increases the coverage area of each ground station, is shown to increase the average daily capacity of the network for some configurations.

  6. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Image and Video Library

    1972-12-17

    AS17-152-23393 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, command module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans' left side is the Mapping Camera cassette. The total time for the trans-Earth EVA was one hour seven minutes 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at ground elapsed timed of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.

  7. Surface features on Mars: Ground-based albedo and radar compared with Mariner 9 topography

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1973-01-01

    Earth-based albedo maps of Mars were compared with Mariner 9 television data and ground-based radar profiles to investigate the nature of the bright and dark albedo features. Little correlation was found except at the boundaries of classical albedo features, where some topographic control is indicated. Wind-blown dust models for seasonal and secular albedo variations are supported, but it is not clear whether the fines are derived from bright or dark parent rock. Mars, like the Earth and Moon, has probably generated two distinct types of crustal material.

  8. LCTS on ALPHASAT and Sentinel 1a: in orbit status of the LEO to geo data relay system

    NASA Astrophysics Data System (ADS)

    Zech, H.; Heine, F.; Troendle, D.; Pimentel, P. M.; Panzlaff, K.; Motzigemba, M.; Meyer, R.; Philipp-May, S.

    2017-11-01

    The performance of sensors for Earth Observation Missions is constantly improving. This drives the need for a reliable, high-speed data transfer capability from a Low Earth Orbit (LEO) spacecraft (S/C) to ground. In addition, for the transfer of time-critical data to ground, a low latency between data generation in orbit and data reception at the respective mission control center is of high importance. Laser communication between Satellites for high data transmission in combination with a GEO data relay system for reducing the latency time addresses these requirements.

  9. Scintillation statistics measured in an earth-space-earth retroreflector link

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1977-01-01

    Scintillation was measured in a vertical path from a ground-based laser transmitter to the Geos 3 satellite and back to a ground-based receiver telescope and, the experimental results were compared with analytical results presented in a companion paper (Bufton, 1977). The normalized variance, the probability density function and the power spectral density of scintillation were all measured. Moments of the satellite scintillation data in terms of normalized variance were lower than expected. The power spectrum analysis suggests that there were scintillation components at frequencies higher than the 250 Hz bandwidth available in the experiment.

  10. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate. The top clamping plate is brought into contact with the bottom plate so that the narrow section of the metal strips on the top clamp plate aligns with the metal contact pads on the cantilever. When the parts are clamped together, the metal strips provide electrical connections between the Wheatstone-bridge contact points and the sides the trenches that constitute the socket for the multipin electrical plug. Hence, to connect the Wheatstone bridge to external circuitry for processing of the anemometer readout, one need only insert the plug in the socket. In operation, the cantilever end of the stainless-steel housing is mounted flush with an engine wall and the unclamped portion of the cantilever is exposed into the flow. The cantilever is deflected in direct proportion to the force induced by component of flow parallel to the engine wall and perpendicular to the broad exposed face of the cantilever. The maximum strain on the cantilever occurs at the clamped edge and is measured by the piezoresistors, which are located there. The corresponding changes in resistance manifest themselves in the output of the Wheatstone bridge.

  11. Can electrons act as antioxidants? A review and commentary.

    PubMed

    Oschman, James L

    2007-11-01

    A previous study demonstrated that connecting the human body to the earth during sleep (earthing) normalizes the daily cortisol rhythm and improves sleep. A variety of other benefits were reported, including reductions in pain and inflammation. Subsequent studies have confirmed these earlier findings and documented virtually immediate physiologic and clinical effects of grounding or earthing the body. It is well established, though not widely known, that the surface of the earth possesses a limitless and continuously renewed supply of free or mobile electrons as a consequence of a global atmospheric electron circuit. Wearing shoes with insulating soles and/or sleeping in beds that are isolated from the electrical ground plane of the earth have disconnected most people from the earth's electrical rhythms and free electrons. The most reasonable hypothesis to explain the beneficial effects of earthing is that a direct earth connection enables both diurnal electrical rhythms and free electrons to flow from the earth to the body. It is proposed that the earth's diurnal electrical rhythms set the biological clocks for hormones that regulate sleep and activity. It is also suggested that free electrons from the earth neutralize the positively charged free radicals that are the hallmark of chronic inflammation. A relationship between cortisol and inflammation was established in the pioneering work of H. Selye published in the 1950s. Current biomedical research has led to an inflammation hypothesis that is establishing chronic inflammation as the culprit behind almost every modern chronic illness. The research summarized here and in subsequent reports provides a basis for a number of earthing technologies that restore and maintain natural electrical contact between the human body and the earth throughout the day and night in situations where going barefoot on the earth is impractical. It is proposed that free or mobile electrons from the earth can resolve chronic inflammation by serving as natural antioxidants.

  12. The EarthCARE mission BBR instrument: ground testing of radiometric performance

    NASA Astrophysics Data System (ADS)

    Caldwell, Martin E.; Spilling, David; Grainger, William; Theocharous, E.; Whalley, Martin; Wright, Nigel; Ward, Anthony K.; Jones, Edward; Hampton, Joseph; Parker, David; Delderfield, John; Pearce, Alan; Richards, Anthony G.; Munro, Grant J.; Poynz Wright, Oliver; Hampson, Matthew; Forster, David

    2017-09-01

    In the EarthCARE mission the BBR (Broad Band Radiometer) has the role of measuring the net earth radiance (i.e. total reflected-solar and thermally-emitted radiances), from the same earth scene as viewed by the other instruments (aerosol lidar, cloud radar and spectral imager). It does this measurement at 10km scene size and in 3 view angles. It is an imaging radiometer in that it uses micro-bolometer linear-array detector (pushbroom orientation), to over-sample these required scenes, with the samples being binned on-ground to produce the 10km radiance data. For the measurements of total earth radiance, the BBR is based on the heritage of Earth Radiation Budget (ERB) instruments. The ground calibration methods of this type of sensor is technically very similar to other EO instruments that measure in the thermalIR, but with added challenges: (1) The thermal-IR measurement has to have a much wider spectral range than normal thermal-IR channels to cover the whole earth-emission spectrum i.e. 4 to >50microns (2) The 2nd channel (reflected solar radiance) must also have a broad response to cover almost the whole solar spectrum, i.e. 0.3 to 4microns. And this solar channel must be measured on the same radiometric calibration as the thermal channel, which in practice is best done by using the same radiometer for both channels. The radiometer is designed to be very broad-band i.e. 0.3 to 50microns (i.e. more than two decades), to cover both ranges, and a switchable spectral filter (short-pass cutoff at 4μm) is used to separate the channels. The on-ground measurements which are required to link the calibration of these channels will be described. A calibration of absolute responsivity in each of the two bands is needed; in the thermal-IR channel this is by the normal method of using a calibrated blackbody test source, and in the solar channel it is by means of a narrow-band (laser) and a reference radiometer (from NPL). A calibration of relative spectral response is also needed, across this wide range, for the purpose of linking the two channels, and for converting the narrow-band solar channel measurement to broad-band.

  13. Mechanics of wafer bonding: Effect of clamping

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  14. Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen

    2018-02-01

    Considerations of nonlocal elasticity and surface effects in micro- and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged-hinged, clamped-clamped and clamped-hinged ends. For a hinged-hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped-clamped and clamped-hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short, explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.

  15. Non-invasive method and apparatus for measuring pressure within a pliable vessel

    NASA Technical Reports Server (NTRS)

    Shimizu, M. (Inventor)

    1983-01-01

    A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.

  16. Term babies with delayed cord clamping: an approach in preventing anemia (.).

    PubMed

    Ertekin, Arif Aktug; Nihan Ozdemir, Nilufer; Sahinoglu, Zeki; Gursoy, Tugba; Erbil, Nazan; Kaya, Erdal

    2016-09-01

    We investigated the effects of delayed and early clamping of the cord on the hematologic status of the baby at birth and at the end of second month. Umbilical cord of 74 babies were clamped in the first 30 s (Group 1) and 76 were clamped at 90-120 s (Group 2). Levels of hemoglobin, hematocrit, iron and ferritin were analyzed from the umbilical cord blood at birth and from the venous samples at the end of second month. Hemoglobin, hematocrit, iron and ferritin levels of cord blood were similar in both groups. However, their levels other than ferritin were higher in Group 2 at the end of second month. Two babies had respiratory distress and twelve neonates received phototherapy in Group 2 whereas only five neonates received phototherapy in Group 1. Term babies to whom delayed cord clamping was performed had improved hematological parameters at the end of second month. Therefore, delaying cord clamping in these babies may be a favorible approach in preventing anemia.

  17. Vibration mode analysis of the proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  18. Prosthetic helping hand

    NASA Technical Reports Server (NTRS)

    Vest, Thomas W. (Inventor); Carden, James R. (Inventor); Norton, William E. (Inventor); Belcher, Jewell G. (Inventor)

    1992-01-01

    A prosthetic device for below-the-elbow amputees, having a C-shaped clamping mechanism for grasping cylindrical objects, is described. The clamping mechanism is pivotally mounted to a cuff that fits on the amputee's lower arm. The present invention is utilized by placing an arm that has been amputated below the elbow into the cuff. The clamping mechanism then serves as a hand whenever it becomes necessary for the amputee to grasp a cylindrical object such as a handle, a bar, a rod, etc. To grasp the cylindrical object, the object is jammed against the opening in the C-shaped spring, causing the spring to open, the object to pass to the center of the spring, and the spring to snap shut behind the object. Various sizes of clamping mechanisms can be provided and easily interchanged to accommodate a variety of diameters. With the extension that pivots and rotates, the clamping mechanism can be used in a variety of orientations. Thus, this invention provides the amputee with a clamping mechanism that can be used to perform a number of tasks.

  19. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3).

    PubMed

    Lin, Wei; Das, Kalyan; Degen, David; Mazumder, Abhishek; Duchi, Diego; Wang, Dongye; Ebright, Yon W; Ebright, Richard Y; Sineva, Elena; Gigliotti, Matthew; Srivastava, Aashish; Mandal, Sukhendu; Jiang, Yi; Liu, Yu; Yin, Ruiheng; Zhang, Zhening; Eng, Edward T; Thomas, Dennis; Donadio, Stefano; Zhang, Haibo; Zhang, Changsheng; Kapanidis, Achillefs N; Ebright, Richard H

    2018-04-05

    Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.

    2016-01-01

    NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice for Mars, from which early return is likely to be impossible.

  1. Digital Elevation Models of Patterned Ground in the Canadian Arctic and Implications for the Study of Mars

    NASA Astrophysics Data System (ADS)

    Knightly, P.; Murakami, Y.; Clarke, J.; Sizemore, H.; Siegler, M.; Rupert, S.; Chevrier, V.

    2017-12-01

    Patterned ground forms in periglacial zones from both expansion and contraction of permafrost by freeze-thaw and sub-freezing temperature changes and has been observed on both Earth and Mars from orbital and the surface at the Phoneix and Viking 2 landing sites. The Phoenix mission to Mars studied patterned ground in the vicinity of the spacecraft including the excavation of a trench revealing water permafrost beneath the surface. A study of patterned ground at the Haughton Impact structure on Devon Island used stereo-pair imaging and three-dimensional photographic models to catalog the type and occurrence of patterned ground in the study area. This image catalog was then used to provide new insight into photographic observations gathered by Phoenix. Stereo-pair imagery has been a valuable geoscience tool for decades and it is an ideal tool for comparative planetary geology studies. Stereo-pair images captured on Devon Island were turned into digital elevation models (DEMs) and comparisons were noted between the permafrost and patterned ground environment of Earth and Mars including variations in grain sorting, active layer thickness, and ice table depth. Recent advances in 360° cameras also enabled the creation of a detailed, immersive site models of patterned ground at selected sites in Haughton crater on Devon Island. The information from this ground truth study will enable the development and refinement of existing models to better evaluate patterned ground on Mars and predict its evolution.

  2. An examination of along-track interferometry for detecting ground moving targets

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott

    2005-01-01

    Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.

  3. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    PubMed

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  4. Satellite and Ground Communication Systems: Space and Electronic Warfare Threats to the United States Army

    DTIC Science & Technology

    2017-02-01

    communication satellites—operating high above the earth and at higher frequencies —are often better suited to communicate across much longer distances and...Satellite and Ground Communication Systems: Space and Electronic Warfare Threats to the...TYPE SAMS Monograph 3. DATES COVERED (From - To) JUN 2016 – MAY 2017 4. TITLE AND SUBTITLE Satellite and Ground Communication Systems: Space and

  5. Documentation of a ground hydrology parameterization for use in the GISS atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Aleano, J.; Bock, P.

    1978-01-01

    The moisture transport processes related to the earth's surface relevant to the ground circulation model GCM are presented. The GHM parametrizations considered are: (1) ground wetness and soil parameters; (2) precipitation; (3) evapotranspiration; (4) surface storage of snow and ice; and (5) runout. The computational aspects of the GHM using computer programs and flow charts are described.

  6. Overview of Space Transportation and Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2003-01-01

    Topics considered include: 1. Scientific discovery: The search for the life beyond Earth. Understanding our Planet. Understanding our Universe. Exploration of the Planets and beyond. 2. The ultimate high ground for national security: Intelligence, communications, rapid response, GPS. 3. Space-based commerce: Communications and Earth observing.

  7. Tensil Film Clamps And Mounting Block For Viscoelastometers

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Little, Bruce D.

    1989-01-01

    Set of clamps and mounting block developed for use in determining tensile moduli and damping properties of films in manually operated or automated commercial viscoelastometer. These clamps and block provide uniformity of sample gripping and alignment in instrument. Dependence on operator and variability of data greatly reduced.

  8. Enhancement of the Natural Earth Satellite Population Through Meteoroid Aerocapture

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.

    2014-01-01

    The vast majority of meteoroids either fall to the ground as meteorites or ablate completely in the atmosphere. However, large meteoroids have been observed to pass through the atmosphere and reenter space in a few instances. These atmosphere-grazing meteoroids have been characterized using ground-based observation and satellite-based infrared detection. As these methods become more sensitive, smaller atmospheregrazing meteoroids will likely be detected. In anticipation of this increased detection rate, we compute the frequency with which centimeter-sized meteoroids graze and exit Earth's atmosphere. We characterize the post-atmosphere orbital characteristics of these bodies and conduct numerical simulations of their orbital evolution under the perturbing influence of the Sun and Moon. We find that a small subset of aerocaptured meteoroids are perturbed away from immediate atmospheric reentry and become temporary natural Earth satellites.

  9. Monitoring Earth Surface Dynamics With Optical Imagery

    NASA Astrophysics Data System (ADS)

    Leprince, Sébastien; Berthier, Etienne; Ayoub, François; Delacourt, Christophe; Avouac, Jean-Philippe

    2008-01-01

    The increasing availability of high-quality optical satellite images should allow, in principle, continuous monitoring of Earth's surface changes due to geologic processes, climate change, or anthropic activity. For instance, sequential optical images have been used to measure displacements at Earth's surface due to coseismic ground deformation [e.g., Van Puymbroeck et al., 2000], ice flow [Scambos et al., 1992; Berthier et al., 2005], sand dune migration [Crippen, 1992], and landslides [Kääb, 2002; Delacourt et al., 2004]. Surface changes related to agriculture, deforestation, urbanization, and erosion-which do not involve ground displacement-might also be monitored, provided that the images can be registered with sufficient accuracy. Although the approach is simple in principle, its use is still limited, mainly because of geometric distortion of the images induced by the imaging system, biased correlation techniques, and implementation difficulties.

  10. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  11. The EDSN Intersatellite Communications Architecture

    NASA Technical Reports Server (NTRS)

    Hanson, John; Chartres, James; Sanchez, Hugo; Oyadomari, Ken

    2014-01-01

    The Edison Demonstration of Smallsat Networks (EDSN) is a swarm of eight 1.5U Cubesats developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within NASA Space Technology Mission Directorate (STMD). EDSN, scheduled for launch in late 2014, is designed to explore the use of small spacecraft networks to make synchronized, multipoint scientific measurements, and to organize and pass those data to the ground through their network. Networked swarms of these small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earth's magnetosphere, Earth-Sun interactions and the Earth's geopotential. The EDSN communications network is maintained and operated by a simple set of predefined rules operating independently on all eight spacecraft without direction from ground based systems. One spacecraft serves as a central node, requesting and collecting data from the other seven spacecraft, organizing the data and passing it to a ground station at regular intervals. The central node is rotated among the spacecraft on a regular basis, providing robustness against the failure of a single spacecraft. This paper describes the communication architecture of the EDSN network and its operation with small spacecraft of limited electrical power, computing power and communication range. Furthermore, the problems of collecting and prioritizing data through a system that has data throughput bottlenecks are addressed. Finally, future network enhancements that can be built on top of the current EDSN hardware are discussed.

  12. The Role of Advanced Information System Technology in Remote Sensing for NASA's Earth Science Enterprise in the 21st Century

    NASA Technical Reports Server (NTRS)

    Prescott, Glenn; Komar, George (Technical Monitor)

    2001-01-01

    Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.

  13. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Astrophysics Data System (ADS)

    Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.

    2016-04-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).

  14. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Astrophysics Data System (ADS)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).

  15. 30 CFR 77.603 - Clamping of trailing cables to equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clamping of trailing cables to equipment. 77.603 Section 77.603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Trailing Cables § 77.603 Clamping of trailing cables to equipment. Trailing cables...

  16. 46 CFR 28.335 - Fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...

  17. 46 CFR 28.335 - Fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...

  18. 46 CFR 28.335 - Fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...

  19. 46 CFR 28.335 - Fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...

  20. An ideal clamping analysis for a cross-ply laminate

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.

    1988-01-01

    Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.

  1. Clamp force and alignment checking device

    DOEpatents

    Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith

    2017-04-11

    A check fixture measures a total clamp force applied by a welder device. The welder device includes a welding horn having a plurality of weld pads and welding anvil having a plurality of weld pads. The check fixture includes a base member operatively supporting a plurality of force sensors. The base member and the force sensors are received between the weld pads of the welding horn and the anvil pads of the welding anvil. Each force sensor is configured to measure an individual clamp force applied thereto by corresponding weld and anvil pads when the base member is received between the welding horn and the welding anvil and the welder device is in the clamped position. The individual clamp forces are used to determine whether the weld and/or anvil pads are worn or misaligned.

  2. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  3. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  4. An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

    NASA Astrophysics Data System (ADS)

    Woo, Jin; Song, Young-Joo; Park, Sang-Young; Kim, Hae-Dong; Sim, Eun-Sup

    2010-09-01

    The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

  5. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    NASA Astrophysics Data System (ADS)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  6. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging.

    PubMed

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  7. Double-stator electromagnetic pump having alignment ring and spine assembly

    DOEpatents

    Fanning, Alan Wayne; Olich, Eugene Ellsworth; Dahl, Leslie Roy; Patel, Mahadeo Ratilal

    1997-01-01

    A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force.

  8. Double-stator electromagnetic pump having alignment ring and spine assembly

    DOEpatents

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.; Patel, M.R.

    1997-06-24

    A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration is disclosed. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force. 12 figs.

  9. [Analysis of brain hemometabolism behavior during carotid endarterectomy with temporary clamping.].

    PubMed

    Duval Neto, Gastão Fernandes; Niencheski, Augusto H

    2004-04-01

    Carotid endarterectomy with temporary clamping changes cerebral blood flow and cerebral metabolic oxygen demand ratio with consequent oligemic hypoxia or hemometabolic uncoupling. This study aimed at identifying changes in brain hemometabolism, evaluated through changes in oxyhemoglobin saturation in internal jugular vein bulb (SvjO2) during carotid endarterectomy with clamping, and at correlating these changes with potentially interfering factors, mainly end tidal CO2 pressure (P ET CO2) and cerebral perfusion pressure (CPP). Sixteen patients with unilateral carotid stenotic disease scheduled to carotid endarterectomy with carotid arterial clamping were enrolled in this study. Parameters including internal jugular bulb oxyhemoglobin saturation, stump pressure and end tidal CO2 pressure were measured at the following moments: M1 - pre-clamping; M2 - 3 minutes after clamping; M3 - pre-unclamping; M4 - post-unclamping). The comparison among SvjO2 (%, mean +/- SD) in all studied periods has shown differences between those recorded in moments M1 (52.25 +/- 7.87) and M2 (47.43 +/- 9.19). This initial decrease stabilized during temporary clamping, showing decrease in the comparison between M2 and M3 (46.56 +/- 9.25), without statistical significance (p = ns). At post-unclamping, M4 (47.68 +/- 9.12), SvjO2 was increased as compared to M2 and M3 clamping stages, however it was still lower than that of pre-clamping stage M1.(M4 x M1 - p < 0.04) This SvjO2 decrease was followed by significant cerebral perfusion pressure (stump pressure) decrease. Factors influencing this brain hemometabolic uncoupling trend were correlated to P ET CO2. The comparison between CPP and SvjO2 showed weak correlation devoid of statistical significance. In the conditions of our study, SvjO2 measurement is a fast and effective way of clinically monitoring changes in CBF/CMRO2 ratio. Temporary carotid clamping implies in a trend towards brain hemometabolic uncoupling and, as a consequence, to oligemic ischemia; cerebral perfusion pressure does not assesses brain hemometabolic status (CBF and CMRO2 ratio); hypocapnia, may lead to brain hemometabolic uncoupling; P ET CO2 monitoring is an innocuous and efficient way to indirectly monitor PaCO2 preventing inadvertent hypocapnia and its deleterious effects on CBF/CMRO2 ratio during temporary carotid clamping.

  10. Small-scale polygons on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1984-01-01

    Polygonal-fracture patterns on the martian surface were discovered on Viking Orbiter images. The polygons are 2-20 km in diameter, much larger than those of known patterned ground on Earth. New observations show, however, that polygons exist on Mars that have diameters similar to those of ice-wedge polygons on Earth (generally a few meters to more than 100 m). Various explanations for the origin of these crustal features are examined; seasonal desiccation and thermal-contraction cracking in ice-rich ground. It is difficult to ascertain whether the polygons are forming today or are relics from the past. The crispness of some crack suggests a recent origin. On the other hand the absence of upturned edges (indicating actively forming ice wedges), the locally disintegrating ground, and a few possible superposed rayed craters indicate that the polygons are not forming at the present.

  11. Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Abe, Yutaka

    2003-07-01

    When a giant impact occurs, atmosphere loss may occur due to global ground motion excited by a strong shock wave traveling in the planetary interior. Here, the relations between the ground motion and the amount of the lost atmosphere are systematically investigated through calculations of a spherically one-dimensional atmospheric motion for various initial atmospheric conditions. The fraction of the lost atmosphere to the total mass of the atmosphere is found to be controlled only by the ground velocity and, insensitive to the initial atmospheric conditions. Unlike the previous studies (Ahrens, 1990, Origin of the Earth, H.E. Newson, J.H. Jones (Eds.), pp. 211-227; Ahrens, 1993, Annu. Rev. Earth Planet. Sci. 21, 525-555; Chen and Ahrens, 1997, Phys. Earth Planet. Inter. 100, 21-26); the estimated loss fraction for the giant impact is only 20%. Significant escape occurs only when the ground velocity is close to the escape velocity. Thus, most of the atmosphere should survive the giant impact. The cause of the difference from previous estimates is discussed from energetic and dynamic points of view. Moreover, if our estimates are applied to the atmosphere of the impactor planet, a significant fraction of it is carried to the target planet. Survival of the proto-atmosphere has very important effects on the origin and evolution of the terrestrial planets' volatile budget.

  12. Human in the Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Seaman, Calvin H.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chambers) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere capable of 14.7 to 8 psi total pressure and 21 to 32% oxygen concentration, life support systems (food, air, and water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon, Mars). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international, industrial and academic partners.

  13. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  14. MODIFYING IRON REMOVAL PROCESSES TO INCREASE ARSENIC REMOVAL

    EPA Science Inventory

    Iron and manganese are naturally occurring substances that are normally found in insoluble forms in many ground waters in the US. Similar to iron and manganese, arsenic also occurs widely in the earth's crust and is a natural contaminant of many ground waters. Iron and manganese ...

  15. 29 CFR 1926.960 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system of conductors through which an electric current is intended to flow. (j) Communication lines. The... significantly different from that of the earth in the vicinity. The term “live” is sometimes used in place of... the conditions existing. (p) Effectively grounded. The term means intentionally connected to earth...

  16. 29 CFR 1926.960 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system of conductors through which an electric current is intended to flow. (j) Communication lines. The... significantly different from that of the earth in the vicinity. The term “live” is sometimes used in place of... the conditions existing. (p) Effectively grounded. The term means intentionally connected to earth...

  17. 29 CFR 1926.960 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system of conductors through which an electric current is intended to flow. (j) Communication lines. The... significantly different from that of the earth in the vicinity. The term “live” is sometimes used in place of... the conditions existing. (p) Effectively grounded. The term means intentionally connected to earth...

  18. 29 CFR 1926.960 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system of conductors through which an electric current is intended to flow. (j) Communication lines. The... significantly different from that of the earth in the vicinity. The term “live” is sometimes used in place of... the conditions existing. (p) Effectively grounded. The term means intentionally connected to earth...

  19. A Concept for Differential Absorption Lidar and Radar Remote Sensing of the Earth's Atmosphere and Ocean from NRHO Orbit

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Marshak, A.; Omar, A.; Lin, B.; Baize, R.

    2018-02-01

    We propose a concept that will put microwave and laser transmitters on the Deep Space Gateway platform for measurements of the Earth's atmosphere and ocean. Receivers will be placed on the ground, buoys, Argo floats, and cube satellites.

  20. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  1. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions.

    PubMed

    Du, Brian; Daniels, Vernie R; Vaksman, Zalman; Boyd, Jason L; Crady, Camille; Putcha, Lakshmi

    2011-06-01

    Efficacy and safety of medications used for the treatment of astronauts in space may be compromised by altered stability in space. We compared physical and chemical changes with time in 35 formulations contained in identical pharmaceutical kits stowed on the International Space Station (ISS) and on Earth. Active pharmaceutical content (API) was determined by ultra- and high-performance liquid chromatography after returning to Earth. After stowage for 28 months in space, six medications aboard the ISS and two of matching ground controls exhibited changes in physical variables; nine medications from the ISS and 17 from the ground met the United States Pharmacopeia (USP) acceptance criteria for API content after 28 months of storage. A higher percentage of medications from each flight kit had lower API content than the respective ground controls. The number of medications failing API requirement increased as a function of time in space, independent of expiration date. The rate of degradation was faster in space than on the ground for many of the medications, and most solid dosage forms met USP standard for dissolution after storage in space. Cumulative radiation dose was higher and increased with time in space, whereas temperature and humidity remained similar to those on the ground. Exposure to the chronic low dose of ionizing radiation aboard the spacecraft as well as repackaging of solid dosage forms in flight-specific dispensers may adversely affect stability of pharmaceuticals. Characterization of degradation profiles of unstable formulations and identification of chemical attributes of stability in space analog environments on Earth will facilitate development of space-hardy medications.

  2. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    NASA Astrophysics Data System (ADS)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  3. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  4. Cerebral hemodynamic changes and electroencephalography during carotid endarterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algotsson, L.; Messeter, K.; Rehncrona, S.

    Some patients undergoing endarterectomy for occlusive carotid artery disease run a risk of brain ischemia during cross-clamping of the artery. The present study of 15 patients was undertaken to evaluate changes in cerebral blood flow (CBF), as measured with an intravenous (IV) tracer (133Xenon) technique, and to relate CBF changes to changes in the electroencephalogram (EEG). CBF was measured before and after induction of anesthesia, during cross-clamping of the carotid artery, after release of the clamps, and at 24 hours after the operation. All the patients were anesthetized with methohexitone, fentanyl, and nitrous oxide and oxygen. EEG was continuously recordedmore » during the operation. Carotid artery shunts were not used. In 8 patients, cross-clamping of the carotid artery did not influence the EEG. In this group of patients, induction of anesthesia caused a 38% decrease in CBF, which presumably reflects the normal reaction to the anesthetic agent given. There were no further changes in CBF during cross-clamping. In 7 patients, the EEG showed signs of deterioration during the intraoperative vascular occlusion. In these patients, anesthesia did not cause any CBF change, whereas cross-clamping the artery induced a 33% decrease in CBF. In individual patients, the severity of EEG changes correlated with the decrease in CBF. The absence of a change in CBF by anesthesia and a decrease due to cross-clamping of the carotid artery may be explained by the presence of a more advanced cerebrovascular disease and an insufficiency to maintain CBF during cross-clamping.« less

  5. Achieving Lights-Out Operation of SMAP Using Ground Data System Automation

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2013-01-01

    The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.

  6. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  7. Need for expanded environmental measurement capabilities in geosynchronous Earth orbit

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico P.

    1991-01-01

    The proliferation of environmental satellites in low altitude earth orbit (LEO) has demonstrated the usefulness of earth remote sensing from space. As use of the technology grows, the limitations of LEO missions become more apparent. Many inadequacies can be met by remote sensing from geosynchronous earth orbits (GEO) that can provide high temporal resolution, consistent viewing of specific earth targets, long sensing dwell times with varying sun angles, stereoscopic coverage, and correlative measurements with ground and LEO observations. An environmental platform in GEO is being studied by NASA. Small research satellite missions in GEO were studied (1990) at GSFC. Some recent independent assessments of NASA Earth Science Programs recommend accelerating the earlier deployment of smaller missions.

  8. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications in space

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2012-05-01

    Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.

  9. Research on Integrated Geophysics Detect Potential Ground Fissure in City

    NASA Astrophysics Data System (ADS)

    Qian, R.

    2017-12-01

    North China confined aquifer lied 70 to 200 meters below the earth's surface has been exploited for several decades, which resulted in confined water table declining and has generated a mass of ground fissure. Some of them has reached the surface and the other is developing. As it is very difficult to stop the ground fissure coming into being, measures of avoiding are often taken. It brings great potential risk to urban architecture and municipal engineering. It is very important to find out specific distribution and characteristic of potential ground fissure in city with high resolution. The ground fissure is concealed, therefor, geophysical method is an important technology to detecting concealed ground fissure. However, it is very difficult to detect the characteristics of the superficial part of ground fissure directly, as it lies dozens of meters below and has only scores of centimeters fault displacement. This paper studies applied ground penetration radar, surface wave and shallow refleciton seismic to detect ground fissure. It sets up model of surface by taking advantage of high resolution of ground penetrating radar data, constrains Reilay wave inversion and improves its resolution. The high resolution reflection seismic is good at detecting the geology structure. The data processing and interpretation technique is developmented to avoid the pitfall and improve the aliability of the rusult. The experiment has been conducted in Shunyi District, Beijing in 2016. 5 lines were settled to collect data of integrated geophysical method. Development zone of concealed ground fissure was found and its ultra shallow layer location was detected by ground penetrating radar. A trial trench of 6 meters in depth was dug and obvious ground fissure development was found. Its upper end was 1.5 meters beneath the earth's surface with displacement of 0.3 meters. The favorable effect of this detection has provided a new way for detecting ground fissure in cities of China, such as Beijing and Xi'an etc. Keyword: Ground Fissure, GPR, Surface Wave; Shallow Reflection Seismic

  10. Design and Construction of a Small Whole Body Inhalation Chamber

    DTIC Science & Technology

    2010-07-30

    by 12 7/8 inch high) were solvent welded onto this base using Weldon 4 (Ridout Plastics, San Diego CA). On the inside of each side wall a 2 inch...together using one inch spring clamps (Just Clamps, model 616,Atlanta Ga) on their respective flanges. These clamps were spaced evenly around the

  11. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.

    PubMed

    Klemic, Kathryn G; Klemic, James F; Reed, Mark A; Sigworth, Fred J

    2002-06-01

    The patch clamp method measures membrane currents at very high resolution when a high-resistance 'gigaseal' is established between the glass microelectrode and the cell membrane (Pflugers Arch. 391 (1981) 85; Neuron 8 (1992) 605). Here we describe the first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes. PDMS is an attractive material for patch clamp recordings. It has low dielectric loss and can be micromolded (Annu. Rev. Mat. Sci. 28 (1998) 153) into a shape that mimics the tip of the glass micropipette. Also, the surface chemistry of PDMS may be altered to mimic the hydrophilic nature of glass (J. Appl. Polym. Sci. 14 (1970) 2499; Annu. Rev. Mat. Sci. 28 (1998) 153), thereby allowing a high-resistance seal to a cell membrane. We present a planar electrode geometry consisting of a PDMS partition with a small aperture sealed between electrode and bath chambers. We demonstrate that a planar PDMS patch electrode, after oxidation of the elastomeric surface, permits patch clamp recording on Xenopus oocytes. Our results indicate the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.

  12. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A remote-sensing driven tool for estimating crop stress and yields

    USDA-ARS?s Scientific Manuscript database

    Biophysical crop simulation models are normally forced with precipitation data recorded with either gages or ground-based radar. However, ground based recording networks are not available at spatial and temporal scales needed to drive the models at many critical places on earth. An alternative would...

  14. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  15. Inmarsat aeronautical mobile satellite system: Internetworking issues

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1990-01-01

    The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.

  16. Integrated Human-in-the-Loop Ground Testing - Value, History, and the Future

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2016-01-01

    Systems for very long-duration human missions to Mars will be designed to operate reliably for many years and many of these systems will never be returned to Earth. The need for high reliability is driven by the requirement for safe functioning of remote, long-duration crewed systems and also by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. The key to developing a human-in-the-loop architecture is a development process that allows for a logical sequence of validating successful development in a stepwise manner, with assessment of key performance parameters (KPPs) at each step; especially important are KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This presentation will explore the implications of such an approach to technology development and validation including the roles of ground and space-based testing necessary to develop a highly reliable system for long duration human exploration missions. Historical development and systems testing from Mercury to the International Space Station (ISS) to ground testing will be reviewed. Current work as well as recommendations for future work will be described.

  17. Space-based infrared near-Earth asteroid survey simulation

    NASA Astrophysics Data System (ADS)

    Tedesco, Edward F.; Muinonen, Karri; Price, Stephan D.

    2000-08-01

    We demonstrate the efficiency and effectiveness of using a satellite-based sensor with visual and infrared focal plane arrays to search for that subclass of Near-Earth Objects (NEOs) with orbits largely interior to the Earth's orbit. A space-based visual-infrared system could detect approximately 97% of the Atens and 64% of the IEOs (the, as yet hypothetical, objects with orbits entirely Interior to Earth's Orbit) with diameters greater than 1 km in a 5-year mission and obtain orbits, albedos and diameters for all of them; the respective percentages with diameters greater than 500 m are 90% and 60%. Incidental to the search for Atens and IEOs, we found that 70% of all Earth-Crossing Asteroids (ECAs) with diameters greater than 1 km, and 50% of those with diameters greater than 500 m, would also be detected. These are the results of a feasibility study; optimizing the concept presented would result in greater levels of completion. The cost of such a space-based system is estimated to be within a factor of two of the cost of a ground-based system capable of about 21st magnitude, which would provide only orbits and absolute magnitudes and require decades to reach these completeness levels. In addition to obtaining albedos and diameters for the asteroids discovered in the space-based survey, a space-based visual-infrared system would obtain the same information on virtually all NEOs of interest. A combined space-based and ground-based survey would be highly synergistic in that each can concentrate on what it does best and each complements the strengths of the other. The ground-based system would discover the majority of Amors and Apollos and provide long-term follow-up on all the NEOs discovered in both surveys. The space-based system would discover the majority of Atens and IEOs and provide albedos and diameters on all the NEOs discovered in both surveys and most previously discovered NEOs as well. Thus, an integrated ground- and space-based system could accomplish the Spaceguard goal in less time than the ground-based system alone. In addition, the result would be a catalog containing well-determined orbits, diameters, and albedos for the majority of ECAs with diameters greater than 500 m.

  18. Intermittent chest tube clamping may shorten chest tube drainage and postoperative hospital stay after lung cancer surgery: a propensity score matching analysis.

    PubMed

    Yan, Shi; Wang, Xing; Wang, Yaqi; Lv, Chao; Wang, Yuzhao; Wang, Jia; Yang, Yue; Wu, Nan

    2017-12-01

    Postoperative pleural drainage markedly influences the length of hospital stay and the financial costs of medical care. The safety of chest tube clamping before removal has been documented. This study aims to determine if intermittent chest tube clamping shortens the duration of chest tube drainage and hospital stay after lung cancer surgery. We retrospectively analyzed 285 consecutive patients with operable lung cancer treated using lobectomy and systematic mediastinal lymphadenectomy. The chest tube management protocol in our institution was changed in January 2014, and thus, 222 patients (clamping group) were managed with intermittent chest tube clamping, while 63 patients (control group) were managed with a traditional protocol. Propensity score matching at a 1:1 ratio was applied to balance variables potentially affecting the duration of chest tube drainage. Analyses were performed to compare drainage duration and postoperative hospital stay between the two groups in the matched cohort. Multivariate logistic regression analyses were performed to predict the factors associated with chest tube drainage duration. The rates of thoracocentesis after chest tube removal were similar between the clamping and control groups in the whole cohort (0.5% vs. 1.6%, P=0.386). The rates of pyrexia were also comparable in the two groups (2.3% vs. 3.2%, P=0.685). After propensity score matching, 61 cases remained in each group. Both chest tube drainage duration (3.9 vs. 4.8 days, P=0.001) and postoperative stay (5.7 vs. 6.4 days, P=0.025) were significantly shorter in the clamping group than in the control group. Factors significantly associated with shorter chest tube drainage duration were female sex, chest tube clamping, left lobectomy, and video-assisted thoracoscopic surgery (VATS) (P<0.05). Intermittent postoperative chest tube clamping may decrease the duration of chest tube drainage and postoperative hospital stay while maintaining patient safety.

  19. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  20. Integrated Network Architecture for Sustained Human and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  1. Measuring Small Debris - What You Can't See Can Hurt You

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    While modeling gives us a tool to better understand the Earth orbit debris environment, it is measurements that give us "ground truth" about what is happening in space. Assets that can detect orbital debris remotely from the surface of the Earth, such as radars and telescopes, give us a statistical view of how debris are distributed in space, how they are being created, and how they are evolving over time. In addition, in situ detectors in space are giving us a better picture of how the small particle environment is actually damaging spacecraft today. IN addition, simulation experiments on the ground help us to understand what we are seeing in orbit. This talk will summarize the history of space debris measurements, how it has changed our view of the Earth orbit environment, and how we are designing the experiments of tomorrow.

  2. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O.

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radiomore » transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.« less

  3. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    PubMed

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  4. Coding performance of the Probe-Orbiter-Earth communication link

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Dolinar, S.; Pollara, F.

    1993-01-01

    The coding performance of the Probe-Orbiter-Earth communication link is analyzed and compared for several cases. It is assumed that the coding system consists of a convolutional code at the Probe, a quantizer and another convolutional code at the Orbiter, and two cascaded Viterbi decoders or a combined decoder on the ground.

  5. EREP users handbook

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Revised Skylab spacecraft, experiments, and mission planning information is presented for the Earth Resources Experiment Package (EREP) users. The major hardware elements and the medical, scientific, engineering, technology and earth resources experiments are described. Ground truth measurements and EREP data handling procedures are discussed. The mission profile, flight planning, crew activities, and aircraft support are also outlined.

  6. Tensile film clamps and mounting block for the rheovibron and autovibron viscoelastometer

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor); Little, Bruce D. (Inventor)

    1989-01-01

    A set of film clamps and a mounting block for use in the determination of tensile modulus and damping properties of films in a manually operated or automated Rheovibron is diagrammed. These clamps and mounting block provide uniformity of sample gripping and alignment in the instrument. Operator dependence and data variability are greatly reduced.

  7. Plastic Clamp Retains Clevis Pin

    NASA Technical Reports Server (NTRS)

    Cortes, R. G.

    1983-01-01

    Plastic clamp requires no special installation or removal tools. Clamp slips easily over end of pin. Once engaged in groove, holds pin securely. Installed and removed easily without special tools - screwdriver or putty knife adequate for prying out of groove. Used to retain bearings, rollers pulleys, other parts that rotate. Applications include slowly and intermittently rotating parts in appliances.

  8. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  9. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  10. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  11. Implications of ground-deformation measurements across earth fissures in subsidence areas in the southwestern USA

    USGS Publications Warehouse

    Holzer, Thomas L.

    2010-01-01

    Ground deformation was monitored at earth fissures in areas of land subsidence induced by groundwater extraction in the southwestern United States. The ground deformation is consistent with the mechanism that fissures are caused by horizontal strains generated by bending of overburden in response to localized differential compaction. Subsidence profiles indicated that localized differential subsidence occurred across the fissures and that maximum convex-upward curvature was at the fissure. The overall shape of the profile stayed similar with time, and maximum curvature remained stationary at the fissure. Horizontal displacements were largest near the fissure, and generally were small to negligible away from the fissure. Maximum tensile horizontal strains were at the fissure and coincided with maximum curvature in the subsidence profiles. Horizontal tensile strain continued to accumulate at fissures after they formed with rates of opening ranging from 30 to 120 microstrain/year at fissures in Arizona.

  12. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  13. The Case of the Martian Boulder Piles

    NASA Image and Video Library

    2018-03-05

    This image from NASA's Mars Reconnaissance Orbiter (MRO) was originally meant to track the movement of sand dunes near the North Pole of Mars, but what's on the ground in between the dunes is just as interesting! The ground has parallel dark and light stripes from upper left to lower right in this area. In the dark stripes, we see piles of boulders at regular intervals. What organized these boulders into neatly-spaced piles? In the Arctic back on Earth, rocks can be organized by a process called "frost heave." With frost heave, repeatedly freezing and thawing of the ground can bring rocks to the surface and organize them into piles, stripes, or even circles. On Earth, one of these temperature cycles takes a year, but on Mars it might be connected to changes in the planet's orbit around the Sun that take much longer. https://photojournal.jpl.nasa.gov/catalog/PIA22334

  14. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.; Goodliff, Kandyce

    2016-01-01

    NASA is studying conceptual architectures for a "Proving Ground" near the Moon or in high lunar orbit to conduct human space exploration missions that bridge the gap between today's operations with the International Space Station (ISS) and future human exploration of Mars beginning in the 2030s. This paper describes the framework of a concept of operations ("Conops") for candidate activities in the Proving Ground. The Conops discusses broad goals that the Proving Ground might address, such as participation from commercial entities, support for human landings on the Moon, use of mature technologies, and growth of capability through a steady cadence of increasingly ambitious piloted missions. Additional Proving Ground objectives are outlined in a companion paper. Key elements in the Conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System (SLS) heavy-lift rocket. Potential additions include a new space suit, commercial launch vehicles and logistics carriers, Solar Electric Propulsion (SEP) stages to move elements between different orbits and eventually take them on excursions to deep space, a core module with multiple docking ports, a habitation block, and robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. A module providing advanced regenerative life support functions could launch to the ISS, and later move to the Proving Ground. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The Conops describes notional missions chosen to guide the design of the architecture and its elements. One such mission might be the delivery of a approximately 10-t Transit Habitat element, comanifested with Orion on a Block 1B SLS launcher, to the Proving Ground. In another mission, the architecture might participate in direct human exploration of an asteroidal boulder brought to high lunar orbit by the Asteroid Redirect Mission. The Proving Ground stack could serve as a staging point and tele-operation center for robotic and piloted Moon landings. With the addition of a SEP stage, the architecture could support months-long excursions within and beyond the Earth's sphere of influence, possibly culminating in a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to quantify the risk of landing deconditioned crews on Mars. In a conceptual mission particularly stressing to system design, Proving Ground elements could transit to Mars orbit. Other possible design-driving operations include relocation of the stack with no crew on board, the unpiloted journey of the advanced life support module from ISS to the lunar vicinity, excursions to other destinations in near-Earth space, and additional support for Mars exploration in conjunction with the Evolvable Mars Campaign. The Proving Ground Conops concludes with a discussion of aborts and contingency operations

  15. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  16. Earth-Atmospheric Coupling During Strong Earthquakes by Analyzing MODIS Data

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Williams, Robin G.; Freund, Friedemann

    2001-01-01

    Interactions between the Earth and the atmosphere during major earthquakes (M greater than 5) are the subject of this investigation. Recently a mechanism has been proposed predicting the build-up of positive ground potentials prior to strong earthquake activity. Connected phenomena include: transient conductivity of rocks, injection of currents, possibly also electromagnetic emission and light emission from high points at the surface of the Earth. To understand this process we analyze vertical atmospheric profiles, land surface and brightness (temperature) data, using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite launched in December 1999. MODIS covers the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km). Using MODIS data we look for correlations between the atmospheric dynamics and solid Earth processes for the January 2001 strong earthquakes in San Salvador and India. As part of the build-up of positive grounds potential, an IR luminescence is predicted to occur in the 8-12 micrometer band. We use the MODIS data to differentiate between true "thermal" signals and IR luminescence. Indeed, on the basis of a temporal and spatial distribution analysis, a thermal anomaly pattern is found that appears to be related to the seismic activity. Aerosol content and atmospheric instability parameters also change when ground charges build up causing ion emission and leading to a thin aerosol layer over land. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index. Anomalous trends have been identified in few days prior to the main shocks. The significance of this observation should be explored further using other data sets.

  17. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats.

    PubMed

    Cacho, J; Sevillano, J; de Castro, J; Herrera, E; Ramos, M P

    2008-11-01

    Insulin resistance plays a role in the pathogenesis of diabetes, including gestational diabetes. The glucose clamp is considered the gold standard for determining in vivo insulin sensitivity, both in human and in animal models. However, the clamp is laborious, time consuming and, in animals, requires anesthesia and collection of multiple blood samples. In human studies, a number of simple indexes, derived from fasting glucose and insulin levels, have been obtained and validated against the glucose clamp. However, these indexes have not been validated in rats and their accuracy in predicting altered insulin sensitivity remains to be established. In the present study, we have evaluated whether indirect estimates based on fasting glucose and insulin levels are valid predictors of insulin sensitivity in nonpregnant and 20-day-pregnant Wistar and Sprague-Dawley rats. We have analyzed the homeostasis model assessment of insulin resistance (HOMA-IR), the quantitative insulin sensitivity check index (QUICKI), and the fasting glucose-to-insulin ratio (FGIR) by comparing them with the insulin sensitivity (SI(Clamp)) values obtained during the hyperinsulinemic-isoglycemic clamp. We have performed a calibration analysis to evaluate the ability of these indexes to accurately predict insulin sensitivity as determined by the reference glucose clamp. Finally, to assess the reliability of these indexes for the identification of animals with impaired insulin sensitivity, performance of the indexes was analyzed by receiver operating characteristic (ROC) curves in Wistar and Sprague-Dawley rats. We found that HOMA-IR, QUICKI, and FGIR correlated significantly with SI(Clamp), exhibited good sensitivity and specificity, accurately predicted SI(Clamp), and yielded lower insulin sensitivity in pregnant than in nonpregnant rats. Together, our data demonstrate that these indexes provide an easy and accurate measure of insulin sensitivity during pregnancy in the rat.

  18. Different methods of hilar clamping during partial nephrectomy: Impact on renal function.

    PubMed

    Lee, Jeong Woo; Kim, Hwanik; Choo, Minsoo; Park, Yong Hyun; Ku, Ja Hyeon; Kim, Hyeon Hoe; Kwak, Cheol

    2014-03-01

    To evaluate the impact of different hilar clamping methods on changes in renal function after partial nephrectomy. We analyzed the clinical data of 369 patients who underwent partial nephrectomy for a single renal tumor of size ≤4.0 cm and a normal contralateral kidney. Patients were separated into three groups depending on hilar clamping method: non-clamping, cold ischemia and warm ischemia. Estimated glomerular filtration rate was examined at preoperative, nadir and 1 year postoperatively. Percent change in estimated glomerular filtration rate was used as the parameter to assess the renal functional outcome. Percent change in nadir estimated glomerular filtration rate in the non-clamping group was significantly less compared with the cold ischemia and warm ischemia groups (P < 0.001). However, no significant differences among the groups were noted in percent change of estimated glomerular filtration rate at 1 year (P = 0.348). The cold ischemia group had a similar serial change of postoperative renal function compared with the warm ischemia group. Percent change in 1-year estimated glomerular filtration rate increased with increasing ischemia time in the cold ischemia (P for trend = 0.073) and warm ischemia groups (P for trend = 0.010). On multivariate analysis, hilar clamping (both warm ischemia and cold ischemia) were significantly associated with percent change in nadir estimated glomerular filtration rate, but not in 1-year estimated glomerular filtration rate. Non-clamping partial nephrectomy results in a lower percent change in nadir estimated glomerular filtration rate, whereas it carries an estimated glomerular filtration rate change at 1 year that is similar to partial nephrectomy with cold ischemia and warm ischemia. Cold ischemia and warm ischemia provide a similar effect on renal function. Therefore, when hilar clamping is required, minimization of ischemia time is necessary. © 2013 The Japanese Urological Association.

  19. A-Mating-Type Gene Expression Can Drive Clamp Formation in the Bipolar Mushroom Pholiota microspora (Pholiota nameko) ▿

    PubMed Central

    Yi, Ruirong; Mukaiyama, Hiroyuki; Tachikawa, Takashi; Shimomura, Norihiro; Aimi, Tadanori

    2010-01-01

    In the bipolar basidiomycete Pholiota microspora, a pair of homeodomain protein genes located at the A-mating-type locus regulates mating compatibility. In the present study, we used a DNA-mediated transformation system in P. microspora to investigate the homeodomain proteins that control the clamp formation. When a single homeodomain protein gene (A3-hox1 or A3-hox2) from the A3 monokaryon strain was transformed into the A4 monokaryon strain, the transformants produced many pseudoclamps but very few clamps. When two homeodomain protein genes (A3-hox1 and A3-hox2) were transformed either separately or together into the A4 monokaryon, the ratio of clamps to the clamplike cells in the transformants was significantly increased to ca. 50%. We therefore concluded that the gene dosage of homeodomain protein genes is important for clamp formation. When the sip promoter was connected to the coding region of A3-hox1 and A3-hox2 and the fused fragments were introduced into NGW19-6 (A4), the transformants achieved more than 85% clamp formation and exhibited two nuclei per cell, similar to the dikaryon (NGW12-163 × NGW19-6). The results of real-time reverse transcription-PCR confirmed that sip promoter activity is greater than that of the native promoter of homeodomain protein genes in P. microspora. Thus, we concluded that nearly 100% clamp formation requires high expression levels of homeodomain protein genes and that altered expression of the A-mating-type genes alone is sufficient to drive true clamp formation. PMID:20453073

  20. Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans.

    PubMed

    Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin

    2015-02-27

    Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.

  1. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that complements and augments current and planned space-based observing systems.

  2. Countering Air and Missile Threats

    DTIC Science & Technology

    2007-02-05

    ground-based radars will not be obstructed by the curvature of the earth and airborne radars can discriminate them from ground clutter. As a result...Iraqi fighters. Around Baghdad, “The whole ground was red with Triple-A fire as far as you could see,” recalled one pilot. The four F-15s were...Element NORAD) is the supported commander in accordance with the NORAD Agreement, NORAD Terms of Reference, etc. CDRNORAD is currently allocated

  3. Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model.

    PubMed

    Motamedi, Gholam K; Gonzalez-Sulser, Alfredo; Dzakpasu, Rhonda; Vicini, Stefano

    2012-01-01

    Hypothermia can terminate epileptiform discharges in vitro and in vivo epilepsy models. Hypothermia is becoming a standard treatment for brain injury in infants with perinatal hypoxic ischemic encephalopathy, and it is gaining ground as a potential treatment in patients with drug resistant epilepsy. However, the exact mechanism of action of cooling the brain tissue is unclear. We have studied the 4-aminopyridine model of epilepsy in mice using single- and dual-patch clamp and perforated multi-electrode array recordings from the hippocampus and cortex. Cooling consistently terminated 4-aminopyridine induced epileptiform-like discharges in hippocampal neurons and increased input resistance that was not mimicked by transient receptor potential channel antagonists. Dual-patch clamp recordings showed significant synchrony between distant CA1 and CA3 pyramidal neurons, but less so between the pyramidal neurons and interneurons. In CA1 and CA3 neurons, hypothermia blocked rhythmic action potential discharges and disrupted their synchrony; however, in interneurons, hypothermia blocked rhythmic discharges without abolishing action potentials. In parallel, multi-electrode array recordings showed that synchronized discharges were disrupted by hypothermia, whereas multi-unit activity was unaffected. The differential effect of cooling on transmitting or secreting γ-aminobutyric acid interneurons might disrupt normal network synchrony, aborting the epileptiform discharges. Moreover, the persistence of action potential firing in interneurons would have additional antiepileptic effects through tonic γ-aminobutyric acid release.

  4. Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures

    NASA Astrophysics Data System (ADS)

    Lu, Lyan-Ywan; Lin, Tzu-Kang; Jheng, Rong-Jie; Wu, Hsin-Hsien

    2018-01-01

    A semi-active friction damper (SAFD) can be employed for the seismic protection of structural systems. The effectiveness of an SAFD in absorbing seismic energy is usually superior to that of its passive counterpart, since its slip force can be altered in real time according to structural response and excitation. Most existing SAFDs are controlled by adjusting the clamping force applied on the friction interface. Thus, the implementation of SAFDs in practice requires precision control of the clamping force, which is usually substantially larger than the slip force. This may increase the implementation complexity and cost of SAFDs. To avoid this problem, this study proposes a novel position-controlled SAFD, named the leverage-type controllable friction damper (LCFD). The LCFD system combines a traditional passive friction damper and a leverage mechanism with a movable central pivot. By simply controlling the pivot position, the damping force generated by the LCFD system can be adjusted in real time. In order to verify the feasibility of the proposed SAFD, a prototype LCFD was tested by using a shaking table. The test results demonstrate that the equivalent friction force and hysteresis loop of the LCFD can be regulated by controlling the pivot position. By considering 16 ground motions with two different intensities, the adaptive feature of the LCFD for seismic structural control is further demonstrated numerically.

  5. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    Treesearch

    Susan L. Brantley; William H. McDowell; William E. Dietrich; Timothy S. White; Praveen Kumar; Suzanne P. Anderson; Jon Chorover; Kathleen Ann Lohse; Roger C. Bales; Daniel D. Richter; Gordon Grant; Jérôme Gaillardet

    2017-01-01

    The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth’s...

  6. The atmospheric electric global circuit. [thunderstorm activity

    NASA Technical Reports Server (NTRS)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  7. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    PubMed

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  8. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  9. Structural basis of human PCNA sliding on DNA

    NASA Astrophysics Data System (ADS)

    de March, Matteo; Merino, Nekane; Barrera-Vilarmau, Susana; Crehuet, Ramon; Onesti, Silvia; Blanco, Francisco J.; de Biasio, Alfredo

    2017-01-01

    Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a `cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.

  10. Management of umbilical cord clamping.

    PubMed

    Webbon, Lucy

    2013-02-01

    The Royal College of Midwives (RCM) has updated its third stage of labour guidelines (RCM 2012) to be clearly supportive of a delay in umbilical cord clamping, although specific guidance on timing is yet to be announced. It is therefore imperative that both midwives and student midwives understand and are able to integrate delaying into their practice, as well as communicating to women the benefits; only in this way can we give women fully informed choices on this aspect of care. The main benefit of delayed cord clamping is the protection it can provide in reducing childhood anaemia, which is a major issue, especially in poorer countries. A review of the evidence found no risks linked to delayed clamping, and no evidence that it cannot be used in combination with the administration of uterotonic drugs. Delayed cord clamping can be especially beneficial for pre term and compromised babies.

  11. Theoretical investigation of gain-clamped semiconductor optical amplifiers using the amplified spontaneous emission compensating effect

    NASA Astrophysics Data System (ADS)

    Jia, Xin-Hong

    2006-12-01

    The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.

  12. Computing Satellite Maneuvers For A Repeating Ground Track

    NASA Technical Reports Server (NTRS)

    Shapiro, Bruce

    1994-01-01

    TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program (GTARG) assists in designing maneuvers to maintain orbit of TOPEX/POSEIDON satellite. Targeting strategies used either maximize time between maneuvers or force control band exit to occur at specified intervals. Runout mode allows for ground-track propagation without targeting. GTARG incorporates analytic mean-element propagation algorithm accounting for all perturbations known to cause significant variations in ground track. Perturbations include oblateness of Earth, luni-solar gravitation, drag, thrusts associated with impulsive maneuvers, and unspecified fixed forces acting on satellite in direction along trajectory. Written in VAX-FORTRAN.

  13. Preliminary Results from NASA/GSFC Ka-Band High Rate Demonstration for Near-Earth Communications

    NASA Technical Reports Server (NTRS)

    Wong, Yen; Gioannini, Bryan; Bundick, Steven N.; Miller, David T.

    2004-01-01

    In early 2000, the National Aeronautics and Space Administration (NASA) commenced the Ka-Band Transition Project (KaTP) as another step towards satisfying wideband communication requirements of the space research and earth exploration-satellite services. The KaTP team upgraded the ground segment portion of NASA's Space Network (SN) in order to enable high data rate space science and earth science services communications. The SN ground segment is located at the White Sands Complex (WSC) in New Mexico. NASA conducted the SN ground segment upgrades in conjunction with space segment upgrades implemented via the Tracking and Data Relay Satellite (TDRS)-HIJ project. The three new geostationary data relay satellites developed under the TDRS-HIJ project support the use of the inter-satellite service (ISS) allocation in the 25.25-27.5 GHz band (the 26 GHz band) to receive high speed data from low earth-orbiting customer spacecraft. The TDRS H spacecraft (designated TDRS-8) is currently operational at a 171 degrees west longitude. TDRS I and J spacecraft on-orbit testing has been completed. These spacecraft support 650 MHz-wide Ka-band telemetry links that are referred to as return links. The 650 MHz-wide Ka-band telemetry links have the capability to support data rates up to at least 1.2 Gbps. Therefore, the TDRS-HIJ spacecraft will significantly enhance the existing data rate elements of the NASA Space Network that operate at S-band and Ku-band.

  14. Millimetron and Earth-Space VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.

    2014-01-01

    The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.

  15. Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis

    DOE PAGES

    Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders; ...

    2017-09-01

    Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less

  16. Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders

    Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less

  17. Experimental quasi-single-photon transmission from satellite to earth.

    PubMed

    Yin, Juan; Cao, Yuan; Liu, Shu-Bin; Pan, Ge-Sheng; Wang, Jin-Hong; Yang, Tao; Zhang, Zhong-Ping; Yang, Fu-Min; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-08-26

    Free-space quantum communication with satellites opens a promising avenue for global secure quantum network and large-scale test of quantum foundations. Recently, numerous experimental efforts have been carried out towards this ambitious goal. However, one essential step--transmitting single photons from the satellite to the ground with high signal-to-noise ratio (SNR) at realistic environments--remains experimental challenging. Here, we report a direct experimental demonstration of the satellite-ground transmission of a quasi-single-photon source. In the experiment, single photons (~0.85 photon per pulse) are generated by reflecting weak laser pulses back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected by a 600-mm diameter telescope at the ground station, and finally detected by single-photon counting modules after 400-km free-space link transmission. With the help of high accuracy time synchronization, narrow receiver field-of-view and high-repetition-rate pulses (76 MHz), a SNR of better than 16:1 is obtained, which is sufficient for a secure quantum key distribution. Our experimental results represent an important step towards satellite-ground quantum communication.

  18. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  19. The Nano-Patch-Clamp Array: Microfabricated Glass Chips for High-Throughput Electrophysiology

    NASA Astrophysics Data System (ADS)

    Fertig, Niels

    2003-03-01

    Electrophysiology (i.e. patch clamping) remains the gold standard for pharmacological testing of putative ion channel active drugs (ICADs), but suffers from low throughput. A new ion channel screening technology based on microfabricated glass chip devices will be presented. The glass chips contain very fine apertures, which are used for whole-cell voltage clamp recordings as well as single channel recordings from mammalian cell lines. Chips containing multiple patch clamp wells will be used in a first bench-top device, which will allow perfusion and electrical readout of each well. This scalable technology will allow for automated, rapid and parallel screening on ion channel drug targets.

  20. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  1. Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.

    PubMed

    Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P

    2004-01-01

    The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.

  2. Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI

    PubMed Central

    Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.

    2016-01-01

    The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319

  3. Earth at Rest. Aesthetic Experience and Students' Grounding in Science Education

    NASA Astrophysics Data System (ADS)

    Østergaard, Edvin

    2017-07-01

    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  4. NASA-funded sounding rocket to catch aurora in the act

    NASA Image and Video Library

    2014-01-22

    The NASA-funded Ground-to-Rocket Electron-Electrodynamics Correlative Experiment, or GREECE, wants to understand aurora. Specifically, it will study classic auroral curls that swirl through the sky like cream in a cup of coffee. The GREECE instruments travel on a sounding rocket that launches for a ten-minute ride right through the heart of the aurora reaching its zenith over the native village of Venetie, Alaska. To study the curl structures, GREECE consists of two parts: ground-based imagers located in Venetie to track the aurora from the ground and the rocket to take measurements from the middle of the aurora itself. At their simplest, auroras are caused when particles from the sun funnel over to Earth's night side, generate electric currents, and trigger a shower of particles that strike oxygen and nitrogen some 60 to 200 miles up in Earth's atmosphere, releasing a flash of light. But the details are always more complicated, of course. Researchers wish to understand the aurora, and movement of plasma in general, at much smaller scales including such things as how different structures are formed there. This is a piece of information, which in turn, helps paint a picture of the sun-Earth connection and how energy and particles from the sun interact with Earth's own magnetic system, the magnetosphere. GREECE is a collaborative effort between SWRI, which developed particle instruments and the ground-based imaging, and the University of California, Berkeley, measuring the electric and magnetic fields. The launch is supported by a sounding rocket team from NASA’s Wallops Flight Facility, Wallops Island, Va. The Poker Flat Research Range is operated by the University of Alaska, Fairbanks. Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to provide the foundation required to enable a variety of possible destinations and missions consistent with the Evolvable Mars Campaign.. The International Space Station will be used to the greatest extent possible for exploration capability and technology development. Beyond this, NASA is evaluating a number of options for Proving Ground missions. An "Asteroid Redirect Mission" will demonstrate needed capabilities (e.g., Solar Electric Propulsion) and transportation systems for the crew (i.e., Space Launch System and Orion) and for cargo (i.e., Asteroid Redirect Vehicle). The Mars 2020 mission and follow-on robotic precursor missions will gather Mars surface environment information and will mature technologies. NASA is considering emplacing a small pressurized module in cis-lunar space to support crewed operations of increasing duration and to serve as a platform for critical exploration capabilities testing (e.g., radiation mitigation; extended duration deep space habitation). In addition, "opportunistic mission operations" could demonstrate capabilities not on the Mars critical path that may, nonetheless, enhance exploration operations (e.g., teleoperations, crew assisted Mars sample return). The Proving Ground may also include "pathfinder" missions to test and demonstrate specific capabilities at Mars (e.g., entry, descent, and landing). This paper describes the (1) process used to conduct an architecture-driven technology development assessment, (2) exploration mission critical and supporting capabilities, and (3) approach for addressing test and demonstration opportunities encompassing the spectrum of flight elements and destinations consistent with the Evolvable Mars Campaign.

  6. Maximum-likelihood-based extended-source spatial acquisition and tracking for planetary optical communications

    NASA Astrophysics Data System (ADS)

    Tsou, Haiping; Yan, Tsun-Yee

    1999-04-01

    This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.

  7. Millikelvin cooling of an optically trapped microsphere in vacuum

    NASA Astrophysics Data System (ADS)

    Li, Tongcang; Kheifets, Simon; Raizen, Mark G.

    2011-07-01

    Cooling of micromechanical resonators towards the quantum mechanical ground state in their centre-of-mass motion has advanced rapidly in recent years. This work is an important step towards the creation of `Schrödinger cats', quantum superpositions of macroscopic observables, and the study of their destruction by decoherence. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the centre-of-mass motion from room temperature to a minimum temperature of about 1.5mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature. More importantly, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum after cooling. This is ideal for studying the gravitational state reduction, a manifestation of the apparent conflict between general relativity and quantum mechanics. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales, measure the impact of a single air molecule and even produce Schrödinger cats of living organisms.

  8. NASA Composite Cryotank Technology Project Game Changing Program

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2015-01-01

    The fundamental goal of this project was to provide new and innovative cryotank technologies that enable human space exploration to destinations beyond low earth orbit such as the moon, near-earth asteroids, and Mars. The goal ... to mature technologies in preparation for potential system level flight demonstrations through significant ground-based testing and/or laboratory experimentation

  9. Lidar Past, Present, and Future in NASA's Earth and Space Science Programs

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

    2004-01-01

    Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

  10. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.

    PubMed

    Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley

    2012-10-01

    The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.

  11. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  12. Product Development and Cost Analysis of Fabricating the Prototype of Roller Clamp in Intravenous (I.V) Tubing Medical Devices using Fused Deposition Modeling (FDM) Technology

    NASA Astrophysics Data System (ADS)

    Way, Yusoff

    2018-01-01

    The main aim of this research is to develop a new prototype and to conduct cost analysis of the existing roller clamp which is one of parts attached to Intravenous (I.V) Tubing used in Intravenous therapy medical device. Before proceed with the process to manufacture the final product using Fused Deposition Modeling (FDM) Technology, the data collected from survey were analyzed using Product Design Specifications approach. Selected concept has been proven to have better quality, functions and criteria compared to the existing roller clamp and the cost analysis of fabricating the roller clamp prototype was calculated.

  13. A Distance Detector with a Strip Magnetic MOSFET and Readout Circuit.

    PubMed

    Sung, Guo-Ming; Lin, Wen-Sheng; Wang, Hsing-Kuang

    2017-01-10

    This paper presents a distance detector composed of two separated metal-oxide semiconductor field-effect transistors (MOSFETs), a differential polysilicon cross-shaped Hall plate (CSHP), and a readout circuit. The distance detector was fabricated using 0.18 μm 1P6M Complementary Metal-Oxide Semiconductor (CMOS) technology to sense the magnetic induction perpendicular to the chip surface. The differential polysilicon CSHP enabled the magnetic device to not only increase the magnetosensitivity but also eliminate the offset voltage generated because of device mismatch and Lorentz force. Two MOSFETs generated two drain currents with a quadratic function of the differential Hall voltages at CSHP. A readout circuit-composed of a current-to-voltage converter, a low-pass filter, and a difference amplifier-was designed to amplify the current difference between two drains of MOSFETs. Measurements revealed that the electrostatic discharge (ESD) could be eliminated from the distance sensor by grounding it to earth; however, the sensor could be desensitized by ESD in the absence of grounding. The magnetic influence can be ignored if the magnetic body (human) stays far from the magnetic sensor, and the measuring system is grounded to earth by using the ESD wrist strap (Strap E-GND). Both 'no grounding' and 'grounding to power supply' conditions were unsuitable for measuring the induced Hall voltage.

  14. A Comparison of TOMS Version 8 Total Column Ozone Data with Data from Groundstations

    NASA Technical Reports Server (NTRS)

    Labow, G. J.; McPeters, R. D.; Bhartia, P. K.

    2004-01-01

    The Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) data have been reprocessed with a new retrieval algorithm, (Version 8) and an updated calibration procedure. These data have been systematically compared to total ozone data from Brewer and Dobson spectrophotometers for 73 individual ground stations. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. Results show that the accuracy of the TOMS retrieval'is much improved when aerosols are present in the atmosphere, when snow/ice and sea glint are present, and when ozone in the northern hemisphere is extremely low. TOMS overpass data are derived from the single TOMS best match measurement, almost always located within one degree of the ground station and usually made within an hour of local noon. The version 8 Earth Probe TOMS ozone values have decreased by an average of about 1% due to a much better understanding of the calibration of the instrument. The remaining differences between TOMS and ground stations suggest that there are still small errors in the TOMS retrievals. But if TOMS is used as a transfer standard to compare ground stations, the large station-to-station differences suggest the possibility of significant instrument errors at some ground stations.

  15. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mooij, E. J. W.; López-Morales, M.; Karjalainen, R.

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in themore » data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.« less

  16. AFRC2016-0054-528

    NASA Image and Video Library

    2016-02-27

    Sam Choi and Naiara Pinto observe Google Earth overlaid with in almost real time what the synthetic aperture radar is mapping from the C-20A aircraft. Researchers were in the sky and on the ground to take measurements of plant mass, distribution of trees, shrubs and ground cover and the diversity of plants and how much carbon is absorbed by them.

  17. Space to Ground: Who Doesn't Enjoy a Good View of Planet Earth?: 02/10/2017

    NASA Image and Video Library

    2017-02-10

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  18. Solar Ethics: A New Paradigm for Environmental Ethics and Education?

    ERIC Educational Resources Information Center

    Peters, Michael A.; Hung, Ruyu

    2009-01-01

    This article provides grounds for a new paradigm of environmental ethics and education based on the centrality of the sun and solar system--a shift from anthropocentrism to solar systemism. The article provides some grounds for this shift from the physical sciences that considers the planet Earth as part of a wider system that is dependent upon…

  19. Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhou, Zhiyong; Zhao, Xiaobo; Liu, Zhen; Liang, Ruihong; Dong, Xianlin

    2017-03-01

    A clamping domain structure is proposed to improve the amount of non-180° domain switching in BaTiO3 based piezoelectric ceramics. Experimental results show a large unipolar strain of 0.23% at 5 kV/mm in aged 0.5 mol. % Mn doped BaTiO3 ceramics with clamping domain structures, and the normalized strain (d33*= Smax/Emax) reaches 600 pm/V at low electric fields of 2 or 3 kV/mm. In contrast, pure BaTiO3 ceramics with clamping domain structures exhibit no clear polarization constriction or strain enhancement at 3 kV/mm. Electron paramagnetic resonance spectra verify the existence of titanium vacancies, Mn2+ and Mn4+, in 0.5 mol. % Mn doped BaTiO3 ceramics. These results indicate that the enhanced strain effect can be attributed to the combined effect of the clamping domain structure and stabilization of defect dipoles. This method provides a general way to obtain large strain in ferroelectrics.

  20. Service equipment for use in hostile environments

    NASA Technical Reports Server (NTRS)

    Dolce, James L. (Inventor); Gordon, Andrew L. (Inventor)

    1994-01-01

    Service equipment for use in hostile environments includes a detachable service unit secured to a stationary service unit. The detachable service unit includes a housing with an exterior plate, a power control interface for connection to an exterior power source, locating pins located in said exterior plate, an electrical connector in the exterior plate electrically coupled to said power control interface, and a pair of clamping receptacles formed in the exterior plate and located on adjacent opposite edges of the exterior plate. The stationary unit includes an electrical connector for connection to the electrical connector of the detachable service unit, a clamping apparatus for clamping and unclamping the detachable service unit from the stationary unit, a base clamp assembly for mounting the clamping apparatus onto the stationary unit, and locating pin holes for receiving the locating pins and aligning the detachable service unit onto the stationary unit. The detachable service unit and stationary unit have mating scalloped faces which aid in alignment and provide a mechanism for heat dissipation.

  1. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.

    PubMed

    Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R

    2017-08-30

    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Industrializing electrophysiology: HT automated patch clamp on SyncroPatch® 96 using instant frozen cells.

    PubMed

    Polonchuk, Liudmila

    2014-01-01

    Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.

  3. Patch-clamp amplifiers on a chip

    PubMed Central

    Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J.; Sigworth, Fred J.

    2010-01-01

    We present the first, fully-integrated, two-channel implementation of a patch-clamp measurement system. With this “PatchChip” two simultaneous whole-cell recordings can be obtained with rms noise of 8 pA in a 10 kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10 pF and 100 MΩ respectively under computer control. Recordings of hERG and Nav 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively-parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5 μm silicon-on-sapphire process; its size is 3 × 3 mm2 and the power consumption is 5 mW per channel with a 3.3 V power supply. PMID:20637803

  4. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics.

    PubMed

    Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R; Beuning, Penny J

    2014-04-08

    The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  6. Experimental and numerical analysis of clamped joints in front motorbike suspensions

    NASA Astrophysics Data System (ADS)

    Croccolo, D.; de Agostinis, M.; Vincenzi, N.

    2010-06-01

    Clamped joints are shaft-hub connections used, as an instance, in front motorbike suspensions to lock the steering plates with the legs and the legs with the wheel pin, by means of one or two bolts. The preloading force, produced during the tightening process, should be evaluated accurately, since it must lock safely the shaft, without overcoming the yielding point of the hub. Firstly, friction coefficients have been evaluated on “ad-hoc designed” specimens, by applying the Design of Experiment approach: the applied tightening torque has been precisely related to the imposed preloading force. Then, the tensile state of clamps have been evaluated both via FEM and by leveraging some design formulae proposed by the Authors as function of the preloading force and of the clamp geometry. Finally, the results have been compared to those given by some strain gauges applied on the tested clamps: the discrepancies between numerical analyses, the design formulae and the experimental results remains under a threshold of 10%.

  7. Normal Modes of Vibration of the PHALANX Gun

    DTIC Science & Technology

    1993-06-01

    Clamps Bricks, Thin Shells, Rigid Elements Mid-Barrel Clamps Bricks, Rigid Elements Barrels Beams with tubular cross-section Stub Rotor Bricks, Thin...Shells Rotor Bricks Needle Bearing Bricks, Springs Casing Thin Shells Thrust Bearing Bricks, Springs Recoil Adapters Bricks, Rigid Elements, Springs... rigid elements were used to connect the barrels to the clamps and stub rotor and the recoil adapter springs to 48 the gun body. "End release codes

  8. Single mode variable-sensitivity fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  9. Pitfalls during biomechanical testing - Evaluation of different fixation methods for measuring tendons endurance properties.

    PubMed

    Hangody, Gy; Pánics, G; Szebényi, G; Kiss, R; Hangody, L; Pap, K

    2016-03-01

    The goal of the study was to find a proper technique to fix tendon grafts into an INSTRON loading machine. From 8 human cadavers, 40 grafts were collected. We removed the bone-patella tendon-bone grafts, the semitendinosus and gracilis tendons, the quadriceps tendon-bone grafts, the Achilles tendons, and the peroneus longus tendons from each lower extremity. We tested the tendon grafts with five different types of fixation devices: surgical thread (Premicron 3), general mounting clamp, wire mesh, cement fixation, and a modified clamp for an INSTRON loading machine. The mean failure load in case of surgical thread fixation was (381N ± 26N). The results with the general clamp were (527N ± 45N). The wire meshes were more promising (750N ± 21N), but did not reach the outcomes we desired. Easy slippages of the ends of the tendons from the cement encasements were observed (253N ± 18N). We then began to use Shi's clamp that could produce 977N ± 416N peak force. We combined Shi's clamp with freezing of the graft and the rupture of the tendon itself demonstrated an average force of 2198 N ± 773N. We determined that our modified frozen clamp fixed the specimens against high tensile forces.

  10. HTS techniques for patch clamp-based ion channel screening - advances and economy.

    PubMed

    Farre, Cecilia; Fertig, Niels

    2012-06-01

    Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.

  11. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  12. The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer.

    PubMed

    Zhuang, Zhihao; Yoder, Bonita L; Burgers, Peter M J; Benkovic, Stephen J

    2006-02-21

    Numerous proteins that function in DNA metabolic pathways are known to interact with the proliferating cell nuclear antigen (PCNA). The important function of PCNA in stimulating various cellular activities requires its topological linkage with DNA. Loading of the circular PCNA onto duplex DNA requires the activity of a clamp-loader [replication factor C (RFC)] complex and the energy derived from ATP hydrolysis. The mechanistic and structural details regarding PCNA loading by the RFC complex are still developing. In particular, the positive identification of a long-hypothesized structure of an open clamp-RFC complex as an intermediate in loading has remained elusive. In this study, we capture an open yeast PCNA clamp in a complex with RFC through fluorescence energy transfer experiments. We also follow the topological transitions of PCNA in the various steps of the clamp-loading pathway through both steady-state and stopped-flow fluorescence studies. We find that ATP effectively drives the clamp-loading process to completion with the formation of the closed PCNA bound to DNA, whereas ATPgammaS cannot. The information derived from this work complements that obtained from previous structural and mechanistic studies and provides a more complete picture of a eukaryotic clamp-loading pathway using yeast as a paradigm.

  13. Timing of cord clamping in very preterm infants: more evidence is needed.

    PubMed

    Tarnow-Mordi, William O; Duley, Lelia; Field, David; Marlow, Neil; Morris, Jonathan; Newnham, John; Paneth, Nigel; Soll, Roger F; Sweet, David

    2014-08-01

    In December 2012, the American College of Obstetricians and Gynecologists published a Committee Opinion entitled "Timing of umbilical cord clamping after birth." It stated that "evidence exists to support delayed cord clamping in preterm infants, when feasible. The single most important benefit for preterm infants is the possibility for a nearly 50% reduction in IVH." However, the Committee Opinion added that the ideal timing of umbilical cord clamping has yet to be determined and recommended that large clinical trials be conducted in the most preterm infants. Published randomized controlled trials include <200 infants of <30 weeks' gestation, with assessments of neurodevelopmental outcome in less than one-half of the children. This is a major gap in the evidence. Without reliable data from randomized controlled trials that optimally include childhood follow-up evaluations, we will not know whether delayed cord clamping may do more overall harm than good. Ongoing trials of delayed cord clamping plan to report childhood outcomes in >2000 additional very preterm infants. Current recommendations may need to change when these results become available. Greater international collaboration could accelerate resolution of whether this promising intervention will improve disability-free survival in about 1 million infants who will be born very preterm globally each year. Copyright © 2014 Mosby, Inc. All rights reserved.

  14. Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.

    PubMed

    Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De

    2016-11-01

    To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.

  15. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  16. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  17. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground stations successfully demonstrated many services and applications at Ka-band in three different modes of operation: circuit switched TDMA using the satellite on-board processor, satellite switched SS-TDMA applications using the on-board Microwave Switch Matrix (MSM), and conventional transponder (bent-pipe) operation. Data rates ranged from 4.8 kbps up to 622 Mbps. Experiments included: 1) low rate (4.8- 1 00's kbps) remote data acquisition and control using small earth stations, 2) moderate rate (1-45 Mbps) experiments included full duplex voice and video conferencing and both full duplex and asymmetric data rate protocol and network evaluation using mid-size ground stations, and 3) link characterization experiments and high data rate (155-622 Mbps) terrestrial and satellite interoperability application experiments conducted by a consortium of experimenters using the large transportable ground stations.

  18. Global Coupled Carbon and Nitrogen Models: Successes, Failures and What next?

    NASA Astrophysics Data System (ADS)

    Holland, E. A.

    2011-12-01

    Over the last few years, there has been a great deal of progress in modeling coupled terrestrial global carbon and nitrogen cycles and their roles in Earth System models. The collection of recent models provides some surprising results and insights. A critical question for Earth system models is: How do the coupled C/N model results impact atmospheric carbon dioxide concentrations compared to carbon only models? Some coupled models predict increased atmospheric carbon dioxide concentrations, the result expected from nitrogen-limited photosynthesis uptake of carbon dioxide, while others predict little change or decreased carbon dioxide uptake with a coupled carbon and nitrogen cycle. With this range of impacts for climate critical atmospheric carbon dioxide concentrations, there is clearly a need for additional comparison of measurements and models. Randerson et al.'s CLAMP study provided important constraints and comparison for primarily for aboveground carbon uptake. However, nitrogen supply is largely determined decomposition and soil processes. I will present comparisons of NCAR's CESM results with soil and litter carbon and nitrogen fluxes and standing stocks. These belowground data sets of both carbon and nitrogen provide important benchmarks for coupled C/N models.

  19. Cerebral watershed infarcts may be induced by hemodynamic changes in blood flow.

    PubMed

    Shi, Jingfei; Meng, Ran; Konakondla, Sanjay; Ding, Yuchuan; Duan, Yunxia; Wu, Di; Wang, Bincheng; Luo, Yinghao; Ji, Xunming

    2017-06-01

    A watershed infarct is defined as an ischemic lesion at the border zones between territories of two major arteries. The pathogenesis of watershed infarcts, specifically whether they are caused by hemodynamic or embolic mechanisms, has long been debated. In this study, we aimed to examine whether watershed infarcts can be induced by altering the hemodynamic conditions in rats. In phase one, to determine the proper clamping duration for a reproducible infarct, 30 rats were equally divided into 5 subgroups and underwent bilateral common carotid artery (CCA) clamping for different durations (0.5, 1.0, 1.5, 2.0, and 3.0 hours). In phase two, to analyze the types of infarcts induced by bilateral CCA clamping, 40 rats were subjected to bilateral CCA clamping for 2 hours. As a control, 8 rats underwent all the operation procedures except bilateral CCA clamping. We performed 7.0T magnetic resonance imaging on the surviving rats on the second day to evaluate the extent of the infarcts. We further identified and examined the infarcts with brain slices stained using 2, 3, 5-triphenyltetrazolium chloride (TTC) on the third day. After 2 hours of bilateral CCA clamping, cerebral infarction occurred in 42% of surviving rats (13/31). The majority of the ischemic lesions were located in watershed regions of the brain, demonstrated by both MRI and TTC staining. Watershed infarcts were induced through changing hemodynamic conditions by bilateral CCA clamping in rats. This method may lead to the development of a reliable rodent model for watershed infarcts.

  20. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp

    PubMed Central

    Veerman, Christiaan C.; Zegers, Jan G.; Mengarelli, Isabella; Bezzina, Connie R.

    2017-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in “ventricular-like” and “atrial-like” hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs. PMID:28867785

  1. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.

    PubMed

    Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke

    2016-03-01

    Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.

  2. Rectal transection using a curved cutter stapler with an endo-Satinsky clamp during a laparoscopic low anterior resection.

    PubMed

    Hotta, Tsukasa; Takifuji, Katsunari; Yokoyama, Shozo; Matsuda, Kenji; Yamaue, Hiroki

    2012-10-01

    A new rectal transaction method was developed using a combination of the curved cutter stapler and endo-Satinsky clamp because of the difficulty in performing rectal transection in the narrow pelvic cavity. The endo-Satinsky clamp is inserted without a flexible trocar cannula by connecting the handle extra-abdominally with a shaft of the endo-Satinsky clamp through the left higher quadrant port via a retrograde course from a midline incision above the pubis symphysis. The endo-Satinsky clamp is used to clamp the rectal wall horizontally at the distal end of the tumor. The wrist of an elastic surgical glove fixed with the shaft of the curved cutter stapler is covered with a midline incision, and consequently, the stapler is inserted into the pelvic cavity. The curved head of the stapler is rotated to the left at the anal side of the endo-Satinsky clamp to insert the rectum between the jaws of the stapler. The stapler is closed and fired, and a rectal transection is thus performed with one firing using a single cartridge. This method was performed in 12 patients with rectal cancer. The median value and range of the tumor distance from the anal verge were 7.0 and 4.5-11.0 cm, respectively. The median duration of the operation was 252 min, and the median blood loss was 15 mL. Only one stapling cartridge was used for rectal transection in all cases, and no major complications were observed. We herein demonstrated a new transection method for rectal cancer.

  3. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex.

    PubMed

    Su'etsugu, Masayuki; Shimuta, Toh-Ru; Ishida, Takuma; Kawakami, Hironori; Katayama, Tsutomu

    2005-02-25

    In Escherichia coli, the activity of ATP-bound DnaA protein in initiating chromosomal replication is negatively controlled in a replication-coordinated manner. The RIDA (regulatory inactivation of DnaA) system promotes DnaA-ATP hydrolysis to produce the inactivated form DnaA-ADP in a manner depending on the Hda protein and the DNA-loaded form of the beta-sliding clamp, a subunit of the replicase holoenzyme. A highly functional form of Hda was purified and shown to form a homodimer in solution, and two Hda dimers were found to associate with a single clamp molecule. Purified mutant Hda proteins were used in a staged in vitro RIDA system followed by a pull-down assay to show that Hda-clamp binding is a prerequisite for DnaA-ATP hydrolysis and that binding is mediated by an Hda N-terminal motif. Arg(168) in the AAA(+) Box VII motif of Hda plays a role in stable homodimer formation and in DnaA-ATP hydrolysis, but not in clamp binding. Furthermore, the DnaA N-terminal domain is required for the functional interaction of DnaA with the Hda-clamp complex. Single cells contain approximately 50 Hda dimers, consistent with the results of in vitro experiments. These findings and the features of AAA(+) proteins, including DnaA, suggest the following model. DnaA-ATP is hydrolyzed at a binding interface between the AAA(+) domains of DnaA and Hda; the DnaA N-terminal domain supports this interaction; and the interaction of DnaA-ATP with the Hda-clamp complex occurs in a catalytic mode.

  4. Investigation of Electrostatic Charge in Hose Lines

    DTIC Science & Technology

    2006-10-01

    of the system. A INSULATORINSULATOR Ir1 Q Q dH vH A INSULATORINSULATOR Ir2 Q dm dl 2 vm LmLH S1 S2 S3EXTERNAL WIRE BRAID ON HOSE vl 2vm dm Lm dl...sizes of fuel hoses , including hoses with and without integrally bonded grounding wire braid ; (4) Different lengths of hose test sections; (5...Different earth grounding contact conditions along the hose test section, such as: (i) Complete insulation from the ground; (ii) Wire braid conductor along

  5. Veg-03 Ground Harvest

    NASA Image and Video Library

    2016-12-05

    Inside the Veggie flight laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a research scientist harvests a portion of the 'Outredgeous' red romaine lettuce from the Veg-03 ground control unit. The purpose of the ground Veggie system is to provide a control group to compare against the lettuce grown in orbit on the International Space Station. Veg-03 will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  6. Renal functional and perioperative outcomes of off-clamp versus clamped robot-assisted partial nephrectomy: matched cohort study.

    PubMed

    Tanagho, Youssef S; Bhayani, Sam B; Sandhu, Gurdarshan S; Vaughn, Nicholas P; Nepple, Kenneth G; Figenshau, R Sherburne

    2012-10-01

    To evaluate the potential benefit of performing off-clamp robot-assisted partial nephrectomy as it relates to renal functional outcomes, while assessing the safety profile of this unconventional surgical approach. Twenty-nine patients who underwent off-clamp robot-assisted partial nephrectomy for suspected renal cell carcinoma at Washington University between March 2008 and September 2011 (group 1) were matched to 29 patients with identical nephrometry scores and comparable baseline renal function who underwent robot-assisted partial nephrectomy with hilar clamping during the same period (group 2). The matched cohorts' perioperative and renal functional outcomes were compared at a mean 9-month follow-up. Mean estimated blood loss was 146.4 mL in group 1, versus 103.9 mL in group 2 (P = .039). Mean hilar clamp time was 0 minutes in group 1 and 14.7 minutes in group 2. No perioperative complications were encountered in group 1; 1 Clavien-2 complication (3.4%) occurred in group 2 (P = 1.000). At 9-month follow-up, mean estimated glomerular filtration rate in group 1 was 79.9 versus 84.8 mL/min/1.73 m(2) preoperatively (P = .013); mean estimated glomerular filtration rate in group 2 was 74.1 versus 85.8 mL/min/1.73 m(2) preoperatively (P < .001). Hence, estimated glomerular filtration rate declined by a mean of 4.9 mL/min/1.73 m(2) in group 1 versus 11.7 mL/min/1.73 m(2) in group 2 (P = .033). Off-clamp robot-assisted partial nephrectomy is associated with a favorable morbidity profile and relatively greater renal functional preservation compared to clamped robot-assisted partial nephrectomy. Nevertheless, the benefit is small in renal functional terms and may have very limited clinical relevance. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Timing of umbilical cord-clamping and infant anaemia: the role of maternal anaemia.

    PubMed

    Blouin, Brittany; Penny, Mary E; Maheu-Giroux, Mathieu; Casapía, Martín; Aguilar, Eder; Silva, Hermánn; Creed-Kanashiro, Hilary M; Joseph, Serene A; Gagnon, Anita; Rahme, Elham; Gyorkos, Theresa W

    2013-05-01

    Evidence from randomized controlled trials has shown that delayed cord-clamping is beneficial to infant iron status. The role of maternal anaemia in this relationship, however, has not been established. To determine the effect of maternal anaemia at delivery on the association between timing of umbilical cord-clamping and infant anaemia at 4 and 8 months of age. A cohort of pregnant women admitted to the labour room of Hospital Iquitos (Iquitos, Peru) and their newborns were recruited into the study during two time periods (18 May to 3 June and 6-20 July 2009). Between the two recruitment periods, the hospital's policy changed from early to delayed umbilical cord-clamping. Maternal haemoglobin levels were measured before delivery, and the time between delivery and cord-clamping was recorded at delivery for the entire cohort. Mother-infant pairs were followed-up at 4 (n = 207) and 8 months (n = 184) post partum. Infant haemoglobin levels were measured at follow-up visits. Data were analysed using logistic regression models. The prevalence of maternal anaemia (Hb <11.0 g/dl) at delivery was 22%. Infant haemoglobin levels at 4 and 8 months of age were 10.4 g/dl and 10.3 g/dl, respectively. Infant haemoglobin levels did not differ significantly between infants born to anaemic mothers and those born to non-anaemic mothers at either 4 or 8 months of age. However, the association between the timing of cord-clamping and infant anaemia was modified by the mother's anaemia status. Significant benefits of delayed cord-clamping in preventing anaemia were found in infants born to anaemic mothers at both 4 months (aOR = 0.59, 95% CI 0.36-0.99) and 8 months (aOR = 0.38, 95% CI 0.19-0.76) of age. The study contributes additional evidence in support of delayed cord-clamping. This intervention is likely to have most public health impact in areas with a high prevalence of anaemia during pregnancy.

  8. Biomechanical evaluation of a new fixation device for the thoracic spine.

    PubMed

    Hongo, Michio; Ilharreborde, Brice; Gay, Ralph E; Zhao, Chunfeng; Zhao, Kristin D; Berglund, Lawrence J; Zobitz, Mark; An, Kai-Nan

    2009-08-01

    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients' health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5-12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine.

  9. Biomechanical evaluation of a new fixation device for the thoracic spine

    PubMed Central

    Hongo, Michio; Ilharreborde, Brice; Zhao, Chunfeng; Zhao, Kristin D.; Berglund, Lawrence J.; Zobitz, Mark; An, Kai-Nan

    2009-01-01

    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients’ health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5–12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine. PMID:19404687

  10. Multispectral photography for earth resources

    NASA Technical Reports Server (NTRS)

    Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.

    1972-01-01

    A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.

  11. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  12. Radiometer offsets and count conversion coefficients for the Earth Radiation Budget Experiment (ERBE) spacecraft for the years 1984, 1985, and 1986

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Pandey, Dhirendra K.; Shivakumar, Netra D.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan

    1991-01-01

    A compendium is presented of the ground and inflight scanner and nonscanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS, NOAA-9, and NOAA-10 satellites for the 1 Nov. 1984 to 31 Dec. 1986.

  13. The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment.

    PubMed

    Latchney, Sarah E; Rivera, Phillip D; Mao, Xiao W; Ferguson, Virginia L; Bateman, Ted A; Stodieck, Louis S; Nelson, Gregory A; Eisch, Amelia J

    2014-06-15

    Space missions necessitate physiological and psychological adaptations to environmental factors not present on Earth, some of which present significant risks for the central nervous system (CNS) of crewmembers. One CNS region of interest is the adult olfactory bulb (OB), as OB structure and function are sensitive to environmental- and experience-induced regulation. It is currently unknown how the OB is altered by spaceflight. In this study, we evaluated OB volume and neurogenesis in mice shortly after a 13-day flight on Space Shuttle Atlantis [Space Transport System (STS)-135] relative to two groups of control mice maintained on Earth. Mice housed on Earth in animal enclosure modules that mimicked the conditions onboard STS-135 (AEM-Ground mice) had greater OB volume relative to mice maintained in standard housing on Earth (Vivarium mice), particularly in the granule (GCL) and glomerular (GL) cell layers. AEM-Ground mice also had more OB neuroblasts and fewer apoptotic cells relative to Vivarium mice. However, the AEM-induced increase in OB volume and neurogenesis was not seen in STS-135 mice (AEM-Flight mice), suggesting that spaceflight may have negated the positive effects of the AEM. In fact, when OB volume of AEM-Flight mice was considered, there was a greater density of apoptotic cells relative to AEM-Ground mice. Our findings suggest that factors present during spaceflight have opposing effects on OB size and neurogenesis, and provide insight into potential strategies to preserve OB structure and function during future space missions. Copyright © 2014 the American Physiological Society.

  14. CERES FM-5 on the NPP Spacecraft: Continuing the Earth Radiation Budget Climate Data Record

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, G. Louis

    2009-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) Flight Model-5 (FM-5) instrument will fly on the NPOESS Preparatory Project (NPP) spacecraft, which has a launch-readiness date in June, 2010. This mission will continue the critical Earth Radiation Budget Climate Data Record (CDR) begun by the Earth Radiation Budget Experiment (ERBE) instruments in the mid 1980 s and continued by the CERES instruments currently flying on the EOS Terra and Aqua spacecraft. Ground calibrations have been completed for FM-5 and the instrument has been delivered for integration to the spacecraft Rigorous pre-launch ground calibration is performed on each CERES unit to achieve an accuracy goal of 1% for SW flux and 0.5% for outgoing LW flux. Any ground to flight or in-flight changes in radiometer response is monitored using a protocol employing both onboard and vicarious calibration sources and experiments. Recent studies of FM-1 through FM-4 data have shown that the SW response of space based broadband radiometers can change dramatically due to optical contamination. With these changes having most impact on optical response to blue-to UV radiance, where tungsten lamps are largely devoid of output, such changes are hard to monitor accurately using existing on-board sources. This paper outlines the lessons learned on the existing CERES sensors from 30+ years of flight experience and presents a radiometric protocol to be implemented on the FM-5 instrument to ensure that its performance exceeds the stated calibration and stability goals.

  15. Examination of global correlations in ground deformation for terrestrial reference frame estimation

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2016-12-01

    The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802

  16. Biosignatures as revealed by spectropolarimetry of Earthshine.

    PubMed

    Sterzik, Michael F; Bagnulo, Stefano; Palle, Enric

    2012-02-29

    Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700 nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.

  17. The flux of small near-Earth objects colliding with the Earth.

    PubMed

    Brown, P; Spalding, R E; ReVelle, D O; Tagliaferri, E; Worden, S P

    2002-11-21

    Asteroids with diameters smaller than approximately 50-100 m that collide with the Earth usually do not hit the ground as a single body; rather, they detonate in the atmosphere. These small objects can still cause considerable damage, such as occurred near Tunguska, Siberia, in 1908. The flux of small bodies is poorly constrained, however, in part because ground-based observational searches pursue strategies that lead them preferentially to find larger objects. A Tunguska-class event-the energy of which we take to be equivalent to 10 megatons of TNT-was previously estimated to occur every 200-300 years, with the largest annual airburst calculated to be approximately 20 kilotons (kton) TNT equivalent (ref. 4). Here we report satellite records of bolide detonations in the atmosphere over the past 8.5 years. We find that the flux of objects in the 1-10-m size range has the same power-law distribution as bodies with diameters >50 m. From this we estimate that the Earth is hit on average annually by an object with approximately 5 kton equivalent energy, and that Tunguska-like events occur about once every 1,000 years.

  18. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    PubMed Central

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-01-01

    The metal–insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal–insulator transition in terms of bond disproportionation. PMID:27725665

  19. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.

  20. Brown Dwarf Microlensing Diagram

    NASA Image and Video Library

    2016-11-10

    For the first time, two space-based telescopes have teamed up with ground-based observatories to observe a microlensing event, a magnification of the light of a distant star due to the gravitational effects of an unseen object in the foreground. In this case, the cause of the microlensing event was a brown dwarf, dubbed OGLE-2015-BLG-1319, orbiting a star. In terms of mass, brown dwarfs fall somewhere between the size of the largest planets and the smallest stars. Curiously, scientists have found that, for stars roughly the mass of our sun, less than 1 percent have a brown dwarf orbiting within 3 AU (1 AU is the distance between Earth and the sun). This newly discovered brown dwarf may fall in that distance range. This microlensing event was observed by ground-based telescopes looking for these uncommon events, and subsequently seen by NASA's Spitzer and Swift space telescopes. As the diagram shows, Spitzer and Swift offer additional vantage points for viewing this chance alignment. While Swift orbits close to Earth, and saw (blue diamonds) essentially the same change in light that the ground-based telescopes measured (grey markers), Spitzer's location much farther away from Earth gave it a very different perspective on the event (red circles). In particular, Spitzer's vantage point resulted in a time lag in the microlensing event it observed, compared to what was seen by Swift and the ground-based telescope. This offset allowed astronomers to determine the distance to OGLE-2015-BLG-1319 as well as its mass: around 30-65 times that of Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA21077

  1. Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters

    NASA Astrophysics Data System (ADS)

    Kuang, Da; Bar-Sever, Yoaz; Haines, Bruce

    2015-05-01

    We use a series of simulated scenarios to characterize the observability of geocenter location with GPS tracking data. We examine in particular the improvement realized when a GPS receiver in low Earth orbit (LEO) augments the ground network. Various orbital configurations for the LEO are considered and the observability of geocenter location based on GPS tracking is compared to that based on satellite laser ranging (SLR). The distance between a satellite and a ground tracking-site is the primary measurement, and Earth rotation plays important role in determining the geocenter location. Compared to SLR, which directly and unambiguously measures this distance, terrestrial GPS observations provide a weaker (relative) measurement for geocenter location determination. The estimation of GPS transmitter and receiver clock errors, which is equivalent to double differencing four simultaneous range measurements, removes much of this absolute distance information. We show that when ground GPS tracking data are augmented with precise measurements from a GPS receiver onboard a LEO satellite, the sensitivity of the data to geocenter location increases by more than a factor of two for Z-component. The geometric diversity underlying the varying baselines between the LEO and ground stations promotes improved global observability, and renders the GPS technique comparable to SLR in terms of information content for geocenter location determination. We assess a variety of LEO orbital configurations, including the proposed orbit for the geodetic reference antenna in space mission concept. The results suggest that a retrograde LEO with altitude near 3,000 km is favorable for geocenter determination.

  2. Fiber optic to integrated optical chip coupler

    NASA Technical Reports Server (NTRS)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  3. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  4. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  5. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  6. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  7. Electron microscopic analysis of gravisensing Chara rhizoids developed under microgravity conditions.

    PubMed

    Braun, M; Buchen, B; Sievers, A

    1999-01-01

    Tip-growing, unicellular Chara rhizoids that react gravitropically on Earth developed in microgravity. In microgravity, they grew out from the nodes of the green thallus in random orientation. Development and morphogenesis followed an endogenous program that is not affected by the gravitational field. The cell shape, the polar cytoplasmic organization, and the polar distribution of cell organelles, except for the statoliths, were not different from controls that had grown on earth (ground controls). The ultrastructure of the organelles and the microtubules were well preserved. Microtubules were excluded from the apical zone in both ground controls as well as microgravity-grown rhizoids. The statoliths (vesicles containing BaSO4 crystals in a matrix) in microgravity-grown rhizoids were spread over a larger area (up to 50 microm basal to the tip) than the statoliths of ground controls (10-30 microm). Some statoliths were even located in the subapical zone close to microtubules, which was not observed in ground controls. The crystals in statoliths from microgravity-grown rhizoids appeared more loosely arranged in the vesicle matrix compared with ground controls. The chemical composition of the crystals was identified as BaSO4 by X-ray microanalysis. There is evidence that the amount of BaSO4 in statoliths of rhizoids developed in microgravity is lower than in ground controls, indicating that the gravisensitivity of microgravity-developed rhizoids might be reduced compared with ground controls. Lack of gravity, however, does not affect the process of tip growth and does not inhibit the development of the structures needed for the gravity-sensing machinery.

  8. Geometric error analysis for shuttle imaging spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.

    1984-01-01

    The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

  9. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  10. From pattern to process: The strategy of the Earth Observing System: Volume 2: EOS Science Steering Committee report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (EOS) represents a new approach to the study of the Earth. It consists of remotely sensed and correlative in situ observations designed to address important, interrelated global-scale processes. There is an urgent need to study the Earth as a complete, integrated system in order to understand and predict changes caused by human activities and natural processes. The EOS approach is based on an information system concept and designed to provide a long-term study of the Earth using a variety of measurement methods from both operational and research satellite payloads and continuing ground-based Earth science studies. The EOS concept builds on the foundation of the earlier, single-discipline space missions designed for relatively short observation periods. Continued progress in our understanding of the Earth as a system will come from EOS observations spanning several decades using a variety of contemporaneous measurements.

  11. Spectroscopy of Mars Atmosphere from Orbiting and Ground-based Observatories: Recent Results and Implications for Evolution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2003-07-01

    This is a review of the ground-based and Earth-orbiting studies of Mars atmosphere in the last decade that resulted in the detections of HDO, D, H2, He, and detailed mapping of O3, O2(delta), and CO. These studies provide new insights on the history of volatiles and climate on Mars.

  12. An Update on the CCSDS Optical Communications Working Group

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard L.; Schulz, Klaus-Juergen; Hamkins, Jonathan; Robinson, Bryan; Alliss, Randall; Daddato, Robert; Schmidt, Christopher; Giggebach, Dirk; Braatz, Lena

    2017-01-01

    International space agencies around the world are currently developing optical communication systems for Near Earth and Deep Space applications for both robotic and human rated spacecraft. These applications include both links between spacecraft and links between spacecraft and ground. The Interagency Operation Advisory Group (IOAG) has stated that there is a strong business case for international cross support of spacecraft optical links. It further concluded that in order to enable cross support the links must be standardized. This paper will overview the history and structure of the space communications international standards body, the Consultative Committee for Space Data Systems (CCSDS), that will develop the standards and provide an update on the proceedings of the Optical Communications Working Group within CCSDS. This paper will also describe the set of optical communications standards being developed and outline some of the issues that must be addressed in the next few years. The paper will address in particular the ongoing work on application scenarios for deep space to ground called High Photon Efficiency, for LEO to ground called Low Complexity, for inter-satellite and near Earth to ground called High Data Rate, as well as associated atmospheric measurement techniques and link operations concepts.

  13. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    NASA Technical Reports Server (NTRS)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  14. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less

  15. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel

    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergencemore » of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.« less

  16. Tuning Frustration in Rare Earth Pyrochlores by Platinum Substitution

    NASA Astrophysics Data System (ADS)

    Hallas, Alannah; Gaudet, Jonathan; Sharma, Arzoo; Wilson, Murray; Cai, Yipeng; Tachibana, Makoto; Wiebe, Chris; Gaulin, Bruce; Luke, Graeme

    A successful mechanism for exploring the rich physics of rare earth pyrochlores, R2B2O7, is to substitute the non-magnetic B-site. Varying the ionic radius of the B-site induces an internal chemical pressure. Some rare earths are robust to substitutions; for example, the holmium-based pyrochlores all exhibit a dipolar spin ice state. In the case of other rare earths such as ytterbium, the ground states are remarkably fragile to chemical pressure. In this talk, I will introduce two materials with a new non-magnetic B-site: platinum. The ionic radius of platinum is comparable to that of titanium, which occupies the B-site in the most well-studied family of pyrochlores. Thus, platinum does not induce a strong chemical pressure on the lattice. Nevertheless, using Gd2Pt2O7 and Er2Pt2O7 as examples, I will show that platinum does affect a dramatic change on the magnetic properties. We trace this effect to platinum's empty eg orbitals, which mediate superexchange pathways not available in other rare earth pyrochlores. In Gd2Pt2O7, this results in a striking 160% enhancement of TN as compared to other Gd-based pyrochlores. In Er2Pt2O7, the ordering temperature is strongly suppressed and the ground state is altered.

  17. Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Thapa, Prem

    2009-10-01

    Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.

  18. Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum.

    PubMed Central

    Cobbs, W H; Pugh, E N

    1987-01-01

    1. Membrane currents initiated by intense, 20 microseconds flashes (photocurrents) were recorded from isolated salamander rods by combined extracellular suction electrodes and intracellular tight-seal electrodes either in current or voltage clamp mode. The magnitudes (mean +/- 2 S.E.M.) of the maximal photoresponses recorded by the suction and by the intracellular electrode respectively were 40 +/- 5 pA (n = 18) and 35 +/- 7 mV (n = 8) for current clamp at zero current; 43 +/- 9 pA and 66 +/- 13 (n = 11) pA for voltage clamp at the zero-current holding potential, -24 +/- 3 mV. 2. Photocurrents initiated by flashes isomerizing 0.1% or more of the outer segment's rhodopsin achieved a saturated velocity and were 95% complete in less than 50 ms. The effect of incrementing flash intensity above 0.1% isomerization can be described as a translation of the photocurrent along the time axis towards the origin. Within the interval 0-50 ms the latter two-thirds of the velocity-saturated photocurrent is well described as a single-exponential decay. The decay was much faster in voltage clamp (2.8 +/- 1.2 ms, n = 11) than in current clamp mode (17 +/- 5 ms, n = 17). 3. The initial third of the velocity-saturated photocurrent, occurring over the interval from the flash to the onset of exponential decay, followed about the same time course in current and voltage clamp. The time interval occupied by this initial 'latent' phase decreased with increasing flash intensity and attained an apparent minimum of about 7 ms in response to flashes isomerizing 10% or more of the rhodopsin at ca. 22 degrees C. 4. The hypothesis that the decay of outer segment light-sensitive membrane current is the same in current and voltage clamp was supported by an analysis of the difference between outer segment currents measured successively in the two recording modes. First, the tail of the difference current decayed exponentially with a time constant approximately equal to R x C, where R and C are independently estimated slope resistance and capacitance of the rod. Secondly, the integral of the difference current, when divided by outer segment capacitance, closely approximated the hyperpolarizing light response measured under current clamp. Thus, displacement current accounted for the difference between photocurrents measured in current and voltage clamp.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2832596

  19. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows Skylab's Infrared Spectrometer Viewfinder Tracking System, a major component of an Earth Resources Experiment Package (EREP). It was designed to evaluate Earth resources sensors for specific regions of the the visible and infrared spectra and assess the value of real time identification of ground sites. The overall purpose of the EREP was to test the use of sensors that operated in the visible, infrared, and microwave portions of the electromagnetic spectrum to monitor and study Earth resources. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  20. Searching for and characterising extrasolar Earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2002-10-01

    The physical bases of the detection and characterisation of extrasolar Earth-like planets and moons in the reflected light and thermal emission regimes are reviewed. They both have their advantages and disadvantages, including artefacts, in the determination of planet physical parameters (mass, size, albedo, surface and atmospheric conditions etc.). After a short panorama of detection methods and the first findings, new perspectives for these different aspects are also presented. Finally brief account of the ground based programmes and space-based projects and their potentialities for Earth-like planets is made and discussed.

Top