Science.gov

Sample records for earth intermetallic compounds

  1. Gas-phase modification of rare-earth intermetallic compounds

    SciTech Connect

    Skomski, R.; Coey, J.M.D. )

    1993-04-01

    Recent work concerning the interstitial modification of permanent magnet alloys based on rare-earth iron intermetallic compounds is reviewed. The crystal structure of the new materials is discussed, then the thermodynamic and statistical aspects of the low-temperature interstitial modification process are considered. Finally, reaction kinetics and thermal stability of the new compounds are discussed and future prospects assessed.

  2. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  3. Possible ferrimagnetic coupling in light-rare-earth transition-metal intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Zhao, Z. G.; de Boer, F. R.; Duijn, V. H. M.; Buschow, K. H. J.; Chuang, Y. C.

    1994-05-01

    The possibility of ferrimagnetic coupling between the magnetic moments of the light-rare-earth (Nd, Pr) ions and of the transition-metal (Fe) ions in Nd6Ga3Fe11- and Pr6Ga3Fe11-based compounds is deduced from the high-field magnetization curves measured at 4.2 K on magnetically aligned and on free-powder samples and from the temperature dependence of the magnetization. The ferrimagnetic coupling is very weak: at 4.2 K, the rare-earth moments and the transition-metal moments can be forced to ferromagnetic alignment by application of an external magnetic field of about 4 T. Generally, in intermetallic compounds, the magnetic coupling is ferromagnetic between light-rare-earth and transition-metal ions and ferrimagnetic between heavy-rare-earth and transition-metal ions. The present results suggest that in some crystal structures ferrimagnetic coupling also may exist in the compounds formed by light-rare-earth and transition-metal elements.

  4. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    SciTech Connect

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-15

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.

  5. Magnetostriction and magnetism of rare earth intermetallic compounds: First principle study

    SciTech Connect

    Gavrilenko, V. I.; Wu, R. Q.

    2001-06-01

    Magnetism and magnetostriction of rare earth intermetallic compounds, GdCo{sub 2}, GdFe{sub 2}, NdCo{sub 2}, SmCo{sub 2}, and ErCo{sub 2}, have been studied by using the first principles full-potential linearized augmented plane-wave method with the generalized gradient approximation. The calculated magnetostriction coefficients agree well with experiment. The itinerant electrons of transition metal elements are found to play a significant role in magnetoelastic coupling. The strong anisotropy of magnetostriction in GdCo{sub 2} is explained. Contributions due to spatial anisotropic charge distribution of the incomplete 4f shells are calculated and discussed. {copyright} 2001 American Institute of Physics.

  6. Developments in rare earth intermetallics

    SciTech Connect

    Kirchmayr, H.R.

    1984-09-01

    The magnetic properties of rare earth intermetallics have been the subject of numerous investigations in recent years. However, while the preparation of new intermetallic compounds and the determination of their properties have been the prime concern in former years, more recently the analysis and theoretical explanation of the available data has become most important. Furthermore single crystals have now become available, which permit new experiments. Also many investigations on pseudo-binary systems have permitted the systematic determination of the primary magnetic properties. After a summary of the magnetic properties of intermetallics where the B-moment is zero and nonzero, some examples of pseudobinary systems and especially applications of R-3d multicomponent systems as the basis for advanced permanent magnets are discussed. Finally RE-3d alloys with metalloids and non-metals are discussed with emphasis on the newly developed R-Fe-B permanent magnets.

  7. Prediction of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Burkhanov, Gennady S.; Kiselyova, N. N.

    2009-06-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  8. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  9. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    NASA Astrophysics Data System (ADS)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  10. MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS.

    DTIC Science & Technology

    AGING(MATERIALS), AGING(MATERIALS), INTERMETALLIC COMPOUNDS, VANADIUM ALLOYS, COBALT ALLOYS, NICKEL ALLOYS, MECHANICAL PROPERTIES, TEMPERATURE, TIME ... CRYSTAL STRUCTURE, MICROSTRUCTURE, HARDNESS, TRANSFORMATIONS, ELECTRICAL RESISTANCE, MEASUREMENT, MICROSCOPY, ALLOYS, METALLOGRAPHY, X RAY DIFFRACTION.

  11. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-02

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20 000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types.

  12. Manifestation of spin-charge fluctuations in the spectral and thermodynamic properties of quasi-two-dimensional rare-earth intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Zlotnikov, A. O.

    2017-02-01

    In the framework of the modified periodic Anderson model with exchange interaction in the subsystem of localized states, it is shown that spin-charge fluctuations in quasi-two-dimensional intermetallic compounds with rare-earth ions in the mixed valence state significantly affect both the spectrum of magnetic excitations and the conditions at which the antiferromagnetic phase is realized. The spectral characteristics of the phase were obtained by the method of the diagram technique for Hubbard operators in the one-loop approximation, which allows to account for the spin-charge fluctuation contributions to the components of the mass and the force operators. The developed theory allowed to quantitatively describe the pressure dependence of the Néel temperature observed in a quasi-two-dimensional antiferromagnetic heavy-fermion intermetallic compound CeRhIn5.

  13. Metamagnetism-enhanced magnetocaloric effect in the rare earth intermetallic compound Ho5Ge4

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Morozkin, A. V.; Rajivgandhi, R.; Nigam, A. K.; Quezado, S.; Malik, S. K.

    2016-11-01

    Magnetic and magnetocaloric properties of polycrystalline Ho5Ge4 (orthorhombic, Sm5Ge4-type, Space group Pnma, No. 62, oP36) compound have been studied. This compound orders antiferromagnetically at ~24 K (TN). From the magnetization vs field isotherms obtained close to the magnetic transition temperature, magnetocaloric effect (MCE) has been estimated. The isothermal magnetic entropy change (ΔSM) reaches a maximum value of ~-27 J/kg-K at ~30 K for a field change of 140 kOe. A metamagnetic transition is observed in the field dependent magnetization data at temperatures below 20 K, for critical fields above 20 kOe, giving rise to a ferromagnetic order and hence a large MCE. The magnetic moment value at 2.5 K is ~8μB/Ho3+ in 90 kOe field.

  14. Metamagnetism and giant magnetoresistance of the rare-earth intermetallic compounds R2Ni2Pb (R=Er,Ho,Dy)

    NASA Astrophysics Data System (ADS)

    Chinchure, Aravind D.; Muñoz Sandoval, E.; Mydosh, J. A.

    2002-07-01

    We have measured the magnetization and magnetoresistance for a series of rare-earth (R=Er,Ho,Dy) plumbide intermetallic compounds, R2Ni2Pb. These materials form in an unusual orthorhombic structure with space group Cmmm. After multiple magnetic transitions, the ground state exhibits a steplike series of large-moment metamagnetic transitions in low fields (1-2 T) concomitant with switchinglike properties of the magnetoresistance where sharp changes of up to 30% are found. We relate these properties to the layered magnetic structure of the compound.

  15. Hall Effect in R_2Fe_14B Rare-Earth Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Jolanta; Bartolomé, Juan

    2004-03-01

    We have studied the variation of the a.c. resistivity and of the low-field Hall effect in a single Gd_2Fe_14B crystal over a wide temperature range(4-750 K). The magnetic field dependence of the resistivity up to 5 T was also measured at several temperatures. Using results we have obtained previously for single crystals with R = Y, Nd, and Tm, we find that, away from magnetic transition regions, the anomalous Hall resistivity is proportional to the square of total resistivity, as predicted for side-jump scattering. Below the Curie temperature, the Hall effect arising from skew scattering is alike for all compounds except for Gd, where it is much larger. Coulomb interactions between conductions electrons and localized 4f electrons fail to account for such behavior since they do not give rise to asymmetric scattering for S-state ions. Other mechanisms, mainly covalent mixing interactions and the formation of virtual 5d states, including their spin-orbit interaction, are also considered.

  16. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Park, Jongik

    2004-01-01

    EuNi2Ge2 and GdNi2Ge2 are two members of the RT2X2 (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr2Si2 structure are known for their wide variety of magnetic properties, Extensive studies of the RT2X2 series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi2Ge2 were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi2Ge2 and GdNi2Ge2 and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  17. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  18. Synthesis of Xenon and Iron/Nickel Intermetallic Compounds Under the Thermodynamic Conditions of the Earth's Core.

    NASA Astrophysics Data System (ADS)

    Stavrou, E.; Zaug, J. M.; Crowhurst, J.; Lobanov, S.; Goncharov, A. F.; Prakapenka, V.; Prescher, C.; Yao, Y.; Liu, H.; Dai, Z.; Oleynik, I.; Steele, B.; Cong, K. N.

    2015-12-01

    The lower Xe abundance in Earth's atmosphere, in comparison to other noble gases like Ar and Kr, is one of the most challenging open questions in geosciences [1]. The origin of the so-called "missing Xe paradox" is usually attributed to the inclusion of Xe in the interior of Earth[2]. Although Xe is known to form compounds (e.g. with hydrogen, oxygen), none of them can be related with Earth's interior. Indeed, only a very low amount of Xe can be incorporated in silica at <1 GPa and 500K [3]. On the other hand, experimental attempts have failed to trace possible formation of Fe-Xe compounds up to 155 GPa and bellow 2500K [4]. A very recent theoretical study, suggests that Xe-Ni and Xe-Fe compounds can form at thermodynamic conditions representative of Earth's outer core [5]. Here we explored the possible formation of stable compounds in the Xe-Fe/Ni system at thermodynamic conditions representative of Earth's outer core starting from the following mixtures: a) Xe-Fe, b) Xe-Ni and c) Xe and an Fe/Ni alloy representative of Earth's core (ca 6% Ni). Using in situ synchrotron X-ray diffraction and Raman spectroscopy we report the formation of: a) a XeNi3 compound, in the form of a CrNi3-type FCC solid solution, above 150 GPa and 1500K, b) a Xe(Fe/Ni)3 compound, tentatively characterized as an orthorhombic NbPd3-type solid solution, above 190 GPa and 2000K and c) a still not completely characterized XeFexcompound above 180 GPa and 2000K. This work provides a plausible explanation of the "missing Xe paradox", and underscores the importance of understanding the novel rules of high-pressure chemistry for an improved understanding of the structure and chemistry of the Earth's core. [1] E. Anders, E. and T. Owen, Science 198, 453 (1977). [2] Caldwell, W. A. et al.,Science 277, 930 (1997). [3] C. Sanloup et al.,Science 310, 1174(2005). [4] D. Nishio-Hamane et al.,Geophys. Res. Lett. 37, L04302 (2010). [5] L. Zhu et al., Nature chemistry 6, 664 (2014).

  19. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  20. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  1. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  2. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  3. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    NASA Astrophysics Data System (ADS)

    Rajivgandhi, R.; Arout Chelvane, J.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2017-07-01

    Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P21/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (TC) respectively. While the melt-spun GdNi shows about 6 K increase in TC, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in TC by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆Sm, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  4. Effect of microstructure and texture on the magnetic and magnetocaloric properties of the melt-spun rare earth intermetallic compound DyNi

    NASA Astrophysics Data System (ADS)

    Rajivgandhi, R.; Chelvane, J. Arout; Nigam, A. K.; Park, Je-Geun; Malik, S. K.; Nirmala, R.

    2016-11-01

    Magnetization measurements have been carried out on the melt-spun ribbon sample of the rare earth intermetallic compound DyNi (Orthorhombic, FeB-type, Space group Pnma) and its magnetic and magnetocaloric properties are compared with those of the arc-melted analog. The arc-melted DyNi orders ferromagnetically at around 61 K (TC) whereas the melt-spun DyNi orders ferromagnetically at about 47 K. The maximum isothermal magnetic entropy change, ∆Smmax , near TC of the arc-melted and the melt-spun DyNi is found to be -32.7 J/kg K and -22.4 J/kg K, respectively, for a field change of 140 kOe. For low magnetic field changes of ~20 kOe, the relative cooling power (RCP) is ~660 J/kg for the arc melted DyNi and ~460 J/kg for the melt-spun ribbon. The reduction in TC and magnetocaloric effect may be attributed to the microstructure-induced anisotropy developed during the melt-spinning process.

  5. Large magnetic entropy change and relative cooling power in the rare earth intermetallic HoCo0.25Ni1.75 compound

    NASA Astrophysics Data System (ADS)

    Mondal, Rajib; Nirmala, R.; Arout Chelvane, J.; Malik, S. K.

    2015-11-01

    Magnetic and magnetocaloric properties of cubic Laves phase rare earth intermetallic HoCo0.25Ni1.75 compound have been investigated. Magnetization measurements show that HoCo0.25Ni1.75 orders ferromagnetically at 22 K (TC). The magnetization vs field (M-μ0H) isotherm at 2 K shows negligible hysteresis. The isothermal magnetic entropy change (ΔSm) is calculated from the measured M-μ0H data near TC. The maximum value of ΔSm, ΔSmmax, is about -18.9 J/kg-K at TC for a field change of 5 T with a refrigerant capacity of 572 J/kg. The material exhibits large ΔSmmax of -9.4 J/kg-K even for a low field change of 2 T. Universal master curve is constructed by rescaling ΔSm vs T curves for various fields to confirm the second order nature of the magnetic transition at TC. Large ΔSmmax value, wide temperature span of cooling and high relative cooling power make HoCo0.25Ni1.75 a potential magnetic refrigerant for low temperature applications such as hydrogen liquefaction.

  6. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  7. Intermetallic compounds in heterogeneous catalysis-a quickly developing field.

    PubMed

    Armbrüster, Marc; Schlögl, Robert; Grin, Yuri

    2014-06-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition.

  8. Intermetallic compounds in heterogeneous catalysis—a quickly developing field

    PubMed Central

    Armbrüster, Marc; Schlögl, Robert; Grin, Yuri

    2014-01-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition. PMID:27877674

  9. Contrasts in Structural and Bonding Representations among Polar Intermetallic Compounds. Strongly Differentiated Hamilton Populations for Three Related Condensed Cluster Halides of the Rare-Earth Elements

    SciTech Connect

    Gupta, Shalabh; Meyer, Gerd; Corbett, John D.

    2010-10-01

    The crystal and electronic structures of three related R{sub 3}TnX{sub 3} phases (R = rare-earth metal, Tn = transition metal, X = Cl, I) containing extended mixed-metal chains are compared and contrasted: (1) Pr{sub 3}RuI{sub 3} (P2{sub 1}/m), (2) Gd{sub 3}MnI{sub 3} (P2{sub 1}/m), and (3) Pr{sub 3}RuCl{sub 3} (Pnma). The structures all feature double chains built of pairs of condensed R{sub 6}(Tn) octahedral chains encased by halogen atoms. Pr{sub 3}RuI{sub 3} (1) lacks significant Ru-Ru bonding, evidently because of packing restrictions imposed by the large closed-shell size of iodine. However, the vertex Pr2 atoms on the chain exhibit a marked electronic differentiation. These are strongly bound to the central Ru (and to four I), but very little to four neighboring Pr in the cluster according to bond populations, in contrast to Pr2-Pr 'bond' distances that are very comparable to those elsewhere. In Gd{sub 3}MnI{sub 3} (2), the smaller metal atoms allow substantial distortions and Mn-Mn bonding. Pr{sub 3}RuCl{sub 3} (3), in contrast to the iodide (1), can be described in terms of a more tightly bound superstructure of (2) in which both substantial Ru-Ru bonding and an increased number of Pr-Cl contacts in very similar mixed-metal chains are favored by the smaller closed-shell contacts of chlorine. Local Spin Density Approximation (LSDA) Linearized Muffin-Tin Orbital (LMTO)-ASA calculations and Crystal Orbital Hamilton Population (COHP) analyses show that the customary structural descriptions in terms of condensed, Tn-stuffed, R-R bonded polyhedral frameworks are poor representations of the bonding in all. Hamilton bond populations (-ICOHP) for the polar mixed-metal R-Tn and the somewhat smaller R-X interactions account for 75-90% of the total populations in each of these phases, together with smaller contributions and variations for R-R and Tn-Tn interactions. The strength of such R-Tn contributions in polar intermetallics was first established or anticipated by

  10. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  11. Radiation-induced amorphization of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Sabochick, M. J.; Okamoto, P. R.

    1994-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu4Ti3 are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed.

  12. Service limitations for oxidation resistant intermetallic compounds

    SciTech Connect

    Smialek, J.L.; Nesbitt, J.A.; Brindley, W.J.; Brady, M.P.; Doychak, J.; Dickerson, R.M.; Hull, D.R.

    1995-07-01

    Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi{sub 2} are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. {beta}-NiAl forms protective {alpha}-Al{sub 2}O scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti{sub 3}Al and TiAl compounds form less protective mixed TiO{sub 2} and Al{sub 2}O{sub 3} scales. However at realistic use temperatures (600--800 C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi{sub 2} materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500 C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO{sub 2}-SiO{sub 2} scales in pores and microcracks.

  13. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-11-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  14. Study of Crystal-field Effects in Rare-earth (RE) - Transition-metal Intermetallic Compounds and in RE-based Laser Crystals

    NASA Astrophysics Data System (ADS)

    Magnani, Nicola

    2003-09-01

    Rare-earth (RE) based compounds and alloys are of great interest both for their fundamental physical properties and for applications. In order to tailor the required compounds for a specific task, one must be able to predict the energy level structure and transition intensities for any magnetic ion in any crystalline environment. The crystal-field (CF) analysis is one of the most powerful theoretical methods to deal with the physics of magnetic ions. In the present work, this technique is used to analyze peculiar physical properties of some materials employed in the production of new-generation solid-state laser and high-performance permanent magnets.

  15. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  16. Calculations of the magnetic properties of R2M14B intermetallic compounds (R=rare earth, M=Fe, Co)

    NASA Astrophysics Data System (ADS)

    Ito, Masaaki; Yano, Masao; Dempsey, Nora M.; Givord, Dominique

    2016-02-01

    The hard magnetic properties of "R-M-B" (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R2M14B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R2Fe14B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe.

  17. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content

    PubMed Central

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  18. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3-xTi2 (0 ≤ x ≤ 3)

    DOE PAGES

    Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; ...

    2016-11-28

    Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3) and saturation magnetic polarization (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancymore » disorder.« less

  19. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  20. Magnetic properties of a new intermetallic compound Ho2Ni2Pb

    NASA Astrophysics Data System (ADS)

    Muñoz-Sandoval, E.; Chinchure, A. D.; Hendrikx, R. W. A.; Mydosh, J. A.

    2001-10-01

    Single-phase, textured samples of a new orthorhombic intermetallic compound Ho2Ni2Pb have been fabricated (space group Cmmm). Here the bulk magnetic properties are presented as determined via magnetization, susceptibility, heat capacity and resistivity measurements. The results exhibit two distinct magnetic transitions and large metamagnetic effects. Such behaviour is related to the unusual rare-earth symmetry of the highly anisotropic crystal structure.

  1. Magnetization of RFe3 intermetallic compounds: Molecular field theory analysis

    NASA Astrophysics Data System (ADS)

    Herbst, J. F.; Croat, J. J.

    1982-06-01

    We report magnetization measurements of all RFe3 intermetallic compounds known to form (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm). A two-sublattice molecular field model is employed to analyze the data except in the case of YFe3, for which one magnetic sublattice is assumed. In general, the model adequately describes the temperature dependence of the magnetization. For SmFe3 our results suggest that the samarium and iron moments are ferromagnetically coupled.

  2. Dynamics of radiation-induced amorphization in intermetallic compounds

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R. ); Devanathan, R. Northwestern Univ., Evanston, IL . Dept. of Materials Science and Engineering); Meshii, M. . Dept. of Materials Science and Engineering)

    1992-06-01

    Recent progress in molecular-dynamics simulations of radiation-induced crystalline-to-amorphous transition in intermetallic compounds and the relationship between amorphization and melting are discussed. By focusing on the mean-square static displacement, which provides a generic measure of energy stored in the lattice in the forms of chemical and topological disorder, a unified description of solid-state amorphization as a disorder-induced, isothermal melting process can be developed within the framework of a generalized Lindemann criterion.

  3. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    DTIC Science & Technology

    2010-02-28

    GRANT NUMBER FA9550-06-1-525 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) A. Martinez -Villafane, G. Vazquez-Olvera, A. Borunda Terrazas, V.M... Matinez - Villafane 19b. TELEPHONE NUMBER (include area code)+52(614)4391145 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18...high temperature High Temperature Oxidation of Superalloys and Intermetallic Compounds A. Martinez -Villafane, G. Vazquez-Olvera, A. Borunda

  4. Oxygen-stabilized zirconium-vanadium intermetallic compound

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-10-06

    An oxygen stabilized intermetallic compound having the formula Zr/sub x/OV/sub y/ where x = 0.7 to 2.0 and y = 0.18 to 0.33 is described. The compound is capable of reversibly sorbing hydrogen at temperatures from - 196/sup 0/C to 450/sup 0/C at pressures down to 10/sup -6/ Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO/sub 2/.

  5. Superconductivity of Thin Film Intermetallic Compounds.

    DTIC Science & Technology

    1987-09-30

    grown by molecular beam epitaxy (MBE) in collaboration with Dr . Dale Partin of GM Research Laboratories. The lanthanum sulfide compound films were...Tl) system involved a collaboration with Dr . Dale Partin of the General Motors Research Laboratory. This collaboration has been terminated. The...Doctoral Dissertation of Dr . J. Kang, who recently joined the staff of Argonne National Laboratory as a Post-doc. It is planned to write up a short

  6. Large magnetocaloric effect and near-zero thermal hysteresis in the rare earth intermetallic Tb1-x Dy x Co2 compounds

    NASA Astrophysics Data System (ADS)

    Zeng, Yuyang; Tian, Fanghua; Chang, Tieyan; Chen, Kaiyun; Yang, Sen; Cao, Kaiyan; Zhou, Chao; Song, Xiaoping

    2017-02-01

    We report the magnetocaloric effect in a Tb1-x Dy x Co2 compound which exhibits a wide working temperature window around the Curie temperature (T C) and delivers a large refrigerant capacity (RC) with near-zero thermal hysteresis. Specifically, the wide full width at half maxima ({δ\\text{WFHM}} ) can reach up to 62 K and the RC value changes from 216.5 to 274.3 J Kg-1 when the external magnetic field increases to 5 T. Such magnetocaloric effects are attributed to a magnetic and structural transition from a paramagnetic and cubic phase to a ferromagnetic (M S along [1 1 1] direction) and rhombohedral phase or ferromagnetic (M S along [0 0 1] direction) and tetragonal phase.

  7. Magnetic and magnetocaloric properties of the new rare-earth-transition-metal intermetallic compound Gd3Co29Ge4B10

    NASA Astrophysics Data System (ADS)

    Hill, P.; Dubenko, Igor; Samanta, Tapas; Quetz, Abdiel; Ali, Naushad

    2012-04-01

    The compounds Gd3-xYxCo29Ge4B10 (x = 0, 0.5, 1.0, 1.5, and 3.0), Gd3Co29Al4B10, and Gd3Co29Al4B10 were synthesized by arc melting, and their magnetic properties investigated as a function of temperature and applied magnetic field. X-ray measurements showed primarily single-phase samples with the tetragonal crystal structure P4/nmm. It was found that Gd3Co29Ge4B10 orders ferromagnetically at TC = 212 K and shows a compensation point at 128 K, indicating a ferrimagnetic ordering of the Co and Gd moments. An entropy change of -ΔS = 0.5 J/kgK was observed in a 5-T field at TC for this sample, while a change in sign for this quantity was observed both at the maximum value of magnetization (around 200 K) and then again at the compensation point. Substitution of Y for Gd in Gd3Co29Ge4B10 does not affect the Curie temperature, but shifts the compensation point to lower temperatures. This indicates that a decrease in Gd concentration does not affect the d-d exchange interaction, but has a pronounced effect on the f-d exchange interaction.

  8. Extreme Poisson's ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Jones, Travis E.; Li, W.; Zhou, Y. C.

    2012-04-01

    Negative Poisson's ratios have been observed in a variety of metals and alloys. However, the electronic origin of this effect remains unclear, as is evident by our limited knowledge about intermetallics showing this behavior. In an effort to clarify the electronic origin of a negative Poisson's ratio, we have performed a systematic and comprehensive study of extreme (both positive and negative) Poisson's ratios behavior in the B2 CsCl-type AB intermetallic family (including 14 common intermetallics and 128 rare-earth-metal transition or main-group-metal intermetallics) by way of density functional theory calculations. We found a pronounced correlation between the extreme Poisson's ratios and the elastic anisotropy, with approximately 70% of the B2 intermetallics showing intrinsic auxetic behavior. We went on to examine the topology and geometry of the electron charge density and found that the extreme Poisson's ratios are attributable to the directionality of the bonds of the material. Auxetic materials were found to have nondirectional bonds, and nonauxetic compounds had directional bonds. Our findings provide an essential electronic perspective to forecast the auxetic behavior, and suggest a new application for intermetallic compounds.

  9. The Shock Hugoniot of the Intermetallic Compound Ni3Al

    SciTech Connect

    Knapp, I.; Millett, J. C. F.; Meziere, Y. J. E.; Gray, G. T. III; Bourne, N. K.

    2006-07-28

    The behaviour of the intermetallic compound, Ni3Al under shock loading conditions has been measured. The Hugoniot Elastic Limit occurs at ca. 530 MPa, which converts to a 1-D yield stress of 273 MPa, in agreement with quasi-static data. In contrast, the ductility at shock-induced strain-rates appears much reduced when compared to lower strain-rates. The Hugoniot in terms of shock velocity and particle velocity suggests that Ni3Al is more compressible than pure nickel. This is in agreement with the greater stiffnesses in nickel, measured using ultrasonic techniques.

  10. Unexpected Xe anions in XeLin intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Botana, Jorge; Miao, Maosheng; Yan, Dadong

    2017-01-01

    The reactivity of Xe is important in both fundamental chemistry and geological science. The discovery of the reductive reactivity of Xe extended the doctrinal boundary of chemistry for which a completed shell is inert to reaction. The oxidation of Xe by various elements has been explored. On the other hand, the opposite chemical inclination, i.e., gaining electrons and forming anions, has not been thoroughly studied for Xe or other noble-gas elements. In this work, we demonstrate, using first-principles calculations and an efficient structure prediction method, that Xe can form stable \\text{XeLi}n (n=1\\text{--}5) compounds under high pressure. These compounds are intermetallic and Xe are negatively charged. The stability of these compounds indicates that atoms or ions with completely filled shell may still gain electrons in chemical reactions.

  11. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  12. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    SciTech Connect

    K.A. Gschneidner; A.O. Pecharsky; V.K. Pecharsky

    2004-09-30

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from {approx}3 to {approx}350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature (<15 K) prototype cryocooler regenerator materials HoCu{sub 2}, Er{sub 3}Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K.

  13. Effect of Reflow Profile on Intermetallic Compound Formation

    NASA Astrophysics Data System (ADS)

    Siti Rabiatull Aisha, I.; Ourdjini, A.; Azmah Hanim, M. A.; Saliza Azlina, O.

    2013-06-01

    Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. So far, many papers have reported effects of cooling speed, type of solder pastes and solder fluxes on the reliability of lead-free solder joints. While the effects of reflow conditions on intermetallic compound (IMC) formation at the solder joint such as the atmosphere during the reflow process are still unclear. The present study investigated thoroughly the effect of different reflow soldering atmosphere, which is air and nitrogen on IMC formation and growth. Several techniques of materials characterization including optical, image analysis, scanning electron microscopy and energy dispersive X-ray analysis will be used to characterise the intermetallics in terms of composition, thickness and morphology. In addition, the effects of cooling rate and isothermal aging were also studied for the solder alloy Sn-4Ag-0.5Cu on electroless nickel/immersion gold (ENIG) surface finish. From the study, it was found that reflowing under nitrogen atmosphere had better effect on IMC formation and growth compared to reflowing under air. Besides, the cooling rate of solder during reflow also appears to have a significant effect on the final structure of the solder joint, and controlling the growth behaviour of the IMC during subsequent isothermal aging.

  14. CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-02-01

    Titanium aluminide intermetallic compound is studied to find out good welding conditions using CO2 laser irradiation. In the experiment, we used the casting titanium aluminide containing iron, vanadium and boron with a thickness of 2 mm. We carried out bead-on-plate laser welding at various initial temperatures of specimens varied from room temperature to 873 [K] in inert gas environment filled with argon. We measured fused depth, bead width and Vickers hardness. As a result of experiments, welding speeds that allow full bead-on- plate welding to be possible were strongly by dependent on the initial temperature, 3000 [mm/min], initial temperature 873 [K], 2600 [mm/mm], initial temperature 673 [K], and 2000 [mm/min] with 300 [K]. Transverse crack-free welding was achieved, when initial temperature was at 873 [K].

  15. Effects of elastic anisotropy on mechanical behavior of intermetallic compounds

    SciTech Connect

    Yoo, M.H.

    1991-01-01

    Fundamental aspects of the deformation and fracture behavior of ordered intermetallic compounds are examined within the framework of linear anisotropic elasticity theory of dislocations and cracks. The orientation dependence and the tension/compression asymmetry of yield stress are explained in terms of the anisotropic coupling effect of non-glide stresses to the glide strain. The anomalous yield behavior is related to the disparity (edge/screw) of dislocation mobility and the critical stress required for the dislocation multiplication mechanism of Frank-Read type. The slip-twin conjugate relationship, extensive faulting, and pseudo-twinning (martensitic transformation) at a crack tip can be enhanced also by the anisotropic coupling effect, which may lead to transformation toughening of shear type.

  16. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect

    Stegmaier, Saskia; Faessler, Thomas F.

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding

  17. Ultra-high vacuum compatible preparation chain for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  18. Ultra-high vacuum compatible preparation chain for intermetallic compounds.

    PubMed

    Bauer, A; Benka, G; Regnat, A; Franz, C; Pfleiderer, C

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  19. Intermetallic compounds as negative electrodes of Ni/MH batteries

    NASA Astrophysics Data System (ADS)

    Cuevas, F.; Joubert, J.-M.; Latroche, M.; Percheron-Guégan, A.

    2001-04-01

    This review is devoted to the main families of thermodynamically stable intermetallic compounds (AB5-, AB2- and AB-type alloys) that have been researched in the last thirty years as materials for negative electrodes in nickel-metal hydride batteries. The crystal structure of these compounds and their hydrides is widely described. Their solid-gas hydrogenation properties and, particularly, the related desorption isotherm curves are examined as a useful criterion for the selection of suitable battery materials. The electrochemical performances obtained with these alloys are reported and the given solutions to common problems such as corrosion, passivation, decrepitation and short cycle life are discussed. Only AB5-based compounds have achieved, up to now, enough development for being widely present on the market, and exhibit improved battery performances in comparison with the polluting Ni/Cd batteries. The high capacity of AB2-based compounds and the remarkable electrochemical activity of some AB-based alloys make, however, further research on all the reviewed families still valuable.

  20. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    PubMed Central

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-01-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ −59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256

  1. Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Nguyen, M. C.; Zhang, W. Y.; Wang, C. Z.; Kramer, M. J.; Sellmyer, D. J.; Li, X. Z.; Zhang, F.; Ke, L. Q.; Antropov, V. P.; Ho, K. M.

    2014-01-01

    Solving the crystal structures of novel phases with nanoscale dimensions resulting from rapid quenching is difficult due to disorder and competing polymorphic phases. Advances in computer speed and algorithm sophistication have now made it feasible to predict the crystal structure of an unknown phase without any assumptions on the Bravais lattice type, atom basis, or unit cell dimensions, providing a novel approach to aid experiments in exploring complex materials with nanoscale grains. This approach is demonstrated by solving a long-standing puzzle in the complex crystal structures of the orthorhombic, rhombohedral, and hexagonal polymorphs close to the Zr2Co11 intermetallic compound. From our calculations, we identified the hard magnetic phase and the origin of high coercivity in this compound, thus guiding further development of these materials for use as high performance permanent magnets without rare-earth elements.

  2. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect

    Han, Mi-Kyung

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  3. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect

    Han, M. K.

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  4. Formation of intermetallic compound coating on magnesium AZ91 cast alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Tianping; Gao, Wei

    2009-08-01

    This study describes an intermetallic compound coating formed on AZ91 Mg cast alloy. The Al sputtered on AZ91 cast alloy reacted with substrate during a short period of heat treatment at 435°C, resulting in the formation of a continuous intermetallic compound layer. The short period treatment has the advantage of minimizing the negative effect on the microstructure of substrate and the mechanical properties, comparing with the reported diffusion coatings. DSC measurement and examination on the cross-section of Al sputtered samples show that local melting occurred along the Al/substrate interface at the temperature range between 430~435°C. The formation mechanism of intermetallic compound coating is proposed in terms of the local melting at Al/substrate interface. The salt water immersion test showed significant improvement in corrosion resistance of the intermetallic compound coated AZ91 cast alloy compared with the as-cast alloys.

  5. Intermetallic compound formation at Cu-Al wire bond interface

    NASA Astrophysics Data System (ADS)

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du, Yong

    2012-12-01

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 °C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable θ'-CuAl2 IMC phase (tetragonal, space group: I4¯m2, a = 0.404 nm, c = 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable θ'-CuAl2 phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and θ'-CuAl2, which can minimize lattice mismatch for θ'-CuAl2 to grow on Cu.

  6. New Interest in Intermetallic Compound ZnSb

    NASA Astrophysics Data System (ADS)

    Fedorov, M. I.; Prokof'eva, L. V.; Pshenay-Severin, D. A.; Shabaldin, A. A.; Konstantinov, P. P.

    2014-06-01

    The intermetallic compound ZnSb has been known since the 1830s. It has semiconductor properties, but its mechanical, thermal, and chemical properties are very close to those of a metallic alloy. When thermoelectrics based on (BiSb)2(TeSe)3 solid solutions were created, interest in ZnSb subsided. However, the current situation is different, as tellurium has become expensive and rare. Moreover, its compounds are too toxic, and it is too difficult to produce such materials and devices from these solid solutions. Recently, n-type material based on Mg2(SnSi) solid solution was proposed in the Laboratory of Physics for Thermoelements of the Ioffe Physical-Technical Institute. This material together with ZnSb may form a promising couple for creating various thermoelectric modules. In this paper, various properties (Hall and Seebeck coefficients, electrical and thermal conductivities) are reported in the temperature range from 80 K to 797 K. Different acceptor impurities have been tested. The Hall concentration at room temperature varied from 1.5 × 1018 cm-3 to 2.7 × 1019 cm-3. Some features have been discovered in the behavior of the thermoelectric parameters of double-doped ZnSb samples at temperatures above 500 K. Their nature points to a temperature-dependent increase of the Hall concentration. The existence of two temperature ranges with additional doping is revealed by Hall coefficient and electrical conductivity measurements in the range from 80 K to 797 K. The experimental data are discussed based on a model of the energy spectrum with impurity and native defect states localized in the energy gap. It is shown that the dimensionless thermoelectric figure of merit of ZnSb: Cd, Ag, Sn is not less than 1.0 at 600 K.

  7. Atomistic Simulation of Radiation-Induced Amorphization of Intermetallic Compounds.

    NASA Astrophysics Data System (ADS)

    Devanathan, Ramaswami

    Electron irradiation-induced amorphization of the intermetallic compounds NiZr, NiZr_2, FeTi and CuTi was examined using molecular dynamics simulations. Embedded-atom potentials, fitted to the properties of the pure metals and compounds, were used to model the interactions between the atoms. Electron irradiation was simulated by two different processes: randomly chosen atoms of different species were exchanged to create chemical disorder, and Frenkel pairs were introduced into the simulation cell at random. The resulting configurations corresponding to various damage doses were relaxed and the thermodynamic, structural, and mechanical properties were evaluated as functions of dose. The evolution of the system structure during the simulation was monitored using a new approach that combines molecular dynamics with the multislice method. Electron diffraction patterns were calculated from simulated configurations in an effort to maintain consistency with experiments, and improve the sensitivity to structural changes. The results of the simulation indicate that the mechanism of amorphization can vary from compound to compound. Chemical disorder was sufficient to cause amorphization in NiZr and NiZr_2, while Frenkel pairs were required in addition to chemical disorder in CuTi, and FeTi. During the process of amorphization, the energy and volume increased with dose and saturated at the corresponding levels of a quenched liquid. The variation of the volume with dose was remarkably similar to that of the energy. The pair-correlation functions, diffraction patterns, and projection of atom positions indicated the occurence of amorphization. In addition, the elastic constants C_{44 } and C^' became equal. Prior to the attainment of elastic isotropy, the average shear elastic constant decreased by about 50% of its value in the perfect crystal. In an effort to understand the elastic softening prior to amorphization and explore similarities between melting and amorphization, the

  8. Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds

    DTIC Science & Technology

    1988-12-15

    Niobium aluminides and silicides as well as other intermetallic corn unds have potential for use in advanced gas turbines where increased operating...diffusion aluminide coatings on Ni-base alloys(10), Fe- silicides (l 1), and Ni- ’ silicides (12) indicate similar behavior to that in Figure 8. Typical... Niobium W MAR- 2 7 1983 Base Alloys and Other Selected Intermetallic Compounds &Simukx Defense Advanced Research Projects Agency . DARPA Order No. 6155

  9. Twinning Mechanisms in Complex High Tm Intermetallic Compounds

    DTIC Science & Technology

    2007-11-02

    Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, Editors, TMS, Warrendale, PA (1993), pp 637-646. 12. "Deformation...of the 1995 Hume -Rothery Award Symposium, TMS, Warrendale, PA. 18. "Ductility and Toughness Considerations in Intermetallics", Y. Kimura and D.P...Pope, in Structural Intermetallics 1997, M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle , R. Wagner, and M. Yamaguchi, Editors, TMS

  10. Point Defects Quenched in Nickel Aluminide and Related Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Fan, Jiawen

    Point defects in the highly ordered B2 compounds NiAl, CoAl and FeAl were studied using the perturbed gammagamma angular correlations (PAC) technique. Quadrupole interactions detected at dilute ^{111}In probes on Al sites in NiAl and CoAl were identified with complexes containing one or two vacancies in the first atomic shell. Measurements on rapidly quenched NiAl and CoAl exhibited increases in site fractions of vacancy-probe complexes caused by formation of thermal defects. Site fractions were analyzed using the law of mass action to obtain absolute vacancy concentrations. PAC is shown to be a powerful new technique for the quantitative study of equilibrium defects in solids. For NiAl, the vacancy concentration quenched-in from a given temperature was found to be independent of composition over the range 50.4 -53.5 at.% Ni, identifying the Schottky defect (vacancy pair) as the dominant equilibrium defect, and ruling out the so-called triple defect. Formation energies and entropies of Schottky pairs were determined to be 2.66(8) and 3.48(12) eV, and 12(1) and 17(2) k_{rm B}, respectively, for NiAl and CoAl. The entropies suggest huge vacancy concentrations, 13%, at the melting temperatures of NiAl and CoAl. Migration energies of Ni and Co vacancies were found to be 1.8(2) and 2.5(2) eV, respectively. FeAl exhibited complex behavior. A low-temperature regime was detected in NiAl and CoAl within which vacancies are mobile but do not anneal out, so that the vacancy concentration remains constant. In NiAl, this "bottleneck" regime extends from 350 to 700 ^circC. Vacancies were found to be bound to the In probes with an energy very close to 0.20 eV in NiAl and CoAl. An explanation of the bottleneck is proposed in terms of saturation of all lattice sinks. This annealing bottleneck should exist in a wide range of intermetallic compounds when there is a sufficiently high vacancy concentration.

  11. Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Park, Chun Woong; Suk, Myung-Jin; Kim, Young Do

    2016-01-01

    In general, size, shape and dispersion of phases in alloys significantly affect mechanical properties. In this study, the mechanical properties of Mo-Si-B alloys were experimentally investigated with regards to the refinement of intermetallic compound. To confirm the size effect of the intermetallic compound phases on mechanical properties, two differently sized intermetallic compound powders consisting Mo5SiB2 and Mo3Si were fabricated by mechano-chemical process and high-energy ball milling. A modified powder metallurgy method was used with core-shell intermetallic powders where the intermetallic compound particles were the core and nano-sized Mo particles which formed by the hydrogen reduction of Mo oxide were the shells, leading to the microstructures with uniformly distributed intermetallic compound phases within a continuous α-Mo matrix phase. Vickers hardness and fracture toughness were measured to examine the mechanical properties of sintered bodies. Vickers hardness was 472 Hv for the fine intermetallic compound powder and 415 Hv for the coarse intermetallic compound powder. The fracture toughness was 12.4 MPa·√m for the fine IMC powders and 13.5 MPa·√m for the coarse intermetallic compound powder.

  12. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  13. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  14. Micromechanisms of intergranular brittle ftacture in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vitek, V.

    1991-06-01

    Grain boundaries in intermetallic compounds such as Ni3A1 are inherently brittle. The reason is usually sought in grain boundary cohesion but in metals even brittle fracture is accompanied by some local plasticity and thus not only cohesion but also dislocation mobility in the boundary region need to be studied. We first discuss here the role of an irreversible shear deformation at the crack tip during microcrack propagation assuming that these two processes are concomitant. It is shown that a pre-existing crack cannot propagate in a brittle manner once the dislocation emission occurs. However, if a microcrack nucleates during loading it can propagate concurrently with the development of the irreversible shear deformation at the crack tip. The latter is then the major energy dissipating process. In the second part of this paper we present results of atomistic studies of grain boundaries in Ni3A1 and CU3Au which suggest that substantial structural differences exist between strongly and weakly ordered L12 alloys. We discuss then the consequence of these differences for intergranular brittleness in the framework of the above model for microcrack propagation. On this basis we propose an explanation for the intrinsic intergranular brittleness in some L12 alloys and relate it directly to the strength of ordering. Les joints de grains dans les composés intermétalliques de type Ni3AI sont de nature fragile. L'origine de cette fragilité est habituellement dans la cohésion des joints de grains. Dans les métaux, cependant, même la rupture fragile est accompagnée d'une certaine déformation plastique locale, de telle sorte que non seulement la cohésion mais aussi la mobilité des dislocations près des joints doit être étudiée. Nous discutons d'abord le rôle d'une déformation en cisaillement irréversible en tête de fissure pendant la propagation de cette fissure, en supposant que les deux processus sont concomitants. Nous montrons qu'une fissure préexistante ne

  15. Electronic and high pressure elastic properties of RECd and REHg (RE=Sc, La and Yb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Devi, Hansa; Pagare, Gitanjali; Chouhan, Sunil S.; Sanyal, Sankar P.

    2015-01-01

    Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B‧) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson's ratio (σ), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen's method has been used to predict the Vicker's hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.

  16. Electronic structures of intermetallic borides RPd3Bx ( R= rare-earth metals)

    NASA Astrophysics Data System (ADS)

    Loison, C.; Leithe-Jasper, A.; Rosner, H.

    2007-05-01

    The electronic structure and the theoretical lattice parameters for the intermetallic antiperovskites RPd3B ( R from La to Yb) are calculated within the density-functional theory using the LSDA+U functional (LSDA is local spin density approximation) to include strong electronic correlations at the R site. Exemplarily, the electronic structure of LaPd3B is discussed and compared with the isoelectronic and isostructural superconductor MgCNi3 . The coherent potential approximation is applied to calculate the lattice parameters of RPd3Bx , where R=La and Lu, as a function of the boron content x . Contrarily to what was reported by Dhar [Mater. Res. Bull. 16, 1557 (1981)], a regular increase is observed in the whole range xɛ[0,1] . Moreover, the calculated lattice parameters obtained for the whole family RPd3B , with R from La to Yb, are much higher than the experimental lattice parameters published by Dhar , questioning their synthesis of stoichiometric compounds RPd3B . Attempts to synthesize RPd3B with R=La , Yb failed for LaPd3B . Instead, in the case of exposure to air, LaPd3Ox is obtained. On the contrary, YbPd3Bx could be obtained (0⩽x⩽0.6) . For this phase, the LSDA+U calculations indicate a valence instability. Thus, boron insertion in RPd3 seems eased by the tendency of the rare earth to become divalent.

  17. Mössbauer effect of Al-Fe-Si intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Arai, K.; Shiga, M.; Nakamura, Y.

    1985-11-01

    Mössbauer spectra were obtained for α and β-Al-Fe-Si intermetallic compounds, which are usually detected as precipitates in commercial grade Al metals. The samples were prepared by two methods, electrolytic extraction of precipitates from Al ingots and direct melting of appropriate amounts of raw materials. By the latter method, pure compounds have been obtained, whose spectra can be used as the standard spectra of these compounds to analyze the Mössbauer spectra of Al alloys.

  18. Resonant ultrasound spectroscopy: Elastic properties of some intermetallic compounds

    SciTech Connect

    Chu, F.; Thoma, D.J.; He, Y.; Maloy, S.A.; Mitchell, T.E.

    1996-09-01

    A novel nondestructive evaluation method, resonant ultrasound spectroscopy (RUS), is reviewed with an emphasis upon defining the elastic properties of intermetallic phases. The applications and advantages of RUS as compared to other conventional elastic constant measurement methods are explained. RUS has been employed to measure the elastic properties of single crystal and/or polycrystalline intermetallics, such as Laves phases (C15 HfV{sub 2} and NbCr{sub 2}), Nb-modified titanium aluminides, and transition metal disilicides (C11{sub b} MoSi{sub 2}, C40 NbSi{sub 2} and TaSi{sub 2}). For Laves phases, the elastic properties of HfV{sub 2}-based C15 phases show various anomalies and those of C15 NbCr{sub 2} do not. For Nb-modified titanium aluminides, the elastic properties of O-phase alloys are investigated as a function of alloying content. For transition metal disilicides, single crystal elastic constants of MoSi{sub 2}, NbSi{sub 2}, and TaSi{sub 2} are obtained and compared. Based on the experimentally determined elastic properties, the characteristics of interatomic bonding in these materials are examined and the possible impact of the elastic properties on mechanical behavior is discussed.

  19. Evaluation of Gibbs free energies of formation of Ce-Cd intermetallic compounds using electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Hayashi, Hirokazu; Akabori, Mitsuo; Arai, Yasuo; Kurata, Masaki

    2014-08-01

    Gibbs free energies of formation of six Ce-Cd intermetallic compounds, CeCd, CeCd2, CeCd3, CeCd58/13, CeCd6 and CeCd11, were evaluated systematically using electrochemical techniques in the temperature range of 673-923 K in the LiCl-KCl-CeCl3-CdCl2 molten salt bath. The linear dependence of the Gibbs free energies of formation on temperature yields to the enthalpies and entropies of formation of these intermetallic compounds. By extrapolating the Gibbs free energy of Ce-Cd intermetallic compounds to the Cd distillation temperature, it was clear that the Gibbs free energy of Ce-Cd intermetallic compounds decreases gradually from CeCd6 to CeCd2 and attains minimum value at CeCd2. This suggests on the Cd distillation from the U-Pu-Ce-Cd alloy that the dissolution of U or Pu into CeCd2 should be mostly taken into consideration.

  20. Hydrides of intermetallic compounds and alloys: their properties and application in atomic technology

    SciTech Connect

    Perevezentsev, A. N.; Andreev, B. M.; Kapyshev, V. K.; Rivkis, L. A.; Malek, M. P.; Bystritskii, V. M.; Stolupin, V. A.

    1988-11-01

    The Soviet and foreign literature is reviewed and an attempt is made to systematize the large amount of information on the fundamental properties of most of the well-known hydride-forming intermetallic compounds and their practical use for the extraction, cleaning, and storage of hydrogen and the separation of its isotopes.

  1. RESEARCH ON THE DEPOSITION OF MAGNETIC INTERMETALLIC COMPOUNDS IN THIN FILMS.

    DTIC Science & Technology

    A process for the vacuum deposition of thin films of intermetallic compounds of cobalt and yttrium, samarium, or neodymium, was developed. The...of the evaporation rates. Thin films of the desired stoichiometric compositions, Co5R, were produced in an extensive series of sequential experiments

  2. Effect of conduction electrons on the paramagnetic susceptibility of rare earth intermetallics

    SciTech Connect

    Zajac, S.; Pesek, F.

    1994-03-01

    The authors have calculated the paramagnetic susceptibility of rare earth intermetallics in the model of the crystal-field split 4F ions interacting with conduction electrons by exchange coupling. Using the thermodynamic perturbation theory they have derived analytical formulae for the susceptibility to the second order. They have developed scheme to simultaneously optimize fitting of crystal-field and coupling parameters to the experimental data.

  3. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3-xTi2 (0 ≤ x ≤ 3)

    SciTech Connect

    Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; Xu, Xiaoshan; Zhang, Jie; Zhang, Xiaozhe; Liu, Yaohua; Huq, Ashfia; Valloppilly, Shah R.; Jin, Yunlong; Wang, Cai -Zhuang; Ho, Kai -Ming; Sellmyer, David J.

    2016-11-28

    Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3) and saturation magnetic polarization (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.

  4. Magnetic properties of the new ternary cerium intermetallic compound CeRuSi{sub 2}

    SciTech Connect

    Velikhovski, A.A.; Nikiforov, V.N.; Mirkovic, J.; Kovacik, V.; Baran, M.; Szymczak, H.

    1994-03-01

    The authors present a study of the magnetic properties of the new cerium ternary intermetallic compound CeRuSi{sub 2} which demonstrates heavy-fermion-like behavior and reveals magnetic transition at {Tc} = 11K. The temperature (5compound.

  5. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  6. Targeted crystal growth of rare Earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity.

    PubMed

    Schmitt, Devin C; Drake, Brenton L; McCandless, Gregory T; Chan, Julia Y

    2015-03-17

    The single-crystal growth of extended solids is an active area of solid-state chemistry driven by the discovery of new physical phenomena. Although many solid-state compounds have been discovered over the last several decades, single-crystal growth of these materials in particular enables the determination of physical properties with respect to crystallographic orientation and the determination of properties without possible secondary inclusions. The synthesis and discovery of new classes of materials is necessary to drive the science forward, in particular materials properties such as superconductivity, magnetism, thermoelectrics, and magnetocalorics. Our research is focused on structural characterization and determination of physical properties of intermetallics, culminating in an understanding of the structure-property relationships of single-crystalline phases. We have prepared and studied compounds with layered motifs, three-dimensional magnetic compounds exhibiting anisotropic magnetic and transport behavior, and complex crystal structures leading to intrinsically low lattice thermal conductivity. In this Account, we present the structural characteristics and properties that are important for understanding the magnetic properties of rare earth transition metal intermetallics grown with group 13 and 14 metals. We present phases adopting the HoCoGa5 structure type and the homologous series. We also discuss the insertion of transition metals into the cuboctahedra of the AuCu3 structure type, leading to the synthetic strategy of selecting binaries to relate to ternary intermetallics adopting the Y4PdGa12 structure type. We provide examples of compounds adopting the ThMn12, NaZn13, SmZn11, CeCr2Al20, Ho6Mo4Al43, CeRu2Al10, and CeRu4Al16-x structure types grown with main-group-rich self-flux methods. We also discuss the phase stability of three related crystal structures containing atoms in similar chemical environments: ThMn12, CaCr2Al10, and YbFe2Al10. In

  7. TiNiSn: A gateway to the (1,1,1) intermetallic compounds

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A.

    1996-06-01

    Recent awareness of the transport properties of Skutterudite pnictides has stimulated an interest in numerous other intermetallic compounds having a gap in the density of states at the Fermi level including the MNiSn compounds where M = (Ti, Zr, Hf). These intermetallic half-Heusler compounds are characterized by high Seebeck coefficients ({minus}150 to {minus}300 {micro}V/deg.) and reasonable carrier mobilities (30 to 50 cm{sup 2}/V-s) at room temperature which make them attractive candidates for intermediate temperature thermoelectric applications. Samples of TiNiSn were prepared by arc melting and homogenized by heat treatment. The temperature dependence of the electrical resistivity, Seebeck coefficient, and thermal diffusivity of these samples was characterized between 22 C and 900 C. The electrical resistivity and thermopower both decrease with temperature although the resistivity decreases at a faster rate. Electrical power factors in excess of 25 {micro}W/cm-C{sup 2} were observed in nearly single phase alloys within a 300 to 600 C temperature range. A brief survey of other selected ternary intermetallic compounds is also presented.

  8. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    PubMed Central

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  9. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound.

    PubMed

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-04

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  10. Phase Stability of Intermetallic Compound Ce3Al in Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ping; Takeya, Hiroyuki; Sakurai, Kenji

    2017-09-01

    For many years, cerium-aluminum systems have been extensively studied because of their unusual magnetic behavior. As the atomic radii of cerium and aluminum differ greatly from each other, a solid solution is not obtained because of the Hume-Rothery rule. Therefore, intermetallic compounds are usually studied, and structural stability is crucial for further discussion of their physical properties. The present article reports on high-energy ball milling of the intermetallic compound Ce3Al at room temperature. It has been found that non-equilibrium supersaturated Ce solid solution was formed during the milling. The solubility of aluminum was estimated as 5 to 13 at. pct from the peak shifts of the X-ray diffraction pattern. The structural changes in the initial stages of the milling were also studied.

  11. Discovery of a Superconducting Cu-Bi Intermetallic Compound by High-Pressure Synthesis

    SciTech Connect

    Clarke, Samantha M.; Walsh, James P. S.; Amsler, Maximilian; Malliakas, Christos D.; Yu, Tony; Goedecker, Stefan; Wang, Yanbin; Wolverton, Chris; Freedman, Danna E.

    2016-09-26

    A new intermetallic compound, the first to be structurally identified in the Cu-Bi binary system, is reported. This compound is accessed by high-pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu11Bi7 is a unique variation of the NiAs structure type. Temperature-dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at Tc=1.36 K. Density functional theory calculations further demonstrate that Cu11Bi7 can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight the ability of high-pressure syntheses to allow for inroads into heretofore-undiscovered intermetallic systems for which no thermodynamically stable binaries are known.

  12. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  13. Domain Structure of R2Fe17 Intermetallic Compounds with Planar-Type Anisotropy

    NASA Astrophysics Data System (ADS)

    Pastushenkov, Yu. G.; Skokov, K. P.; Lyakhova, M. B.; Antonova, E. S.

    2017-01-01

    Magnetic domain structure is studied in single crystals of R2Fe17 (R = Tb, Dy, Ho, Er) intermetallic compounds in a wide range of temperatures (10 - 300 K) and magnetic fields (μ0 H = 0 - 0.1 T). It is shown that single crystal specimens of hexagonal magnetics with planar-type anisotropy acquire domain structures containing not only 180-degree domain boundaries but also 60- and 120-degree ones.

  14. On the origin of magnetic a.c. susceptibility non-SRT anomalies in intermetallic compounds

    SciTech Connect

    Bartolome, J.; Garcia, L.M.; Lazaro, F.J.; Grincourt, Y.; Fuente, L.G. de la; Francisco, C. de; Munoz, J.M.; Fruchart, D.

    1994-03-01

    The anomaly detected in the magnetic a.c. susceptibility of many intermetallic compounds between 100 and 300 K, and in particular in Nd{sub 2}Fe{sub 14}B at 220 K, has been induced in a controlled manner by thermal annealing. The anomaly has been interpreted in terms of thermal activated processes of defects imposing their dynamical behavior on the domain walls coupled to them, thus solving the controversy on its origin.

  15. Making NiTi intermetallic compound coating using laser plasma complex spraying

    SciTech Connect

    Hiraga, Hitoshi; Inoue, Takashi; Matsunawa, Akira

    1996-12-31

    To improve the erosion resistance of the Ti-alloys, surface modification technique using complex spraying system coupled with a high power CO{sub 2} laser and a DC plasma gun was applied. The laser plasma complex spraying system (LPCS) was constructed with 5kW CO{sub 2} laser and low pressure DC plasma spraying unit. In this system, the plasma spray coated layer was remelted and rapidly solidified by the CO{sub 2} laser irradiation. So, it is possible to synthesize intermetallic compound coatings from the simply mixed powder. NiTi intermetallic compound is known as a high cavitation erosion resistant material. In a case of only plasma spraying process, Ti and Ni layer were separated mutually in the coatings, but by the laser plasma complex spraying, NiTi, NiTi{sub 2}, and Ni{sub 3}Ti intermetallic compounds were formed in the coatings. And the coatings were joined metallurgically with substrate and contained few defect. The ratio of phases such as NiTi, NiTi{sub 2}, and Ni{sub 3}Ti was varied with the laser irradiation conditions and powder mixed ratio. To evaluate the erosion resistance of the coatings, vibratory cavitation erosion tests were carried out. The cavitation erosion resistance of the coatings were about 20 times as much as Ti6Al4V substrate due to NiTi phase.

  16. Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element

    NASA Astrophysics Data System (ADS)

    Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.

    2007-04-01

    Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.

  17. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    NASA Astrophysics Data System (ADS)

    Filipek, S. M.; Paul-Boncour, V.; Liu, R. S.; Jacob, I.; Tsutaoka, T.; Budziak, A.; Morawski, A.; Sugiura, H.; Zachariasz, P.; Dybko, K.; Diduszko, R.

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT2, MeNi5, Me7T3, Y6Mn23 and YMn12 (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe2H4 due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  18. Na-Au intermetallic compounds formed under high pressure at room temperature

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Fujihisa, H.

    2011-07-01

    High-pressure powder x-ray diffraction experiments have revealed that sodium and gold react at room temperature and form Na-Au intermetallic compounds under high pressure. We have identified four intermetallic phases up to 60 GPa. The first phase (phase I) is the known Na2Au with the tetragonal CuAl2-type structure. It changed to the second phase (phase II) at ˜0.8 GPa, which has the composition Na3Au with the trigonal Cu3As-type or hexagonal Cu3P-type structure. Phase II further transformed to phase III at 3.6 GPa. Phase III has the same composition, Na3Au, with the cubic BiF3-type structure. Finally, phase III changed to phase IV at ˜54 GPa. Phase IV gives broad diffraction peaks, indicating large structural disorder.

  19. Long-Term Behavior of the Tritides Formed by Nickel-Based Intermetallic Compounds

    SciTech Connect

    Bowman, Jr., R. C.; Steinmeyer, R. H.; Matson, L. K.; Attalla, A.; Craft, B. D.

    1985-04-01

    Some properties of the tritide phases formed by the intermetallic compounds Mg2Ni, ZrNi, and LaNi5 have been studied. Whereas ZrNiT3 will retain its stoichiometry indefinitely when sufficient gaseous tritium is available, the stoichiometries of Mg2NiT4 and LaNi5T6.9 decrease with time. Although all three intermetallic tritides can retain large quantities of the helium-3 tritium decay daughter product in the solid phase, irreversible release of helium begins after several hundred days for ZrNiTx and Mg2NiTx. However, LaNi5Tx retains all of the helium generated in the solid for at least 2400 days. NMR measurements for ZrNiTx and Mg2NiTx imply that helium is retained in microscopic bubbles as previously observed in several binary metal tritides.

  20. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  1. Neutron Scattering Study of TbPtin Intermetallic Compound

    SciTech Connect

    Garlea, Vasile O; Morosan, E.; Bud'ko, S. L.; Zarestky, Jerel L; Canfield, P. C.; Stassis, C.

    2005-01-01

    Neutron diffraction techniques have been used to study the magnetic properties of a TbPtIn single-crystal as a function of temperature and magnetic field. In the absence of an externally applied magnetic field, the compound orders, below approximately 47 K, in an antiferromagnetic structure with propagation vector k=(1/2,0,1/2); the magnetic moments were found to be parallel to the [1 {ovr 2} 0] direction. Measurements at 4.2 K, with a magnetic field applied along the [1 {ovr 2} 0] direction, revealed metamagnetic transitions at approximately 20 kG and 40 kG.

  2. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  3. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  4. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-05

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  5. The role of f electrons in rare-earth and uranium intermetallics

    SciTech Connect

    Radwanski, R.J.

    1994-03-01

    Electronic structures of Nd{sup 3+} and U{sup 3+} icon NdNi{sub 5} and UPd{sub 2}Al{sub 3} intermetallic compounds have been discussed. The strong correlation between the charge distribution at vicinity of the f-shell electrons and the magnetic state of the f electron subsystem of these Kramers icons has been underlined. The formation of the local magnetic moment, of the ordered magnetic state, of the singlet ground state and of the energy gap in the ordered state is evaluated in conjugation with the temperature dependence of the energy level scheme. It is argued that as a functions of the charge distribution and the spin-dependent interactions many exotic properties are expected resembling those found in heavy-fermion compounds.

  6. Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon

    SciTech Connect

    Park, H.S.; Nam, S.W.; Kim, N.J.; Hwang, S.K.

    1999-11-05

    Intermetallic compounds based on TiAl are under extensive studies for structural materials in aerospace applications. Recently the effects of interstitial elements on the mechanical properties have been reported, which can be summarized as the enhancement of tensile strength and creep resistance. Appel reported that the creep resistance of TiAl alloy could be increased by carbon addition. Considering the important effect of carbon on the creep resistance of TiAl, it is important to gather more information on the basic role of carbon on the microstructure. In ingot alloys, there is an indication that the details of the fully lamellar structure were affected by carbon or nitrogen. This effect, however, has not been addressed in the intermetallic compound processed by powder metallurgical method. In this respect, the TiAl compound made by EPM (Elemental Powder Method) is of particular interest since this process is a potential alternative to ingot metallurgy for fabricating parts of complex shape. Recently the authors reported that a TiAl-Mn-Mo alloy could be successfully produced by EPM. In the present study, therefore, it was intended to study the effect of carbon on the phase transformation of this alloy of a FL (Fully Lamellar) microstructure.

  7. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  8. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  9. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  10. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  11. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  12. Superplasticity and solid state bonding of the TiAl intermetallic compound with micro- and submicrocrystalline structure

    SciTech Connect

    Lutfullin, R.Ya.; Imayev, R.M.; Kaibyshev, O.A.; Hismatullin, F.N.; Imayev, V.M.

    1995-11-01

    The use of superplastic phenomenon makes it possible to reduce considerably the temperature of solid state bonding of the TiAl intermetallic compound as compared with conventional diffusion bonding. At decreasing the superplastic deformation temperature due to the reduction of the grain size an adequate decrease of the temperature threshold of solid state weldability of the TiAl intermetallic compound was observed. In the TiAl intermetallic compound with submicrocrystalline grain size the formation of a sound solid state joint occurs in the process of deformation at the temperature t = 850 C and strain {var_epsilon} = 10%. Since the temperature-strain-rate conditions of solid state bonding and those of superplasticity coincide, it is assumed that the mechanism controlling the bonding process is grain boundary sliding, the main deformation mechanism of superplasticity.

  13. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    SciTech Connect

    Jagannadham, K.

    2016-03-15

    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu{sub 4}Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m{sup −1} K{sup −1}. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m{sup −2} K{sup −1}. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature.

  14. Surface structures of In-Pd intermetallic compounds. II. A theoretical study

    SciTech Connect

    Gaudry, É.; McGuirk, G. M.; Ledieu, J.; Fournée, V.

    2014-08-28

    The (110) surface of the InPd intermetallic compound and the In–Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate to the surface in off-stoichiometric InPd(110) systems. Concerning surface alloys obtained by burying In-doped Pd layers in Pd(111), we demonstrated that the most stable ones are those presenting atomic indium concentrations below 50 at. % (11 at. %, 25 at. %, 33 at. %). According to our calculations, the In-doped Pd layers with concentration above or equal to 50% lead to In-doped Pd multilayers, each presenting an atomic indium concentration below 50 at. %. Alloying and segregation effects in InPd intermetallic compound and In–Pd surface alloys clearly agree with the larger bonding strength of In–Pd (−0.44 eV) compared to In–In (−0.29 eV) and Pd–Pd (−0.31 eV)

  15. Evolution of Fragmented Fe-Intermetallic Compounds in the Semi-Solid State of Al-Mg-Si-Fe Alloys by Deformation Semi-Solid Forming Process

    NASA Astrophysics Data System (ADS)

    Phongphisutthinan, Chakkrist; Tezuka, Hiroyasu; Kobayashi, Equo; Sato, Tatsuo

    Fe-intermetallic compounds are commonly considered as a harmful phase in the recycled aluminum alloys. The Deformation Semi-Solid Forming (D-SSF) process has advantages to modify these harmful compounds into more favorable particles by thermo-mechanical deformation and subsequently heating to the semi-solid state. The evolution of fragmented Fe-intermetallic compounds of the Al-Mg-Si-Fe alloy was investigated during heating to various semi-solid temperatures. The fragmented Fe-intermetallic compound was transformed into the polyhedral shape in the initial stage and subsequently spheroidized shape at the low semi-solid temperatures between 580-610°C. At temperatures higher than 613°C, fragmented Fe-intermetallic compounds completely melt into the liquid phase with long holding time. The Fe-intermetallic compounds are stable as solid phase at low semi-solid temperature and metastable at high semi-solid temperature.

  16. TEM study of the martensitic phases in the ductile DyCu and YCu intermetallic compounds [The martensitic phase transformation in ductile DyCu and YCu intermetallic compounds

    DOE PAGES

    Cao, G. H.; Oertel, C. -G.; Schaarschuch, R.; ...

    2017-05-03

    DyCu and YCu are representatives of the family of CsCl-type B2 rare earth intermetallic compounds that exhibit high room temperature ductility. Structure, orientation relationship, and morphology of the martensites in the equiatomic compounds DyCu and YCu are examined using transmission electron microscopy (TEM). TEM studies show that the martensite structures in DyCu and YCu alloys are virtually identical. The martensite is of orthorhombic CrB-type B33 structure with lattice parameters a = 0.38 nm, b = 1.22 nm, and c = 0.40 nm. (021¯) twins were observed in the B33 DyCu and YCu martensites. The orientation relationship of B33 and B2more » phases is (111¯)[112]B33 || (110)[001]B2. The simulated electron diffraction patterns of the B33 phase are consistent with those of experimental observations. TEM investigations also reveal that a dominant orthorhombic FeB-type B27 martensite with lattice parameters a = 0.71 nm, b = 0.45 nm, and c = 0.54 nm exists in YCu alloy. (11¯ 1) twins were observed in the B27 YCu martensite. As a result, the formation mechanism of B2 to B33 and B2 to B27 phase transformation is discussed.« less

  17. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.

  18. Dispersion of electronic bands in intermetallic compound LiBe and related properties

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2015-10-01

    Based on the all-electron full-potential linearized augmented plane wave within density functional theory calculations dispersion of the electronic band structure, total and the angular momentum resolved projected density of states, the shape of Fermi surface, the electronic charge density distribution and the optical response of the intermetallic LiBe compound are performed. Seeking the influence of the different exchange correlations on the ground state properties of the intermetallic LiBe, calculations are performed within four types of exchange correlations, namely the local density approximation, general gradient approximation, Engel-Vosko generalized gradient approximation and the modified Becke-Johnson potential. It has been found that replacing the exchange correlations exhibit insignificant influence on the bands dispersion, density of states and hence the optical properties. The obtained results suggest that there exists a strong hybridization between the states resulting in covalent bonds. The Fermi surface is formed by two bands and the center of the Fermi surface is formed by holes. The electronic charge density distribution confirms that the charge is attracted toward Be atoms and the calculated bond lengths are in good accordance with the available experimental data. To get deep insight into the electronic structure, the optical properties are investigated and analyzed in accordance with the calculated band structure and the density of states.

  19. Mechanical alloying of ODS tungsten heavy alloys and microstructure development of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Huang, Chun-Lin

    2013-09-01

    Oxide dispersion strengthened tungsten heavy alloys have been used in a wide variety of industrial and military applications due to their high density, strength and stiffness. These alloys have been produced by mechanical alloying, which can provide uniform distribution of nano-oxide particles and an extremely fine grain structure, resulting in the reduction of the sintering temperature. However, the high-energy ball-milling process could introduce iron contamination from the vial and milling media during the procedure. In this study, the W-Ni-Y2O3 alloy was investigated as a function of milling time. The results show that the increase of the Fe/Ni ratio has a significant influence on the microstructural development and material properties. The XRD data reveal considerable solid solubility extension in these powders. The tungsten carbide and iron rich intermetallic compounds were formed after long milling times, which can change the relative density and hardness of the alloy. It is essential that we understand the role of intermetallic phases in the ODS tungsten heavy alloy which determine the material properties and the control of microstructural development.

  20. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  1. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  2. Application of random walk concept to the cyclic diffusion mechanisms for self-diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Tiwari, G. P.; Mehrotra, R. S.; Iijima, Y.

    2014-02-01

    Huntington-Elcock-McCombie (HEM) mechanism involving six consecutive and correlated jumps, a triple-defect mechanism (TDM) involving three correlated jumps and an anti-structure bridge (ASB) mechanism invoking the migration of an anti-structure atom are the three mechanisms currently in vogue to explain the self- and solute diffusion in intermetallic compounds. Among them, HEM and TDM are cyclic in nature. The HEM and TDM constitute the theme of the present article. The concept of random walk is applied to them and appropriate expressions for the diffusion coefficient are derived. These equations are then employed to estimate activation energies for self-diffusion via HEM and TDM processes and compared with the available experimental data on activation energy for self-diffusion in intermetallic compounds. The resulting activation energies do not favour HEM and TDM for the self-diffusion in intermetallic compounds. A comparison of the sum of experimentally determined activation energies for vacancy formation and migration with the activation energies for self-diffusion determined from radioactive tracer method favours the conventional monovacancy-mediated process for self-diffusion in intermetallic compounds.

  3. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-11-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  4. High-Temperature Resistant Intermetallic Compound Joints for Si Chips and Cu Substrates

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshihide; Komatsu, Shuichi; Nishikawa, Hiroshi; Takemoto, Tadashi

    2010-10-01

    A thin-film joining method utilizing evaporated films as the joining material was newly developed for power semiconductor die attachment. When the evaporated films are completely transformed into intermetallic compounds (IMCs) with high melting points, the joint can exhibit the required high-temperature strength. In this study, a joint consisting of Cu6Sn5, (Ag,Cu)3Sn, and Cu3Sn IMCs was achieved at 573 K after 30 s. Results of nanoindentation tests revealed the hardness and elastic moduli of each IMC. In accelerated tests, a high-temperature strength of at least 15 MPa was shown for 3.6 Ms at 423 K or 500 cycles between 223 K and 403 K. These results suggest that the IMC joint has great potential as a die-attach material.

  5. On pseudoelasticity in single crystals of the intermetallic compound Fe{sub 3}Al

    SciTech Connect

    Brinck, A.; Engelke, C.; Neuhaeuser, H.

    1997-09-01

    Only few notes can be found in literature which report on pseudoelastic effects in Fe{sub 3}Al intermetallic compounds. Reversible deformation on {l_brace}110{r_brace} and {l_brace}112{r_brace} planes was observed in shear and compression experiments by Guedou and Rieu and explained by microtwinning, while Kubin et al. showed by in-situ TEM observations that the motion of the front partial of a superdislocation appeared to cause the slip reversal on {l_brace}110{r_brace} planes. The authors have recently observed such a similar effect during in-situ slip line formation studies of Fe{sub 3}Al crystals with a special crystal orientation deformed in compression at and above room temperature. In the following these observations are described and the possible reasons are discussed in connection with the data from literature.

  6. Cutting tool performance characteristics in the machining of a nickel aluminide intermetallic compound

    SciTech Connect

    Chatterjee, S.; Srivatsan, T.S.; Giusti, P.

    1994-05-01

    Ductile nickel aluminide, Ni{sub 3}Al, containing traces of boron, is an intermetallic compound with high strength, making it a promising structural material for elevated, ambient and cryogenic temperature applications. In order to be able to use alloys, they must be capable of being fabricated by machining. The machinability of a cast nickel aluminide, Ni{sub 3}Al, alloy containing boron was studied by conventional machining using the lathe. Three different cutting tool inserts and two types of coolants, namely kerosene oil mist and soluble oil, were chosen. The machining performance of the cutting tool insert and the influence of coolant type were established through measurements of volume of material removed and tool wear. The tool wear analysis was made using microscopic examination of the cutting tool insert in order to elucidate information of the influence of machining parameters and choice of coolant on performance capability of the insert. The overall machinability performance of these materials is rationalized.

  7. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, Iver E.; Lograsso, Barbara K.; Ellis, Timothy W.

    1994-01-01

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.

  8. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  9. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  10. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  11. Fundamental study about CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Tetsuka, Masato; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-11-01

    Titanium aluminide intermetallic compound is attracting attentions as heat-resistant and high-specific strength material in the next generation, especially, it is promising material in the field of aerospace components. Conventional machining process including welding, however, can be hardly applied due to its very low ductility. The objective of this study, as a first stage, is to find out paying attention to crack and hardness the fundamental good conditions of the bead-on-plate welding of TiAl intermetallic compound using CO2 laser irradiation. In the experiment, we used the casting gamma titanium aluminide contained iron, vanadium and boron with a thickness of 2mm. We carried out bead-on-plate laser welding in the titanium aluminide material in inert gas environment filled with argon. We measured fused depth, Vickers hardness, transverse crack numbers and so on as major parameters of welding speed from 1000 to 4600 mm/min and initial temperature of specimen from R.T. to 873 K with a beam spot size of 0.5 mm and an output power of 1.5 kW. In addition, the specimens were analyzed by Electron Probe X-ray Micro Analyzer, Energy Dispersive X-ray Spectroscopy and X-ray Diffractometry. As a result of experiments, transverse crack-free welding was achieved, when initial temperature was at 873 K. In every condition, the value of Vickers hardness of fused zone increased compared with base. We think the reason of it is an increase of (alpha) 2(Ti3Al) phase, which is caused by rapid cooling, taking in Oxygen, fine structure and so on.

  12. Hydrogen occupancy in the RNi{sub 4}Mg (R=Y, La, Ce, and Nd) intermetallic compounds and hydrides

    SciTech Connect

    Hahn-Herrera, Otto; Orgaz, Emilio; Aburto, Andrea

    2009-10-15

    We have investigated the effect of hydrogen on the electronic strtucture of the RNi{sub 4}Mg (R=Y, La, Ce, Pr, and Nd) intermetallics. By means of a two-step approach, the projected plane-wave and linearized plane-waves methods, we studied the hydrogen-insertion energetics on the intermetallic matrix and the H-vacancy formation in the hydride compound. We found that particular interstitial sites in the intermetallics are suitable to allocate hydrogen and form a solid solution. The effect of these interstitials on the electronic structure is discussed. In the other hand, the hydrogen-occupied sites in the hydride are found to be energetically equivalent.

  13. Intermetallic M--Sn.sub.5 (M=Fe, Cu, Co, Ni) compound and a method of synthesis thereof

    DOEpatents

    Wang, Xiao-Liang; Han, Weiqiang

    2017-09-05

    Novel intermetallic materials are provided that are composed of tin and one or more additional metal(s) having a formula M.sub.(1-x)-Sn.sub.5, where -0.1.ltoreq.x.ltoreq.0.5, with 0.01.ltoreq.x.ltoreq.0.4 being more preferred and the second metallic element (M) is selected from iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), and a combination of two or more of those metals. Due to low concentration of the second metallic element, the intermetallic compound affords an enhanced capacity applicable for electrochemical cells and may serve as an intermediate phase between Sn and MSn.sub.2. A method of synthesizing these intermetallic materials is also disclosed.

  14. Surface structure of the Ag-In-(rare earth) complex intermetallics

    NASA Astrophysics Data System (ADS)

    Hars, S. S.; Sharma, H. R.; Smerdon, J. A.; Yadav, T. P.; Al-Mahboob, A.; Ledieu, J.; Fournée, V.; Tamura, R.; McGrath, R.

    2016-05-01

    We present a study of the surface structure of the Ag-In-RE (RE: rare-earth elements Gd, Tb, and Yb) complex intermetallics using scanning tunneling microscopy and low-energy electron diffraction. The surface of the Ag-In-Yb approximant prepared by sputter-annealing methods under ultrahigh-vacuum conditions produces a flat (100) surface with no facets. However, the Ag-In-Gd and Ag-In-Tb 1/1 approximants, which have a surface miscut of about 12∘ relative to the (100) plane, develop surface facets along various crystallographic directions. The structure of each facet can be explained as a truncation of the rhombic triacontahedral clusters, i.e., the main building blocks of these systems. Despite their differences in atomic structure, symmetry, and density, the facets show common features. The facet planes are In rich. The analysis of the nearest-neighbor atom distances suggests that In atoms form bonds with the RE atoms, which we suggest is a key factor that stabilizes even low-density facet planes.

  15. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  16. Hydrogen in the Ti3Al intermetallic compound: Study by the NMR method

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Aleksashin, B. A.; Medvedev, E. Yu.

    2017-02-01

    The times of nuclear spin-lattice relaxation have been measured and the spectra of NMR for 1H and 27Al in Ti3AlH x hydrogenated intermetallic compounds with hydrogen concentrations of x = 0, 0.31, 0.51, 1.0, 2.0, and 4.32 in a wide range of temperatures (10-500 K) and resonance frequencies (8.2-90 MHz) have been recorded. The analysis of low-temperature relaxation data has shown that the addition of hydrogen with a concentration of x ≥ 2 leads to a significant change in the density of electron states at the Fermi level. It has been found that the hydrogen mobility in Ti3AlH x strongly depends on its concentration. For solid solutions of hydrogen in Ti3Al with x < 1, the mobility of hydrogen atoms on the scale of frequencies of NMR in the investigated temperature range has not been detected. In Ti3AlH x compounds with x ≥ 2, the fast diffusion of hydrogen is observed, which can be related to changes in the structure of these compounds.

  17. Observation of superconductivity in the intermetallic compound β-IrSn4.

    PubMed

    Tran, Vinh Hung; Bukowski, Zbigniew; Wiśniewski, Piotr; Tran, Lan Maria; Zaleski, Andrzej J

    2013-04-17

    Low-temperature dc-magnetization, ac electrical resistivity and specific heat measurements were performed on single crystals of the intermetallic compound β-IrSn4. The compound crystallizes in the tetragonal MoSn4-type structure (space group I41/acd) and exhibits superconductivity below Tc = 0.9 ± 0.05 K. Further, the magnitude of the ratios ΔCp/(γnkBTc) = 1.29, 2Δ/(kBTc) = 3.55 and of the electron-phonon coupling λ[overline](e-ph) = 0.5 imply that superconductivity in β-IrSn4 can be ascribed to a s-wave weak coupling regime. We determined crucial thermodynamic characteristics of the superconducting state. It turned out that depending on the assumption of either a spherical or non-spherical Fermi surface, the superconductivity can be ascribed to either a type-I and type-II/1 or type-II in clean limit, respectively. However, the behavior of the upper critical field and the anisotropic crystalline structure of the studied compound provide strong support to the type-II superconductivity. In the normal state the resistivity exhibits a prominent quadratic temperature dependence, which together with a large Kadowaki-Woods ratio and with the enhanced effective mass indicate that the electrons in β-IrSn4 are strongly correlated.

  18. Observation of superconductivity in the intermetallic compound β-IrSn4

    NASA Astrophysics Data System (ADS)

    Tran, Vinh Hung; Bukowski, Zbigniew; Wiśniewski, Piotr; Tran, Lan Maria; Zaleski, Andrzej J.

    2013-04-01

    Low-temperature dc-magnetization, ac electrical resistivity and specific heat measurements were performed on single crystals of the intermetallic compound β-IrSn4. The compound crystallizes in the tetragonal MoSn4-type structure (space group I41/acd) and exhibits superconductivity below Tc = 0.9 ± 0.05 K. Further, the magnitude of the ratios ΔCp/(γnkBTc) = 1.29, 2Δ/(kBTc) = 3.55 and of the electron-phonon coupling {\\overline{\\lambda }}_{e-p h}=0.5 imply that superconductivity in β-IrSn4 can be ascribed to a s-wave weak coupling regime. We determined crucial thermodynamic characteristics of the superconducting state. It turned out that depending on the assumption of either a spherical or non-spherical Fermi surface, the superconductivity can be ascribed to either a type-I and type-II/1 or type-II in clean limit, respectively. However, the behavior of the upper critical field and the anisotropic crystalline structure of the studied compound provide strong support to the type-II superconductivity. In the normal state the resistivity exhibits a prominent quadratic temperature dependence, which together with a large Kadowaki-Woods ratio and with the enhanced effective mass indicate that the electrons in β-IrSn4 are strongly correlated.

  19. Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging

    SciTech Connect

    Minor, Andrew M.

    1999-12-01

    Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. The outermost Au layer serves to protect the pad from corrosion and oxidation and the Ni layer provides a diffusion barrier to inhibit detrimental growth of Cu-Sn intermetallics. As a result of reflowing eutectic Pb-Sn on top of Au/Ni metallization, the as-solidified joints have AuSn4 precipitates distributed throughout the bulk of the solder joint, and Ni3Sn4 intermetallics at the interface. Recent work has shown that the Au-Sn redeposits onto the interface during aging, compromising the strength of the joint. The present work shows that the redeposited intermetallic layer is a ternary compound with stoichiometry Au0.5Ni0.5Sn4. The growth of this intermetallic layer was investigated, and results show that the ternary compound is observed to grow after as little as 3 hours at 150°C and after 3 weeks at 150°C has grown to a thickness of 10 μm. Additionally, methods for inhibiting the growth of the ternary layer were investigated and it was determined that multiple reflows, both with and without additional aging can substantially limit the thickness of the ternary layer.

  20. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    SciTech Connect

    Pike, L.M.; Chen, S.L.; Chang, Y.A.

    1995-12-31

    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms, Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  1. Density functional investigation on structural, elastic, thermal and mechanical properties of NiTi intermetallic compound

    NASA Astrophysics Data System (ADS)

    Pagare, Gitanjali

    2017-05-01

    Theoretical study of structural, elastic, mechanical and thermal properties of B2-type binary intermetallic NiTi is performed using full-potential linearized augmented plane wave (FP-LAPW) method. In this approach the generalized gradient approximation and local spin density approximation is used for exchange-correlation (XC) potential. We have calculated the ground state properties using PBE-GGA and LDA approximations respectively such as lattice constant (a0 = 3.0140 Å and 2.9439 Å), bulk modulus (B = 161.58 GPa and 191.92 GPa) and pressure derivative of bulk modulus (B‧ = 4.21 and 4.15) for NiTi. Our calculated lattice constants are in good agreement with the experimental data available. A special attention has been paid to the determination of the second order elastic constants. The second order elastic constants (C11 = 308.58 GPa, C12 = 87.97 GPa and C44 = 57.90 GPa) have been calculated using PBE-GGA at ambient condition. In addition Poisson’s ratio (σ), Young’s Modulus (E), Shear modulus (GH) and the ratio of anisotropy factor (A) are also reported. Ductility/brittleness of this compound is further analyzed by calculating the B/GH ratio and Cauchy pressure (C12-C44). The studied compound is found to be ductile in nature. Sound wave velocities with Debye Temperature (θD) are also investigated.

  2. First-principles study of Ni-Al intermetallic compounds under various temperature and pressure

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqin; Zhao, Yuhong; Hou, Hua; Tian, Jinzhong; Han, Peide

    2017-03-01

    The pressure dependence behaviors of structural and mechanical properties as well as the effect of temperature on thermodynamic properties of Ni-Al ordered intermetallic compounds (i. e. Ni3Al, Ni5Al3, NiAl, Ni2Al3 and NiAl3) are investigated in details by implementing first-principles calculations. The calculated lattice parameters, bulk modulus and its pressure derivative are well in agreement with available experimental and theoretical values at zero pressure. All the compounds are mechanically stable with pressure going up to 50 GPa, and the volume change resistance of nickel aluminum alloys can be improved by increasing pressure and Ni concentration. The shear deformation resistance, elastic stiffness and microhardness of nickel aluminum alloys can be strengthened by increasing the content of Ni5Al3 and Ni2Al3, and pressure can also enhance these properties of Ni5Al3, NiAl and Ni2Al3. The ductility of Ni3Al, Ni5Al3 and NiAl can be improved by increasing pressure, while brittle nature turns into ductile nature in 20-30 GPa and 10-20 GPa for Ni2Al3 and NiAl3, respectively. Furthermore, the elastic anisotropy of Ni3Al, Ni5Al3, Ni2Al3 and NiAl3 enhances with pressure, while NiAl shows few change with pressure increasing. In addition, Ni3Al is the most sensitive to pressure change among considered compounds. Finally, the Debye temperature, linear thermal expansion coefficient and heat capacity of these compounds are calculated using the quasi-harmonic Debye model in pressure ranging from 0 to 50 GPa and temperature ranging from 0 to 1200 K to elucidate the relationships between thermodynamic parameters and temperature under various pressure. The results are helpful insights into the study of nickel aluminum alloys.

  3. Rare earth speciality inorganic compounds

    SciTech Connect

    Gschneidner, K.A. Jr.

    1981-01-01

    This paper is a comprehensive review of the rare earth elements which include the Group IIIA elements Sc, Y and the lanthanide elements La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It covers their abundances, electronic structure, ionic radii, energy levels, thermodynamic properties, optical applications, separation chemistry, markets and statistics, electronic and magnetic applications, as well as mineral ores that contain rare earths, mixed rare earth chemical, and special uses of Y/sub 2/O/sub 3/. 30 references.

  4. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  5. Surface plasmon waveguides with gradually doped or NiAl intermetallic compound buried contact for terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Indjin, D.; Ikonić, Z.; Harrison, P.; Kelsall, R. W.

    2003-09-01

    Improved designs of surface plasmon waveguides for use in GaAs/AlGaAs terahertz quantum cascade lasers are presented. Modal losses and confinement factors are calculated for TM modes in metal-variably doped multilayer semiconductor and metal-intermetallic compound layer clad structures and compared with those obtained in recently realized metal-highly doped semiconductor clad layer structures. Considerable improvements of the mode confinement factors are predicted, and guidelines for choosing the confinement layer parameters are given.

  6. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  7. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cieślak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100−x}Re{sub x} (x = 43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ∼65 K for x = 43 and ∼23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  8. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  9. Kinetics of intermetallic compound formation in thermally evaporated Ag-In bilayers

    NASA Astrophysics Data System (ADS)

    Rossi, P. J.; Zotov, N.; Mittemeijer, E. J.

    2016-10-01

    The kinetics of intermetallic compound (IMC) formation in thermally evaporated Ag-In bilayers, with In on top of Ag, was investigated using X-ray diffractometry, applied to the surfaces of the bilayer specimens, as well as scanning electron microscopy, applied to cross-sections of the bilayer specimens, prepared by a focused ion beam instrument. IMC formation was followed at room temperature as well as at elevated temperatures of 50 ° C , 60 ° C , and 70 ° C . Two distinct growth regimes were observed coinciding with the availability of pure In. The AgIn2 IMC nucleated initially, followed by nucleation of the Ag2In IMC. The growth of AgIn2 was found to be controlled by both diffusional processes as well as interfacial reactions. The growth of the Ag2In IMC is dominantly diffusion-controlled. An interdiffusion coefficient of D = 1.1 ± 3.9 . 10 - 4 cm 2 s - 1 exp ( - 60.5 ± 9.2 kJ mol - 1 R - 1 T - 1 ) was obtained for the Ag2In IMC. The observations were discussed in terms of the interplay of thermodynamic and kinetic constraints.

  10. PAS consolidating behavior of mechanically alloyed nanocrystalline NiAl intermetallic compound

    NASA Astrophysics Data System (ADS)

    Choi, Jae Woong; Kang, Sung Goon

    2003-02-01

    In this study, nanocrystalline NiAl intermetallic compound was obtained by mechanical alloying and PAS (plasma activated sintering method). Nanocrystalline NiAl powder was fabricated after 30 hr of milling with 2 wt.% stearic acid added as a PCA (process control agent) to the Ni-50at%Al composition. The grain size of the nanocrystalline NiAl powder was about 10 nm. Nanocrystalline NiAl powder was consolidated at 1000°C, 1100°C, 1200°C and 1300°C for 2 min with 30 MPa compressive force. The surface morphology of the NiAl consolidated at 1300°C was very regular and dense, above 96% of theoretical density (5.9 g/cm3). Al4C3 was observed in the NiAl consolidated at 1300°C by TEM analysis. It is thought that the carbons came from the stearic acid during the MA process and the graphite mold during the PAS process. The grain size of the NiAl consolidated at 1300°C did not increase but the grain shape became flat due to compressive force.

  11. Investigation of InBi intermetallic compounds as possible topological insulators

    NASA Astrophysics Data System (ADS)

    Lin, Y. T.; Chen, Q. Y.; Hseih, W. C.; Chang, C. F.; Chuang, F. C.; Liao, H. H.

    2015-03-01

    InBi intermetallic compounds were found to be potentially 2-dimensional topological insulators from first-principle calculations. In our experiment, InBi, In2Bi3andIn3Bi5 were fabricated either in bulk or thin film, by depositing In and Bi into 2 layers by e-beam evaporation of proper thickness ratios for each stoichiometry. The bi-layers were rapid thermal annealed to accomplish the reaction or intermixing well above their temperatures of phase transition. EDS and secondary electron imaging were used to determine the obtained stoichiometry. CVD using a 3-zone furnace was as tested with various combinations of zone temperatures, types and flow rates of carrying gases to investigate the feasibility of epitaxial growth. Samples were characterized by XRD to obtain the crystalline phase, magneto-transport measurements to determine the carrier concentration and mobility using a PPMS to correlate the measured results. We will ponder on the implication of our findings in regards to the possibilities of being a candidate for topological insulator as predicted by the calculations.

  12. Machinability of Intermetallic Compound Fe3Al from the Viewpoint of Tool Wear

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomohiro; Yakou, Takao

    The intermetallic compound Fe3Al was processed by a reactive sintering process, and its machinability from the viewpoint of tool wear was investigated using dry turning. In cutting Fe3Al with a cemented carbide tool, the tool life was approximately one tenth that of cutting carbon tool steel SK3 because of intense flank wear. The tool life for cutting Fe3Al using the cemented carbide P20(WC-TiC-TaC-Co) tool was longer than for cemented carbide K10(WC-Co). In addition, a cermet tool reached its tool life limit by chipping for the whole cutting speed range measured. The roughness of the machined surface of Fe3Al cut using a cemented carbide tool was much smaller than for SK3. However, for cutting using the cermet tool, the roughness showed a sharp rise due to chipping. It was found that the wear rate of the WC particles in the tool material is larger than TiC particles. The results of the study suggest that the cemented carbide P20 is suitable for cutting Fe3Al.

  13. Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.

    PubMed

    Rajasekharan, T; Seshubai, V

    2012-01-01

    It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.

  14. Fractographic finger printing of proton-irradiation-induced disordering and amorphization of intermetallic compounds

    SciTech Connect

    Cheng, J.; Yuan, M.; Wagner, C. N. J.; Ardell, A. J.

    1989-05-01

    The intermetallic compounds NiTi, NiTi/sub 2/, CuZr, CuTi/sub 2/, and Zr/sub 3/Al were irradiated by 2 MeV protons at various temperatures between --175 /degree/C and --44 /degree/C to a fluence of 1.9/times/10/sup 22/ H/sup +//m/sup 2/. Transmission electron microscopy, electron diffraction, and x-ray diffraction were used to evaluate the extents of disordering and amorphization induced by irradiation in the samples. Both phenomena progressed to varying extents in the five compounds, depending on the irradiation temperature and dose. It was observed that the C-A transition began before the degree of long-range order was reduced significantly, and that the amorphous phase nucleated homogeneously throughout the crystalline matrix. A major finding of the current investigation is that the technique of scanning electron fractography provides a useful correlation between the features of the fractured surfaces and the microstructural alterations induced by the proton irradiations. When amorphization is complete the fracture surfaces are either featureless (e.g., NiTi/sub 2/) or contain branching features resembling river patterns. In some cases (especially in CuZr) these are similar to the markings seen on the surface of fractured amorphous ribbons produced by melt-spinning. In general, however, there is not a particularly good correlation between the features on the fracture surfaces of the irradiated and melt-spun ribbons. When the microstructure consists of amorphous regions embedded in a partially disordered crystalline matrix, there is consierable evidence for irradiation-induced ductility. In such cases, exemplified by the results on NiTi and Zr/sub 3/Al, the fracture surfaces contain dimples, characteristic of ductile fracture, suggesting that disordering promotes ductility.

  15. Effect of Thermal Cycle on the Formation of Intermetallic Compounds in Laser Welding of Aluminum-Steel Overlap Joints

    NASA Astrophysics Data System (ADS)

    Fan, J.; Thomy, C.; Vollertsen, F.

    The intermetallic compound (IMC) (or intermetallic phase layer) has a significant influence on the mechanical properties ofjoints between dissimilar metals obtained by thermal processes such as laser welding. Its formation is basically affected by thermal cycles in the joining or contact zone, where the IMC is formed. Within this study, the influence of the thermal cycle on the formation of the IMC during laser welding of an aluminum-steel (Al99.5-DC01) overlap joint was investigated. The temperature was measured directly by a thermocouple, and the weld seam was analyzed by scanning electron microscope (SEM). The influence of peak temperature, cooling time and the integral of the thermal cycle on the thickness of the IMC was identified and discussed. It was identified that cooling time has the biggest influence on the thickness of the IMC.

  16. The atomic structure of low-index surfaces of the intermetallic compound InPd

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de; Hahne, M.; Gille, P.; Ivarsson, D. C. A.; Armbrüster, M.; Ardini, J.; Held, G.; Maccherozzi, F.; Bayer, A.; Lowe, M.; Pussi, K.; Diehl, R. D.

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  17. The atomic structure of low-index surfaces of the intermetallic compound InPd.

    PubMed

    McGuirk, G M; Ledieu, J; Gaudry, É; de Weerd, M-C; Hahne, M; Gille, P; Ivarsson, D C A; Armbrüster, M; Ardini, J; Held, G; Maccherozzi, F; Bayer, A; Lowe, M; Pussi, K; Diehl, R D; Fournée, V

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  18. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    NASA Astrophysics Data System (ADS)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  19. Atomic jump frequencies in intermetallic compounds studied using perturbed angular correlation of gamma rays

    NASA Astrophysics Data System (ADS)

    Newhouse, Randal Leslie

    Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using ab initio relaxation models created using the program PolyPacFit. Jump frequency activation enthalpies were determined from measurements over a range of temperatures. Diffusion was studied in the following systems: 1) Pseudo-binary alloys having the L12 crystal structure such as In3(La1-xPrx). The goal was to see how jump frequencies were affected by random disorder. 2) The family of layered phases, LanCoIn3n+2 ( n=0,1,2,3…∞). The goal was to see how jump frequencies varied with the spacing of Co layers, which were found to block diffusion. 3) Phases having the FeGa3 structure. The goal was to analyze dynamical relaxation for probe atoms having multiple inequivalent jump vectors. 4) Phases having the tetragonal Al4Ba structure. The goal was to search for effects in the PAC spectra caused by fluctuations in magnitudes of EFGs without fluctuations in orientations. Ab initio relaxation models were developed to simulate and fit dynamical relaxation for PAC spectra of FeGa3, and several phases with the Al4Ba structure in order to determine underlying microscopic jump frequencies. In the course of this work, site preferences also were observed for 111In/Cd probe atoms in several FeGa 3 and Al4Ba phases.

  20. Smart Solution Chemistry to Sn-Containing Intermetallic Compounds through a Self-Disproportionation Process.

    PubMed

    Zhang, Yuelan; Li, Liping; Li, Qi; Fan, Jianming; Zheng, Jing; Li, Guangshe

    2016-09-26

    Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn-containing intermetallics is challenging. In this work, we demonstrated for the first time that a self-disproportionation-induced in situ process produces cavernous Sn-Cu intermetallics (Cu3 Sn and Cu6 Sn5 ). The successful synthesis is realized by introducing inorganic metal salts (SnCl2 ⋅2 H2 O) to NaOH aqueous solution to form an intermediate product of reductant (Na2 SnO2 ) and by employing steam pressures that enhance the reduction ability. Distinct from the traditional in situ reduction, the current reduction process avoided the uncontrolled phase composition and excessive use of organic regents. An insight into the mechanism was revealed for the Sn-Cu case. Moreover, this method could be extended to other Sn-containing materials (Sn-Co, Sn-Ni). All these intermetallics were attempted in the catalytic effect on thermal decompositions of ammonium perchlorate. It is demonstrated that Cu3 Sn showed an outstanding catalytic performance. The superior property might be primarily originated from the intrinsic chemical compositions and cavernous morphology as well. We supposed that this smart solution reduction methodology reported here would provide a new recognition for the reduction reaction, and its modified strategy may be applied to the synthesis of other metals, intermetallics as well as some unknown materials.

  1. Point defects quenched in NiAl and related intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Fan, Jiawen

    1991-08-01

    Point defects in the highly ordered B2 compounds NiAl, CoAl and FeAl were studied using the perturbed gamma-gamma angular correlations (PAC) technique. Quadrupole interactions detected at dilute In-111 probes on Al sites in NiAl and CoAl were identified with complexes containing one or two vacancies in the first atomic shell. Measurements on rapidly quenched NiAl and CoAl exhibited increases in site fractions of vacancy-probe complexes caused by formation of thermal defects. Site fractions were analyzed using the law of mass action to obtain absolute vacancy concentrations. PAC is shown to be a powerful new technique for the quantitative study of equilibrium defects in solids. For NiAl, the vacancy concentration quenched-in from a given temperature was found to be independent of composition over the range 50.4 to 53.5 at. pct. Ni, identifying the Schottky defect (vacancy pair) as the dominant equilibrium defect, and ruling out the so-called triple defect. Formation energies and entropies of Schottky pairs were determined to be 2.66(8) and 3.48(12) eV, and 12(1) and 17(2) k sub B, respectively, for NiAl and CoAl. The entropies suggest huge vacancy concentrations, 13 pct. at the melting temperatures of NiAl and CoAl. Migration energies of Ni and Co vacancies were found to be 1.8(2) and 2.5(2) eV, respectively. FeAl exhibited complex behavior. A low temperature regime was detected in NiAl and CoAl within which vacancies are mobile but do not anneal out, so that the vacancy concentration remains constant. In NiAl, this 'bottleneck' regime extends from 350 to 700 C. Vacancies were found to be bound to the In probes with an energy very close to 0.20 eV in NiAl and CoAl. An explanation of the bottleneck is proposed in terms of saturation of all lattice sinks. This annealing bottleneck should exist in a wide range of intermetallic compounds when there is a sufficiently high vacancy concentration.

  2. Formation of GaPd2 and GaPd intermetallic compounds on GaN(0001)

    NASA Astrophysics Data System (ADS)

    Grodzicki, M.; Mazur, P.; Pers, J.; Brona, J.; Zuber, S.; Ciszewski, A.

    2015-09-01

    Palladium was deposited gradually under ultrahigh vacuum onto a well-defined surface of (0001)-oriented n-type GaN, at room temperature. Each deposition step was followed by annealing. Physicochemical properties of the Pd adlayers were in situ investigated prior to and after annealing by the X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and atomic force microscopy techniques. Annealing resulted in the formation of GaPd2 and GaPd intermetallic compounds at 550 °C and at 800 °C. Even for thicker layers, the compounds were strongly dispersed, forming 3D nanostructures. The substrate uncovered by the compounds revealed Ga-rich GaN(0001)-(1 × 1) surface. Formation of Ga-Pd-N bonds or Pd nitrides was not detected at the surface. The Ga-Pd intermetallic compound surface engineered on the GaN(0001) substrate can be used as the strongly dispersed catalyst or a model catalyst.

  3. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    SciTech Connect

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  4. Theoretical study of B2 type technetium AB (A=Tc, B=Ti, V, Nb and Ta) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Acharya, Nikita; Fatima, Bushra; Sanyal, Sankar P.

    2016-12-01

    The structural, electronic, elastic and thermal properties of the cubic AB type (A=Tc, B=Ti, V, Nb and Ta) technetium intermetallic compounds have been studied using the full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) and local density approximation (LDA) used for the exchange-correlation potential. The calculated lattice parameters agree well with the experimental results. The calculated electronic properties reveal that these compounds are metallic in nature with partial ionic bonding. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh's rule and Cauchy's pressure revealing ductile in nature of all the compounds. Bonding nature is discussed using Fermi surface, band structure and charge density difference plots.

  5. Ternary rare-earth aluminium intermetallics RE10TAl3 (RE = Y, Ho, Tm, Lu; T = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) with an ordered anti-Co2Al5 structure.

    PubMed

    Benndorf, Christopher; Eckert, Hellmut; Janka, Oliver

    2017-01-24

    Twenty new rare-earth metal rich intermetallic aluminium compounds, RE10TAl3 (RE = Y, Ho, Tm, Lu; T = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt), were synthesized by arc melting the elements. The compounds crystallize, in analogy to e.g. the respective Cd representatives, with a ternary ordered structure as anti-type to the hexagonal Co2Al5 type, with the space group P63/mmc. The three crystallographically independent rare-earth metal sites occupy the aluminium positions of the aristotype, while the transition metal and aluminium atoms are ordered on the two cobalt sites. Like other rare-earth rich compounds the RE10TX3 members also exhibit transition-metal-centred T@RE6 trigonal prisms as striking structural building units. The prepared compounds have been investigated by susceptibility measurements and (27)Al solid-state MAS-NMR measurements conducted on the Pauli-paramagnetic Y and Lu compounds. Some compounds show a certain amount of disorder as seen from the single crystal structure analysis and from signal broadening in the NMR investigations. By separating Knight shifts from second-order quadrupolar shifts via field dependent measurements, monotonic trends can be discerned regarding the effect of the T atom valence electron concentration and period number, as well as the effect of the closed 4f shell contributed in the Lu compounds. The results confirm that a comparison of Knight shifts within a series of isotypic compounds can reveal important electronic structure information in intermetallic systems.

  6. Hydrides of intermetallic compounds with a H/M ratio greater than unity obtained at high hydrogen pressures

    SciTech Connect

    Semenenko, K.N.; Klyamkin, S.N.

    1993-11-01

    Novel hydride phases with H/M > 1 based on Zr{sub 2}Pd, Hf{sub 2}Pd, and Hf{sub 2}Cu (structures of the MoSi{sub 2} type) have been synthesized at high H{sub 2} pressures. The X-ray diffraction investigations of the resulting hydrides have been carried out. Some factors determining the maximum hydrogen content in the hydrides of intermetallic compounds are discussed. A model structure of the hydrides obtained is proposed, which assumes the possibility of direct H-H interactions when the interatomic distances are less than 1 {angstrom}.

  7. Behavior of alloys of the PtPd intermetallic compound with Hf and Zr in the electrosynthesis of peroxo salts

    SciTech Connect

    Toroptseva, N.T.; Vaseva, A.Yu.

    1988-08-10

    The objective of this study was to investigate the behavior of anodes made of alloys of the PtPd intermetallic compound with Hf and Zr in the synthesis of potassium peroxodicarbonates and peroxoborates. The investigations were based on polarization measurements in different regimes on stationary and rotating electrodes, the determination of the current yield of active oxygen in galvano- and potentiostatic syntheses, and the study of the kinetics of catalytic decomposition of peroxide solutions in the presence of the electrode in the range 289-308 K.

  8. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  9. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    SciTech Connect

    Haseeb, A.S.M.A. Arafat, M.M. Johan, Mohd Rafie

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  10. On the effects of magnetic bonding in rare earth transition metal intermetallics

    SciTech Connect

    Kumar, R.; Bentley, J. ); Yelon, W.B. . Research Reactor Facility)

    1990-01-01

    Neutron diffraction experiments on rare-earth transition metal magnetic alloys Er{sub 2}Fe{sub 14}B and Er{sub 2}Fe{sub 17} have been carried out at temperature above and below the ordering temperature ({Tc}). An anomalously large magnetic moment is observed at the crystallographic j{sub 2} site in Er{sub 2}Fe{sub 14}B which is the intersection point of the major ligand lines in the crystal structure. The interatomic Fe-Fe distances are in the range of strong ferromagnetic bonds ({ge} 2.66 {angstrom}). The analogous f site in Er{sub 2}Fe{sub 17} does not develop as large a magnetic moment. In addition, the same sites show strong preference for Fe atoms in the respective substituted compounds. Due to poor phase stability of Er{sub 2} (Co{sub x}Fe{sub 1 {minus}x}){sub 14}B compounds, iron substitution has been studied in detail in Er{sub 2}(Co{sub x}Fe{sub 1 {minus}x}){sub 17} alloys for site specific order an lattice distortion effects. However, a nonlinear change in the c lattice parameter observed in the neutron diffraction results cannot be explained on the basis of site preference alone. The neutron refinement results indicate iron rich compositions in Er{sub 2}(Co{sub x}Fe{sub 1 {minus}x}){sub 17} materials, which is related to random substitution of Fe dumbbell pairs in the rare earth sites in the lattice. However, extensive electron microscopy (selected area electron diffraction and high resolution imaging) of Er{sub 2}Fe{sub 17} and Er{sub 2}(Co{sub .40}Fe{sub .60}) {sub 17} failed to reveal any microscopic inhomogeneity. 12 refs., 5 figs., 2 tabs.

  11. Enthalpies of formation of Cd–Pr intermetallic compounds and thermodynamic assessment of the Cd–Pr system

    PubMed Central

    Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert

    2014-01-01

    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be −46.0, −38.8, −35.2 and −24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475

  12. Radiation-induced crystalline-to-amorphous transition in intermetallic compounds of the Cu-Ti alloy system

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Devanathan, R. ); Sabochick, M.J. . Computer Applications Div.)

    1992-02-01

    Recent progress in molecular-dynamics studies of radiation-induced crystalline-to-amorphous transition in the ordered intermetallic compounds of the Cu-Ti system is discussed. The effect of irradiation was simulated by the generation of Frenkel pairs,which resulted in both the formation of stable point defects and chemical disorder upon defect recombination. The thermodynamic, structural and mechanical responses of the compounds during irradiation were determined by monitoring changes in the system potential energy, volume expansion, pair correlation function, diffraction patterns, and elastic constants. It was found that the intermetallics Cu{sub 4}Ti{sub 3}, CuTi, and CuTi{sub 2} could be rendered amorphous by the creation of Frenkel pairs, but Cu{sub 4}Ti could not, consistent with experimental observations during electron irradiation. However, the simulations showed that Cu{sub 4}Ti did become amorphous when clusters of Frenkel pairs were introduced, indicating that this compound may be susceptible to amorphization by heavy-ion bombardment. A generalization of the Lindemann criterion was used to develop a thermodynamic description of solid-state amorphization as a disorder- induced melting process.

  13. Enthalpies of formation of Cd-Pr intermetallic compounds and thermodynamic assessment of the Cd-Pr system.

    PubMed

    Reichmann, Thomas L; Richter, Klaus W; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert

    2014-12-01

    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be -46.0, -38.8, -35.2 and -24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd-Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann-Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented.

  14. Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with Ti/Cu/Ni under bump metallization during reflow soldering

    NASA Astrophysics Data System (ADS)

    Wang, Kai-Zheng; Chen, Chih-Ming

    2005-12-01

    Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with the Ti/Cu/Ni under bump metallization (UBM) during 350°C reflow for durations ranging from 50 sec to 1440 min were investigated. A thin intermetallic layer of only 0.4 µm thickness was formed at the 95Pb5Sn/UBM interface after reflow for 5 min. When the reflow was extended to 20 min, the intermetallic layer grew thicker and the phase identification revealed the intermetallic layer comprised two phases, (Ni,Cu)3Sn2 and (Ni,Cu)3Sn4. The detection of the Cu content in the intermetallic compounds indicated that the Cu atoms had diffused through the Ni layer and took part in the intermetallic compound formation. With increasing reflow time, the (Ni,Cu)3Sn4 phase grew at a faster rate than that of the (Ni,Cu)3Sn2 phase. Meanwhile, irregular growth of the (Ni,Cu)3Sn4 phase was observed and voids formed at the (Ni,Cu)3Sn2/Ni interface. After reflow for 60 min, the (Ni,Cu)3Sn2 phase disappeared and the (Ni,Cu)3Sn4 phase spalled off the NI layer in the form of a continuous layer. The gap between the (Ni,Cu)3Sn4 layer and the Ni layer was filled with lead. A possible mechanism for the growth, disappearance, and spalling of the intermetallic compounds at the 95Pb5Sn/UBM interface was proposed.

  15. The role of zinc on the chemistry of complex intermetallic compounds

    SciTech Connect

    Xie, Weiwei

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  16. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  17. Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry.

    PubMed

    Liu, Ya L; Liu, Kui; Yuan, Li Y; Chai, Zhi F; Shi, Wei Q

    2016-08-15

    In this work, the compositions of Ce-Al, Er-Al and La-Bi intermetallic compounds were estimated by the cyclic voltammetry (CV) technique. At first, CV measurements were carried out at different reverse potentials to study the co-reduction processes of Ce-Al, Er-Al and La-Bi systems. The CV curves obtained were then re-plotted with the current as a function of time, and the coulomb number of each peak was calculated. By comparing the coulomb number of the related peaks, the compositions of the Ce-Al, Er-Al and La-Bi intermetallic compounds formed in the co-reduction process could be estimated. The results showed that Al11Ce3, Al3Ce, Al2Ce and AlCe could be formed by the co-reduction of Ce(iii) and Al(iii). For the co-reduction of Er(iii) and Al(iii), Al3Er2, Al2Er and AlEr were formed. In a La(iii) and Bi(iii) co-existing system in LiCl-KCl melts, LaBi2, LaBi and Li3Bi were the major products as a result of co-reduction.

  18. Effect of cooling condition and Ag on the growth of intermetallic compounds in Sn-based solder joints

    NASA Astrophysics Data System (ADS)

    Ma, Haoran; Kunwar, Anil; Guo, Bingfeng; Sun, Junhao; Jiang, Chengrong; Wang, Yunpeng; Song, Xueguan; Zhao, Ning; Ma, Haitao

    2016-12-01

    The intermetallic compound growth in Sn/Cu and Sn-3.5Ag/Cu solder joints undergoing cooling has been in-situ observed using synchrotron radiation X-ray imaging technique. The overall thickness of intermetallic compound attained during cooling condition is dependent on the rates of Cu precipitation or deposition from the bulk solder and Cu diffusion from grain boundary at interface. Although the net increase in IMC thickness contributed predominantly by deposition kinetics is greater for air cooling than in furnace cooling from the start temperature of 300°C for the first 20 min, the former solidifies before 30 min and the latter stays in liquid state for 1 h due to slower cooling rate and attains a bigger IMC of size about 14.5 μm. In context of Sn-3.5Ag solders subjected to air cooling from 275°C, the presence of Ag contributes to the increment in overall IMC thickness during the cooling period. For the improvement in solder joints reliability, faster cooling rate and limiting the Ag content can be employed as the materials design and processing parameters.

  19. Features of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals

    SciTech Connect

    Romaka, V. A.; Fruchart, D.; Hlil, E. K.; Gladyshevskii, R. E.; Gignoux, D.; Romaka, V. V.; Kuzhel, B. S.; Krayjvskii, R. V.

    2010-03-15

    The crystal structure, density of electron states, electron transport, and magnetic characteristics of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals (R) have been studied in the ranges of temperatures 1.5-400 K, concentrations of rare-earth metal 9.5 x 10{sup 19}-9.5 x 10{sup 21} cm{sup -3}, and magnetic fields H {<=} 15 T. The regions of existence of Zr{sub 1-x}R{sub x}NiSn solid solutions are determined, criteria for solubility of atoms of rare-earth metals in ZrNiSn and for the insulator-metal transition are formulated, and the nature of 'a priori doping' of ZrNiSn is determined as a result of redistribution of Zr and Ni atoms at the crystallographic sites of Zr. Correlation between the concentration of the R impurity, the amplitude of modulation of the bands of continuous energies, and the degree of occupation of potential wells of small-scale fluctuations with charge carriers is established. The results are discussed in the context of the Shklovskii-Efros model of a heavily doped and compensated semiconductor.

  20. Nanocluster model of intermetallic compounds with giant unit cells: beta, beta'-Mg(2)Al(3) polymorphs.

    PubMed

    Blatov, Vladislav A; Ilyushin, Gregory D; Proserpio, Davide M

    2010-02-15

    A novel method for the computational description of intermetallics as an assembly of nanoclusters was improved and applied to extremely complicated crystal structures of beta, beta'-Mg(2)Al(3) polymorphs. Using the TOPOS program package that implements the method, we separated two types of two-shell primary nanoclusters A, A1, A2, and B consisting of 57-63 atoms that completely compose the structures of the polymorphs. The nanocluster model interprets structural disordering in beta-Mg(2)Al(3): the disordered atoms form the inner shell of the nanocluster A, while the outer shells of all nanoclusters are preserved. The self-assembly of the beta, beta'-Mg(2)Al(3) crystal structures was considered within the hierarchical scheme: 0D primary polyhedral clusters (coordination polyhedra) --> 0D two-shell primary nanoclusters A, A1, A2, or B --> 0D supracluster-precursor AB(2) --> 1D primary chain --> 2D microlayer --> 3D microframework. The self-assembly scheme proves the similarity of beta, beta'-Mg(2)Al(3) to other extremely complicated Samson's phases, NaCd(2) and ZrZn(22); the spatial arrangement of the centers of nanoclusters in these structures as well as the topology of the corresponding network conform to the Laves phase MgCu(2). Using the TOPOS procedure of searching for finite fragments in infinite nets we found that nanocluster B is a typical fragment of intermetallic compounds: it exists in intermetallics belonging to 42 Pearson classes. The nanocluster A was found only in two Pearson classes: cF464 and hP238, while the nanoclusters A1 and A2 occur in beta'-Mg(2)Al(3) only. Thus, the nanoclusters A, A1, and A2 can be considered as "determinants" of the corresponding structures.

  1. The characteristics of hot swaged NiAl intermetallic compounds with ternary additions consolidated by HIP techniques

    SciTech Connect

    Ishiyama, S.; Eto, M.; Mishima, Y.; Miura, S.; Suzuki, T.

    1995-12-31

    Stoichiometric and non-stoichiometric NiAl intermetallics with ternary additives, such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or Mo/e, W, Mn, Fe, Cu and B, fabricated with the combination of Hot Isostatic Pressing (HIP) and hot swaging techniques have been investigated. The mechanical properties of hot swaged NiAl with various ternary additives, consolidated by ion beam casting or HIP techniques, have been tested at temperatures ranging from R.T. to 1,000 C. It is found that significant tensile elongation at room temperature can be achieved by hot swaged as-HIP`ed NiAl compounds with Mo or Mo/Re additives, whereas cast and hot swaged compounds with Mo addition resulted in some elongation above 400 C.

  2. Structural, electronic and elastic properties of RERu2 (RE=Pr and Nd) Laves phase intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2016-05-01

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu2 (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu2 type) structure and found to be ductile in nature.

  3. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    SciTech Connect

    Shrivastava, Deepika Sanyal, Sankar P.

    2016-05-06

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  4. Structure comparison between Th2Zn17-type and TbCu7-type Sm Fe intermetallic compounds and their nitrides by means of 57Fe-Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Yoichi; Omatsuzawa, Ryo; Sakazaki, Iwao; Suzuki, Sayaka; Hashino, Hayato; Saito, Takanobu; Iriyama, Takahiko

    2005-11-01

    Samarium iron intermetallic compounds were prepared by a melt spinning method with low and high wheel speeds, which resulted in a Th2Zn17-type and a TbCu7-type structure, respectively. Structure comparison between these types was investigated for Sm Fe intermetallic compounds and their nitrides by 57Fe-Mössbauer spectroscopy.

  5. Surface composition of ordered intermetallic compounds PtBi and PtPb

    NASA Astrophysics Data System (ADS)

    Blasini, D. R.; Rochefort, D.; Fachini, E.; Alden, L. R.; DiSalvo, F. J.; Cabrera, C. R.; Abruña, H. D.

    2006-07-01

    The surface composition of bulk electrodes made from the ordered intermetallic phases PtBi and PtPb has been studied by ex-situ X-ray photoelectron spectroscopy (XPS) after being subjected to various electrochemical treatments. Analysis of the freshly polished surfaces showed that in the surface and near surface regions the less-noble metals; Bi and Pb are oxidized to a significant extent (28% and 41%, respectively). Upon cycling to increasingly positive potentials, the fraction of oxidized to metallic forms of Bi and Pb decreased gradually to reach the minimal values of 7% and 6% at +400 mV vs. Ag/AgCl (saturated KCl). The observed decrements are due to leaching of surface oxides; Bi 2O 3 on PtBi and PbCO 3 or Pb(OH) 2 on PtPb. When the potential sweep was extended to more positive values, there was a linear decrease in the surface concentration of the less-noble metal, along with a slight increase in the amount of the species in their oxidized state (Bi 2O 3 for PtBi and PbSO 4 for PtPb). Leaching of Bi from the electrode surface occurs in accordance to the Pourbaix diagram for elemental bismuth, indicating no significant increase in stability arising from the formation of an intermetallic phase with platinum. In the case of PtPb, however, the Pb starts to dissolve away at potentials significantly more positive (+800 mV) than what was anticipated from the Pourbaix diagram. The results obtained here are in accord with our previous observations on the effects of electrochemical pre-treatment on these intermetallic phases for the electrocatalytic oxidation of formic acid and other potential fuel cell fuels.

  6. First principle investigation of crystal lattice structure, thermodynamics and mechanical properties in ZnZrAl2 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Wei, Zhenyi; Tou, Shushi; Wu, Bo; Bai, Kewu

    2016-12-01

    ZnZrAl2 is a kind of heterogeneous nucleation to promote the refine of grain of ZA43 alloy. ZnZrAl2 intermetallic is also considered as a candidate for superalloys. The crystal lattice structure, alloy thermodynamics and mechanical properties of ZnZrAl2 intermetallic compound were investigated by ab initio calculations based on density functional theory (DFT). In particular, the site preference of atoms in different sublattices was predicted based on alloy thermodynamics. At ground state, the most stable structure is L12 structure with sublattice model (Zn)1a(Zr0.3333Al0.6667)3c or (Zr)1a(Zn0.3333Al0.6667)3c, and the occupying preferences of Zn, Zr and Al atoms are independent with the increasing temperature. The bulk, shear, Young's modulus and the Poisson's ratio of the L12 structure ZnZrAl2 were calculated based on the site occupying configurations. The results show that ZnZrAl2 is a brittle material in nature. Electronic structures analysis revealed that Al-Zr atoms possess a covalent bonding character, while the Zn-Zr atoms have a metallic bonding character. ZnZrAl2 has stable mechanical properties at high temperature. The grain refinement effect of ZnZrAl2 precipitates in Zn-Al alloys were discussed based on crystal lattice match theory.

  7. Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3

    SciTech Connect

    Cao, Qing

    2012-01-01

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R5(SixGe1-x)4 family (R = rare earths, 0 ≤ x ≤ 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R5(SixGe1-x)4 compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er5Si4 compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd5Si4-type orthorhombic to Gd5Si2Ge2-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 °C.

  8. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    SciTech Connect

    Pagare, Gitanjali Jain, Ekta; Abraham, Jisha Annie; Sanyal, Sankar P.

    2015-08-28

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.

  9. Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun

    2014-02-01

    In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.

  10. In search of the elusive amalgam SrHg8: a mercury-rich intermetallic compound with augmented pentagonal prisms.

    PubMed

    Tkachuk, Andriy V; Mar, Arthur

    2010-08-14

    In confirmation of its predicted existence in the Sr-Hg phase diagram, the mercury-rich intermetallic compound SrHg(8) has been prepared by reaction of the elements at 200 degrees C. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Pearson symbol oP72, space group Pnma, a = 13.328(1) A, b = 4.9128(5) A, c = 26.446(3) A). The Sr atoms are centred within two types of 18-vertex Hg polyhedra formed by augmenting pentagonal prisms with octagonal waists. The condensation of these Sr@Hg(18) clusters is associated with the formation of a complex anionic Hg-Hg bonding network, as supported by electronic structure calculations which reveal strong mixing of Hg 6s and 6p states in highly delocalized bands superimposed with a narrower 5d band below the Fermi level.

  11. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    SciTech Connect

    Tao, Xiaoma; Wang, Ziru; Lan, Chunxiang; Xu, Guanglong; Ouyang, Yifang; Du, Yong

    2016-05-15

    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.

  12. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process.

  13. Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X=transition or main group metal) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Tian, T.; Wang, X. F.; Li, W.

    2013-03-01

    As high-temperature structural materials, L12 intermetallic compounds have attracted the strong interest from both fundamental and industrial aspects. Understanding of elastic property is a basis for the complete investigations of mechanical behavior of L12 alloys. In an effort to explore the electronic origin of elastic properties of L12 intermetallics, we have performed a systematic study on elastic constants for single crystals, and Young's modulus, shear modulus, bulk modulus and Poisson's ratio for poly-crystals of 22 known Al3X and X3Al-type (X=transition or main group metal) intermetallics using the ab initio calculations. Based on the calculations of elastic constants and extreme (both positive and negative) Poisson's ratios, we found a pronounced correlation between the extreme Poisson's ratio and the elastic anisotropy, i.e., approximate 40% of the investigated L12 intermetallics exhibit intrinsic auxetic behavior. Furthermore, based on the distribution of bonding charge densities, we revealed that the ductility and extreme Poisson's ratios were attributable to the directionality of bonds of these alloys. Our findings provide a new method to predict mechanical behavior of intermetallics.

  14. Phase stability and elasticity of C15 transition-metal intermetallic compounds

    SciTech Connect

    Chu, F.; Mitchell, T.E.; Chen, S.P.; Sob, M.; Siegl, R.; Pope, D.P.

    1995-03-01

    First-principle quantum mechanical calculations based on the local-density-functional theory have been performed to study the electronic, physical and metallurgical properties of C15 intermetallics MV{sub 2} (M = Zr, Hf, or Ta). The elastic constants of C15 HfV{sub 2} + Nb were measured by the resonant ultrasound spectroscopy technique. The phase stability of C15 HfV{sub 2} + Nb was studied by specific heat measurements and by transmission electron microscopy in a low temperature specimen holder. The total energies and their lattice volume dependence were used to obtain the equilibrium lattice constants and bulk modulus. The band structures at the X-point near the Fermi level were employed to understand the anomalous temperature dependence of shear modulus of the C15 intermetallics. It was found that the double degeneracy with a linear dispersion relation of electronic levels at the X-point near the Fermi surface is mainly responsible for the C15 anomalous elasticity. The density of states at the Fermi level, N(E{sub F}), and the Fermi surface geometry were obtained to understand the low temperature phase instability of C15 HfV{sub 2} and ZrV{sub 2} and the stability of C15 TaV{sub 2}. It was proposed that the large N(E{sub F}) and Fermi surface nesting are the physical reasons for the structural instability of the C15 HfV{sub 2} and ZrV{sub 2} at low temperatures. The relation between anomalous elasticity and structural instability of C15 HfV{sub 2} and ZrV{sub 2} is also discussed.

  15. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La11Li12Ge16

    NASA Astrophysics Data System (ADS)

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-01

    A novel Li-containing polar intermetallic compound La11Li12Ge16 has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) Å, b=6.9932(6) Å, and c=53.043(5) Å. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La2Li2Ge3 (Ce2Li2Ge3-type) and La3Li4Ge4 (Zr3Cu4Si4-type) acting like “building-blocks” along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge2 dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe4] tetrahedra, cis-/trans-Ge chain and Ge2 dimers.

  16. The evolution of γ-Mg17Al12 intermetallic compound during accumulative back extrusion and subsequent ageing treatment

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M. H.; Zarei-Hanzaki, A.; Abedi, H. R.; Shamsolhodaei, A.

    2015-11-01

    Accumulative back extrusion (ABE) processing, as a novel severe plastic deformation (SPD) method, has been recently justified to be capable of modifying the microstructural characteristics of alloys. In line to its ongoing researches, the present work has been planned to study the evolution of γ-Mg17Al12 intermetallic phase during ABE and subsequent ageing treatment in a high Al-bearing Mg-Al-Zn alloy. The behaviour of γ intermetallic has been systematically examined as following points of view: (i) strain-temperature-dependent morphology changes, (ii) strain-induced dissolution, and (iii) re-ageing behaviour as a function of time and temperature. Aiming to analyse the morphology of eutectic γ compound with respect to the strain and temperature, 2D projections of effective diameter, shape factor and globularity have been made in strain/temperature graphs. The processing conditions (strain and temperature) corresponding to the desired and undesired morphologies are introduced and microstructurally explained through underlying plasticity mechanisms, i.e., 'necking-thinning-particle separation' and 'brittle fragmentation.' The former mechanism is suggested to be in relation with partial strain-induced dissolution of eutectic γ phase, leading to generation of a supersaturated solid solution. This has resulted to the observation of 'off-stoichiometry' phenomena in Mg17Al12 phase and has been justified through dislocation-assisted deformation mechanism at elevated temperature. Surprisingly, a unique re-ageing behaviour has been found for the obtained solid solutions, where a modified kinetics and morphology of γ phase precipitation were characterized. The altered precipitation behaviour is attributed to the specific defect structure achieved by SPD acting as fast diffusion channel for Al solutes.

  17. Compression ductility and fracture of boron-free and highly boron-doped Al sub 5 CuTi sub 2 intermetallic compound

    SciTech Connect

    Winnicka, M.B.; Varin, R.A. )

    1990-04-01

    This paper reports on the D0{sub 22} crystallographic structure of Al{sub 3}Ti intermetallic compound transformed into the L1{sub 2} structure by alloying with Ni,Cu,Zn and Fe. These modified intermetallics are very attractive as potential high-temperature structural materials. Since they have similar Al content as Al{sub 3}Ti they are expected to exhibit an excellent oxidation resistance. Also, their densities are relatively low ({lt}4.5 g/cm{sup 3}) and it has recently been reported that the L1{sub 2} Al{sub 22}Fe{sub 3}Ti{sub 8} and Al{sub 5}CuTi{sub 2} (both modified Al{sub 3}Ti) intermetallics exhibit a positive temperature dependence of yield strength (0.2% offset) in compression. The L1{sub 2} crystallographic structure of the transformed Al{sub 3}Ti-based compounds has five independent slip systems sufficient for a generalized plastic flow according to von Mises criterion. However, contrary to expectation the transformed L1{sub 2} intermetallics are still brittle and at room temperature fracture occurs by transgranular cleavage.

  18. Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements.

    PubMed

    Kumar, P; Kashyap, A; Balamurugan, B; Shield, J E; Sellmyer, D J; Skomski, R

    2014-02-12

    First-principle calculations are used to investigate the intrinsic magnetic properties of intermetallic alloys of the type XMn, where X is a 4d or 5d element and M is Fe or Co. Emphasis is on the hexagonal C14 Laves-phase 1:2 and 1:5 alloys, the latter crystallizing in the CaCu5 structure. These series are of interest in permanent magnetism from fundamental and practical viewpoints, respectively. In the former, the unit cells form a prototypical motif where a heavy atom with high spin-orbit coupling and magnetocrystalline anisotropy is surrounded by many somewhat smaller M atoms with high magnetization, and the latter are Laves-phase derivatives of renewed interest in permanent magnetism. Our DFT calculations predict magnetic moments, magnetizations and anisotropies, as well as formation energies. The results are analyzed across the 4d and 5d series, especially with respect to hybridization effects between 3d and 4d/5d bands.

  19. Ba 5Ti 12Sb 19+x, a polar intermetallic compound with a stuffed γ-brass structure

    NASA Astrophysics Data System (ADS)

    Bie, Haiying; Mar, Arthur

    2009-11-01

    The polar intermetallic compound Ba 5Ti 12Sb 19+x ( x⩽0.2) has been synthesized by reaction of the elements. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Ba 5Ti 12Sb 19.102(6), space group P43¯m, Z=2, a=12.4223(11) Å, V=1916.9(3) Å 3). The set of Ba and Sb sites corresponds to the structure of Cu 9Al 4, a γ-brass type with a primitive cell. A complex three-dimensional framework of Ti atoms, in the form of linked planar Ti 9 clusters, is stuffed within the γ-brass-type Ba-Sb substructure. Notwithstanding its relationship to the γ-brass structure, the compound does not appear to conform to the Hume-Rothery electron concentration rules. Band structure calculations on an idealized Ba 5Ti 12Sb 19 model suggest that the availability of bonding states above the Fermi level is responsible for the partial occupation, but only to a limited degree, of an additional Sb site within the structure. Magnetic measurements indicated Pauli paramagnetic behaviour.

  20. Multiscale Study of Interfacial Intermetallic Compounds in a Dissimilar Al 6082-T6/Cu Friction-Stir Weld

    NASA Astrophysics Data System (ADS)

    Avettand-Fenoël, M. N.; Taillard, R.; Ji, G.; Goran, D.

    2012-12-01

    The objective of this work was to characterize the Al x Cu y intermetallic compounds (IMCs) formed at the abutting interface during solid-state friction-stir welding (FSW) of 6082 aluminum alloy and pure copper. As IMCs are potential sources of flaws in case of mechanical loading of welds, their study is essential at various scale lengths. In the present case, they have been identified by neutron diffraction, electron backscattered diffraction, and transmission electron microscopy. Neutron diffraction analyses have shown that a shift of the tool from the interface, in particular towards the Cu part, generates an increase of the IMCs' volume fraction. In accordance with an exacerbation of its kinetics of formation by FSW, a 4- μm-thick layer has precipitated at the interface despite the shortness of the thermal cycle. This layer is composed of two sublayers with the Al4Cu9 and Al2Cu stoichiometry, respectively. Convergent beam electron diffraction analyses have, however, disclosed that the crystallography of the current Al2Cu compound does not comply with the usual tetragonal symmetry of this phase. The Al2Cu phase formation results from both the local chemical composition and thermodynamics, whereas the development of Al4Cu9 is rather due to both the local chemical composition and the shortness of the local FSW thermal cycle.

  1. The Intermetallic Compound Formation for the Wire Bond Between an Al Pad and Ag-xPd Alloy Wire

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsiang; Lin, Kwang-Lung; Lin, Yu-Wei; Cheng, Yun-Kai

    2016-12-01

    Silver-palladium alloy wire has been shown as an economical and reliable substitute for gold wire in various applications in the electronic packaging industry. The success of wire bonding relies on the formation of an interfacial intermetallic compound (IMC). This study is aimed to investigate the formation behavior of IMCs between an Al pad and Ag-Pd alloy wire with various Pd concentrations of 1.0-6.0% for the as-bonded commercial Ag/Al joint. The interfacial IMCs were investigated with scanning electron microscopy and energy-dispersive x-ray spectroscopy. The IMCs formed are separate (Ag, Pd)2Al and (Ag, Pd)3Al2 for a Ag6Pd wire bond, while (Ag, Pd)2Al and (Ag, Pd)3Al2 are mixed for the other Ag(1-4.5)Pd alloy wire bonds. The thickness of the total IMC layer varies from 0.65 μm for Ag1Pd to 0.91 μm for Ag6Pd, yet a minimum of 0.44 μm exists for Ag3.5Pd. The compound formation behavior was found to correspond with the Ag-Al phase diagram. After pressure cooker tests, a less stable IMC (Ag, Pd)3Al formed at the AgxPd/Al interface.

  2. Crystal field effects in the intermetallic R Ni3Ga9 (R =Tb , Dy, Ho, and Er) compounds

    NASA Astrophysics Data System (ADS)

    Silva, L. S.; Mercena, S. G.; Garcia, D. J.; Bittar, E. M.; Jesus, C. B. R.; Pagliuso, P. G.; Lora-Serrano, R.; Meneses, C. T.; Duque, J. G. S.

    2017-04-01

    In this paper, we report temperature-dependent magnetic susceptibility, electrical resistivity, and heat-capacity experiments in the family of intermetallic compounds R Ni3Ga9 (R = Tb, Dy, Ho, and Er). Single-crystalline samples were grown using Ga self-flux method. These materials crystallize in a trigonal ErNi3Al9 -type structure with space group R 32 . They all order antiferromagnetically with TN<20 K . The anisotropic magnetic susceptibility presents large values of the ratio χeasy/χhard indicating strong crystalline electric-field (CEF) effects. The evolution of the crystal-field scheme for each R was analyzed in detail by using a spin model including anisotropic nearest-neighbor Ruderman-Kittel-Kasuya-Yosida interaction and the trigonal CEF Hamiltonian. Our analysis allows one to understand the distinct direction of the ordered moments along the series—the Tb-, Dy-, and Ho-based compounds have the ordered magnetic moments in the easy ab plane and the Er sample magnetization easy axis is along the c ̂ direction.

  3. Equiatomic intermetallic compounds REPtMg (RE = Y, Eu, Tb-Tm, Lu) - Structure and magnetism

    NASA Astrophysics Data System (ADS)

    Stein, Sebastian; Heletta, Lukas; Block, Theresa; Gerke, Birgit; Pöttgen, Rainer

    2017-05-01

    Eight new equiatomic REPtMg intermetallics with RE = Y, Eu, Tb-Tm, Lu were synthesized from the elements in sealed niobium ampoules (induction melting followed by different annealing sequences). All samples were characterized through X-ray powder patterns and the structures of YPtMg, EuPtMg, DyPtMg, HoPtMg and TmPtMg were refined from single crystal X-ray diffractometer data. The REPtMg phases crystallize with two different structure types. The representatives with RE = Y, Tb-Ho crystallize with the hexagonal ZrNiAl type, space group P 6 bar 2 m , while those with RE = Eu, Yb and Lu adopt the orthorhombic TiNiSi type, space group Pnma. ErPtMg and TmPtMg are dimorphic with a ZrNiAl type high and a TiNiSi type low-temperature modification. Temperature-dependent magnetic susceptibility measurements indicate Pauli paramagnetism for YPtMg and LuPtMg while EuPtMg, TbPtMg, DyPtMg and HoPtMg are Curie-Weiss paramagnets. Antiferromagnetic (TN = 12.6 K for EuPtMg) respectively ferromagnetic ordering (TC = 56.3 K for TbPtMg, 28.8 K for DyPtMg and 19.9 K for HoPtMg) occurs in the low-temperature regime. 151Eu Mössbauer spectra confirm divalent europium (δ = -8.03 mm s-1 at 78 K) in EuPtMg and show strong magnetic hyperfine field splitting below the Néel temperature.

  4. Studies of magnetostriction and spin polarized band structures of rare earth intermetallics

    NASA Technical Reports Server (NTRS)

    Wallace, W. E.

    1979-01-01

    Anisotropic magnetostriction measurements of R6Fe23, R = (Tb, Dy, Ho, and Er) were carried out from 77 K to room temperature. Magnetic fields up to 2.1 Tesla were applied. All the compounds exhibited large magnetostrictions at 77 K, the largest effect being obtained for Tb6Fe23. Saturation magnetostriction values for the compounds were also determined for 77 K and room temperature. Results of the temperature dependence of magnetostriction for Er6Fe23 are in good agreement with Callen and Callen's single ion theory. Therefore, the main sources of magnetostriction in this compound is the Er ion. The spin-up and spin-down electronic energy bands, the density of states and the magnetic moments of YCo5, SmCo5, and GdCo5 were calculated by the spin polarized augmented plane wave technique. The calculations obtained show the origin of the moment, provide good estimates of its magnitude and variation, and the reasons for those variations. They also show the important role of partial charge transfer and of d-d electronic coupling. Calculations for LaNi5 and GdNi5 systems are discussed.

  5. New method for computer analysis of complex intermetallic compounds and nanocluster model of the samson phase Cd{sub 3}Cu{sub 4}

    SciTech Connect

    Blatov, V. A.; Ilyushin, G. D.

    2010-12-15

    A new method is proposed for the computer analysis of crystal structures of complex intermetallic compounds (with more than 1000 atoms per unit cell) using a developed algorithm of the complete decomposition of the 3D graph of the structure into nanocluster substructures. This method has been implemented in the TOPOS software package and approved successfully in an analysis of the complex Cu{sub 3}Cd{sub 4} structure (Samson phase). Cu{sub 3}Cd{sub 4} structure models were used to establish a structural relationship between nanoclusters in this intermetallic compound and nanoclusters in other complex crystal structures: ZrZn{sub 22}, Ru{sub 7}Mg{sub 44}, NaCd{sub 2}, and Mg{sub 2}Al{sub 3}.

  6. New insights into rare-earth intermetallic alloys for cryogenic Peltier cooling

    NASA Astrophysics Data System (ADS)

    Boona, Stephen; Morelli, Donald

    2013-03-01

    Strongly correlated materials such as intermediate valence CePd3 have long been considered attractive candidates for cryogenic Peltier cooling due to the combination of metallic electrical resistivity concurrent with Seebeck coefficient values on the order of 100 μ V/K at low temperatures. This behavior is a direct result of the strong hybridization of localized 4f states with delocalized conduction electrons, which gives rise to several unusual structural, electronic, thermal, and magnetic properties. Our recent work on this compound has helped to unravel some of the complex ways in which these properties are correlated, and we have successfully utilized this improved understanding to enhance ZT up to 0.3. We present a broad overview of these new insights and provide suggestions for how they may be exploited to achieve enhanced thermoelectric performance in other strongly correlated materials. Work supported by AFOSR-MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533.

  7. Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong; Chen, Mohan; Carter, Emily A.

    2016-06-01

    Magnesium-aluminum (Mg-Al) alloys are important metal alloys with a wide range of engineering applications. We investigate the elastic and thermodynamic properties of Mg, Al, and four stoichiometric Mg-Al compounds including Mg17Al12 , Mg13Al14 , and Mg23Al30 , and MgAl2 with orbital-free density-functional theory (OFDFT). We first calculate the lattice constants, zero-temperature formation energy, and independent elastic constants of these six materials and compare the results to those computed via Kohn-Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these two methods. Our calculated elastic constants of hexagonal close-packed Mg and face-centered-cubic Al are also consistent with available experimental data. We next compute their phonon spectra using the force constants extracted from the very fast OFDFT calculations, because such calculations are computationally challenging using KSDFT. This is especially the case for the Mg23Al30 compound, whose 3 ×3 ×3 supercell consists of 1431 atoms. We finally employ the quasiharmonic approximation to investigate temperature-dependent thermodynamic properties, including formation energies, heat capacities, and thermal expansion of the four Mg-Al intermetallic compounds. The calculated heat capacity and thermal expansion of both Mg and Al agree well with experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable, consistent with their absence from the equilibrium Mg-Al phase diagram. Our work demonstrates that OFDFT is an efficient and accurate quantum-mechanical computational tool for predicting elastic and thermodynamic properties of complicated Mg-Al alloys and also should be applicable to many other engineering alloys.

  8. Magnetic and magnetocaloric properties of the intermetallic compound ErCu2

    NASA Astrophysics Data System (ADS)

    Rajivgandhi, R.; Chelvane, J. Arout; Nirmala, R.

    2017-05-01

    Polycrystalline ErCu2 compound has been prepared by arc melting in inert atmosphere and its magnetic and magnetocaloric properties have been studied. ErCu2 orders antiferromagnetically at TN 11 K. A field induced metamagnetic transition is observed in a field of 8.5 kOe at 5 K which leads to saturation in magnetization to a value of max 8.4 µB/f.u. The maximum isothermal magnetic entropy change, -ΔSmmax, value of this compound is obtained as 14.9 J/kg K for 50 kOe field change. Corresponding refrigeration capacity and relative cooling power values are 334 J/kg and 412 J/kg, respectively. These values are higher than that for HoCu2 and DyCu2 compounds because the temperature dependent isothermal magnetic entropy change curve of this ErCu2 compound is considerably broader.

  9. Magnetic Properties of Some Gadolinium, Erbium, Dysprosium, Manganese Substituted Samarium-2 Cobalt-17 Intermetallic Compounds.

    DTIC Science & Technology

    1979-08-01

    that excellent temperature compensation could be achieved in these compounds in the teinper~ture (cont’d) ~‘ DD I ? ) 1Q3 L°’TI°M °’ INOV BI...following prop— erties: energy products in excess of 30 MGOe, low reversible tem- perature coefficients of magnetization , c~, and linear demagnetiza...Sm2(Co,Fe) i7 compounds significantly enhances their coercivities and energy products. Thus, we have been investigating the magnetic properties of these

  10. Nanoclusters based on pentagondodecahedra with shells in the form of D32, D42, and D50 deltahedra in crystal structures of intermetallic compounds

    SciTech Connect

    Pankova, A. A.; Ilyushin, G. D.; Blatov, V. A.

    2012-01-15

    The TOPOS software package has been used to form a database of intermetallic compounds containing pentagondodecahedral d clusters (528 crystal structures of intermetallic compounds, 111 topological types, and 47 space symmetry groups). On the whole, 606 atomic d configurations have been selected which are described by 14 point symmetry groups. Examples of nanoclusters are presented which are precursors of the crystal structures of intermetallic compounds with the outer shell in the form of deltahedra D, which are formed above dodecahedra. These nanoclusters are identified in the automatic mode of structural data processing: D32 (K{sub 8}In{sub 6}Ge{sub 40}, Cs{sub 30}Na{sub 3}Sn{sub 162}), D{sub 42} (Ru{sub 3}Be{sub 17}, Y{sub 3}Cd{sub 18}, Ca{sub 3}(Cd{sub 17}Al)), and D{sub 50} (Yb{sub 3}Zn{sub 18}, Ce{sub 3}(Au{sub 14}Sn{sub 3}), Pr{sub 3}Cd{sub 18}, Eu{sub 4}Cd{sub 25}), where 32, 42, and 50 are the numbers of atoms in the shell. Similar deltahedra were found previously in icosahedral nanoclusters (precursors of intermetallic compounds). Structures with the dodecahedral nanocluster precursors containing D42 and D50 deltahedra are approximants of MCd{sub 5.7} (M = Yb or Ca) quasicrystals and belong to the family of MCd{sub 6} (M = Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, or Ca).

  11. Ab-initio study of B{sub 2}-type technetium AB (A=Tc, B=Nb and Ta) intermetallic compounds

    SciTech Connect

    Acharya, Nikita Fatima, Bushra; Sanyal, Sankar P.

    2016-05-06

    The structural, electronic and elastic properties of AB type (A = Tc, B = Nb and Ta) technetium intermetallic compounds are studied using full potential linearized plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The calculated lattice parameters agree well with the experimental results. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh’s rule and Cauchy’s pressure and found that all the compounds are ductile in nature. Bonding nature is discussed in terms of Fermi surface and band structures.

  12. Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds.

    PubMed

    Kronmüller, H; Yang, J B; Goll, D

    2014-02-12

    The uniaxial intermetallic compounds of L10-FePt and the low temperature NiAs structure of MnBi are suitable alloys for application as high-density recording materials or as high-coercivity permanent magnets. Single domain particles of these materials are characterized by coercive fields above 1 T over a large temperature range. In particular MnBi shows a coercive field of 2 T at 450 K. Its extraordinary magnetic properties in the temperature range up to 600 K are due to an increase of the magnetocrystalline anisotropy constant from 1.2 MJ m(-3) at 300 K to 2.4 MJ m(-3) at 450 K. In spite of the large coercivities obtained for both type of materials their experimental values deviate considerably from the theoretical values Hc = 2K1/Js valid for a homogeneous rotation process in spherical particles. As is well known these discrepancies are due to the deteriorating effects of the microstructure. For an analysis of the coercive fields the Stoner-Wohlfarth theory has to be expanded with respect to higher anisotropy constants and to microstructural effects such as misaligned grains and grain surfaces with reduced anisotropy constants. It is shown that the temperature dependence and the angular dependence of Hc for FePt as well as MnBi can be quantitatively interpreted by taking into account the above mentioned intrinsic and microstructural effects.

  13. Effect of Sn Grain Orientation on Formation of Cu6Sn5 Intermetallic Compound Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Yao; Lin, Han-wen; Chen, Chih

    2016-12-01

    Solder joints with Cu/Sn-Ag/Cu structure and bump height of 15 μm have been used to investigate the electromigration phenomenon at different temperatures and current densities. Moreover, the grain orientation was analyzed using electron backscatter diffraction. It was found that the anisotropic properties of tin affected the formation rate of Cu-Sn intermetallic compounds (IMCs), and that the angle between the electron flow direction and tin grain orientation played an important role in the formation of Cu6Sn5 IMC. With changes in angle, the diffusion rate of copper atoms in tin also varied. When the c-axis of tin was parallel to the electron flux, copper atoms diffused rapidly, resulting in fast formation of Cu-Sn IMCs. On the other hand, if the angle between the c-axis of the grain and the electron flow direction was large, the tin grains were more resistant to Cu diffusion during current stressing, leading to a very slow IMC formation rate.

  14. Shock synthesis of NiTi intermetallic compounds from a mixture of titanium and nickel elemental powders

    SciTech Connect

    Zhu, Y.L.; Li, T.C.; Liu, J.T.; Han, X.D.; Yang, D.Z. . Dept. of Materials Engineering)

    1994-03-15

    Recently, explosive consolidation of metal powders has had a renewed interest because of its short processing time, and the high pressures that are obtained easily etc. Although there are some new techniques such as combustion synthesis or self-propagating high temperature synthesis which have been developed. In previous papers, NiTi alloy with a good SME was obtained by explosive consolidation and a subsequent heat treatment with pure nickel and titanium powders. Metallic powders have also been successfully made by this method. Thus NiTi alloys made by explosive consolidation are feasible. But it seems impossible that NiTi intermetallic compounds are directly shock synthesized from pure Ti and Ni elemental powders. By comparison with the processing and properties, few papers were published about microstructures of explosively consolidated NiTi alloys which greatly influence the phase transformation behavior and properties. In this paper, the authors report detailed results of microfeatures for the specimen without any future heat treatments by the transmission electron microscope.

  15. Influence of Ti and La Additions on the Formation of Intermetallic Compounds in the Al-Zn-Si Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Gu, Qin-Fen; Li, Qian; Lu, Hu-Sheng

    2016-12-01

    The effect of Ti and La additions on the formation of intermetallic compounds (IMCs) in the galvalume (55Al-Zn-1.6Si wt pct) bath was investigated experimentally and further studied with first-principles calculation. The studied baths contain: 1 wt pct Fe, with Ti content ranging from 0.05 to 0.15 wt pct and La content ranging from 0.05 to 0.30 wt pct. Combination of the experimental results with the thermodynamic analysis shows that the solubility of Fe in the alloy bath decreases with an increase of Ti content, which results in the formation of mass dross. Compared with the Ti-containing alloy, La promotes the formation of τ 5 phase (Fe2Al8Si). When both Ti and La are added, Fe4Al13, τ 5, τ 6 (β-Al4.5FeSi), TiAl3, and Ti2Al20La phases were observed. Since these IMCs would consume more Si in the bath, the decrease of Si content with Ti and La additions is more significant than that of the bath without these additions. Furthermore, the formation mechanism of Ti/TiAl3/Ti2La20La core-shell structure in the coating bath is proposed. This study has implications for strategic design of industry hot-dip production with exceptional mechanical properties of Al alloy coating.

  16. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  17. The magnetic behavior of the intermetallic compound NdMn2Ge2 studied by magnetization and hyperfine interactions measurements

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-01

    The magnetic behavior of the intermetallic compound NdMn2Ge2 was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ-γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around TN ˜ 425 K and a well defined ferromagnetic transition at TC ˜ 320 K. Moreover, at ˜210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ˜25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using 140La(140Ce) and 111In(111Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (Bhf) at Nd and Mn sites, respectively. PAC results with 111Cd probe nuclei at Mn sites show that the dependence of Bhf with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with 140Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to Bhf.

  18. Effect of Sn Grain Orientation on Formation of Cu6Sn5 Intermetallic Compound Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Yao; Lin, Han-wen; Chen, Chih

    2017-04-01

    Solder joints with Cu/Sn-Ag/Cu structure and bump height of 15 μm have been used to investigate the electromigration phenomenon at different temperatures and current densities. Moreover, the grain orientation was analyzed using electron backscatter diffraction. It was found that the anisotropic properties of tin affected the formation rate of Cu-Sn intermetallic compounds (IMCs), and that the angle between the electron flow direction and tin grain orientation played an important role in the formation of Cu6Sn5 IMC. With changes in angle, the diffusion rate of copper atoms in tin also varied. When the c-axis of tin was parallel to the electron flux, copper atoms diffused rapidly, resulting in fast formation of Cu-Sn IMCs. On the other hand, if the angle between the c-axis of the grain and the electron flow direction was large, the tin grains were more resistant to Cu diffusion during current stressing, leading to a very slow IMC formation rate.

  19. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    SciTech Connect

    Sabochick, M.J. . Dept. of Engineering Physics); Lam, N.Q. )

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After {approximately}0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing {approximately}0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs.

  20. In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction

    SciTech Connect

    Qu, Lin; Zhao, Ning; Ma, Haitao Zhao, Huijing; Huang, Mingliang

    2014-05-28

    Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu{sub 6}Sn{sub 5} IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end after solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu{sub 6}Sn{sub 5} IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.

  1. Electronic structure and volume magnetostriction of rare-earth metals and compounds

    NASA Astrophysics Data System (ADS)

    Turek, I.; Rusz, J.; Diviš, M.

    2005-04-01

    A first-principle theory of spontaneous volume magnetostriction is presented. It is based on self-consistent electronic structure calculations for a magnetically ordered ground state and a disordered local moment state. The effect of highly localized 4f orbitals of rare-earth (R) atoms is taken into account by an open-core treatment within the local spin-density approximation. The theory is applied to hexagonal gadolinium and to selected intermetallic compounds with the cubic C15 Laves structure: RCo2 (R=Gd, Dy, Er) and GdAl2. The results are compared to those of experiment and discussed in terms of: (i) magnitudes of the local moments and (ii) volume-dependent exchange interactions.

  2. Rare earth-transition metal-magnesium compounds-An overview

    SciTech Connect

    Rodewald, Ute Ch.; Chevalier, Bernard Poettgen, Rainer

    2007-05-15

    Intermetallic rare earth-transition metal-magnesium compounds play an important role as precipitations in modern light weight alloys and as host materials for hydrogen storage applications. Recent results on the crystal chemistry, the chemical bonding peculiarities, physical properties, and hydrogenation behavior of these materials are reviewed. - Graphical abstract: View of the Sm{sub 4}RhMg crystal structure approximately along the direction. Samarium, rhodium, and magnesium atoms are drawn as medium gray, filled (hidden in the trigonal prisms), and open circles, respectively. The three-dimensional network of corner-sharing RhSm{sub 6} trigonal prisms and the Mg{sub 4} tetrahedra are emphasized. The Sm1 atoms do not participate in the network of condensed trigonal prisms.

  3. Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System

    NASA Astrophysics Data System (ADS)

    Pan, Yanfang; Ye, Haimei; Chen, Xiaoxian; Jiang, Wenping; Yang, Wenchao; Zhan, Yongzhong

    2016-12-01

    Phase relations in the Si-V-Zr ternary system at 973 K (700 °C) were experimentally investigated using X-ray powder diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The isothermal section at 973 K (700 °C) is governed by seventeen three-phase regions, thirty-two two-phase regions, and sixteen single-phase regions. Ten binary compounds and one ternary compound (SiVZr) were confirmed. There are two new ternary compounds found in this work for the first time. One of them (Si4V3Zr2) was found in the stoichiometric composition around V 38 pct, Si 50 pct, and Zr 12 pct. The existence of another one (V17Si12Zr3) was observed while analyzing the XRD results of large quantities of equilibrated samples in the region around 54 at. pct V, 33 at. pct Si, and 13 at. pct Zr.

  4. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    PubMed Central

    Amsler, Maximilian; Naghavi, S. Shahab

    2017-01-01

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa, FeBi2 and FeBi3. According to our predictions, FeBi2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa. PMID:28507678

  5. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    SciTech Connect

    Prajapat, C. L. Singh, M. R.; Mishra, P. K.; Chattaraj, D.; Mishra, R.; Ravikumar, G.

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  6. Chemical hydrogenation of La(Fe,Si) family of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Polak, M.; Hawelek, L.; Kowalczyk, M.; Hreczka, M.; Kolano-Burian, A.

    2016-11-01

    In the present work, the chemical hydrogenation process of La(Fe,Si)13 compounds has been shown. It was found, that the La(Fe,Si) compound can be easily saturated with hydrogen by performing reaction with 0.6 M hydrochloric acid (HCl) for 2 h. After reaction, the heat treatment process is necessary to make hydrogenated powder homogenous. For the LaFe11.8Si1.2 micronized (<50 μm) and hydrogenated powder, the strength of the magnetocaloric effect was estimated by means of magnetocalorimetric measurements on plates consolidated with PVDF thermoplastic polymer. Magnetic entropy change was calculated by use of magnetization data acquired at magnetic fields with induction up to 2T. The adiabatic temperature change is equal to 3 K in magnetic field change 0-1.7T at 335 K, while magnetic entropy change is equal 13 J/kg*K at 2T. The structural homogeneity of initial and hydrogenated powders was validated by powder X-ray diffraction method. The amount of hydrogen in the hydrogenated compounds was evaluated using thermogravimetry method (4 H atoms per formula unit LaFe11.8Si1.2).

  7. Crystallographic superstructure in R2PdSi3 compounds (R=heavy rare earth)

    NASA Astrophysics Data System (ADS)

    Tang, Fei; Frontzek, Matthias; Dshemuchadse, Julia; Leisegang, Tilmann; Zschornak, Matthias; Mietrach, Robert; Hoffmann, Jens-Uwe; Löser, Wolfgang; Gemming, Sibylle; Meyer, Dirk C.; Loewenhaupt, Michael

    2011-09-01

    The R2PdSi3 intermetallic compounds have been reported to crystallize in a hexagonal AlB2-derived structure, with the rare earth atoms on the Al sites and Pd and Si atoms randomly distributed on the B sites. However, the intricate magnetic properties observed in the series of compounds have always suggested complications to the assumed structure. To clarify the situation, x-ray and neutron diffraction measurements were performed on the heavy rare earth compounds with R=Gd, Tb, Dy, Ho, Er, Tm, which revealed the existence of a crystallographic superstructure. The superstructure features a doubled unit cell in the hexagonal basal plane and an octuplication along the perpendicular c direction with respect to the primitive cell. No structural transition was observed between 300 and 1.5 K. Extended x-ray absorption fine structure (EXAFS) analysis as well as density functional theory (DFT) calculations were utilized to investigate the local environments of the respective atoms. In this paper the various experimental results will be presented and it will be shown that the superstructure is mainly due to the Pd-Si order on the B sites. A structure model will be proposed to fully describe the superstructure of Pd-Si order in R2PdSi3. The connection between the crystallographic superstructure and the magnetic properties will be discussed in the framework of the presented model.

  8. Processing, phase equilibria and environmental degradation of molybdenum (silicom,aluminum)(2) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Eason, Paul Duane

    The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of

  9. First principles study of structural, electronic, mechanical and thermal properties of A15 intermetallic compounds Ti3X (X=Au, Pt, Ir)

    NASA Astrophysics Data System (ADS)

    Rajagopalan, M.; Rajiv Gandhi, R.

    2012-12-01

    The structural, electronic, elastic, mechanical and thermal properties of Ti3Au, Ti3Pt and Ti3Ir intermetallic compounds crystallizing in A15 structure have been studied using density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Elastic properties such as Young's modulus (E), rigidity modulus (G), bulk modulus (B), Poisson's ratio (σ) and elastic anisotropic factor (A) have been calculated. From the present study it is noted that Ti3Ir is the hardest compound among the three materials studied due to its larger bulk modulus. Also, it is more ductile in nature.

  10. Magnetic and magnetocaloric properties of Er(Co1-xFex)2 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chaaba, I.; Othmani, S.; Haj-Khlifa, S.; de Rango, P.; Fruchart, D.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A.

    2017-10-01

    Structural, magnetic and magnetocaloric properties of Er(Co1-xFex)2 (x = 0.0, 0.125 and 1) compounds are investigated. X-ray diffraction (XRD) analysis has revealed that the compounds crystallize in the C15 type Laves phase structure, with Fd-3m space group. All the samples are ferrimagnetically ordered, exhibiting a compensation point in the M(T) traces for x = 1. The substitution of Fe to Co is accompanied by an increase of the Curie temperature from 42 to 591 K, for x varying from 0 to 1. Magnetocaloric effect (MCE) is anticipated according to the Maxwell relation based on isothermal magnetization measurements. A maximum |ΔSM| value is found decreasing from 21 J.kg-1.K-1for x = 0 to 1.5 J.kg-1.K-1 for x = 1 under an applied magnetic field change of 0-5 T. This decrease is accompanied by a change in the nature of the magnetic transition which becomes 2nd order when substituting Fe to Co.

  11. Coherent cluster atomic ordering in the Fe-27Al intermetallic compound

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Mukhametuly, B.; Sumnikov, S. V.; Golovin, I. S.

    2016-10-01

    Neutron diffraction studies of the Fe0.735Al0.265 compound are performed in a wide temperature range (20-900°C) in order to determine its structural states and the mechanism of ordering of atoms. The combination of high-resolution diffraction and the real-time detection of diffraction spectra makes it possible to establish that, in contrast to traditional notions, the structure of this compound at room temperature is a phase with only a partially ordered arrangement of Fe and Al in a unit cell. A completely ordered phase (such as Fe3Al) is present in the form of mesoscopic ( 200Å) clusters coherently incorporated into the disordered matrix of the main phase. After the transition of the sample to a disordered state ( T> 740°C) and slow cooling to room temperature, the size of structurally ordered clusters increases to 900 Å. A high contrast in the coherent neutron scattering lengths of iron and gallium nuclei allows the accurate determination of the temperature dependence of the occupancy factors of sites by Fe and Al atoms up to a phase transition to the disordered state.

  12. The Electronic Structure of GOLD-GALLIUM(,2) and GOLD-INDIUM(,2) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Nelson, Jeffrey Glenn

    The (111) and (001) surfaces of gold gallium (AuGa(,2)) and the (111) surface of gold indium (AuIn(,2)) were characterized using Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and electron energy loss spectroscopy (EELS). In all three systems, AES was used to study the surface chemistry, while LEED was used to determine the size and orientation of the surface net. The EELS spectra revealed surface and bulk plasmon loss features as well as transitions from the Au 5d portion of the valence band and either the Ga 3d or In 4d core levels. The (001) surfaces of both compounds were studied using synchrotron radiation excited angle-resolved photoemission (ARPES). Spectra collected for photoelectron emission normal to the surfaces were used to map the E(k) versus k dispersion relation along the (DELTA) symmetry line of the bulk Brillouin Zone (BZ). In addition, off-normal -emission ARPES spectra were used to map the E(k) versus k(,11) dispersion relation of the surface state which was found on both systems. Finally, the off-normal-emission data was also used to examine the band structure along (SIGMA) and (LAMDA) in the bulk BZ of both compounds.

  13. Electrocatalytic Formation and Inactivation of Intermetallic Compounds in Electrorefining of Silicon

    NASA Astrophysics Data System (ADS)

    Olsen, Espen; Rolseth, Sverre; Thonstad, Jomar

    2010-08-01

    Silicon for solar cell purposes is today produced by an energy intensive process exhibiting high irreversible thermodynamic energy losses. The purity of the product; 99,9999999 pct (9N), far exceeds what is generally accepted to be the requirements for photovoltaic purposes (4-6N). According to thermodynamics, all elements except boron may be removed from silicon by three layer electrochemical refining above the melting point of Si. Boron, on the other hand, shows higher affinity to specific transition metals compared to silicon. This may be exploited by applying two principles in parallel; electrochemical refining and electrocatalyzed reaction-precipitation of transition metal borides as heavy, stable particles. In this study we report on the formation of such compounds at the cathode-electrolyte interface during electrochemical refining. The trends and mechanisms observed in the laboratory scale investigation indicate that high purity silicon may be produced in industrial scale reactors at low cost- and energy intensity.

  14. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Chattopadhyay, M. K.; Roy, S. B.

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions.

  15. Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Yang, Dongdong; Zhang, Mingxin; Huang, Jihua; Zhao, Xingke

    2016-10-01

    The interfacial reaction between solid steel and liquid aluminum has been widely investigated in past decades; however, some issues, such as the solid/liquid interfacial structure, formation mechanisms of FeAl3 and Fe2Al5, and interaction between the growth and dissolution of intermetallic compounds, are still not fully understood. In this study, a hot-dipping method is designed to investigate the interfacial reaction in the temperature range between 973 K and 1273 K (700 °C 1000 °C) for 10 to 60 seconds. The intensification of the dissolution leads to the transformation of FeAl3/liquid aluminum into Fe2Al5/liquid aluminum in the solid/liquid structure with increasing reaction temperature. The formation of FeAl3 adhered to the interface depends not only on the reaction mechanism but also on precipitation at relatively low temperatures. In contrast, precipitation is the only formation mechanism for FeAl3 at relatively high temperatures. Austenitizing results in the complete transformation of the tongue-like Fe2Al5/Fe interface to a flat shape. The growth of Fe2Al5 with respect to the maximum thickness is governed by the interfacial reaction process, whereas the growth of Fe2Al5 with respect to the average thickness is governed by the diffusion process in the range of 973 K to 1173 K (700 °C to 900 °C) for 10 to 60 seconds. The dissolution of the parent metal is due to the natural dissolution of FeAl3 at low temperatures and Fe2Al5 at high temperatures.

  16. Theoretical studies of strongly correlated rare-earth intermetallics RIn₃ and RSn₃ (R=Sm, Eu, and Gd)

    SciTech Connect

    Shafiq, M.; Ahmad, Iftikhar E-mail: dr.iftikhar@uom.edu.pk; Jalali Asadabadi, S.

    2014-09-14

    In this paper, the structural, elastic, and electronic properties of RIn₃ and RSn₃ (R = Sm, Eu, Gd) compounds have been investigated using the full potential linearized augmented plane wave plus local orbital method within the density functional theory. The structural properties are investigated using the LDA, GGA, and the band correlated LDA+U and GGA+U schemes. The lattice parameters are in good agreement with the available experimental results and the divalent state of Eu is also verified. The spin-orbit coupling is included in order to predict the correct electronic properties and splitting of 4f states of the rare earth elements is also incorporated. We calculated Bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Kleinman parameters, Poisson's ratio, Lame's co-efficient, sound velocities for shear and longitudinal waves, and Debye temperature. We also predict the Cauchy pressure and B/G ratio in order to explore the ductile and brittle behaviors of these compounds.

  17. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  18. Electronic magnetic structure of intermetallic compounds RNi2Mn studied by XMCD

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Tatyana V.; Grebennikov, Vladimir I.; Gerasimov, E. G.; Mushnikov, N. V.

    2017-10-01

    The x-ray absorption near edge structure (XANES) and the x-ray magnetic circular dichroism (XMCD) measurements in the hard X-ray range at the Ni and Mn K edges and Tb, Dy L2, 3 edges were carried out in TbNi2Mn and DyNi2Mn in magnetic field up to 6 T at 10 K. XMCD on the Dy and Tb L-edges reaches 3.2%. The spin and orbital d-projected density of states on Tb and Dy atoms were obtained from the XMCD spectra. The Ni and Mn K-edges absorptions are practically identical in both compounds, as well as the dichroism spectra. The magnitude of dichroism is less than 0.5% and its length of about 50 eV. Scattering of outgoing p-wave on magnetic atoms environment is the main source of the K-edge dichroism. Element-specific magnetic hysteresis-loops measurements on TbNi2Mn and DyNi2Mn were performed by X-ray magnetic circular dichroism.

  19. Magnetic properties and structures of fibrous R11Ni4In9 intermetallics (R = heavy rare earths)

    NASA Astrophysics Data System (ADS)

    Provino, Alessia; Ritter, Clemens; Gschneidner, Karl A.; Manfrinetti, Pietro; Dhar, Sudesh K.; Pecharsky, Vitalij K.

    2015-03-01

    The existence and the unusual self-assembled nano/microfibrous morphology of the R11T4In9 (R = rare earth, T = Ni, Pd, Pt) phases has been recently studied [1,2,3]. All the rare earths (but Sc, Eu, Yb) form this ternary compound (orthorhombic Nd11Pd4In9-type, oC48, Cmmm). The bundles of fibers grow parallel to the temperature gradient and along the short c-axis. In this presentation we describe the results of a detailed investigation of the physical properties (electrical resistivity, heat capacity, magnetization measurements) of Tb11Ni4In9, Dy11Ni4In9andHo11Ni4In9 by orienting the fibers parallel and orthogonal, respectively, to the electric current and magnetic field. The unusual fibrous microstructure of these compounds leads to a strong anisotropy in their physical properties, with the c-axis of the orthorhombic cell being the easy magnetization and high electrical-conductivity direction. The magnetic structures of Tb11Ni4In9andHo11Ni4In9, which have multiple magnetic orderings, have been investigated by neutron diffraction. The complex magnetic behavior found in these phases is a result of the competing ferrimagnetic (along the c-axis) and antiferromagnetic (on the a - b plane) orderings of the five R sublattices.

  20. R5T4 compounds - unique multifunctional intermetallics for basic research and applications

    SciTech Connect

    Mudryk, Yaroslav

    2016-10-01

    The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd2Fe14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result of a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.

  1. Prediction and characterization of an Mg-Al intermetallic compound with potentially improved ductility via orbital-free and Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Chen, Mohan; Carter, Emily A.

    2017-10-01

    Magnesium-aluminum (Mg-Al) intermetallic compounds that form as precipitates can significantly influence the mechanical properties of Mg-Al alloys. A computational evaluation of known and unknown Mg-Al intermetallic compounds could help design new Mg-Al alloy microstructures with optimal properties. Here, we employ the cluster-expansion method with energies efficiently calculated with orbital-free density functional theory (OFDFT) and predict a new, metastable intermetallic compound Mg3Al with a D019 hexagonal structure that is slightly more stable than an alternative L12 cubic structure. We apply Kohn-Sham DFT (KSDFT) to accurately evaluate various metastability criteria for D019 and L12 Mg3Al, including Born’s criterion and phonon dispersion. We show that both Mg3Al crystalline phases satisfy the metastability criteria and hence should be at least metastable. We further compare ductility metrics for D019 and L12 Mg3Al to that of hexagonal-close-packed Mg by computing Pugh’s ratio and generalized stacking fault energies. The ductility is predicted to follow the order: D019 Mg3Al > L12 Mg3Al > Mg, based on the highest Pugh’s ratio and the lowest unstable stacking and twinning fault energies of D019 Mg3Al compared to that of Mg. We also predict a very low antiphase boundary energy for Mg3Al and therefore expect D019 Mg3Al to be beneficial for improving the ductility of Mg-rich Mg-Al alloys. A computational design of Mg-Al alloy microstructures may become possible by combining the strengths of both OFDFT and KSDFT, i.e., the efficiency of the former and the accuracy of the latter, as demonstrated here.

  2. Radiation-induced amorphization of intermetallic compounds: A molecular-dynamics study of CuTi and Cu sub 4 Ti sub 3

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R. ); Sabochick, M.J. . Dept. of Engineering Physics)

    1991-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu{sub 4}Ti{sub 3} are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed. 25 refs., 4 figs.

  3. Effect of silicon (Si) particles addition on melting temperature, intermetallic compound formation and solderability of Sn-Cu-Ni composite solder paste

    NASA Astrophysics Data System (ADS)

    Said, R. M.; Salleh, M. A. A. Mohd; Ramli, M. I. I.; Saud, N.

    2017-04-01

    The effect of silicon (Si) particles addition on the melting temperature, intermetallic compound (IMC) layer formation and solderability of Sn-Cu-Ni solder joint were investigated. The melting temperature of mixture solder paste was studied by using Differential Scanning Calorimeter (DSC). Solderability of solder paste was evaluated through the contact angle of solder paste on Cu substrate. The interfacial morphology of monolithic and composite solder paste was characterized metallographically. The wettability and IMC thickness of Sn-Cu-Ni composite solder paste was reduced compared to the monolithic solder paste. Overall, the Si particles improved the physical properties and solderability of Sn-Cu-Ni composite solder paste.

  4. The effect of boron additions on irradiation-induced order changes in Ni{sub 3}Al intermetallic compounds

    SciTech Connect

    Njah, N.; Gilbon, D.; Dimitrov, O.

    1995-11-01

    The effects of boron additions (0.1 wt%) on the kinetics of atomic order changes in a Ni{sub 76}Al{sub 24} intermetallic compound, under 1 MeV electron irradiation, were investigated at temperatures of 293 K and 410 K and displacement rates of 0.09 {times} 10{sup {minus}3} to 4.7 {times} 10{sup {minus}3} dpa.s{sup {minus}1}. In these irradiation conditions, a state of residual order was obtained for long irradiation times, characterized by a steady state order parameter S{infinity}; it corresponds to a competition between two opposite features: irradiation disordering and thermal reordering enhanced by irradiation. Boron additions did not affect the efficiency of irradiation-induced disordering: the disordering cross-section (or, equivalently, the number of replacements per displacement {var_epsilon}) were comparable with and without a boron addition. By contrast, the S{infinity} values at 293 K were much lower in the alloy containing boron. Since boron does not change the disordering rate, the large difference between the values obtained in undoped and in boron-doped alloys shows that the reordering rate is strongly reduced by the presence of boron. Thus, boron modifies the mobility of the defects responsible for the irradiation-enhanced diffusion. The data on dislocation-loop size and the reordering kinetics suggest that vacancies are trapped by boron at low temperatures and immobilized, probably by the formation of a boron-vacancy complex. The effect becomes weaker at higher displacement rates and higher temperatures, probably due to the boron-vacancy complexes becoming unstable. It is proposed that two different reordering mechanisms may be operative at 293 K, according to the presence of boron: reordering is promoted by vacancy migration in the Ni{sub 76}Al{sub 24} alloy, whereas in the Ni{sub 76}Al{sub 24} (0.1 wt%B) alloy, it is promoted by the migration of split-interstitials or/and of low-mobility vacancy-boron complexes.

  5. A framework for studying dynamics and stability of diffusive-reactive interfaces with application to Cu6Sn5 intermetallic compound growth.

    PubMed

    Udupa, Anirudh; Sadasiva, Subramanya; Subbarayan, Ganesh

    2016-06-01

    Often during phase growth, the rate of accretion, on the one hand, is determined by a competition between bulk diffusion and surface reaction rate. The morphology of the phase interface, on the other hand, is determined by an interplay between surface diffusivity and surface reaction rate. In this study, a framework to predict the growth and the morphology of an interface by modelling the interplay between bulk diffusion, surface reaction rate and surface diffusion is developed. The framework is demonstrated using the example of Cu-Sn intermetallic compound growth that is of significance to modern microelectronic assemblies. In particular, the dynamics and stability of the interface created when Cu and Sn react to form the compound Cu6Sn5 is explored. Prior experimental observations of the Cu6Sn5-Sn interface have shown it to possess either a scalloped, flat or needle-shaped morphology. Diffuse interface simulations are carried out to elucidate the mechanism behind the interface formation. The computational model accounts for the bulk diffusion of Cu through the intermetallic compound, reaction at the interface to form Cu6Sn5, surface diffusion of Cu6Sn5 along the interface and the influence of the electric current density in accelerating the bulk diffusion of Cu. A stability analysis is performed to identify the conditions under which the interface evolves into a flat, scalloped or needle-shaped structure.

  6. A framework for studying dynamics and stability of diffusive–reactive interfaces with application to Cu6Sn5 intermetallic compound growth

    PubMed Central

    Sadasiva, Subramanya; Subbarayan, Ganesh

    2016-01-01

    Often during phase growth, the rate of accretion, on the one hand, is determined by a competition between bulk diffusion and surface reaction rate. The morphology of the phase interface, on the other hand, is determined by an interplay between surface diffusivity and surface reaction rate. In this study, a framework to predict the growth and the morphology of an interface by modelling the interplay between bulk diffusion, surface reaction rate and surface diffusion is developed. The framework is demonstrated using the example of Cu–Sn intermetallic compound growth that is of significance to modern microelectronic assemblies. In particular, the dynamics and stability of the interface created when Cu and Sn react to form the compound Cu6Sn5 is explored. Prior experimental observations of the Cu6Sn5–Sn interface have shown it to possess either a scalloped, flat or needle-shaped morphology. Diffuse interface simulations are carried out to elucidate the mechanism behind the interface formation. The computational model accounts for the bulk diffusion of Cu through the intermetallic compound, reaction at the interface to form Cu6Sn5, surface diffusion of Cu6Sn5 along the interface and the influence of the electric current density in accelerating the bulk diffusion of Cu. A stability analysis is performed to identify the conditions under which the interface evolves into a flat, scalloped or needle-shaped structure. PMID:27436981

  7. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as

  8. Tunable giant exchange bias in the single-phase rare-earth-transition-metal intermetallics YM n12 -xF ex with highly homogenous intersublattice exchange coupling

    NASA Astrophysics Data System (ADS)

    Xia, Yuanhua; Wu, Rui; Zhang, Yinfeng; Liu, Shunquan; Du, Honglin; Han, Jingzhi; Wang, Changsheng; Chen, Xiping; Xie, Lei; Yang, Yingchang; Yang, Jinbo

    2017-08-01

    A tunable giant exchange bias effect is discovered in a family of bulk intermetallic compounds YM n12 -xF ex . Experimental data demonstrate that the exchange bias effect originates from global interactions among ferromagnetic and antiferromagnetic sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift of up to 6.1 kOe has been observed in YM n4.4F e7.6 compound. In a narrow temperature range, the exchange bias field shows a sudden switching-off whereas the coercivity shows a sudden switching-on with increasing temperature. This unique feature indicates that the intersublattice exchange coupling is highly homogenous. Our theoretical calculations reveal this switching feature, which agrees very well with the experiments and provides insights into the physical underpinnings of the observed exchange bias and coercivity.

  9. Magnetic structures and related properties of some rare-earth intermetallic compounds, RCu 2

    NASA Astrophysics Data System (ADS)

    Lebech, B.; Smetana, Z.; S̆íma, V.

    1987-12-01

    The magnetic structures and some relevant bulk magnetic properties of R(Cu, Ni) 2 (R = Tb, Tb zY 1- z, Dy, Ho, Er and Tm) are summarized. Basically, the magnetic structures are antiferromagnetically modulated with propagation vector {1}/{3}a∗. For R = Tb, Dy, Ho the a-axis anisotropy dominates and the structures are longitudinally modulated. For R = Tm, Er (probably) the b-axis anisotropy dominates and this results in transversely modulated structures. For R = Tb, Dy the structures are collinear, For R = Ho, Er, Tm (probably) an incommensurate modulation coexists with the commensurate a∗-axis modulation at the lowest temperature.

  10. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C. de; Fournée, V.

    2014-08-28

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (√(3)×√(3)) R30{sup ∘} superstructure and an estimated composition close to In{sub 2}Pd{sub 3}. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (√(3)×√(3)) R30{sup ∘} superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In{sub 7}Pd{sub 3} compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600 K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In

  11. A Study on the Effect of Ageing and Intermetallic Compound Growth on the Shear Strength of Surface Mount Technology Solder Joints

    NASA Astrophysics Data System (ADS)

    Nath, Jyotishman; Mallik, Sabuj; Borah, Anil

    2015-04-01

    The effect of ageing and intermetallic compound formation on the surface mount solder joints and its shear strength behavior under extreme mechanical and thermal conditions have been discussed in this paper. The specimens used are solder paste (Sn3.8Ag0.7Cu), bench marker II printed circuit boards (PCB), resistors 1206 and the fabrication of solder joints makes use of conventional surface mount technology (SMT). Reflow process was carried out at a peak temperature of 250 °C and the test samples were exposed to isothermal ageing at a constant temperature of 150 °C for a period of 600 h. Shear test was conducted on the PCB's. The shear strength of the solder joints rapidly increased during isothermal ageing to a certain time period and then started decreasing. Field emission scanning electron microscopy (FESEM) micrograph of the solder joint and energy dispersive X-ray (EDX) was performed on the solder sample to verify the formation of intermetallic compounds.

  12. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase.

  13. First-principles characterization of the anisotropy of theoretical strength and the stress-strain relation for a TiAl intermetallic compound.

    PubMed

    Zhou, Hong-Bo; Zhang, Ying; Liu, Yue-Lin; Kohyama, Masanori; Yin, Peng-Gang; Lu, Guang-Hong

    2009-04-29

    We perform first-principles computational tensile and compressive tests (FPCTT and FPCCT) to investigate the intrinsic bonding and mechanical properties of a γ-TiAl intermetallic compound (L 1(0) structure) using a first-principles total energy method. We found that the stress-strain relations and the corresponding theoretical tensile strengths exhibit strong anisotropy in the [001], [100] and [110] crystalline directions, originating from the structural anisotropy of γ-TiAl. Thus, γ-TiAl is a representative intermetallic compound that includes three totally different stress-strain modes. We demonstrate that all the structure transitions in the FPCTT and FPCCT result from the breakage or formation of bonds, and this can be generalized to all the structural transitions. Furthermore, based on the calculations we qualitatively show that the Ti-Al bond should be stronger than the Ti-Ti bond in γ-TiAl. Our results provide a useful reference for understanding the intrinsic bonding and mechanical properties of γ-TiAl as a high-temperature structural material.

  14. PyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Medasani, Bharat; Chen, Wei; Persson, Kristin A.; Haranczyk, Maciej; Asta, Mark

    2015-08-01

    Point defects play an important role in determining the structural stability and mechanical behavior of intermetallic compounds. To help quantitatively understand the point defect properties in these compounds, we developed PyDII, a Python program that performs thermodynamic calculations of equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallics. The algorithm implemented in PyDII is built upon a dilute-solution thermodynamic formalism with a set of defect excitation energies calculated from first-principles density-functional theory methods. The analysis module in PyDII enables automated calculations of equilibrium intrinsic antisite and vacancy concentrations as a function of composition and temperature (over ranges where the dilute solution formalism is accurate) and the point defect concentration changes arising from addition of an extrinsic substitutional solute species. To demonstrate the applications of PyDII, we provide examples for intrinsic point defect concentrations in NiAl and Al3 V and site preferences for Ti, Mo and Fe solutes in NiAl.

  15. Structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.

  16. Modeling of the self-organization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Ilyushin, G. D.

    2017-09-01

    A combinatorial and topological modeling of 1D, 2D, and 3D packings of symmetrically linked A4 tetrahedra has been performed. Three types of 1D chains with tetrahedra connectivities of 4, 6, and 8 were used to model 2D layers L-1, L-2, and L-3 and 3D frameworks FR-1, FR-2, FR-3, and FR-4. A family of tetrahedral structures with FR-1, FR-2, and FR-3 frameworks has been selected among the intermetallic compounds with chemical compositions of A 3 B, A 2 B 2, AB 3, A 2 BC, AB 2 C, and ABCD; this family includes more than 1900 compounds (TOPOS program package). It is found that the topological models of tetrahedral 3D frameworks are in correspondence with all types of the crystal structures formed in Au-Cu binary systems (FR-1 for Cu3Au (auricupride), Cu2Au2 (tetraauricupride), and CuAu3 (bogdanovite)), in the Mg-Cd system (FR-3 for Mg3Cd, Mg2Cd2, and MgCd3), in the Li-Hg system (FR-2 for Li3Hg and Li2Hg2 and FR-3 for LiHg3), in the Li-Ag-Al ternary system (FR-2 for LiAg2Al and Li2AgAl), and in the Li-Mg-Pd-Sn quaternary system (FR-2 for LiMgPdSn). Framework FR-4 has been established in ternary intermetallic compounds A(Li2Sn2); A = Cu, Ag, Au.

  17. Systematics of Mössbauer hyperfine parameters in Np intermetallics

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Gal, J.; Asch, L.; Potzel, W.

    1992-05-01

    Data for intermetallic compounds of neptunium obtained with the 60 keV Mössbauer resonance of237Np are reviewed. Measurements of temperature, pressure and field dependencies are available. The main questions addressed are: (a) the degree of delocalization of 5f-electrons, (b) the formal charge state of Np, and (c) the influence of the ligand on the neptunium electronic structure. For this purpose, we present an evaluation of systematic behavior concerning mainly the hyperfine field and isomer shift in the cubic Laves phase materials NpX2, the NaCl-type monochalcogenides and monopnictides, and intermetallics with AuCu3 and ThCr2Si2 structures. Analogies to corresponding rare-earth compounds will be pointed out.

  18. Circular magnetic x-ray dichroism in rare earth compounds

    SciTech Connect

    Lang, Jonathan

    1993-09-30

    This report discusses the following topics: Circular magnetic x-ray dichroism at the ER L3 Edge; angular dependence of circular magnetic x-ray dichroism in rare earth compounds: and circular magnetic x-ray dichroism in crystalline and amorphous GDFE2.

  19. Effects of TiFe Intermetallic Compounds on the Tensile Behavior of Ti-4Al-4Fe-0.25Si Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Sang Won; Kim, Kyong Min; Park, Chan Hee; Hong, Jea Keun; Yeom, Jong-Taek; Shih, Donald S.

    2017-02-01

    The effect of the B2 (ordered BCC) intermetallic compound TiFe on the tensile behavior of the Ti-4Al-4Fe-0.25Si alloy was investigated. The nucleation mechanism of TiFe was dependent on the solution temperature, and the solution treatment and aging temperatures were also important to the final alloy. The presence of intra-granular TiFe, which nucleated at α' (HCP) sites during aging, resulted in alloy brittleness. Alternatively, the presence of inter-granular TiFe, which nucleated only at nano-sized α (HCP) sites during aging, resulted in an excellent combination of strength and ductility compared to the original microstructure.

  20. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    PubMed Central

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  1. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions.

    PubMed

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  2. Intermetallic compounds formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder

    SciTech Connect

    Chang, T.-C.; Hon, M.-H.; Wang, M.-C

    2003-04-30

    The intermetallic compounds (IMCs) formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder alloy have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The XRD patterns show that the main IMCs formed at the interface of Sn-9Zn-0.5Ag/Cu are {gamma}-Cu{sub 5}Zn{sub 8} and {eta}'-Cu{sub 6}Sn{sub 5}. The Ag{sub 3}Sn IMC with orthorhombic structure was also observed at the Sn-9Zn-0.5Ag/Cu interface by TEM and ED analyses. The interfacial adhesion strength between the Cu substrate and Sn-9Zn-0.5Ag lead-free solder alloy is higher than that of the Sn-9Zn alloy due to the formation of Ag{sub 3}Sn IMC at the interface.

  3. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  4. LaAu2 and CeAu2 surface intermetallic compounds grown by high-temperature deposition on Au(111)

    NASA Astrophysics Data System (ADS)

    Ormaza, M.; Fernández, L.; Lafuente, S.; Corso, M.; Schiller, F.; Xu, B.; Diakhate, M.; Verstraete, M. J.; Ortega, J. E.

    2013-09-01

    We report on the crystal structure and electronic bands of LaAu2 and CeAu2 surface intermetallic compounds grown by high-temperature deposition on Au(111). By scanning-tunneling microscopy we study the formation of different alloy phases as a function of growth temperature and lanthanide coverage. We determine the specific growth conditions to achieve monolayers and bilayers of LaAu2 and CeAu2 with high crystalline quality. Due to lattice mismatch with the underlying Au substrate, both LaAu2 and CeAu2 exhibit long-range moiré patterns, which can serve as templates for further nanostructure growth. By angle-resolved photoemission we map the two-dimensional band structure of these surface alloys, discussing the nature of the different spectral features in the light of first-principles calculations.

  5. Structural, electronic and elastic properties of the B2-ScM (M =Au, Hg and Tl) intermetallic compounds: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mousa, Ahmad A.; Khalifeh, Jamil M.

    2015-10-01

    Structural, electronic, elastic and mechanical properties of ScM (M =Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants (C11, C12 and C44) confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.

  6. A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER

    SciTech Connect

    Izidoro, A.; Winter, O. C.; De Souza Torres, K.; Haghighipour, N.

    2013-04-10

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.

  7. X-ray structural study of intermetallic alloys RT{sub 2}Si and RTSi{sub 2} (R=rare earth, T=noble metal)

    SciTech Connect

    Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Seropegin, Yurii; Giester, Gerald

    2010-06-15

    Two series of intermetallic alloys, RT{sub 2}Si and RTSi{sub 2}, have been synthesized from stoichiometric compositions. The crystal structures of EuPt{sub 1+x}Si{sub 2-x} (CeNiSi{sub 2}-type), CeIr{sub 2}Si (new structure type), YbPd{sub 2}Si and YbPt{sub 2}Si (both YPd{sub 2}Si-type) have been elucidated from X-ray single crystal CCD data, which were confirmed by XPD experiments. The crystal structures of LaRh{sub 2}Si and LaIr{sub 2}Si (CeIr{sub 2}Si-type), {l_brace}La,Ce,Pr,Nd{r_brace}AgSi{sub 2} (all TbFeSi{sub 2}-type), and EuPt{sub 2}Si (inverse CeNiSi{sub 2}-type) were characterized by XPD data. RT{sub 2}Si/RTSi{sub 2} compounds were neither detected in as-cast alloys Sc{sub 25}Pt{sub 50}Si{sub 25}, Eu{sub 25}Os{sub 25}Si{sub 50} and Eu{sub 25}Rh{sub 25}Si{sub 50} nor after annealing at 900 {sup o}C. Instead, X-ray single crystal data prompted Eu{sub 2}Os{sub 3}Si{sub 5} (Sc{sub 2}Fe{sub 3}Si{sub 5}-type) and EuRh{sub 2+x}Si{sub 2-x} (x=0.04, ThCr{sub 2}Si{sub 2}-type) as well as a new structure type for Sc{sub 2}Pt{sub 3}Si{sub 2} (own type). - Graphical abstract: Two series of the intermetallic compounds, RT{sub 2}Si and RTSi{sub 2}, have been investigated by X-ray diffraction methods. The new tetragonal CeIr{sub 2}Si-type of the crystal structure was described and the interrelation between orthorhombic CeNiSi{sub 2} and tetragonal CeIr{sub 2}Si had been discussed as a similar packing of the BaAl{sub 4} and AlB{sub 2} slabs.

  8. REMGa3Ge and RE3Ni3Ga8Ge3 (M = Ni, Co; RE = rare-earth element): new intermetallics synthesized in liquid gallium. X-ray, electron, and neutron structure determination and magnetism.

    PubMed

    Zhuravleva, Marina A; Pcionek, Robert J; Wang, Xiaoping; Schultz, Arthur J; Kanatzidis, Mercouri G

    2003-10-06

    New quaternary intermetallic phases REMGa(3)Ge (1) (RE = Y, Sm, Tb, Gd, Er, Tm; M = Ni, Co) and RE(3)Ni(3)Ga(8)Ge(3) (2) (RE = Sm, Gd) were obtained from exploratory reactions involving rare-earth elements (RE), transition metal (M), Ge, and excess liquid Ga the reactive solvent. The crystal structures were solved with single-crystal X-ray and electron diffraction. The crystals of 1 and 2 are tetragonal. Single-crystal X-ray data: YNiGa(3)Ge, a = 4.1748(10) A, c = 23.710(8) A, V = 413.24(2) A(3), I4/mmm, Z = 4; Gd(3)Ni(3)Ga(8)Ge(3), a = 4.1809(18) A, c = 17.035(11) A, V = 297.8(3) A(3), P4/mmm, Z = 1. Both compounds feature square nets of Ga atoms. The distribution of Ga and Ge atoms in the REMGa(3)Ge was determined with neutron diffraction. The neutron experiments revealed that in 1 the Ge atoms are specifically located at the 4e crystallographic site, while Ga atoms are at 4d and 8g. The crystal structures of these compounds are related and could be derived from the consecutive stacking of disordered [MGa](2) puckered layers, monatomic RE-Ge planes and [MGa(4)Ge(2)] slabs. Complex superstructures with modulations occurring in the ab-plane and believed to be associated with the square nets of Ga atoms were found by electron diffraction. The magnetic measurements show antiferromagnetic ordering of the moments located on the RE atoms at low temperature, and Curie-Weiss behavior at higher temperatures with the values of mu(eff) close to those expected for RE(3+) free ions.

  9. Effect of Laser Processing Parameters on the Formation of Intermetallic Compounds in Fe-Al Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Meco, Sonia; Ganguly, Supriyo; Williams, Stewart; McPherson, Norman

    2014-09-01

    Fusion welding of steel to aluminum is difficult due to formation of different types of Fe-Al intermetallics (IMs). In this work, 2 mm-thick steel was joined to 6 mm aluminum in overlap configuration using a 8 kW CW fiber laser. A defocused laser beam was used to control the energy input and allow melting of the aluminum alone and form the bond by wetting of the steel substrate. Experimentally, the process energy was varied by changing the power density (PD) and interaction time separately to understand the influence of each of these parameters on the IM formation. It was observed that the IM formation is a complex function of PD and interaction time. It was also found that the mechanical strength of such joint could not be simply correlated to the IM layer thickness but also depends on the area of wetting of the steel substrate by molten aluminum. In order to form a viable joint, PD needs to be over a threshold value where although IM growth will increase, the strength will be better due to increased wetting. Any increase in interaction time, with PD over the threshold, will have negative effect on the bond strength.

  10. Scalable Nanoporous (Pt1-xNix)3Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction.

    PubMed

    Han, Gao-Feng; Gu, Lin; Lang, Xing-You; Xiao, Bei-Bei; Yang, Zhen-Zhong; Wen, Zi; Jiang, Qing

    2016-12-07

    Author: Bimetallic platinum-nickel (Pt-Ni) alloys as oxygen reduction reaction (ORR) electrocatalysts show genuine potential to boost widespread use of low-temperature fuel cells in vehicles by virtue of their high catalytic activity. However, their practical implementation encounters primary challenges in structural and catalytic durability caused by the low formation heat of Pt-Ni alloys. Here, we report nanoporous (NP) (Pt1-xNix)3Al intermetallic nanoparticles as oxygen electroreduction catalyst NP (Pt1-xNix)3Al, which circumvents this problem by making use of the extraordinarily negative formation heats of Pt-Al and Ni-Al bonds. The NP (Pt1-xNix)3Al nanocatalyst, which is mass-produced by alloying/dealloying and mechanical crushing technologies, exhibits specific activity of 3.6 mA cm(-2)Pt and mass activity of 2.4 A mg(-1)Pt at 0.90 V as a result of both ligand and compressive strain effects, while strong Ni-Al and Pt-Al bonds ensure their exceptional durability by alleviating evolution of Pt, Ni, and Al components and dissolutions of Ni and Al atoms.

  11. Investigation of modification of hydrogenation and structural properties of LaNi{sub 5} intermetallic compound induced by substitution of Ni by Pd

    SciTech Connect

    Prigent, J.; Joubert, J.-M.; Gupta, M.

    2011-01-15

    The hydrogenation properties of the LaNi{sub 5} (CaCu{sub 5} type, hP6, P6/mmm) and Pd substituted derivatives LaNi{sub 5-x}Pd{sub x} compounds have been studied in the whole homogeneity range of the solid solution (0.25{<=}x{<=}1.5). The pressure versus hydrogen content isotherms show several plateaus and an increase of the plateau pressure as a function of palladium concentration. The volume increase of the Pd substituted alloys should have resulted in a lowering, and not an increase, of the plateau pressure, according to the conventional models based on the size effect. In order to elucidate the origin of this anomalous behavior, both an experimental and a theoretical ab initio electronic structure investigation have been carried out. Experimentally, the nature and the structural properties of the hydrides have been studied by both in situ and ex situ neutron diffraction. The crystal structures of the three hydride phases are reported (LaNi{sub 3.5}Pd{sub 1.5}D{sub 1.96}, filled-up CaCu{sub 5} type, P6/mmm; LaNi{sub 4}PdD{sub 2.72}, LaNi{sub 2}(Ni{sub 0.75}Pt{sub 0.25}){sub 3}H{sub 2.61} type, oI128, Ibam; LaNi{sub 4.75}Pd{sub 0.25}D{sub 5.67}, partly ordered CaCu{sub 5} type, P6mm). In addition, the phase diagram of LaNi{sub 5-x}Pd{sub x}-H system has been investigated. The electronic and thermodynamic properties of both intermetallic compounds and the hydrides have been studied by ab initio electronic structure calculations. The theoretical results are in good agreement with our experimental data, and show that electronic interactions play a major role in the hydrogenation behavior of these Pd substituted intermetallic compounds, and that these effects cannot be accounted for by a simplistic model based on the size effect alone. -- Graphical abstract: Phase diagram of the system LaNi{sub 5-x}Pd{sub x}-D{sub 2} (absorption) at 25 {sup o}C and 25 bar. Display Omitted

  12. Biogenic volatile organic compounds in the Earth system.

    PubMed

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  13. R{sub 5}Ga{sub 3} compounds of rare-earth metals R; structures and properties

    SciTech Connect

    Zhao, Jing-Tai; Corbett, J.D.

    1993-12-31

    The chemistry of rare-earth metals with Al family elements is important in our understanding of the bonding nature of the so-called Zintl phases and regular intermetallic compounds as well as the perspective of potential new materials. The rare-earth gallides, R{sub 5}Ga{sub 3}, has been synthesized and their structure types have been clarified by single crystal structure determinations. Among them, La{sub 5}Ga{sub 3}, Gd{sub 5}B{sub 3} and Y{sub 5}Ga{sub 3}, instead of having the Cr{sub 5}B{sub 3}- or Mn{sub 5}Si{sub 3}-type as reported, crystallize with the Ba{sub 5}Si{sub 3}-type which is a deformation variant of the Cr{sub 5}B{sub 3}-type. The structural features of these phases are compared with other Cr{sub 5}B{sub 3} deformation structures. The physical property measurements of these compounds are consistent with their structural features.

  14. The structure and composition of chromate conversion coatings formed on aluminum-copper alloy AA2024-T3 and thin film analogs of constituent intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vasquez, Marvin Jaime

    2002-01-01

    A comprehensive suite of spectroscopy have been used to study the composition and structure of Chromate Conversion Coatings (CCC) formed on Aluminum Copper (Al-Cu) alloy AA2024-T3 and constituent Intermetallic Compounds (IMCs). Based on previous work the CCC formed over the IMCs is expected to be thinner and therefore different in structure and composition than the CCC formed on the matrix. The formation of the CCC over the different IMCs is expected to be dependent on the chemistry and the interaction of the IMCs with accelerators such as ferricyanide. Surface chemical and structural data determined by X-ray Photoelectron Spectroscopy (XPS), Synchrotron Infrared Microspectroscopy, X-ray Absorption Near Edge Spectroscopy (XANES), Extended X-ray Absorption Fine Structure (EXAFS), Secondary Ion Mass Spectrometry (SIMS), and Secondary Electron Microscopy/Energy Dispersive Analysis of X-rays (SEM/EDAX) have been developed to refine an existing model for the CCC formed on the AA2024-T3 surface, an Al-Cu aircraft alloy, by considering the composition and structure of the CCC formed on constituent intermetallic compounds (IMCs). The limited corrosion behavior of AA2024-T3 aluminum alloy is generally attributed to the presence of a variety of constituent IMC. These IMC particles are of the order of 1--20 mum which makes their direct analysis exceedingly difficult and has lead to a limited understanding of their surface chemical properties relative to CCC formation. To overcome this limitation, it was necessary to develop for the first time large area samples composed of compositionally homogenous thin films of the various IMCs found on the AA2024-T3 surface, which were galvanically attached to thin films of Al-4.2wt%Cu (representative of the AA2024-T3 matrix). This was performed in a two-step process: Disks of IMC compositions were formed by Reactive Arc Melting (RAM), followed by ultra-fast laser ablation of the RAM IMCs resulting in the formation of homogenous thin films

  15. Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. I. Description of the formalism and application to the series RCo5 (R=rare-earth atom)

    NASA Astrophysics Data System (ADS)

    Hummler, K.; Fähnle, M.

    1996-02-01

    For the series RCo5 (R=rare-earth atom) various parameters occurring in the two-sublattice model of rare-earth-transition-metal intermetallics (local magnetic moments, intersublattice exchange fields, crystal field parameters, as well as magnetic hyperfine fields and electric field gradients) are calculated within the framework of the local-spin-density approximation (LSDA) and the full-potential linear-muffin-tin-orbital theory. Special emphasis is given to a determination of the crystal field parameter A02. It is shown that it is absolutely indispensable to include the 5p states at the R site into the valence band and to avoid any spherical approximation for the effective potential. The quantity A02 depends on the orientation of the aspherical 4f charge density, in contrast to a basic assumption of the two-sublattice model. As a result, the experiments in general yield some kind of average effective values which are different for different experiments. Application of the LSDA introduces rather large uncertainties for A02 which cannot be totally removed but at least drastically reduced by physically motivated measures.

  16. Radiation-induced amorphization of ordered intermetallic compounds CuTi, CuTi sub 2 , and Cu sub 4 Ti sub 3 : A molecular-dynamics study

    SciTech Connect

    Sabochick, M.J. ); Lam, N.Q. )

    1991-03-01

    Solid-state amorphization resulting from the introduction of chemical disorder and point defects in the ordered intermetallic compounds CuTi, CuTi{sub 2}, and Cu{sub 4}Ti{sub 3} was investigated, with use of the isobaric-isothermal molecular-dynamics method in conjunction with embedded-atom potentials. Antisite defects were produced by randomly exchanging Cu and Ti atoms, and vacancies and interstitials were created by removing atoms at random from their normal sites and inserting atoms at random positions in the lattice, respectively. The potential energy, volume expansion, and pair-correlation function were calculated as functions of the numbers of atom exchanges and point defects. The results indicated that, although both chemical disordering and point-defect introduction increased the system energy and volume, the presence of point defects was essential to trigger the crystalline-to-amorphous transition. By comparing the pair-correlation function calculated after the introduction of point defects with that of the quenched liquid alloy, the critical damage dose (in dpa, displacements per atom) for amorphization was estimated for each compound: {similar to}0.7 dpa for CuTi, {similar to}0.5 dpa for CuTi{sub 2}, and {similar to}0.6 dpa for Cu{sub 4}Ti{sub 3}. At the onset of amorphization, the volume expansions were found to be {similar to}1.9%, {similar to}3.7%, and {similar to}1.7% for these respective compounds. In general, the results obtained in the present work are in good agreement with experimental observations.

  17. Double-exchange mechanism in rare-earth compounds

    SciTech Connect

    Gulacsi, M.

    2015-03-15

    We show that double-exchange mechanism is responsible for ferromagnetism in low dimensional rare-earth compounds. We use the bosonized version of the one-dimensional Anderson lattice model in Toulouse limit to characterize the properties of the emerging ferromagnetic phase. We give a comprehensive description of the ferromagnetic ordering of the correlated electrons which appears at intermediate couplings and doping. The obtained ferromagnetic phase transitions have been identified to be an order–disorder transition of the quantum random transverse-field Ising type.

  18. Abnormal Intermetallic Compound Evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni Micro Solder Joints Under Thermomigration

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Deng, J. F.; Zhong, Y.; Huang, M. L.; Ma, H. T.

    2017-04-01

    Interfacial reactions in Ni/Sn/Ni and Ni/Sn-9Zn/Ni micro solder joints during thermomigration (TM) have been studied by reflowing solder joints on a hot plate. Asymmetrical growth and transformation of interfacial intermetallic compounds (IMCs) were clearly observed. The growth of the Ni3Sn4 IMC in the Ni/Sn/Ni solder joints was always fast at the cold end and relatively slow at the hot end. Only asymmetrical growth of the Ni5Zn21 IMC in the Ni/Sn-9Zn/Ni solder joints occurred at the beginning because Zn was the dominant TM species; however, asymmetrical transformation of the Ni5Zn21 IMC also occurred under the combined effect of Zn depletion and Ni dissolution and migration, resulting in formation of a thin τ-phase layer at the hot end and a thick τ-phase/Ni5Zn21/τ-phase sandwich structure at the cold end. TM of Ni and Zn atoms was identified towards the cold end, being responsible for the abnormal IMC evolution. Addition of Zn was found to slow the TM-induced IMC growth and Ni dissolution.

  19. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  20. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  1. Effects of Electrical Current and External Stress on the Electromigration of Intermetallic Compounds Between the Flip-Chip Solder and Copper Substrate

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer

    2017-07-01

    This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.

  2. Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging

    NASA Astrophysics Data System (ADS)

    Su, Yu-Ping; Wu, Chun-Sen; Ouyang, Fan-Yi

    2016-01-01

    Three-dimensional integrated circuit technology has become a major trend in electronics packaging in the microelectronics industry. To effectively remove heat from stacked integrated circuitry, a temperature gradient must be established across the chips. Furthermore, because of the trend toward higher device current density, Joule heating is more serious and temperature gradients across soldered joints are expected to increase. In this study we used heat-sink and heat-source devices to establish a temperature gradient across SnAg microbumps to investigate the thermomigration behavior of Ag in SnAg solder. Compared with isothermal conditions, small Ag3Sn particles near the hot end were dissolved and redistributed toward the cold end under a temperature gradient. The results indicated that temperature gradient-induced movement of Ag atoms occurred from the hot side toward the cold side, and asymmetrical precipitation of Ag3Sn resulted. The mechanism of growth of the intermetallic compound (IMC) Ag3Sn, caused by thermomigration of Ag, is discussed. The rate of growth Ag3Sn IMC at the cold side was found to increase linearly with solid-aging time under a temperature gradient. To understand the force driving Ag diffusion under the temperature gradient, the molar heat of transport ( Q*) of Ag in Sn was calculated as +13.34 kJ/mole.

  3. Growth Behavior of Intermetallic Compounds in Cu/Sn3.0Ag0.5Cu Solder Joints with Different Rates of Cooling

    NASA Astrophysics Data System (ADS)

    Yang, Linmei; Zhang, Z. F.

    2015-01-01

    The growth behavior of intermetallic compounds (IMC) in Cu/Sn3.0Ag0.5Cu solder joints, including the interfacial Cu6Sn5 layer and Ag3Sn, and Cu6Sn5 in the solder, were investigated when different cooling methods—quenched water, cooling in air, and cooling in a furnace after reflow—were used. For the solder joint quenched in water, no obvious Cu6Sn5 or Ag3Sn was detected in the solder, and the thickness of interfacial Cu6Sn5 layer was slightly thinner than that of the joint cooled in air. On the basis of results from scanning electron microscopy and energy-dispersive spectrometry, a mechanism is proposed for growth of IMC in Sn3.0Ag0.5Cu solder during solidification. The rate of cooling has a substantial effect on the morphology and size of Ag3Sn, which evolved into large plate-like shapes when the joint was cooled slowly in a furnace. However, the morphology of Ag3Sn was branch-like or particle-like when the joint was cooled in air. This is attributed to re-growth of Ag3Sn grains via substantial atomic diffusion during the high-temperature stage of furnace cooling.

  4. A tale of two metals: new cerium iron borocarbide intermetallics grown from rare-earth/transition metal eutectic fluxes.

    PubMed

    Tucker, Patricia C; Nyffeler, Jason; Chen, Banghao; Ozarowski, Andrew; Stillwell, Ryan; Latturner, Susan E

    2012-07-25

    R(33)Fe(14-x)Al(x+y)B(25-y)C(34) (R = La or Ce; x ≤ 0.9; y ≤ 0.2) and R(33)Fe(13-x)Al(x)B(18)C(34) (R = Ce or Pr; x < 0.1) were synthesized from reactions of iron with boron, carbon, and aluminum in R-T eutectic fluxes (T = Fe, Co, or Ni). These phases crystallize in the cubic space group Im3m (a = 14.617(1) Å, Z = 2, R(1) = 0.0155 for Ce(33)Fe(13.1)Al(1.1)B(24.8)C(34), and a = 14.246(8) Å, Z = 2, R(1) = 0.0142 for Ce(33)Fe(13)B(18)C(34)). Their structures can be described as body-centered cubic arrays of large Fe(13) or Fe(14) clusters which are capped by borocarbide chains and surrounded by rare earth cations. The magnetic behavior of the cerium-containing analogs is complicated by the possibility of two valence states for cerium and possible presence of magnetic moments on the iron sites. Temperature-dependent magnetic susceptibility measurements and Mössbauer data show that the boron-centered Fe(14) clusters in Ce(33)Fe(14-x)Al(x+y)B(25-y)C(34) are not magnetic. X-ray photoelectron spectroscopy data indicate that the cerium is trivalent at room temperature, but the temperature dependence of the resistivity and the magnetic susceptibility data suggest Ce(3+/4+) valence fluctuation beginning at 120 K. Bond length analysis and XPS studies of Ce(33)Fe(13)B(18)C(34) indicate the cerium in this phase is tetravalent, and the observed magnetic ordering at T(C) = 180 K is due to magnetic moments on the Fe(13) clusters.

  5. Size Effect of Rare-Earth Intermetallics in Sn-9Zn-0.5Ce and Sn-3Ag-0.5Cu-0.5Ce Solders on the Growth of Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Chuang, T. H.; Lin, H. J.

    2008-12-01

    In contrast to the large cluster-shaped CeSn3 peritectic phase formed in Sn-3Ag-0.5Cu-0.5Ce solder, Sn-9Zn-0.5Ce possesses very fine (Ce0.8Zn0.2)Sn3 intermetallics. Image analyses indicate that the total exposed area of fine peritectic intermetallics in Sn-9Zn-0.5Ce solder is near that of coarse clusters in Sn-3Ag-0.5Cu-0.5Ce. However, long fiber-type and coarse hillock-type whiskers have been observed on the surface of Sn-3Ag-0.5Cu-0.5Ce after air storage at room temperature and 150 °C, respectively. On the contrary, only tin sprouts appear on the oxide layer of peritectic (Ce0.8Zn0.2)Sn3 intermetallics of Sn-9Zn-0.5Ce solder. The prevention of the lengthening and coarsening of these tin sprouts in Sn-9Zn-0.5Ce solder is attributed to the small size of its rare-earth (RE) containing peritectic clusters. The results imply that Zn atoms have an inhibition effect for the whisker growth of RE-doped solders.

  6. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    SciTech Connect

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.

    1987-05-01

    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  7. Fermi-liquid behavior of binary intermetallic compounds Y3 M (M  =  Co, Ni, Rh, Pd, Ir, Pt)

    NASA Astrophysics Data System (ADS)

    Strychalska-Nowak, Judyta; Wiendlocha, Bartłomiej; Hołowacz, Katarzyna; Reczek, Paula; Podgórski, Mateusz; Winiarski, Michał J.; Klimczuk, Tomasz

    2017-06-01

    A series of polycrystalline samples of Y3 M (M  =  Co, Ni, Rh, Pd, Ir, Pt), intermetallic binary compounds were synthesized by the arc-melting method. Powder x-ray diffraction (pXRD) confirmed the orthorhombic cementite-type crystal structure and allowed for the estimation of the lattice parameters. Physical properties were investigated by means of electrical resistivity and heat capacity measurements between 1.9 K and 300 K. All tested compounds show metallic-like behaviour with RRR values ranging from 1.3 to 8.3, and power-law ρ \\propto {{T}n} temperature dependence of resistivity was observed, with 1.6≤slant n≤slant 2.2 . No superconductivity was detected above 1.9 K. The Debye temperature, estimated from the low temperature heat capacity fit, ranged from 180 K (Y3Pt) to 222 K (Y3Co). The highest value of the Sommerfeld coefficient γ was found for Y3Pd (19.5 mJ mol-1 K-2). The pXRD pattern of Y3Rh indicated the presence of Y5Rh2, a previously unreported Pd5B2-type phase, whose unit cell parameters were refined using the LeBail method. Density functional theory calculations were performed and theoretical results revealed strong enhancement of the measured electronic specific heat, which was 30%-100% larger than computed. Quadratic temperature dependence of resistivity and enhanced electronic specific heat indicated a Fermi-liquid behavior of electrons in these materials.

  8. Magnetostriction of some rare earth-aluminum Laves phase compounds

    NASA Technical Reports Server (NTRS)

    Pourarian, F.; Wallace, W. E.

    1979-01-01

    Measurements of the linear and volume magnetostriction of RAl2 cubic Laves compounds in which R is one of the rare earth elements Gd, Dy, Ho or Er, at temperatures between 4.2 K and the Curie temperature of each compound, are reported. Magnetic fields up to 2.5 Tesla were applied, and magnetostriction was measured using standard strain gage techniques. Saturation magnetostrictions of 17 x 10 to the -6th, -1420 x 10 to the -6th, 60 x 10 to the -6th and -920 x 10 to the -6th are determined at 4.2 K for GdAl2, DyAl2, HoAl2 and ErAl2, respectively. Large forced magnetostriction is observed in GdAl2 above the saturation field and the strain temperature dependence shows a decrease in magnitude below 40 K. A linear dependence of magnetostriction on magnetic field was observed for DyAl2 above 40 K, and the observed temperature dependence is interpreted in terms of the lowest order single-ion magnetoelastic theory. An observed decrease in the magnitude of the strain of HoAl2 below 15 K is associated with a change of the easy direction of magnetization, while in the case of ErAl2, magnetostriction is observed to occur normally up to the Curie temperature. Large volume magnetostriction is obtained for all the compounds with the exception of GdAl2.

  9. Magnetostriction of some rare earth-aluminum Laves phase compounds

    NASA Technical Reports Server (NTRS)

    Pourarian, F.; Wallace, W. E.

    1979-01-01

    Measurements of the linear and volume magnetostriction of RAl2 cubic Laves compounds in which R is one of the rare earth elements Gd, Dy, Ho or Er, at temperatures between 4.2 K and the Curie temperature of each compound, are reported. Magnetic fields up to 2.5 Tesla were applied, and magnetostriction was measured using standard strain gage techniques. Saturation magnetostrictions of 17 x 10 to the -6th, -1420 x 10 to the -6th, 60 x 10 to the -6th and -920 x 10 to the -6th are determined at 4.2 K for GdAl2, DyAl2, HoAl2 and ErAl2, respectively. Large forced magnetostriction is observed in GdAl2 above the saturation field and the strain temperature dependence shows a decrease in magnitude below 40 K. A linear dependence of magnetostriction on magnetic field was observed for DyAl2 above 40 K, and the observed temperature dependence is interpreted in terms of the lowest order single-ion magnetoelastic theory. An observed decrease in the magnitude of the strain of HoAl2 below 15 K is associated with a change of the easy direction of magnetization, while in the case of ErAl2, magnetostriction is observed to occur normally up to the Curie temperature. Large volume magnetostriction is obtained for all the compounds with the exception of GdAl2.

  10. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    NASA Astrophysics Data System (ADS)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  11. Greenhouse gases and ozone depleting compounds in the earth`s atmosphere

    SciTech Connect

    Khalil, M.A.K.

    1996-12-31

    Global warming and ozone depletion are the main environmental problems caused by changes in atmospheric composition. These changes come from human activities that add to the natural cycles of atmospheric gases or put entirely new compounds into the earth`s atmosphere. At present only a few gases play a major role in global climate change and ozone depletion. These are carbon dioxide, methane, nitrous oxide, trichlorofluoromethane (F-11), and dichlorofluoromethane (F-12). There are other gases that also add to these problems but to a lesser extent. This paper is about global warming, ozone depletion and the trends and budgets of the gases that can change the climate or deplete the ozone layer. 8 refs., 3 tabs.

  12. Soft X-ray appearance potential study of rare earth-manganese compounds

    SciTech Connect

    Chourasia, A. R.; Deshpande, S. D.

    1999-06-10

    Soft X-ray appearance potential spectroscopy (SXAPS) has been employed to study the changes in the electronic structure of RMn{sub 2} compounds (where R=Pr, Sm, Gd and Dy). In this technique the total x-ray emission associated with the thresholds for the excitation of core levels of the atoms in the surface region of the materials is measured. The SXAPS spectra of the Mn L{sub 2,3} levels in these intermetallics are compared with the corresponding elemental manganese spectrum. The normalized spectra exhibit an increasing trend in the unoccupied density of states at the Fermi level as the atomic number of R increases. This has been interpreted as increasing hybridization between the R 5d and Mn 3d bands. The hybridization is found to influence the magnetic properties of these intermetallics. The core levels are also found to display crystal field splitting that seems to disappear for DyMn{sub 2}. This correlates very well with the disappearance of the Mn magnetic moment at Dy in these intermetallics.

  13. Synthesis of TiCr2 intermetallic compound from mechanically activated starting powders via calcio-thermic co-reduction

    NASA Astrophysics Data System (ADS)

    Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.

    2017-05-01

    Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.

  14. Exposure, metabolism, and toxicity of rare earths and related compounds.

    PubMed Central

    Hirano, S; Suzuki, K T

    1996-01-01

    For the past three decades, most attention in heavy metal toxicology has been paid to cadmium, mercury, lead, chromium, nickel, vanadium, and tin because these metals widely polluted the environment. However, with the development of new materials in the last decade, the need for toxicological studies on those new materials has been increasing. A group of rare earths (RE) is a good example. Although some RE have been used for superconductors, plastic magnets, and ceramics, few toxicological data are available compared to other heavy metals described above. Because chemical properties of RE are very similar, it is plausible that their binding affinities to biomolecules, metabolism, and toxicity in the living system are also very similar. In this report, we present an overview of the metabolism and health hazards of RE and related compounds, including our recent studies. Images Figure 1. A Figure 1. B Figure 1. C PMID:8722113

  15. Synthesis, structures and bonding of superconducting barium vanadium sulfide and intermetallic solid state compounds of group 2, 3, 13, 14 and transition elements

    NASA Astrophysics Data System (ADS)

    Lobring, Kim Carl

    Superconducting transition is well known for the Chevrel phases M xMo6S8 and MxMo6Se 8 where M is dopant metal such as Pb, In, Tl and La. Not many ternary group 5 transition metal chalcogenides of similar composition, however, are known to be superconductors. The synthesis and observation of superconducting transition of the Ba doped compound BaxV6S8 (x = 0.45--0.48) is discussed. The electronic structure was analyzed using the tight-binding extended Huckel method. Results of Raman-scattering experiments are also discussed. BaGa4 possesses the most popular structure type in solid state chemistry. More than 600 compounds crystallize in this structure. Many compounds of this family exhibit interesting physical properties such as superconductivity, unusual magnetic behavior, valence fluctuation and heavy fermion phenomena. However, little had been reported about the physical properties of BaGa 4 itself. The single crystal growth, structural characterization, computational his, conductivity and AC susceptibility of crystalline BaGa4 is described. V-Ga binary system is of great interest because some compounds in this family are superconductors exhibiting high critical currents and fields. V 2Ga5 has been reported to show a superconducting transition from 2.1 K to 4.2 K,2,6 depending on the preparation procedure and sample quality. However, no single-crystal X-ray structure determination has been reported for this compound, and the full characterization of its superconducting transition has yet to be completed. The single crystal growth, structural determination, and computational study of Ga5V 2 are discussed. Resistivity and magnetization measurement results are also presented. Ternary intermetallic solid-state compounds of lanthanum, transition metal, and germanium have a wide range of technological applications (i.e., rechargeable cells) because of their interesting physical properties. Many compounds of this type with the stoichiometry LnxTyGe z (Ln = lanthanide, T

  16. K(23)Au(12)Sn(9)--an intermetallic compound containing a large gold-tin cluster: synthesis, structure, and bonding.

    PubMed

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J; Corbett, John D

    2010-02-15

    A polyanionic unit {Au(12)Sn(9)} with a novel "corrugated sheet" shape occurs in K(23)Au(12)Sn(9). The compound was obtained by fusion of the pure elements in tantalum ampules at high temperatures followed by programmed cooling, and the structure was determined by X-ray diffraction: I42m (No. 121), a = 20.834(3), c = 6.818(1) A, Z = 2. The large heteroatomic cluster has D(2d) point symmetry and features a central four bonded (4b-) Sn, eight 3b- or 2b-Sn on the perimeter, and 24 linking nearly linear Sn-Au bonds at 12 Au atoms. Formula splitting according to the Zintl concept suggests that the compound is one electron deficient, and linear muffin-tin-orbital (LMTO) electronic structure calculations show that the Fermi level (E(F)) lies near a band gap at around 0.5 eV, that is, an incompletely filled valence band in concert with favorable atom packing. Large relative -ICOHP values for Au-Sn are consistent with the observed maximization of the number of heteroatomic bonds, whereas the numerous K-Sn and K-Au contacts contribute approximately 40 % of the total -ICOHP. Extended-Huckel population and molecular orbital analyses indicate that the open band feature originates from 5p states that are associated with the 2b-corner Sn atoms. In accord with the electronic structure calculations, magnetic susceptibility measurements show a nearly temperature-independent paramagnetic property.

  17. e/a determination for 4d- and 5d-transition metal elements and their intermetallic compounds with Mg, Al, Zn, Cd and In

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Sato, H.; Inukai, M.; Zijlstra, E. S.

    2013-08-01

    The present work is devoted to the determination of the effective electrons per atom ratio e/a by means of first-principles full-potential linearized augmented plane wave-Fourier method for elements from Rb to Ag in Period 5 and from Cs to Au in Period 6 of the periodic table and is regarded as a continuation of the preceding work done for elements from K to Cu in Period 4. The value of e/a was determined by reading off the square of the Fermi diameter, ? from the dispersion relation for electrons outside the Muffin-Tin spheres. A straightforward reading of the ordinate at the Fermi level, i.e. local reading method was validated for Rb and Cs in Group 1, Sr in Group 2, Y in Group 3, Pd and Pt in Group 10 and Ag and Au in Group 11. Instead, the nearly free electron (NFE) method was found to be indispensable for TM elements from Zr to Rh in Period 5 and those from Ba to Ir in Period 6. The composition dependence of e/a values for intermetallic compounds in X-TM (X = Mg, Al, Zn, Cd and In) alloy systems was also studied. The new Hume-Rothery electron concentration rule was established by constructing e/uc, the number of electrons per unit cell, vs. square of critical reciprocal lattice vector, ? , diagram for structurally complex metallic alloys having a pseudogap at the Fermi level. A proper use of either the local reading- or the NFE-e/a for the elements as indicated above is found to be essential.

  18. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  19. Structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Huang, Jihua; Fan, Dongyu; Chen, Shuhai; Zhao, Xingke

    2016-05-01

    First-principle calculations have been performed to investigate the structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds. The results indicated that, the doped Ni atom can not only enhance the stability of the η‧-Cu6Sn5, but also improve the mechanical and thermo-physical properties, which are more dependent on the Ni atom doping number than the doping position. In all the η‧-(CuNi)6Sn5, Cu3Ni3Sn5 (Cu1+Cu3 site) shows the best stability, the most excellent deformation resistance and the highest hardness. The Cu6Sn5, Cu3Ni3Sn5, Cu4Ni2Sn5, Cu1Ni5Sn5 and Ni6Sn5 are ductile while the Cu5Ni1Sn5 and Cu4Ni2Sn5 are brittle. The anisotropies of η‧-(CuNi)6Sn5 are all mainly due to the uneven distribution of Young's modulus at (001) planes, moreover, the anisotropy of Cu1Ni5Sn5 (Cu1+Cu2+Cu4 site) is the strongest while that of Ni6Sn5 is the weakest. The calculated Debye temperature and heat capacity showed that Cu4Ni2Sn5 (Cu2 site) possesses the best thermal conductivity (ΘD = 356.9 K) and Cu2Ni4Sn5 (Cu1+Cu2 site) possesses the largest heat capacity. From the electronic property analysis results, the Ni s and Ni p states can replace the Cu s and Cu p states to hybridize with Sn s states at -7.98 eV. Moreover, with the increasing number of the doped Ni atom, the hybridization between Cu d states at different positions is receded, while that between Ni d states is enhanced gradually.

  20. The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} studied by magnetization and hyperfine interactions measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-07

    The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ–γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around T{sub N} ∼ 425 K and a well defined ferromagnetic transition at T{sub C} ∼ 320 K. Moreover, at ∼210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ∼25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using {sup 140}La({sup 140}Ce) and {sup 111}In({sup 111}Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (B{sub hf}) at Nd and Mn sites, respectively. PAC results with {sup 111}Cd probe nuclei at Mn sites show that the dependence of B{sub hf} with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with {sup 140}Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to B{sub hf}.

  1. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging

    NASA Astrophysics Data System (ADS)

    Hong, K. K.; Ryu, J. B.; Park, C. Y.; Huh, J. Y.

    2008-01-01

    The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1- x Ni x )6Sn5 layer on the Ni side and the (Cu1- y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1- x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1- y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.

  2. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-02

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface.

  3. NFE approximation for the e/a determination for 3d-transition metal elements and their intermetallic compounds with Al and Zn

    NASA Astrophysics Data System (ADS)

    Sato, H.; Inukai, M.; Zijlstra, E. S.; Mizutani, U.

    2013-08-01

    First-principles full-potential linearized augmented plane wave (FLAPW) band calculations with subsequent FLAPW-Fourier analyses have been performed for elements from K to Cu in period 4 of the periodic table to determine the effective electrons per atom ratio (e/a). For the series of 3d-transition metals (TM), the determination of the square of the Fermi diameter ? , from which e/a is derived, has been recognized not to be straightforward because of the presence of a huge anomaly associated with the TM-d states across the Fermi level in the energy dispersion relation for electrons outside the muffin-tin sphere. The nearly free electron (NFE) approximation is newly devised to circumvent this difficulty. The centre of gravity energy ? is calculated from the energy distribution of the square of the Fourier coefficients for the FLAPW state ? . The NFE dispersion relation is constructed for the set of ? and ? in combination with the tetrahedron method. The resulting e/a values are distributed over positive numbers in the vicinity of unity for elements from Ti to Co. Instead, the e/a values for the early elements K, Ca and Sc and the late TM elements Ni and Cu were determined to be close to one, two, three, 0.50 and unity, respectively, using our previously designed local reading method. In addition, the composition dependence of e/a values for intermetallic compounds in X-TM (X = Al and Zn) alloy systems was studied to justify an appropriate choice between the local reading and NFE methods for respective elements.

  4. Control of beta phase in an EPM-processed intermetallic compound based on Ti-Al-Mn-Mo

    SciTech Connect

    Lee, T.K.; Hwang, S.K.; Nam, S.W.; Kim, N.J.

    1997-06-01

    Gamma TiAl alloys have been under considerable research in recent years because of their good specific strength and the high resistance to creep and oxidation at elevated temperatures. Since the first report on their promising high temperature properties the gamma alloys have been continuously improved and their merits are highly valued now. Among the methods to produce the gamma alloys, EPM (Elemental Powder Metallurgy) method drew attention due to its amenability to the cost-effective near-net shape processing. In the EPM method alloying reaction is basically the exothermic reactions between elemental powders. A practical drawback of using this reaction as a sole method of alloying is the Kirkendall pores generated by the difference in the diffusivities of each alloying element. Therefore high temperature deformation process is added to seal the pores and consolidate the alloying reaction. In the previous attempt, the authors used hot extrusion to consolidate the TiAl compound containing Mn and Mo for improved mechanical properties. The Mo addition and the inherent characteristics of EPM, however, raised a question about the presence of {beta} phase that may cause undesirable effect on high temperature mechanical properties. In the present work, the authors attempted to answer this question from the stand point of finding a practical control method of {beta} phase and optimizing the microstructure.

  5. Ab Initio Investigation on Structural, Elastic and Electronic Properties of η-Phase Cu4.5Ni1Au0.5Sn5 and Cu5Ni1Sn4.5In0.5 Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Li, Xuezheng; Ma, Yong; Zhou, Wei; Wu, Ping

    2017-10-01

    The structural, elastic and electronic properties of quaternary intermetallic compounds η-Cu4.5Ni1Au0.5Sn5 and η-Cu5Ni1Sn4.5In0.5 are investigated by an ab initio method. The calculated heat of formation determines preferential occupancy sites for Ni, Au and In atoms which lead to thermodynamically stable compounds. Variation of lattice constants reveals that the change of atomic bonding has a directional discrepancy in η-Cu4.5Ni1Au0.5Sn5; the polycrystalline moduli obtained from single-crystal elastic stiffness show an increase after both Ni/Au and Ni/In additions. Also, the anisotropy of Young's modulus and shear modulus is significantly weakened in η-Cu4.5Ni1Au0.5Sn5. The density of states and maps of charge density distribution suggest that the atomic bonding in the quaternary intermetallic compounds is strengthened by the addition of Ni and Au but weakened by the addition of In.

  6. FORMATION OF INTERMETALLIC COMPOUND DISPERSIONS

    DOEpatents

    Bryner, J.S.

    1959-12-01

    BS>A method is presented for preparing dispersions containing thorium bismuthide in equiaxed form and having an average particle size of about 30 microns. Thorium particles having one dimension not greater than 0.015 in. are immersed in liquid bismuth at a temperature between 500 and 600 deg C, the quantity of thorium being in excess of its solubility in the bismuth.

  7. Mechanical and oxidation properties of some B2 rare earth–magnesium intermetallic

    SciTech Connect

    Stumphy, Brad

    2006-12-15

    The remainder of Chapter 1 provides background information on three main topics. First is a discussion about the basic structure and composition of binary B2 intermetallic compounds. Second, the mechanical properties of intermetallics are examined, starting with the cause for the typically inherent brittleness observed in B2 intermetallics. A number of B2 compounds have been found to possess an abnormal level of ductility compared to other intermetallics in this class, including a handful of other rare earth–non-rare earth (RM) B2 line compounds, and these findings are also discussed. Finally, oxidation studies of rare earth metals, focusing on yttrium and cerium, as well as magnesium and some B2 materials are discussed. Chapter 2 is an in-depth look into certain aspects of the laboratory work done during this study. The many challenges and difficulties encountered required that a variety of laboratory techniques be attempted in the making, processing, and testing of these two intermetallic materials. The results and ensuing discussion for the mechanical testing that was performed are found in Chapter 3. Tensile and compression testing results for YMg are shown first, followed by those for CeMg. Some samples were made using electrical discharge machining (EDM) while others were polished into the desired shape. A scanning electron microscope (SEM) was utilized to inspect surfaces of the tensile and compression samples. Hardness values and attempts to determine fracture toughness are also recorded before beginning the discussion. Chapter 4 follows the same basic format for the oxidation study portion of the research. Oxidation curves for CeMg are followed by a qualitative chemical analysis using energy dispersive spectroscopy (EDS). The YMg oxidation curves are shown next followed by an x-ray diffraction (XRD) analysis of the oxidation process for this material and a discussion of the results. Chapter 5 is a summary of the research performed in the mechanical and

  8. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  9. Rare earth transition metal magnesium compounds—An overview

    NASA Astrophysics Data System (ADS)

    Rodewald, Ute Ch.; Chevalier, Bernard; Pöttgen, Rainer

    2007-05-01

    Intermetallic rare earth-transition metal-magnesium compounds play an important role as precipitations in modern light weight alloys and as host materials for hydrogen storage applications. Recent results on the crystal chemistry, the chemical bonding peculiarities, physical properties, and hydrogenation behavior of these materials are reviewed.

  10. Self-assemblies of luminescent rare earth compounds in capsules and multilayers.

    PubMed

    Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth

    2014-05-01

    This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out.

  11. Occupational radiation exposure due to norm in a rare-earth compounds production facility.

    PubMed

    Haridasan, P P; Pillai, P M B; Tripathi, R M; Puranik, V D

    2008-01-01

    In India, rare-earth compounds are produced from the beach sand mineral monazite. Caustic digestion of the mineral followed by selective acid extraction is the method used to separate composite rare-earth fraction. The composite rare-earth chloride contains low levels of natural radionuclides and is the starting material for individual rare-earth compounds which have wide applications. Activity concentrations in composite rare-earth compounds such as chlorides, fluorides, carbonates and oxides of Ce, Nd, Pr, Sm, Gd, etc. are presented in this paper. The external gamma exposure rates and airborne activity due to thorium and thoron progeny in the occupational environment are studied. The activity levels in liquid effluent are presented. The potential individual occupational dose is estimated to be 1.9 mSv per annum.

  12. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    SciTech Connect

    Priyotomo, Gadang Nuraini, Lutviasari; Kaneno, Yasuyuki

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  13. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  14. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  15. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe(11.6)Si(1.4)C(0.2)H(1.7).

    PubMed

    Song, Ning-Ning; Ke, Ya-Jiao; Yang, Hai-Tao; Zhang, Hu; Zhang, Xiang-Qun; Shen, Bao-Gen; Cheng, Zhao-Hua

    2013-01-01

    Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe(11.6)Si(1.4)C(0.2)H(1.7) intermetallic compound exhibits the advantages of both giant microwave absorption exceeding -42 dB and magnetic entropy change of -20 Jkg(-1)K(-1). The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth.

  16. Discontinuous coarsening behavior of Ni(2)MnAl intermetallic compound during isothermal aging treatment of Fe-Mn-Ni-Al alloys.

    PubMed

    Heo, Yoon-Uk; Takeguchi, Masaki; Furuya, Kazuo; Lee, Hu-Chul

    2010-08-01

    The discontinuous reaction of the Ni(2)MnAl intermetallic phase was investigated during the aging of a solution-treated Fe-8.3Mn-8.2Ni-4.2Al alloy. During aging, Ni(2)MnAl lamellae formed at the prior austenite grain boundaries and twin boundaries and grew into the neighboring grains. The presence of continuously precipitated fine Ni(2)MnAl particles before the growth of the discontinuously precipitated lamellae was confirmed by dark-field transmission electron microscopy, and it was concluded that the present reaction is a type of discontinuous coarsening process, alpha' + Ni(2)MnAl (continuous precipitation) --> alpha + Ni(2)MnAl (discontinuous coarsening). The chemical driving force and the reduction of the total coherent strain energy were suggested to be the driving force for the discontinuous coarsening reaction.

  17. Thermal barrier coating system with intermetallic overlay bond coat

    SciTech Connect

    Duderstadt, E.C.; Nagaraj, B A.

    1993-08-24

    A superalloy article is described having a thermal barrier coating system thereon, comprising: a substrate made of a material selected from the group consisting of a nickel-based superalloy and a cobalt-based superalloy; and a thermal barrier coating system on the substrate, the thermal barrier coating system including an intermetallic bond coat overlying the substrate, the bond coat being selected from the group consisting of a nickel aluminide and a platinum aluminide intermetallic compound, a thermally grown aluminum oxide layer overlying the intermetallic bond coat, and a ceramic topcoat overlying the aluminum oxide layer.

  18. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  19. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Astrophysics Data System (ADS)

    Bada, J. L.; Miller, S. L.

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  20. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  1. Exchange interactions in heavy rare-earths RCo2 compounds

    NASA Astrophysics Data System (ADS)

    Burzo, E.

    2017-05-01

    The magnetic behaviour of RCo2 (R = Tm, Er, Ho, Tb) compounds, above the Curie temperatures, Tc, has been analysed. The interdependent exchange interactions at the level of unit cell are discussed in correlation with R5d band polarizations. The clusters evidenced by SANS experiments in paramagnetic region, having correlation length of ≅ 7 Å, were associated with the exchange coupled atoms at the level of the unit cell. The exchange interactions are not so high to induce a magnetic ordered phase.

  2. Magnetomechanical behavior of rare earth iron-aluminum compounds

    SciTech Connect

    Prajapati, K.; Jenner, A.G.; Greenough, R.D. . Dept. of Applied Physics)

    1993-11-01

    The DC field and pressure dependencies of the magnetic induction (B) and magnetostrictive strain ([lambda]) have been measured at room temperature in Terfenol-D (Tb[sub 0.3]Dy[sub 0.7]Fe[sub 1.95]) and in the compound Tb[sub 0.3]Dy[sub 0.7](Fe[sub 0.9]Al[sub 0.1])[sub 1.95]. From these data the static differential permeability ([mu]) and strain coefficient (d[sub 33]=d[lambda]/dH) have been obtained. A comparison of their magnetostrictive responses indicate that the magnetocrystalline anisotropy is reduced by the addition of Al to Terfenol-D, in keeping with the observed increase in low field permeability. A slight lowering of d[sub 33] with Al content is attributed to a reduction in magnetoelastic coupling, also seen in a lower magnetomechanical coupling coefficient. The work done by either compound against the applied pressure for different Isostatic fields has been calculated. From these curves the residual stress levels, T[sub 0], are substantially lower than those reported previously in Tb[sub 0.27]Dy[sub 0.73]Fe[sub 2], indicating that in the present compounds T[sub o] is due mainly to inhomogeneities and defects, rather than anisotropy.

  3. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  4. Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  5. Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump.

    PubMed

    Kim, Seung-Hyun; Park, Gyu-Tae; Park, Jong-Jin; Park, Young-Bae

    2015-11-01

    The effects of annealing, thermomigration (TM), and electromigration (EM) on the intermetallic com- pound (IMC) growth kinetics of Cu/Sn-2.5Ag microbumps were investigated using in-situ scanning electron microscopy at 120-165 degrees C with a current density of 1.5 x 10(5) A/cm2. The IMC growth kinetics was controlled by a diffusion-dominant mechanism and a chemical-reaction-dominant mechanism with annealing and current-stressing conditions, respectively. Before all of the Sn was fully transformed into IMCs, the activation energies of the Cu3Sn IMCs were 0.54 eV, 0.50 eV, and 0.40 eV for annealing, TM, and EM, respectively, which is closely related to the acceleration effect of the interfacial reaction by electron wind force under current stressing. After all of the Sn was fully transformed into IMCs by reacting with Cu, the Cu3Sn IMC growth rates of the three structures became similar due to the reduced and similar diffusion rates inside the IMCs with and without current stressing.

  6. Electronic structure and properties of rare earth and 3d transition metal compounds

    SciTech Connect

    Dagys, R.; Babonas, G.J. )

    1994-03-01

    Excitation energies of various electronic configurations in rare earth and 3d transition metal compounds are considered and related to the peculiarities of the observed electrical and optical properties. Intraionic excitations of 4f, 3d electrons to less localized nl states are shown to be equally important as interionic d-d or charge transfer transitions usually considered, and to be even more significant in compounds containing low valence metals.

  7. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  8. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  9. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.

    2001-01-01

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  10. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.

    2001-01-01

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  11. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth.

    PubMed

    Cooper, G; Kimmich, N; Belisle, W; Sarinana, J; Brabham, K; Garrel, L

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  12. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7

    PubMed Central

    Song, Ning-Ning; Ke, Ya-Jiao; Yang, Hai-Tao; Zhang, Hu; Zhang, Xiang-Qun; Shen, Bao-Gen; Cheng, Zhao-Hua

    2013-01-01

    Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe11.6Si1.4C0.2H1.7 intermetallic compound exhibits the advantages of both giant microwave absorption exceeding −42 dB and magnetic entropy change of −20 Jkg−1K−1. The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth. PMID:23887357

  13. Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al3Ti, AlTi, AlCu, AlTiCu2) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, Yong; Ma, Xiao-Juan; Liu, Qi-Jun; Kong, Ge-Xing; Ma, Hai-Xia; Wang, Wen-Peng; Wang, Yi-Gao; Jiao, Zhen; Liu, Fu-Sheng; Liu, Zheng-Tang

    2016-11-01

    First-principle simulations have been applied to investigate the effect of copper (Cu) or aluminum (Al) content on the ductility of Al3Ti, AlTi, AlCu, and AlTiCu2 alloys. The mechanical stable and elastic properties of Al-based intermetallic compounds are researched by density functional theory with the generalized gradient approximation (DFT-GGA). The calculated lattice constants are in conformity with the previous experimental and theoretical data. The deduced elastic constants show that the investigated Al3Ti, AlTi, AlCu, and AlTiCu2 structures are mechanically stable. Shear modulus, Young’s modulus, Poisson’s ratio, and the ratio B/G have also been figured out by using reckoned elastic constants. A further analysis of Young’s modulus and Poisson’s ratio reveals that the third added element copper content has significant effects on the Al-Ti-based ICs ductile character. Project supported by the National Natural Science Foundation of China (Grant Nos. 41674088, 11574254, 11272296, and 11547311), the National Basic Research Program of China (Grant No. 2011CB808201), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2682014ZT30 and 2682014ZT31), and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201511).

  14. Intermediate coupled superconductivity in yttrium intermetallics

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Ahmed, Gulzar; Sharma, Yamini

    2017-09-01

    Non-magnetic YIn3, LaIn3 and LuIn3 with a superconducting transition temperature Tc of 0.78, 0.71 and 0.24 K were investigated for superconductivity. Similarly, rare-earth compound LaSn3 has been reported to exhibit superconductivity around 6.25 K, whereas the non-magnetic YSn3 is a superconductor with Tc of 7 K. The substitution of 13th group In-atoms by 14th group Sn-atoms is seen to enhance Tc by nearly one order, although the lattice parameters increase by ∼1.0% in YSn3 compared to YIn3 compound. It is observed from the ground state properties that the slight difference in the energy band structures of YIn3, YIn2Sn and YSn3 gives rise to various complex Fermi surfaces which are multiply connected and exhibit vast differences. The Fermi level lies on a sharp peak in YSn3 which has a higher density of states N(EF), whereas Fermi level lies on the shoulder of a sharp peak in YIn3. The electron localization function (ELF) and difference charge density maps clearly illustrate the difference in the nature of bonding; the Ysbnd Sn bonds are clearly more ionic (due to larger bond length) than Ysbnd In bonds. These results are consistent with the Bader charges which show loss of charges from Y-atoms and a gain of charges by In/Sn atoms. The dynamical properties also clearly illustrate the difference in the nature of bonds in YX3 intermetallics. A softening of the lowermost acoustic modes is observed in YIn3, whereas all the modes in YSn3 are observed to have positive frequencies which imply its greater stability. Since λel-ph < 1, both YIn3 and YSn3 compounds exhibit type I superconductivity according to BCS theory. However, the smaller N(EF) obtained from the density of states (DOS); the electron-phonon coupling constant λel-ph obtained from the temperature dependent specific heat as well as the instability in phonon modes due to stronger Ysbnd In and Insbnd In bonds in YIn3 may be the cause of lower Tc and filamentary nature of superconductivity. Insertion of Sn

  15. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  16. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  17. Intermetallic compounds of the heaviest elements and their homologs: the electronic structure and bonding of MM', where M=Ge, Sn, Pb, and element 114, and M'=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114.

    PubMed

    Pershina, V; Anton, J; Fricke, B

    2007-10-07

    Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M=Ge, Sn, Pb, and element 114, and MM'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties-atomization energies D(e), vibrational frequencies omega(e), and bond lengths R(e), as a function of MM', are similar for compounds of Ge, Sn, Pb, and element 114, except for D(e) of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(MM')atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np(1/2)(M) AOs. Overall, D(e) of the element 114 dimers are about 1 eV smaller and R(e) are about 0.2 a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p(1/2)(114) AO. On the basis of the calculated D(e) for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150 kJ/mol smaller than those of Pb.

  18. Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM', where M =Ge, Sn, Pb, and element 114, and M'=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114

    NASA Astrophysics Data System (ADS)

    Pershina, V.; Anton, J.; Fricke, B.

    2007-10-01

    Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M =Ge, Sn, Pb, and element 114, and M'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties—atomization energies De, vibrational frequencies ωe, and bond lengths Re, as a function of M', are similar for compounds of Ge, Sn, Pb, and element 114, except for De of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(M ') atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np1/2(M ) AOs. Overall, De of the element 114 dimers are about 1eV smaller and Re are about 0.2a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p1/2(114) AO. On the basis of the calculated De for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150kJ/mol smaller than those of Pb.

  19. Comets and the formation of biochemical compounds on the primitive earth - A review

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.; Lazcano, A.

    1992-01-01

    Thirty years ago it was suggested that comets impacting on the primitive earth may have represented a significant source of terrestrial volatiles, including some important precursors for prebiotic synthesis (Oro, 1961). This possibility is strongly supported not only by models of the collisional history of the early earth, but also by astronomical evidence that suggests that frequent collisions of cometlike bodies from the circumstellar disk around the star Beta Pictoris are taking place. Although a significant fraction of the complex organic compounds that appear to be present in cometary nuclei were probably destroyed during impact, it is argued that cometary collisions with the primitive earth represented an important source of both free-energy and volatiles, and may have created transient, gaseous environments in which prebiotic synthesis may have taken place.

  20. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOEpatents

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  1. Bulk and surface electronic structure of actinide, rare earth, and transition metal elements and compounds

    SciTech Connect

    Wills, J.W.; Eriksson, O.

    1996-07-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to study of unusual magnetic and structural properties of rare earth, actinide, and transition metals through high-precision electronic structure calculations. Magnetic moment anisotropies in bulk and surface systems were studied, with emphasis on novel surfaces with unusual magnetic properties with possible applicability in magnetic recording. The structural stability, bonding properties, and elastic response of the actinides, as well as transition and rare earth elements and compounds, were also studied. The project sought to understand the unusual crystallographic and cohesive properties of the actinides and the importance of correlation to structural stability and the nature of the delocalization transition in these elements. Theoretical photoemission spectra, including surface effects, were calculated for rare earths and actinides.

  2. Magnetic phase transitions and magnetocaloric effect in layered intermetallic La0.75Sm0.25Mn2Si2 compound

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Gerasimov, E. G.; Terentev, P. B.; Gaviko, V. S.; Yazovskikh, K. A.; Aliev, A. M.

    2017-10-01

    Magnetic and magnetothermal properties have been studied for the La0.75Sm0.25Mn2Si2 compound which has the spontaneous first-order antiferromagnetic to ferromagnetic (AF-F) transition at a temperature of 160 K. The transition is accompanied by the anisotropic lattice distortion. Isothermal entropy change has been estimated for different magnetic states using the heat capacity and magnetization data. Direct measurements of the adiabatic temperature change have been performed in the fields applied both along the easy c-axis and in the basal plane of a quasi-single crystal. Near the transition temperature, the AF-F transition can be realized in low magnetic fields, which makes such compounds attractive for magnetoelastic and magnetothermal applications.

  3. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo

    2009-11-01

    The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.

  4. Homoleptic alkaline earth metal bis(trifluoromethanesulfonyl)imide complex compounds obtained from an ionic liquid.

    PubMed

    Babai, Arash; Mudring, Anja-Verena

    2006-04-17

    The first homoleptic alkaline earth bis(trifluoromethanesulfonyl)imide (Tf2N) complexes [mppyr]2[Ca(Tf2N)4], [mppyr]2[Sr(Tf2N)4], and [mppyr][Ba(Tf2N)3] were crystallized from a solution of the respective alkaline earth bis(trifluoromethanesulfonyl)imide and the ionic liquid [mppyr][Tf2N] (mppyr = 1,1-N-methyl-N-propylpyrrolidinium). In the calcium and strontium compounds, the alkaline earth metal (AE) is coordinated by four bidentately chelating Tf2N ligands to form isolated (distorted) square antiprismatic [AE(Tf2N)4]2- complexes which are separated by N-methyl-N-propylpyrrolidinium cations. In contrast, the barium compound, [mppyr][Ba(Tf2N)3], forms an extended structure. Here the alkaline earth cation is surrounded by six oxygen atoms belonging to three Tf2N- anions which coordinate in a bidentate chelating fashion. Three further oxygen atoms of the same ligands are linking the Ba2+ cations to infinite (infinity)(1)[Ba(Tf2N)3] chains.

  5. The structural, elastic and optical properties of ScM (M = Rh, Cu, Ag, Hg) intermetallic compounds under pressure by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur; Rahman, Md. Atikur

    2016-11-01

    The influence of pressure on the structural and elastic properties of ScM (M = Rh, Cu, Ag, Hg) compounds has been investigated by using ab initio approach pseudopotential plane-wave method based on the density functional theory within the generalized gradient approximation (GGA). The optical properties have been investigated under zero pressure. It is found that the optimized lattice parameters for all metals are in good agreement with the experimental data and other available theoretical values. We obtained three independent elastic constants Cij (C11,C12 and C44) and various elastic parameters such as bulk modulus B, shear modulus G, Young’s modulus E,B/G, Poisson’s ratio ν and anisotropy factor A as a function of pressure. In addition, the mechanical stability and ductile/brittle nature are also investigated from the calculated elastic constants. The study of optical properties reveals that all of these compounds possess good absorption coefficient in the high energy region and the refractive index of all these compounds is higher in the low energy region and gradually decreased in the high energy region. All these calculations have been carried out using the CASTEP computer code.

  6. A rule for counting neighbours in rare-earth transition metal compounds

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.

    1991-09-01

    In (R, T) compounds (R: rare earth; T: 3d transition metal) such as R 2T 17, R 2T 14B, and so on, the exchange interaction between a rare-earth spin (operator) SR and the neighbouring 3d spins can be written as -2 JRTzRTSR·< ST>, where < ST> is a site average of the expectation value of the transition metal spins in the molecular field approximation. zRT is the number of nearest T neighbours of an R-atom. A more precise definition is given in the main text. Analogously, zTR, the average number of nearest R neighbours of a T atom can be defined. We stress that a consistent definition must lead to the relation zRTNR = zTRNT for a stoichiometric compound containing NR rare-earth atoms and NT transition metal atoms per formula unit. Appropriate definitions are discussed for more intricate cases, in particular for off-stoichiometric compounds.

  7. Ag–Pt compositional intermetallics made from alloy nanoparticles

    DOE PAGES

    Pan, Yung -Tin; Yan, Yuqi; Shao, Yu -Tsun; ...

    2016-09-07

    Intermetallics are compounds with long-range structural order that often lies in a state of thermodynamic minimum. They are usually considered as favorable structures for catalysis due to their high activity and robust stability. However, formation of intermetallic compounds is often regarded as element specific. For instance, Ag and Pt do not form alloy in bulk phase through the conventional metallurgy approach in almost the entire range of composition. Herein, we demonstrate a bottom-up approach to create a new Ag–Pt compositional intermetallic phase from nanoparticles. By thermally treating the corresponding alloy nanoparticles in inert atmosphere, we obtained an intermetallic material thatmore » has an exceptionally narrow Ag/Pt ratio around 52/48 to 53/47, and a structure of interchangeable closely packed Ag and Pt layers with 85% on tetrahedral and 15% on octahedral sites. This rather unique stacking results in wavy patterns of Ag and Pt planes revealed by scanning transmission electron microscope (STEM). Finally, this Ag–Pt compositional intermetallic phase is highly active for electrochemical oxidation of formic acid at low anodic potentials, 5 times higher than its alloy nanoparticles, and 29 times higher than the reference Pt/C at 0.4 V (vs RHE) in current density.« less

  8. Magnetic properties of the intermetallic compounds MMscriptX(M=Cr,Mn, Mscript=Ru,Rh,Pd, and X=P,As)

    NASA Astrophysics Data System (ADS)

    Kanomata, T.; Kawashima, T.; Utsugi, H.; Goto, T.; Hasegawa, H.; Kaneko, T.

    1991-04-01

    Magnetization, magnetic susceptibility, and crystal structure are investigated on the ternary chromium arsenides CrM'As (M'=Ru,Rh,Pd) and ternary manganese phosphides and arsenides MnM'P(M'=Rh,Pd) and MnM'As(M'=Ru,Pd). MnRhP, MnRuAs, and MnPdAs are ferromagnets with a Curie temperature of Tc=401, 496, and 210 K, respectively. CrRhAs is an antiferromagnet with a Néel temperature of TN=165 K. MnPdP and CrPdAs show spin-glass-like freezing. A magnetic order-order transition is observed for CrRuAs. Susceptibility χ versus temperature curves are well expressed by a formula χ =C'/(T - θ'P)γ for all present compounds. The values of γ are about 3/2 for manganese compounds and CrPdAs, and about 1/2 for CrRuAs and CrRhAs.

  9. The impact of quadrupole moment of 4f shell on the hyperfine interactions anisotropy in RAl2 (R=Sm, Tb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Delyagin, N. N.; Erzinkyan, A. L.

    2016-03-01

    The magnetic hyperfine interactions for 119Sn impurity atoms in SmAl2 and TbAl2 ferromagnetic compounds have been investigated by Mössbauer spectroscopy technique. These compounds have the same structure but differ in the sign of the quadrupole moment of the R3+ ion. In both cases, the spectrum contains two magnetic subspectra with the ratio of the intensities 1:3, which correspond to a and b Al sites with significantly different hyperfine parameters. The phenomenon change the order the component of inversion component of the Mössbauer spectra was found. This phenomenon is explained by the influence of the quadrupole moment 4f-shell of R3+ ions on the electron density distribution in the valence band. The degree of overlap of electron wave functions being on hybrid orbitals greatly depends on the sign of the 4f-shell quadrupole moment, which gives rise to huge anisotropy in the hyperfine magnetic field and the electric field gradient. Quadrupole deformation induced by the 4f quadrupole moment and the electric field gradient, greatly affects the d-like and p-like components of the electron wave functions, but little effect on the its s-components.

  10. Origin of organic compounds on the primitive earth and in meteorites

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Urey, H. C.; Oro, J.

    1976-01-01

    The paper examines the role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth and in the solar nebula. Attention is directed mainly to the activation steps and formation of reactive intermediate compounds. Electric discharges appear to be not only the most efficient energy for amino acid synthesis but also yield a mixture of amino acids that is qualitatively and quantitatively the same as that found in the Murchison carbonaceous chondrite. Ultraviolet light is likely to have played a major role in prebiotic synthesis. The reaction of CO plus H2 plus NH3 on the surface of a Fischer-Tropsch catalyst produces reactive intermediates which lead to amino acids and other organic compounds in a much less efficient way than electric discharges.

  11. Origin of organic compounds on the primitive earth and in meteorites

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Urey, H. C.; Oro, J.

    1976-01-01

    The paper examines the role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth and in the solar nebula. Attention is directed mainly to the activation steps and formation of reactive intermediate compounds. Electric discharges appear to be not only the most efficient energy for amino acid synthesis but also yield a mixture of amino acids that is qualitatively and quantitatively the same as that found in the Murchison carbonaceous chondrite. Ultraviolet light is likely to have played a major role in prebiotic synthesis. The reaction of CO plus H2 plus NH3 on the surface of a Fischer-Tropsch catalyst produces reactive intermediates which lead to amino acids and other organic compounds in a much less efficient way than electric discharges.

  12. Crystal structure and magnetic properties of new Fe3Co3 X 2 (X  =  Ti, Nb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Nguyen, Manh Cuong; Balasubramanian, Balamurugan; Das, Bhaskar; Sellmyer, David J.; Zeng, Zhi; Ho, Kai-Ming; Wang, Cai-Zhuang

    2016-05-01

    The structure and magnetic properties of new magnetic Fe3Co3 X 2 (X  =  Ti, Nb) compounds are studied by genetic algorithm, first-principles density functional theory (DFT) calculations, and experiments. The atomic structure of a hexagonal structure with P-6m2 symmetry is determined. The simulated x-ray diffraction (XRD) spectra of the P-6m2 structures agree well with experimental XRD data for both Fe3Co3Ti2 and Fe3Co3Nb2. The magnetic properties of these structures as well as the effect of the disorder of Fe and Co on their magnetic properties are also investigated. The magnetocrystalline anisotropy energy is found to be very sensitive to the occupancy disorder between Fe and Co.

  13. Magnetic behavior of the neptunium intermetallic compound NpCo2Si2 under high pressure: A Mössbauer study

    NASA Astrophysics Data System (ADS)

    Potzel, W.; Moser, J.; Kalvius, G. M.; de Novion, C. H.; Spirlet, J. C.; Gal, J.

    1981-12-01

    High-pressure Mössbauer studies of 237Np in the tetragonal compound NpCo2Si2 are reported. The pressure dependence of the hyperfine field (Beff), the isomer shift (S), and the Néel temperature (TN) have been measured for pressures up to 35 kbar, at temperatures from 1.4 to 77 K. While Beff remains constant, both S and TN change markedly. The constancy of Beff fits well into the picture of localized 5f moments. The variation of TN is treated within the rigidspin model of Ruderman, Kittel, and Arrott. The prediction of a linear relation between T12N and S is consistent with the reported results.

  14. First-principles point defect models in Zr7Ni10 and Zr2Ni7 binary intermetallic compounds and their implications in nickel-metal hydride batteries

    NASA Astrophysics Data System (ADS)

    Wong, Diana F.

    Zr-Ni-based alloys as nickel-metal hydride battery anode materials offer low-cost, flexible and tunable battery performance. Zr7Ni 10 is an important secondary phase found in multi-phased AB2 Laves-phase-based metal hydride alloys, and the synergetic effect between the Zr-Ni and the Laves phases allows access to the high hydrogen storage of the Zr-Ni phases despite the lower absorption/desorption kinetics. Zr7Ni10 displays a small solubility window for Zr-rich compositions, while Zr2Ni7, with no solubility window, shows poor capacity with good kinetics. Stability of point defects within the crystal structure allows Zr7Ni10 to maintain the same structure at off-stoichiometric compositions, thus it is theorized that defects may play a role in the difference between the electrochemical behaviors in Zr7Ni10 and Zr2Ni7. Defect models in Zr7Ni10 and Zr2Ni7 compounds computed using a combination of density functional theory and statistical mechanics offer a starting point for understanding the possible roles that point defects have on the performance of Zr-Ni based active negative electrode materials in Ni/MH batteries. Theoretical vacancy and anti-site defect formation energies are calculated and reported for Zr-rich, Ni-rich, and stoichiometric compounds of Zr7Ni 10 and Zr2Ni7, and the implications of the defect models on nickel-metal hydride negative electrode active material design and performance are discussed.

  15. Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints

    NASA Astrophysics Data System (ADS)

    Zhou, M. B.; Ma, X.; Zhang, X. P.

    2012-11-01

    The microstructure of microscale solder interconnects and soldering defects have long been known to have a significant influence on the reliability of electronic packaging, and both are directly related to the solidification behavior of the undercooled solder. In this study, the undercooling behavior and solidification microstructural evolution of Sn-3.0Ag-0.5Cu solder balls with different diameters (0.76 mm, 0.50 mm, and 0.30 mm) and the joints formed by soldering these balls on Cu open pads of two diameters (0.48 mm and 0.32 mm) on a printed circuit board (PCB) substrate were characterized by differential scanning calorimetry (DSC) incorporated into the reflow process. Results show that the decrease in diameter of the solder balls leads to an obvious increase in the undercooling of the balls, while the undercooling of the solder joints shows a dependence on both the diameter of the solder balls and the diameter ratio of solder ball to Cu pad (i.e., D s/ D p), and the diameter of the solder balls has a stronger influence on the undercooling of the joints than the dimension of the Cu pad. Coarse primary intermetallic compound (IMC) solidification phases were formed in the smaller solder balls and joints. The bulk Ag3Sn IMC is the primary solidification phase in the as-reflowed solder balls. Due to the interfacial reaction and dissolution of Cu atoms into the solder matrix, the primary Ag3Sn phase can be suppressed and the bulk Cu6Sn5 IMC is the only primary solidification phase in the as-reflowed solder joints.

  16. New icosahedral nanoclusters in crystal structures of intermetallic compounds: Topological types of 50-atom deltahedra D50 in samson phases β-Mg2Al3 and ɛ-Mg23Al30

    NASA Astrophysics Data System (ADS)

    Blatov, V. A.; Ilyushin, G. D.

    2012-12-01

    A database of intermetallic compounds has been compiled using the TOPOS program package. This database includes 514 topological types, containing 12- and 13-atom icosahedral i clusters. An isolated group of 1649 i clusters is described by 14 point groups and their maximum symmetry D 3 d (bar 3 m) and T h ( m bar 3) is established, respectively, in 47 and 25 types of crystal structures. A structural analysis of the outer quasispherical shells showed that local 63-atom i configurations 1@12@50, which contain 50 atoms in the second layer, are implemented in 8 out of 19 cases. Examples of new topologically different types of 50-atom D50 deltahedra in the Samson phases ɛ-Mg23Al30 and β-Mg2Al3 are presented. Four topologically different sites with coordination numbers of 5, 6, 6, or 7 are established in the ɛ shell and seven sites with coordination numbers of 5, 5, 6, 6, 6, 6, or 7 are found in the β shell. The inner i clusters for the β-Mg2Al3 structure (with the symmetry bar 3 m) and the ɛ-Mg23Al30 structure (with the symmetry bar 3) have a similar chemical composition, i.e., Mg7Al6 and Mg6Al7, and their 50-atom shells are chemically identical to 18Mg + 32Al. The configurations found supplement the series of known two-layer icosahedral Bergman and Mackay clusters in the form of deltahedra with 32- and 42-atom shells.

  17. Determination of the intersublattice exchange interactions in GdCo12-xFexB6 (x = 0-3) intermetallic compounds by high field magnetization measurements

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Isnard, O.; Skourski, Y.; Ballon, G.

    2013-05-01

    High field magnetization measurements up to 60 T on free powder samples from GdCo12-xFexB6 (x = 0-3) compounds are reported. The data were used to evaluate the microscopic exchange interaction integral, JGd-3d, between Gd and 3d (Co,Fe) spins. The systems are ferrimagnets; they order magnetically between TC = 95 K for x = 3 and TC = 165 K for x = 0. The low temperature magnetization curves as well as the temperature dependence of intrinsic magnetic parameters are determined by magnetic measurements in pulsed magnetic field. The average magnetic moment ⟨μCo+Fe⟩ per mean transition metal atom (Co + Fe) is small and increases with increasing Fe concentration from 0.44 μΒ for x = 0 to 0.51 μΒ for x = 3 at T = 4 K. From high field magnetization curves, a value of JGd-3d/kB = -4.65 K is derived for x = 0, whereas mean field approximation yields a much larger 3d-3d exchange integral of JCo-Co/kB = 105 K. The obtained results reveal an increase of -JGd-3d/kB with Fe concentration. For x = 0.5, the intersublattice coefficient nGd-3d is found to keep an almost constant value of 5.87 ± 0.13 T*f.u.*μB-1 whatever the temperature in the 2 to 60 K range.

  18. Recent developments in the field of organic heterobimetallic compounds of the alkaline-earth metals.

    PubMed

    Westerhausen, Matthias

    2006-10-28

    Heterobimetallic compounds of the alkaline-earth metals show a wide structural variety with strongly differing reactivity patterns. The combination of magnesium and alkali metal amides yields cyclic molecules with an extreme high reactivity which often are considered as "inverse crowns" with the metal atoms as coordination sites for Lewis bases. In other metallates of the alkaline-earth metals an activation of alkyl groups succeeds. In alkaline-earth metal zincates an inverse coordination of the type M(2)[(mu-R)(2)ZnR](2) is observed and the alkyl groups are in bridging positions between zinc and the s-block metals thus forming a very reactive M-C-Zn three-center-two-electron bond. Furthermore, the metals of the carbon group form alkaline-earth metal-silicon, -germanium and -tin bonds or, in the presence of very strong Lewis bases, even solvent-separated ion pairs. For electronegative substituents at tin an inverse coordination mode such as M[(mu-R)(2)SnR](2) is observed.

  19. Magnetic structures of R(Cu, Ni)2 compounds (R = heavy rare earth) studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Smetana, Z.; Šíma, V.

    1985-11-01

    Magnetics structures of powdered orthorhombic R(Cu, Ni)2 compounds (R = heavy rare earth) determined by neutron diffraction are described. The influence of magnetocrystalline anisotropy and exchange interactions on the type of magnetic ordering is discussed.

  20. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  1. Highly-dispersive spin gapless semiconductors in rare-earth-element contained quaternary Heusler compounds

    NASA Astrophysics Data System (ADS)

    Xu, Guizhou; You, Yurong; Gong, Yuanyuan; Liu, Er; Xu, Feng; Wang, Wenhong

    2017-03-01

    The acquisition of high mobility electrons in the zero-gap band of spin gapless semiconductors is crucial for their practical applications in spintronic devices. In this work, we propose to design a higher dispersive band by importing the rare-earth atom into the Heusler compounds. With first principles calculations, we identify several new spin gapless semiconductor candidates in the 21-electron LiMgPdSn-type quaternary Heusler alloys of (Y, La, Lu)CoCr/FeMn(Al, Ga). Densities of states for most of them reveal large band gaps in the minority spin direction, and relatively low states near the Fermi level in the majority spin. According to the electron projected band analysis, we find the import of the rare earth atom can enhance the sp component in the band across the Fermi level, which is conducive to form a linear-dispersive band that is promising to enhance the carrier mobility of spin gapless semiconductors.

  2. Results from the nuclear microprobe PIXE analysis of selected rare earth fluor compounds

    NASA Astrophysics Data System (ADS)

    Hollerman, William A.; Gates, Earl; Boudreaux, Philip; Glass, Gary A.

    2002-04-01

    Most previous research measures fluorescence properties over the macroscopic regime. Properties of individual microscopic grains could be significantly different than those measured over the macroscopic scale. Until recently, it was difficult to measure properties of individual fluor grains. Existing characterization techniques like scanning electron microscopy are not practical, since the resulting fluorescence masks the electron surface profile. Starting in September 2000, a research program was initiated at the Acadiana Research Laboratory to determine microscopic fluorescence properties for selected inorganic rare earth compounds. The initial phase of this program utilized microscopic proton induced X-ray emission (μPIXE) to characterize the elemental composition of individual fluor grains. Results show that both individual grains and small clusters of grains could be seen using μPIXE. Maps of this type can be used to estimate grain dimensions for the selected rare earth fluor. This technique is a new and innovative method to characterize a fluor material.

  3. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  4. Magnetic hyperfine interactions on Cd sites of the rare-earth cadmium compounds R Cd (R =Ce , Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Leite Neto, O. F. L. S.; Saitovitch, H.; Cavalcante, J. T. P. D.; Carbonari, A. W.; Saxena, R. N.; Bosch-Santos, B.; Pereira, L. F. D.; Mestnik-Filho, J.; Forker, M.

    2016-08-01

    This paper reports the investigation of the magnetic hyperfine field Bh f in a series of rare-earth (R ) cadmium intermetallic compounds R Cd and GdCd2 measured by perturbed angular correlation (PAC) spectroscopy using 111In/111Cd as probe nuclei at Cd sites as well as first-principles calculations of Bh f at Cd sites in the studied compounds. Vapor-solid state reaction of R metals with Cd vapor and the 111In radioisotope was found to be an appropriate route of doping rare-earth cadmium compounds with the PAC probe 111In/111Cd. The observation that the hyperfine parameters depend on details of the sample preparation provides information on the phase preference of diffusing 111In in the rare-earth cadmium phase system. The 111Cd hyperfine field has been determined in the compounds R Cd for the R constituents Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er, in several cases as a function of temperature. For most R constituents, the temperature dependence Bh f(T ) of 111Cd:R Cd is consistent with ferromagnetic order of the compound. DyCd, however, presents a remarkable anomaly: a finite magnetic hyperfine field is observed only in the temperature interval 35 K ≤ T ≤ 80 K which indicates a transition from ferromagnetic order to a spin arrangement where all 4 f -induced contributions to the magnetic hyperfine field at the Cd site cancel. First-principles calculation results for DyCd show that the (π , π , 0) antiferromagnetic configuration is energetically more favorable than the ferromagnetic. The approach used in the calculations to simulate the R Cd system successfully reproduces the experimental values of Bh f at Cd sites and shows that the main contribution to Bh f comes from the valence electron polarization. The de Gennes plot of the hyperfine field Bh f of 111Cd:R Cd vs the 4 f -spin projection (g -1 )J reflects a decrease of the strength of indirect 4 f -4 f exchange across the R series. Possible mechanisms are discussed and the experimental results indicate that

  5. Magnetization, Magnetocrystalline Anisotropy and Magnetostriction in Some Rare-Earth-Cobalt Compounds, R2 C017.

    DTIC Science & Technology

    1976-12-01

    AlP Conference Proceedings, 18, 1212—1216, (1973). 0 _~ £ i 16. Steven K.W .H., Matrix Elements and Operator Equiva—t O 0.9 0.0 07 0.6 0.5 0.4 0.3 0.2...constant K2 and the meg— the rare earth i~n in compounds with transition metals netostriction Constant ÀY of single crystals of and in pure elements ...of the Tb3 ~~o1, and Ho;Co27 are both easy basal plane and R;Co1, compound is positive whereas the contribution Er;Co17 is easy C axis. The field

  6. Reactions of intermetallic clusters

    SciTech Connect

    Farley, R.W.; Castleman, A.W. Jr. )

    1990-02-01

    Reaction of bismuth--alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip Bi{sub {ital x}}Na{sub {ital y}} and Bi{sub {ital x}}K{sub {ital y}}, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of Bi{sub {ital x}}Na{sub {ital y}} clusters with HC1 are estimated to lie between 3{times}10{sup {minus}13} for Bi{sub 4}Na, to greater than 4{times}10{sup {minus}11} for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1--9{times}10{sup {minus}14} and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  7. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  8. Intermetallic insertion anodes for lithium batteries.

    SciTech Connect

    Thackeray, M. M.; Vaughey, J.; Johnson, C. S.; Kepler, K. D.

    1999-11-12

    Binary intermetallic compounds containing lithium, or lithium alloys, such as Li{sub x}Al, Li{sub x}Si and Li{sub x}Sn have been investigated in detail in the past as negative electrode materials for rechargeable lithium batteries. It is generally acknowledged that the major limitation of these systems is the large volumetric expansion that occurs when lithium reacts with the host metal. Such large increases in volume limit the practical use of lithium-tin electrodes in electrochemical cells. It is generally recognized that metal oxide electrodes, MO{sub y}, in lithium-ion cells operate during charge and discharge by means of a reversible lithium insertion/extraction process, and that the cells offer excellent cycling behavior when the crystallographic changes to the unit cell parameters and unit cell volume of the Li{sub x}MO{sub y} electrode are kept to a minimum. An excellent example of such an electrode is the spinel Li{sub 4}Ti{sub 5}O{sub 12}, which maintains its cubic symmetry without any significant change to the lattice parameter (and hence unit cell volume) during lithium insertion to the rock-salt composition Li{sub 7}Ti{sub 5}O{sub 12}. This spinel electrode is an example of a ternary Li{sub x}MO{sub y} system in which a binary MO{sub y} framework provides a stable host structure for lithium. With this approach, the authors have turned their attention to exploring ternary intermetallic systems Li{sub x}MM{prime} in the hope of finding a system that is not subject to the high volumetric expansion that typifies many binary systems. In this paper, the authors present recent data of their investigations of lithium-copper-tin and lithium-indium-antimonide electrodes in lithium cells. The data show that lithium can be inserted reversibly into selected intermetallic compounds with relatively small expansion of the lithiated intermetallic structures.

  9. Analytical results for crystalline electric field eigenvalues of trivalent rare-earth ions using computer algebra: application to the magnetism of PrX2 ( X = Mg, Al, Ru, Rh, Pt)

    NASA Astrophysics Data System (ADS)

    Sobral, R. R.; Guimarães, A. P.; da Silva, X. A.

    1994-10-01

    The eigenvalues of the Crystalline Electric Field (CEF) Hamiltonian with cubic symmetry are analytically obtained for trivalent rare-earth ions of ground state J= {5}/{2}, {7}/{2}, 4, {9}/{2}, 6, {15}/{2} and 8, via a Computer Algebra approach. In the presence of both CEF and an effective exchange field, Computer Algebra still allows a partial factorization of the characteristic polynomial equation associated to the total Hamiltonian, a result of interest to the study of the magnetic behavior of rare-earth intermetallics. An application to the PrX2 intermetallic compounds ( X = Mg, Al, Ru, Rh, Pt) is reported.

  10. Synchrotron Diffraction Studies of Spontaneous Magnetostriction in Rare Earth Transition Metal Compounds

    SciTech Connect

    Yang, Ning

    2004-12-19

    Thermal expansion anomalies of R2Fe14B and R2Fe17Cx (x = 0,2) (R = Y, Nd, Gd, Tb, Er) stoichiometric compounds are studied with high-energy synchrotron X-ray powder diffraction using Debye-Schemer geometry in temperature range 10K to 1000K. Large spontaneous magnetostriction up to their Curie temperatures (Tc) is observed. The a-axes show relatively larger invar effects than c-axes in the R2Fe14B compounds whereas the R2Fe17Cx show the contrary anisotropies. The iron sub-lattice is shown to dominate the spontaneous magnetostriction of the compounds. The contribution of the rare earth sublattice is roughly proportional to the spin magnetic moment of the rare earth in the R2Fe14B compounds but in R2Fe17Cx, the rare earth sub-lattice contribution appears more likely to be dominated by the local bonding. The calculation of spontaneous magnetostrain of bonds shows that the bonds associated with Fe(j2) sites in R2Fe14B and the dumbbell sites in R2Fe17Cx have larger values, which is strongly related to their largest magnetic moment and Wigner-Seitz atomic cell volume. The roles of the carbon atoms in increasing the Curie temperatures of the R2Fe17 compounds are attributed to the increased separation of Fe hexagons. The R2Fe17 and R2Fe14B phases with magnetic rare earth ions also show anisotropies of thermal expansion above c. For R2Fe17 and R2Fe14B the a a/a c > 1 whereas the anisotropy is reversed with the interstitial carbon in R2Fe17. The average bond magnetostrain is shown to be a possible predictor of the magnetic moment of Fe sites in the compounds. Both of the theoretical and

  11. High-quality single crystal growth and strongly correlated electronic states in rare earth and actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Honda, Fuminori; Hirose, Yusuke; Settai, Rikio; Takeuchi, Tetsuya

    2016-11-01

    We review the nature of strongly correlated electronic states in rare earth and actinide compounds, focusing on localized versus itinerant electronic states in CeRhIn5, quantum critical phenomena in YbIr2Zn20, residual resistivity in CeCu6, metamagnetism in heavy fermion compounds, and unconventional superconductivity in CeIrSi3 without inversion symmetry in the crystal structure, emphasizing that sample quality is essentially important to clarify the characteristic features for the heavy fermion compounds.

  12. Anomalous oxidation of intermetallics

    SciTech Connect

    Berztiss, D.A.; Pettit, F.S.; Meier, G.H.

    1995-07-01

    MoSi{sub 2}, {beta}-NiAl and TiAl with Cr additions are of interest for high temperature applications in oxidizing environments, where an oxide layer such as SiO{sub 2} or Al{sub 2}O{sub 3} should form to protect the base material. At elevated temperatures (600--1,700 C), a protective SiO{sub 2} layer forms on MoSi{sub 2}, while near 500 C pesting and/or accelerated oxidation could disintegrate the material to powder as Mo and Si oxidize to form a complex, thick, non-protective oxide layer. Use of {gamma}-TiAl is limited by poor oxidation resistance, whereby layered mixed oxides of TiO{sub 2} and Al{sub 2}O{sub 3} form. With the addition of Cr from 4 to 34 at%, results are varied: protective Al{sub 2}O{sub 3} formation, mixed oxide formation as with TiAl or more rapid oxidation than TiAl. NiAl is currently used as a diffusion coating on Ni-based superalloys and is being considered for use as a structural material itself because of its excellent oxidation resistance, i.e. forming {alpha}-alumina above 1,000 C. Recent work indicates that pure NiAl oxidized under low oxygen partial pressures in a contained atmosphere develops nonprotective oxide scales similar to accelerated oxidation of MoSi{sub 2}. This study explores the parameters defining protective behavior of these intermetallics and attempts to describe and explain anomalies at low temperatures and pressures.

  13. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  14. Fundamentals of mechanical behavior in structural intermetallics: A synthesis of atomistic and continuum modeling

    SciTech Connect

    Yoo, M.H.; Fu, C.L.

    1993-08-01

    After a brief account of the recent advances in computational research on mechanical behavior of structural intermetallics, currently unresolved problems and critical issues are addressed and the knowledge base for potential answers to these problems is discussed. As large-scale problems (e.g., dislocation core structures, grain boundaries, and crack tips) are treated by atomistic simulations, future development of relevant interatomic potentials should be made consistent with the results of first-principles calculations. The bulk and defect properties calculated for intermetallic compounds, both known and as yet untested, can furnish insights to alloy designers in search of new high-temperature structural intermetallics.

  15. Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications.

    PubMed

    Sun, Tian-Ying; Zhang, Da-Quan; Yu, Xue-Feng; Xiang, Yang; Luo, Min; Wang, Jia-Hong; Tan, Guo-Long; Wang, Qu-Quan; Chu, Paul K

    2013-02-21

    A new class of ratiometric fluorescence sensors composed of rare-earth (RE) compound nanotubes is described. Polyethylenimine-coated yttrium hydroxide fluoride nanotubes (YHF NTs) that were synthesized hydrothermally exhibit highly efficient fluorescence when doped with RE ions. The polyethylenimine on the NTs facilitates the incorporation of phosphors such as quantum dots or organic dyes onto the NT surface to produce dual-emitting nanocomposites which are excellent ratiometric fluorescence sensors. The phosphor layer and underlying tubes in the nanocomposites act as the indicator and reference probes, respectively. This ratiometric fluorescence method which can be applied to the detection of heavy metals in solutions, temperature sensing, and pH sensing boasts high sensitivity and selectivity as well as better accuracy than traditional intensity-based fluorescence methods.

  16. Rare earth-transition metal compound-based MOSLM for the visible spectral range

    NASA Astrophysics Data System (ADS)

    Heo, J.; Miyazawa, T.; Kim, J.; Baryshev, A. V.; Inoue, M.

    2010-02-01

    We have demonstrated a magneto-optical spatial light modulator in which functionality is realized by (i) heating up to Curie temperature ( Tc) magneto-optical elements (pixels) with a semiconductor laser and (ii) application of a switching magnetic field. The pixels were made of films of amorphous rare earth-transition metal compounds (TbFe films with Tc=403 K and DyFe films with Tc=343 K) having good magneto-optical responses for wavelengths from the visible spectral range. We have found that the magnetization direction of pixels can be modulated with a laser radiation density of 5 mJ/cm 2 and in a switching magnetic field of 15 Oe.

  17. Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications

    NASA Astrophysics Data System (ADS)

    Sun, Tian-Ying; Zhang, Da-Quan; Yu, Xue-Feng; Xiang, Yang; Luo, Min; Wang, Jia-Hong; Tan, Guo-Long; Wang, Qu-Quan; Chu, Paul K.

    2013-01-01

    A new class of ratiometric fluorescence sensors composed of rare-earth (RE) compound nanotubes is described. Polyethylenimine-coated yttrium hydroxide fluoride nanotubes (YHF NTs) that were synthesized hydrothermally exhibit highly efficient fluorescence when doped with RE ions. The polyethylenimine on the NTs facilitates the incorporation of phosphors such as quantum dots or organic dyes onto the NT surface to produce dual-emitting nanocomposites which are excellent ratiometric fluorescence sensors. The phosphor layer and underlying tubes in the nanocomposites act as the indicator and reference probes, respectively. This ratiometric fluorescence method which can be applied to the detection of heavy metals in solutions, temperature sensing, and pH sensing boasts high sensitivity and selectivity as well as better accuracy than traditional intensity-based fluorescence methods.A new class of ratiometric fluorescence sensors composed of rare-earth (RE) compound nanotubes is described. Polyethylenimine-coated yttrium hydroxide fluoride nanotubes (YHF NTs) that were synthesized hydrothermally exhibit highly efficient fluorescence when doped with RE ions. The polyethylenimine on the NTs facilitates the incorporation of phosphors such as quantum dots or organic dyes onto the NT surface to produce dual-emitting nanocomposites which are excellent ratiometric fluorescence sensors. The phosphor layer and underlying tubes in the nanocomposites act as the indicator and reference probes, respectively. This ratiometric fluorescence method which can be applied to the detection of heavy metals in solutions, temperature sensing, and pH sensing boasts high sensitivity and selectivity as well as better accuracy than traditional intensity-based fluorescence methods. Electronic supplementary information (ESI) available: EA and TGA profiles, emission spectra of YHF:Eu NTs. See DOI: 10.1039/c2nr33217e

  18. Theoretical study of the magnetic ordering in rare-earth compounds with face-centered-cubic structure

    NASA Astrophysics Data System (ADS)

    Duan, Chun-gang; Sabiryanov, R. F.; Liu, Jianjun; Mei, W. N.; Dowben, P. A.; Hardy, J. R.

    2005-05-01

    We present a detailed theoretical study of the magnetic ordering in heavy rare-earth compounds with a face-centered-cubic structure. In addition to the exchange interactions which are counted up to the third nearest neighbors, the effect of the dipolar interactions and magnetic anisotropic effect are also included in our model Hamiltonian. The interactions parameters are obtained from first-principles band-structure calculations by fitting the total energies of different magnetic configurations to the Heisenberg Model. Thus from utilizing the Monte Carlo simulations, we explained the formation of different magnetic structures in the rare-earth compounds.

  19. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  20. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  1. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  2. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  3. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  4. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    SciTech Connect

    Jia, Shuang

    2008-01-01

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  5. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Rick D.; Alman, David E.

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  6. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  7. First principle studies of electronic and magnetic properties of Lanthanide-Gold (RAu) binary intermetallics

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Ahmad, Rashid; Jalali-Asadabadi, S.; Ali, Zahid; Ahmad, Iftikhar

    2017-01-01

    In this article we explore the electronic and magnetic properties of RAu intermetallics (R=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) for the first time. These properties are calculated by using GGA, GGA+U and hybrid density functional theory (HF) approaches. Our calculations show that HF provides superior results, consistent to the experimentally reported data. The chemical bonding between rare-earth and gold atoms within these compounds are explained on the basis of spin dependent electronic clouds in different planes, which shows predominantly ionic and metallic nature between Au and R atoms. The Cohesive energies of RAu compounds show direct relation with the melting points. Spin-dependent electronic band structure demonstrates that all these compounds are metallic in nature. The magnetic studies show that HoAu and LuAu are stable in non-magnetic structure, PrAu is stable in ferromagnetic phase and CeAu, NdAu, SmAu, GdAu, TbAu, DyAu, ErAu, TmAu, YbAu are anti-ferromagnetic materials.

  8. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials.

    PubMed

    Parker, David; Singh, David J

    2013-10-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli-roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  9. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials

    SciTech Connect

    Parker, David S; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  10. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  11. A simple melting theory applied to alkali halide, alkaline-earth chalcogenide, and alkali chalco-genide compounds

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chen, L. R.

    2005-06-01

    A useful and simple method for studying the melting temperature T-m of ion compounds has been developed by using analyses originally due to diffusional force theory, incorporating Pandey's formulation and Harrison's potential function. The calculated values of T-m for a wide range of compounds of types IA-VII (alkali halide), IIA-VI (alkaline-earth chalcogenide), and IA-VI (alkali chalcogenide) are found to agree fairly well with experimental values for T-m and to be superior to results from previous approaches involving similar methods.

  12. Suppressors made from intermetallic materials

    SciTech Connect

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  13. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.

    PubMed

    Yan, Yucong; Du, Jingshan S; Gilroy, Kyle D; Yang, Deren; Xia, Younan; Zhang, Hui

    2017-02-24

    At the forefront of nanochemistry, there exists a research endeavor centered around intermetallic nanocrystals, which are unique in terms of long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure. In contrast to alloy nanocrystals with no elemental ordering, it is challenging to synthesize intermetallic nanocrystals with a tight control over their size and shape. Here, recent progress in the synthesis of intermetallic nanocrystals with controllable sizes and well-defined shapes is highlighted. A simple analysis and some insights key to the selection of experimental conditions for generating intermetallic nanocrystals are presented, followed by examples to highlight the viable use of intermetallic nanocrystals as electrocatalysts or catalysts for various reactions, with a focus on the enhanced performance relative to their alloy counterparts that lack elemental ordering. Within the conclusion, perspectives on future developments in the context of synthetic control, structure-property relationships, and applications are discussed.

  14. A COMPARISON OF FAR INFRARED AND RAMAN SPECTRA OF SOME RARE EARTH GARNET SINGLE CRYSTALS,

    DTIC Science & Technology

    RARE EARTH COMPOUNDS, *INFRARED SPECTRA), (*GARNET, RARE EARTH COMPOUNDS), (* RAMAN SPECTROSCOPY, RARE EARTH COMPOUNDS), SINGLE CRYSTALS, ALUMINATES...PHONONS, YTTRIUM COMPOUNDS, YTTERBIUM COMPOUNDS, TERBIUM COMPOUNDS, DYSPROSIUM COMPOUNDS, CANADA

  15. Earth

    NASA Image and Video Library

    2012-01-30

    Behold one of the more detailed images of the Earth yet created. This Blue Marble Earth montage shown above -- created from photographs taken by the Visible/Infrared Imager Radiometer Suite (VIIRS) instrument on board the new Suomi NPP satellite -- shows many stunning details of our home planet. The Suomi NPP satellite was launched last October and renamed last week after Verner Suomi, commonly deemed the father of satellite meteorology. The composite was created from the data collected during four orbits of the robotic satellite taken earlier this month and digitally projected onto the globe. Many features of North America and the Western Hemisphere are particularly visible on a high resolution version of the image. http://photojournal.jpl.nasa.gov/catalog/PIA18033

  16. Sonochemical formation of intermetallic coatings

    SciTech Connect

    Sweet, J.D.; Casadonte, D.J. Jr.

    1994-11-01

    An energy-dispersive X-ray (EDX) study of the agglomerates produced during the sonication of a series of mixed-metal powders in decane indicates that metal particles are both fused by the action of ultrasound and develop coatings which are intermetallic in nature. The principal mechanism of these effects is believed to be interparticle collision caused by the rapid movement of particles of less than 50 {mu}m diameter which are propelled by shockwaves generated at cavitation sites. By examination of mixed-metal systems including Ni/Co, Al/Ni, Al/Co, Ni/Mg, and Cu/Mo with substantially different tribological characteristics, it has been determined that the coatings are generated by both adhesive wear and direct impact. The fusion of Cu and Mo is particularly intriguing, as these two metals are immiscible below 1000{degrees}C. This indicates the enormous impact temperatures produced in sonically induced collisions. The mechanisms of intermetallic coatings produced via ultrasound are discussed. 26 refs., 4 figs.

  17. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  18. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  19. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  20. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  1. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  2. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  3. Phosphorus Redox on the Early Earth: First Identification of Low-Oxidation State Phosphorus Compounds in Terrestrial Samples

    NASA Astrophysics Data System (ADS)

    Block, K. M.; Pasek, M. A.

    2008-12-01

    Phosphorus is one of the key elements in biochemical systems, playing an important role in metabolism as ATP and other coenzymes, in replication as DNA and RNA, and in cellular structure as phospholipids. The geochemical cycling of phosphorus on the Earth is usually confined to the rock cycle- redox reactions of phosphorus are never considered. However, it has been proposed that redox reactions of phosphorus were important on the early Earth (Pasek, PNAS 2008). Indeed, such a suggestion is buttressed by the discovery of condensed phosphate formation linked to the oxidation of reduced P compounds. However, prior to the present work, there has been no report of these P compounds in geologic samples. Here we report the first occurrence of reduced P in samples of fulgurites, the glassy material resulting from the fusion of sand, soil, or rock during a lightning strike. On average, lightning strikes the Earth's surface at a rate of approximately 65 times per second (Krider et al., J. Geophys. Res.,1968) exposing target areas to extreme energy dissipation and temperatures. Through electron microprobe analyses and NMR we have identified naturally formed metal droplets containing Fe and P within several fulgurite samples and Ca-phosphite compounds. These droplets are highly reduced compared to the original material and are not naturally present in the target area, rather they were formed through the rapid, intense heating and quenching experienced during fulgurite formation. This process provides a natural means to create localized environments with greater than normal abundances of reduced Fe and P, less commonly found on Earth's surface than their oxidized counterparts. In particular, small areas that receive repeated lightning strikes due to topography or local weather patterns (e.g. hilltops) could potentially house unique microhabitats with reduced elements available for biological use.

  4. High Temperature Chemistry of Rare Earth Compounds: Dramatic Examples of Periodicity.

    ERIC Educational Resources Information Center

    Cater, E. David

    1978-01-01

    Reports that energy required to promote a 4f electron to the 5d level has a profound and predictable influence on the systematics of reactions involving conversion of rare earth atoms from combined to free states. (Author/MA)

  5. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  6. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  7. RE2MAl6Si4 (RE = Gd, Tb, Dy; M = Au, Pt): layered quaternary intermetallics featuring CaAl2Si2-type and YNiAl4Ge2-type slabs grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2003-12-01

    Six new intermetallic aluminum silicides--Gd(2)PtAl(6)Si(4), Gd(2)AuAl(6)Si(4), Tb(2)PtAl(6)Si(4), Tb(2)AuAl(6)Si(4), Dy(2)PtAl(6)Si(4), and Dy(2)AuAl(6)Si(4)--have been obtained from reactions carried out in aluminum flux. The structure of these compounds was determined by single-crystal X-ray diffraction. They form in space group Rthremacr;m with cell constants of a = 4.1623(3) A and c = 51.048(5) A for the Gd(2)PtAl(6)Si(4) compound. The crystal structure is comprised of hexagonal nets of rare earth atoms alternating with two kinds of layers that have been observed in other multinary aluminide intermetallic compounds (CaAl(2)Si(2) and YNiAl(4)Ge(2)). All six RE(2)MAl(6)Si(4) compounds show antiferromagnetic transitions at low temperatures (T(N) < 20 K); magnetization studies of the Dy compounds show metamagnetic behavior with reorientation of spins at 6000 G. Band structure calculations indicate that the AlSi puckered hexagonal sheets in this structure are electronically distinct from the other surrounding structural motifs.

  8. Tetranuclear and Pentanuclear Compounds of the Rare-Earth Metals: Synthesis and Magnetism.

    PubMed

    Yadav, Munendra; Mondal, Abhishake; Mereacre, Valeriu; Jana, Salil Kumar; Powell, Annie K; Roesky, Peter W

    2015-08-17

    The Schiff-base proligand 4-tert-butyl-2,6-bis-[(2-hydroxy-phenylimino)methyl]phenol (H3L) was prepared in situ from 4-tert-butyl-2,6-diformylphenol and 2-aminophenol. The proligand (H3L) was used with dibenzoylmethane (DBMH) or acetylacetone (acacH) with lanthanides giving compounds with varying arrangements of metal atoms and nuclearities. The tetranuclear compound {[Dy4(L)3(DBM)4][Et3NH]} (1) and pentanuclear compound {[Dy5(μ3-OH)2(L)3(DBM)4(MeOH)4]·4(MeOH)} (2) were obtained from the ligand (L)(3-) and dibenzoylmethane. The tetranuclear compounds {[Dy4(μ4-OH)(L)2(acac)4(MeOH)2(EtOH)(H2O)]·(NO3)·2(MeOH)·3(EtOH)} (3) and {[Ln4(μ3-OH)2(L)(HL)(acac)5(H2O)] (HNEt3)(NO3)·2(Et2O)} (Ln = Tb (4), Dy (5), Ho (6), and Tm (7)) resulted when the ligand (L)(3-) was used in the presence of acetylacetone. In the solid state structures, the tetranuclear compound 1 adopts a linear arrangement of metal atoms, while tetranuclear compound 3 has a square grid arrangement of metal atoms, and tetranuclear compounds 4-7 have a seesaw-shaped arrangement of metal atoms. The composition found from single-crystal X-ray analysis of compound 1 and 3-7 is supported by electrospray ionization mass spectrometry (ESI-MS). The magnetic studies on compounds 1 suggest the presence of weak ferromagnetic interactions, whereas compounds 2-6 exhibit weak antiferromagnetic interactions between neighboring metal centers. Compounds 1, 2, and 3 also show single-molecule magnet behavior under an applied dc field.

  9. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    PubMed

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  10. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  11. Thermodynamic stability of perovskites and related compounds in some alkaline earth-transition metal-oxygen systems

    NASA Astrophysics Data System (ADS)

    Yokokawa, Harumi; Sakai, Natsuko; Kawada, Tatsuya; Dokiya, Masayuki

    1991-09-01

    The thermodynamic properties of some alkaline earth ( A)-transition metal ( M) perovskites and K 2NiF 4 compounds have been collected, analyzed, and utilized to examine their stabilities by constructing the chemical potential diagrams of a log [ {a(A)}/{a(M)}] vs log P(O 2) plot. A thermodynamic analysis was performed on the dissociation reaction of K 2NiF 4 compounds ( A2MO 4) into perovskites ( AMO 3) and alkaline earth oxides ( AO) using empirical correlations between stabilization energy and tolerance factor. It has been found that the softness of calcium ions, which shrink markedly with decreasing coordination number from 12 to 9, makes the calcium K 2NiF 4 compounds (Ca 2MO 4) relatively less stable with increasing radius of the transition metal ions, r( M4+). This destabilization related to the coordination-number-dependent radii implies that when compared with the strontium perovskites, the calcium analogous perovskites may have a smaller number of oxygen vacancies, because the formation of oxygen vacancies should be accompanied with a decrease in coordination number of A-site ions.

  12. Negative thermal expansion induced by intermetallic charge transfer.

    PubMed

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4-x Mn x O12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10(-6) K(-1) near room temperature, in the temperature range which can be controlled by substitution.

  13. Understanding and prediction of electronic-structure-driven physical behaviors in rare-earth compounds.

    PubMed

    Paudyal, Durga; Pathak, Arjun K; Pecharsky, V K; Gschneidner, K A

    2013-10-02

    Rare-earth materials, due to their unique magnetic properties, are important for fundamental and technological applications such as advanced magnetic sensors, magnetic data storage, magnetic cooling and permanent magnets. For an understanding of the physical behaviors of these materials, first principles techniques are one of the best theoretical tools to explore the electronic structure and evaluate exchange interactions. However, first principles calculations of the crystal field splitting due to intra-site electron-electron correlations and the crystal environment in the presence of exchange splitting in rare-earth materials are rarely carried out despite the importance of these effects. Here we consider rare-earth dialuminides as model systems and show that the low temperature anomalies observed in these systems are due to the variation of both exchange and crystal field splitting leading to anomalous intra-site correlated-4f and itinerant-5d electronic states near the Fermi level. From calculations supported by experiments we uncover that HoAl2 is unique among rare-earth dialuminides, in that it undergoes a cubic to orthorhombic distortion leading to a spin reorientation. Calculations of a much more extended family of mixed rare-earth dialuminides reveal an additional degree of complexity: the effective quadrupolar moment of the lanthanides changes sign as a function of lanthanide concentration, leading to a change in the sign of the anisotropy constant. At this point the quadrupolar interactions are effectively reduced to zero, giving rise to lattice instability and leading to new phenomena. This study shows a clear picture that accurate evaluation of the exchange, crystal field splitting and shape of the charge densities allows one to understand, predict and control the physical behaviors of rare-earth materials.

  14. Microstructural defects in some rare earth laves phase single crystals

    SciTech Connect

    Bi, Y.J.; Abell, J.S. . School of Metallurgy and Materials.)

    1993-08-15

    With the extensive research in magnetic behavior of rare earth intermetallic compounds, more specific microstructural characterization on the available single crystals is obviously necessary because many interpretations of the physical property measurements can be particularly dependent on the knowledge of the microstructural defects, impurity distributions, etc. Among the more interesting and also the most extensively investigated rare earth intermetallics are RAl[sub 2](R = rare earth elements) compounds, which have the C15 cubic Laves phase structure with the tetrahedra of smaller Al atoms residing at the four corners of the cubic cell. While much effort has been devoted to understanding the nature of the magnetism of RAl[sub 2] single crystals by neutron diffraction, e.g. heat capacity measurements, x-ray topography, etc., little work has been performed on characterization of microstructural defects and their effects on physical property measurements. In this work, the authors report a microstructural study on as-grown single crystals of CeAl[sub 2] and TbAl[sub 2] by transmission electron microscopy (TEM). The presence of (001) growth faults in CeAl[sub 2] single crystals and (111) planar defects in TbAl[sub 2] single crystals have been identified, and the possible formation mechanism and the influence on the magnetic properties are discussed.

  15. Theory of x-ray-absorption spectra in PrO2 and some other rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Ogasawara, H.; Kotani, A.; Okada, K.; Thole, B. T.

    1991-01-01

    We analyze rare-earth 3d-core x-ray-absorption spectra (3d XAS) in PrO2, as well as in CeO2, using the impurity Anderson model. It is shown that the interplay between the atomic multiplet coupling and the solid-state hybridization between rare-earth 4f and oxygen 2p states is essential in determining the spectral shape. The calculated spectra are in fair agreement with experimental data which supports the theory that there is a strong mixing between 4f1 and 4f2v in the ground state of PrO2, where v denotes a hole in the oxygen 2p valence band. A theoretical prediction of Pr 4d XAS of PrO2 is also given. Because it contains much structure, experimental determination of this spectrum would be very valuable for the study of mixed-valence compounds.

  16. Environmental embrittlement in ordered intermetallic alloys

    SciTech Connect

    Liu, C.T.; Stoloff, N.S.

    1992-12-31

    Ordered intermetallics based on aluminides and silicides possess many promising properties for elevated-temperature applications; however, poor fracture resistance and limited fabricability restrict their use as engineering material. Recent studies have shown that environmental embrittlement is a major cause of low ductility and brittle fracture in many ordered intermetallic alloys. There are two types of environmental embrittlement observed in intermetallic alloys. One is hydrogen-induced embrittlement occurring at ambient temperatures in air. The other is oxygen-induced embrittlement in oxidizing atmospheres at elevated temperatures. In most cases, the embrittlements are due to a dynamic effect involving generation and penetration of embrittling agents (i.e., hydrogen or oxygen ) during testing. Diffusion of embrittling agents plays a dominant role in fracture of these intermetallic alloys. This chapter summarizes recent progress in understanding and reducing environmental embrittlement in these alloys.

  17. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    SciTech Connect

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys.

  18. Processing - Property Relationship in Advanced Intermetallics

    DTIC Science & Technology

    1994-07-01

    AD-A285 262 - IlE I !!III Illl iIII c.,. Processing- Property Relationship I in Advanced Intermetallics Final Report For Period March 4,1991 through...through 03-03-94 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Processing- Property Relationship in Advanced Intermetallics; 4. AUTHOR(S) D.A. Hardwick and P.L...2 M echanical Properties ......................................................................... 9 3 C

  19. Synthesis and characterization of binary intermetallic superconductor Mo8Ga41

    NASA Astrophysics Data System (ADS)

    Neha, P.; Sharma, B.; Patnaik, S.

    2017-05-01

    We report synthesis and characterization of binary intermetallic superconductor Mo8Ga41. Resistivity and magnetization measurements show presence of superconductivity at 9.8 K. The lower critical field (Hc1) and upper critical field (Hc2) are 150 G and 9.30 T respectively. The Ginzburg Landau coherence length (ξ) and penetration depth (λ) are estimated to be 5.95nm and 148nm respectively. As the endohedral cluster of Gallium with transition metals plays the crucial role for the presence of superconductivity in this intermetallic compound, the gallium cluster based materials can open a new avenue for novel superconductivity.

  20. Magnetostrictive properties of the heavy-rare-earth-free Sm1-xNdxFe2 compounds

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ren, W. J.; Yang, Y. H.; Li, B.; Li, J.; Zhang, Z. D.

    2013-04-01

    In this work, we report the magnetostrictive properties of Sm1-xNdxFe2 compounds, which are free of (expensive) heavy rare earths. Anomalies are observed in the temperature dependence of both the magnetization and the magnetostriction of these compounds, which are ascribed to spin-reorientation transitions. At low fields, the quasi-static magnetostriction and the piezomagnetic coefficient d33 of Sm0.88Nd0.12Fe2 are larger than those of SmFe2, which is due to the compensation of the anisotropy of the Sm3+ and Nd3+ ions. At a magnetic-field strength of 6 kOe, the static magnetostriction of Sm0.88Nd0.12Fe2 is -1244 ppm at 225 K and -1022 ppm at 290 K and, at a bias magnetic field of 700 Oe, the d33 equals 0.55 ppm/Oe (6.8 nm/A).

  1. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    PubMed

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  2. Synthesis and structural characterization of A3In 2Ge 4 and A5In 3Ge 6 ( A=Ca, Sr, Eu, Yb)—New intermetallic compounds with complex structures, exhibiting Ge-Ge and In-In bonding

    NASA Astrophysics Data System (ADS)

    You, Tae-Soo; Bobev, Svilen

    2010-06-01

    Reported are the synthesis and the structural characterization of four new polar intermetallic phases, which exist only with mixed alkaline-earth and rare-earth metal cations in narrow homogeneity ranges. (Sr 1-xCa x) 5In 3Ge 6 and (Eu 1-xYb x) 5In 3Ge 6 ( x≈0.7) crystallize in the orthorhombic space group Pnma with two formula units per unit cell (own structure type, Pearson symbol oP56). The lattice parameters are as follows: a=13.109(3)-13.266(3) Å, b=4.4089(9)-4.4703(12) Å, and c=23.316(5)-23.557(6) Å. (Sr 1-xCa x) 3In 2Ge 4 and (Sr 1-xYb x) 3In 2Ge 4 ( x≈0.4-0.5) adopt another novel monoclinic structure-type (space group C2 /m, Z=4, Pearson symbol mS36) with lattice parameters in the range a=19.978(2)-20.202(2) Å, b=4.5287(5)-4.5664(5) Å, c=10.3295(12)-10.3447(10) Å, and β=98.214(2)-98.470(2)°, depending on the metal cations and their ratio. The polyanionic sub-structures in both cases are based on chains of InGe 4 corner-shared tetrahedra. The A5In 3Ge 6 structure ( A=Sr/Ca or Sr/Yb) also features Ge 4 tetramers, and isolated In atoms in nearly square-planar environment, while the A3In 2Ge 4 structure ( A=Sr/Ca or Eu/Yb) contains zig-zag chains of In and Ge strings with intricate topology of cis- and trans-bonds. The experimental results have been complemented by tight-binding linear muffin-tin orbital (LMTO) band structure calculations.

  3. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  4. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  5. In situ examination of moving crack tips in ordered intermetallics.

    SciTech Connect

    Heuer, J.; Lam, N. Q.; Okamoto, P. R.; Stubbins, J. F.

    1999-01-25

    Recent studies have shown that high stress concentrations at moving crack tips in the intermetallic compound NiTi can induce a crystalline-to-amorphous (C-A) transformation of the crack tip region. This stress-induced C-A transformation has a temperature dependence and crystallization behavior similar to those of ion irradiation-induced C-A transformation of NiTi. The present study examines if these similarities between stress- and irradiation-induced amorphization hold true for two other intermetallic compounds, CuTi and Ni{sub 3}Ti. In situ straining was performed in an intermediate-voltage transmission electron microscope. The presence or absence of an amorphous phase was determined by dark field imaging and selected area diffraction of crack tip regions. Crack tips in both CuTi and Ni{sub 3}Ti were found to remain crystalline upon fracture. The observed absence of stress-induced amorphization in Ni{sub 3}Ti is consistent with its known absence during irradiation, but the absence in CuTi differs from its known irradiation-induced amorphization behavior. Reasons for the similarity and difference are discussed.

  6. In situ examination of moving crack tips in ordered intermetallics

    SciTech Connect

    Heuer, J.K. |; Lam, N.Q.; Okamoto, P.R.; Stubbins, J.F.

    1999-08-01

    Recent studies have shown that high stress concentrations at moving crack tips in the intermetallic compound NiTi can induce a crystalline-to-amorphous (C-A) transformation of the crack tip region. This stress-induced C-A transformation has a temperature dependence and crystallization behavior similar to those of ion irradiation-induced C-A transformation of NiTi. The present study examines if these similarities between stress- and irradiation-induced amorphization hold true for two other intermetallic compounds, CuTi and Ni{sub 3}Ti. In situ straining was performed in an intermediate-voltage transmission electron microscope. The presence or absence of an amorphous phase was determined by dark field imaging and selected area diffraction of crack tip regions. Crack tips in both CuTi and Ni{sub 3}Ti were found to remain crystalline upon fracture. The observed absence of stress-induced amorphization in Ni{sub 3}Ti is consistent with its known absence during irradiation, but the absence in CuTi differs from its known irradiation-induced amorphization behavior. Reasons for the similarity and difference are discussed.

  7. Magnetic properties of the new rare earth carbide fluoride layered compound: Ho 2CF 2

    NASA Astrophysics Data System (ADS)

    Kremer, R. K.; Cockcroft, J. K.; Mattausch, Hj.; Raju, N. P.; Simon, A.

    1992-02-01

    We present magnetic susceptibility, specific heat and neutron diffraction data of the new layered rare earth carbide flouride Ho 2CF 2. The susceptibility displays a rounded maximum centered around 4.6 K and a Curie-Weiss law at higher temperatures with a paramagnetic Curie temperature of -4.9(2) K. The specific heat shows a sharp anomaly at 3.61(5) K indicating the onset of long range ordering but also a considerable high temperature tail pointing to low dimensional magnetic behaviour. Low temperature neutron powder diffraction reveals additional magnetic Bragg peaks with significant critical scattering remaining well above the long range ordering temperature.

  8. Luminescence and structural properties of RbGdS2 compounds doped by rare earth elements

    NASA Astrophysics Data System (ADS)

    Jarý, V.; Havlák, L.; Bárta, J.; Mihóková, E.; Nikl, M.

    2013-04-01

    Rare earth elements (Pr, Ce) doped ternary sulfides of formula RbGd1-xRExS2 were synthesized in the form of crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. The X-ray powder diffraction detected only a single crystalline phase of rhombohedral lattice system. Optical properties of studied systems are investigated by methods of time-resolved luminescence spectroscopy. Thermal stability of the Pr3+ emission is demonstrated. Application potential in the white light-emitting diode solid state lighting or X-ray phosphors is discussed.

  9. A new series of polyoxometalate compounds built up of paradodecatungstate anions and transition metal/alkaline-earth metal cations

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Qin, Chao; Wang, Xinlong; Wang, Enbo; Li, Yangguang

    2008-08-01

    Three new extended frameworks based on the paradodecatungstate cluster and transition metals or alkaline-earth metal have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis (TGA), X-ray powder diffraction (XRPD) and single crystal X-ray diffraction. The 2D layered structure of the compound [Na 8(H 2O) 28][Mn(H 2O) 2(H 2W 12O 42)]·4H 2O ( 1) is formed by the interconnection of 1D [Mn(H 2O) 2(H 2W 12O 42)] n8- and [Na 8(H 2O) 28] n8+ chains. In the compound [Zn 5(H 2O) 20(H 2W 12O 42)]·16H 2O ( 2), two neighboring paratungstate ions [H 2W 12O 42)] 10- are linked by [Zn 4(H 2O) 14] 8+ units, leading to the formation of a 2D layer containing rhombic channels. The anion [Sr 2(H 2O) 6(H 2W 12O 42)] 6- of the compound K[Na 5(H 2O) 6][Sr 2(H 2O) 6(H 2W 12O 42)]·18H 2O ( 3) shows a layer-like structure in which paratungstate-B units act as six-dentate ligands coordinating to six Sr 2+ ions through the terminal oxygen atoms. Interestingly, the strong involvement of the potassium and sodium counteractions leads the neighboring layers to tie together generating a 3D network containing two types of channels. Furthermore, compounds 1- 3 give intense blue luminescent emissions in solid state and the magnetic susceptibility of compound 1 has also been studied.

  10. Corrosion Protection Mechanisms of Rare-Earth Compounds Based on Cerium and Praseodymium

    DTIC Science & Technology

    2012-04-01

    spectroscopy.[10,18-20] Researchers have generalized previous results for all light lanthanide (Ln) series oxides (elements La-Sm) due to similar...increases through the lanthanide series. 16 The interactions with H2O and CO2 can be bulk or surface processes, depending on how the...studies have described trends in the reactivity of the oxides of lanthanide compounds (designated Ln2O3 here) toward H2O vapor. The conversion of

  11. Comparison of various organic compounds destruction on rare earths doped Ti/Sb-SnO2 electrodes.

    PubMed

    Cui, Yu-Hong; Feng, Yu-Jie; Liu, Junfeng; Ren, Nanqi

    2012-11-15

    Ti/Sb-SnO2 and three kinds of rare earths (REs), namely Ce, Gd, and Eu doped Ti/Sb-SnO2 electrodes were prepared and tested for their capacity on electrocatalytic degradation of three kinds of basal aromatic compounds (benzoquinone, hydroquinone and catechol) and six kinds of aliphatic acids (maleic acid, fumaric acid, succinic acid, malonic acid, oxalic acid and acetic acid). The elimination of selected organics as well as their TOC removal with different doped Ti/Sb-SnO2 electrodes was described by first-order kinetics. Compared with Ti/Sb-SnO2, the Gd and Eu doped electrodes show better performance on the degradation of most of the selected organics, while Ce doped electrode shows either closely or lower efficiency on the degradation of these selected organics. Besides electrode material, the molecular structure of organic compound has obvious effect on its degradation in the electrocatalytic process. Catechol is more resistant to the electrophilic attack by hydroxyl radicals than benzoquinone and hydroquinone. The compound with more complicate molecular structure or longer carbon chain is more difficult to be mineralized. The aliphatic acid with higher oxygen content or more double bonds is more readily to be oxidized in the electrocatalytic process.

  12. Polar Intermetallics Pr5Co2Ge3 and Pr7Co2Ge4 With Planar Hydrocarbon-Like Metal Clusters

    DOE PAGES

    Lin, Qisheng; Aguirre, Kaiser; Saunders, Scott M.; ...

    2017-06-19

    Planar hydrocarbon-like metal clusters may foster new insights linking organic molecules with conjugated π-π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr5Co2Ge3 and Pr7Co2Ge4, both of which feature such planar metal clusters, viz., ethylene-like [Co2Ge4] clusters plus the concatenated forms and polyacene-like [Co2Ge2]n ribbons in Pr5Co2Ge3, and 1,2,4,5-tetramethylbenzene-like [Co4Ge6] cluster in Pr7Co2Ge4. Just as in the related planar organic structures, these metal-metalloid species are dominated by covalent bonding interactions. Both compounds magnetically order at low temperature with net ferromagnetic components: Pr5Co2Ge3more » via a series of transitions below 150 K; and Pr7Co2Ge4 via a single ferromagnetic transition at 19 K. Spin-polarized electronic structure calculations for Pr7Co2Ge4 reveal strong spin-orbit coupling within Pr and considerable magnetic contributions from Co atoms. This work suggests that similar structural chemistry can emerge for other rare earth-late transition metal-main group systems.« less

  13. Angular dependence of circular magnetic x-ray dichroism in rare-earth compounds

    SciTech Connect

    Lang, J.C.; Wang, X.; Harmon, B.N.; Goldman, A.I. ); Dennis, K.W.; McCallum, R.W. ); Finkelstein, K.D. )

    1994-11-01

    The angular dependence of the circular magnetic x-ray dichroism (CMXD) at the [ital L][sub 2] and [ital L][sub 3] edges of grain-oriented [ital R]Fe[sub 2] compounds has been studied to ascertain the multipolar nature of the features above and below the absorption edge. Within experimental error, all features in the CMXD spectra are consistent with dipole transitions between 2[ital p] core levels and the unoccupied spin-polarized states. We discuss some possible reasons for the apparent absence of the predicted quadrupolar angular dependence of the features below [ital E][sub [ital f

  14. Effect of rare earth filling on unfilled skutterudite compound CoSb3

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenya; Sekihara, Yuko; Kawahito, Yusuke; Kikuchi, Daisuke; Aoki, Hidekazu; Kuwahara, Keitaro; Aoki, Yuji; Sugawara, Hitoshi; Sato, Hideyuki

    2007-03-01

    We have succeeded in synthesizing the filled skutterudite compound PrxCo4Sb12 under high pressures. Pr site filling factor was estimated to be about 50 ±10% by powder X-ray diffraction and chemical composition analysis using field emission electron microscope. Apparent expansion of lattice constant 9.09 Å compared to that of CoSb39.03 Å is also indirect evidence of successful filling of Pr-ions. In the magnetization and specific heat measurements, no anomaly suggesting phase transition has been found down to 2 K.

  15. Equiatomic AEAuX (AE=Ca-Ba, X=Al-In) Intermetallics: A Systematic Study of their Electronic Structure and Spectroscopic Properties.

    PubMed

    Benndorf, Christopher; Stegemann, Frank; Seidel, Stefan; Schubert, Lea; Bartsch, Manfred; Zacharias, Helmut; Mausolf, Bernhard; Haarmann, Frank; Eckert, Hellmut; Pöttgen, Rainer; Janka, Oliver

    2017-01-31

    The three intermetallic compounds SrAuGa, BaAuAl and BaAuGa were synthesised from the elements in niobium ampoules. The Sr compound crystallises in the orthorhombic KHg2 -type structure (Imma, a=465.6(1), b=771.8(2), c=792.6(2) pm, wR2 =0.0740, 324 F(2) values, 13 variables), whereas the Ba compounds were both found to crystallise in the cubic non-centrosymmetric LaIrSi-type structure (P21 3, BaAuAl: a=696.5(1) pm; wR2 =0.0427, 446 F(2) values, 12 variables; BaAuGa: a=693.49(4) pm, wR2 =0.0717, 447 F(2) values, 12 variables). The samples were investigated by powder X-ray diffraction and their structures refined on the basis of single-crystal X-ray diffraction data. The title compounds, along with references from the literature (CaAuAl, CaAuGa, CaAuIn, and SrAuIn), were characterised further by susceptibility measurements and (27) Al and (71) Ga solid-state NMR spectroscopy. Theoretical calculations of the density of states (DOS) and the NMR parameters were used for the interpretation of the spectroscopic data. The electron transfer from the alkaline-earth metals and the group 13 elements onto the gold atoms was investigated through X-ray photoelectron spectroscopy (XPS), classifying these intermetallics as aurides.

  16. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    PubMed

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  17. Magnetic properties and electronic structures of R Ni B compounds where R is a heavy rare earth

    NASA Astrophysics Data System (ADS)

    Burzo, E.; Bucur, N.; Chioncel, L.; Rednic, V.

    2008-07-01

    Magnetic measurements were performed in the temperature range 4.2-300 K and fields up to 70 kOe on R3Ni7B2 compounds with R = Gd, Tb, Dy, Ho, Er. The Curie temperatures decrease from 38.5 K (Gd) to 7 K (Er). Band structure calculations show that nickel, at 0 K, has a very small magnetic polarization, oriented antiparallel to the rare-earth moment. The XPS measurements suggest the presence of unoccupied Ni3d states. The reciprocal susceptibilities follow a Curie-Weiss type behaviour. Effective nickel moments of 1.33 ± 0.25 µB were determined. The magnetic behaviour of nickel is analysed in models which take into account electron correlation effects in d bands.

  18. Structural distortion in RPt sub 2 Sn sub 2 compounds (R = rare earth)

    SciTech Connect

    Latroche, M.; Selsane, M.; Godart, C.; Schiffmacher, G. , 92 - Meudon-Bellevue ); Beyerman, W.P.; Thompson, J.D. )

    1991-01-01

    CeM{sub 2}X{sub 2} compounds (M-transition metals, X = Si, Ge, Sn) exhibit very exotic properties such as intermediate valence state, heavy fermion, magnetism, and superconductivity. Most of them crystallize in the ThCr{sub 2}Si{sub 2} type structure (14/nmm) while a few adopt the CeBe{sub 2}Ge{sub 2} primitive one (P4/nmmm). Among these compounds, CePt{sub 2}Sn{sub 2} has the heaviest known specific heat coefficient ({gamma} = 3.5 J/mol-K{sup 2}) and orders antiferromagnetically at T{sub N} = 0.88 K. Samples of CePt{sub 2}Sn{sub 2}, Ce{sub 0.e}La{sub 0.2}Pt{sub 2}Sn{sub 2}, and LaPt{sub 2}Sn{sub 2} have been studied by X-ray powder diffraction experiments including Rietveld calculations before and after annealing. As-cast samples can be indexed in the tetragonal primitive cell; however, re- examination of annealed samples (1 3 days at 800{degrees}C and 3 weeks at 700{degrees}C) reveals a monoclinic distortion of the lattice. Such a distortion has already been observed for CeNi{sub 2}Sn{sub 2}. Furthermore, our diffraction patterns show evidence for superlattice lines at twice the unit cell parameters, which was verified by transmission electron microscopy. Microprobes analysis on these samples show that the Pt sublattice is slightly substoichiometric (97.5%). Thus strains due to large atomic radii and ordering of Pt vacancies could be responsible for the monoclinic distortion and superlattice lines. 13 refs., 3 figs., 1 tab.

  19. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  20. A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Pang, Mingjun; Tan, Yong; Zhan, Yongzhong

    2016-11-01

    An investigation into the bulk properties, elastic properties and Debye temperature under pressure, and deformation mode under tension of Al8Cu4Y and Al8Cr4Y compounds was investigated by using first principles calculations based on density functional theory. The calculated lattice constants for the ternary compounds (Al8Cu4Y and Al8Cr4Y) are in good agreement with the experimental data. It can be seen from interatomic distances that the bonding between Al1 atom and Cr, Y, and Al2 atoms in Al8Cr4Y are stronger than Al8Cu4Y. The results of cohesive energy show that Al8Cr4Y should be easier to be formed and much stronger chemical bonds than Al8Cu4Y. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν can be obtained by using the Voigt-Reuss-Hill averaging scheme. From the results of elastic properties, Al8Cr4Y has the stronger mechanical behavior than Al8Cu4Y. Our calculations also show that pressure has a greater effect on mechanical behavior for both compounds. The ideal tensile strength are obtained by stress-strain relationships under [001](001) uniaxial tensile deformation, which are 15.4 and 23.4 GPa for Al8Cu4Y and Al8Cr4Y, respectively. The total and partial density of states and electron charge density under uniaxial tensile deformations for Al8Cu4Y and Al8Cr4Y compounds are also calculated and discussed in this work.

  1. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  2. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances.

    PubMed

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-06-21

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C.

  3. X-ray-absorption edge shifts in rare-earth-transition-metal compounds

    NASA Astrophysics Data System (ADS)

    Capehart, T. W.; Herbst, J. F.; Mishra, R. K.; Pinkerton, F. E.

    1995-09-01

    X-ray-absorption K-edge shifts of cobalt have been measured in Y2Co17, YCo5, and YCo3 compounds whose crystal structures are derivatives of the CaCu5 structure. The edge shifts vary monotonically with the Y:Co ratio. We compare them with Fe, Y, and Ce edge shifts determined for several other related materials, including Y2Fe17, Ce2Fe17, and CeCo2. In all cases, the shifts are the same sign, a fact that points to the absence of a significant uncompensated charge transfer from one elemental constituent to another. Identifying the edge shifts as core-level shifts, we find that the Watson-Hudis-Perlman charge-compensation model is applicable to these systems; estimates of the model parameters lead to small net charge transfers consistent with available Mössbauer effect measurements. Our results show that there is no straightforward relation between the transition-metal magnetic moment and either charge transfer or corresponding absorption edge shift, which implies that the variation of the moment with stoichiometry in these materials is not governed by the filling of rigid transition-metal bands.

  4. Polar intermetallic compounds as catalysts for hydrogenation reactions: synthesis, structures, bonding, and catalytic properties of Ca(1-x)Sr(x)Ni4Sn2 (x=0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2.

    PubMed

    Hlukhyy, Viktor; Raif, Fabian; Claus, Peter; Fässler, Thomas F

    2008-01-01

    The potential of polar intermetallic compounds to catalyze hydrogenation reactions was evaluated. The novel compounds CaNi4Sn2, SrNi4Sn2, and Ca(0.5)Sr(0.5)Ni(4)Sn(2) were tested as unsupported alloys in the liquid-phase hydrogenation of citral. Depending on the reaction conditions, conversions of up to 21.0 % (253 K and 9.0 MPa hydrogen pressure) were reached. The binary compounds Ni3Sn and Ni3Sn2 were also tested in citral hydrogenation under the same conditions. These materials gave conversions of up to 37.5 %. The product mixtures contained mainly geraniol, nerol, citronellal, and citronellol. The isotypic stannides CaNi4Sn2, Ca(0.5)Sr(0.5)Ni4Sn2, and SrNi4Sn2 were obtained by melting mixtures of the elements in an arc-furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The novel structures were established by single-crystal X-ray diffraction. They crystallize in the tetragonal space group I4/mcm with parameters: a=7.6991(7), c=7.8150(8) A, wR2=0.034, 162 F(2) values, 14 variable parameters for CaNi4Sn2; a=7.7936(2), c=7.7816(3) A, wR2=0.052, 193 F(2) values, 15 variable parameters for Ca(0.5)Sr(0.5)Ni4Sn2; and a=7.8916(4), c=7.7485(5) A, wR2=0.071, 208 F(2) values, 14 variable parameters for SrNi4Sn2. The Ca(1-x)Sr(x)Ni(4)Sn(2) (x=0.0, 0.5, 1.0) structures can be represented as a stuffed variant of the CuAl2 type by the formal insertion of one-dimensional infinite Ni-cluster chains [Ni4] into the Ca(Sr)Sn2 substructure. The Ni and Sn atoms form a three-dimensional infinite [Ni4Sn2] network in which the Ca or Sr atoms fill distorted octagonal channels. The densities of states obtained from TB-LMTO-ASA calculations show metallic character for both compounds.

  5. Electronic structure and optical properties of the HoCoSi and ErNiSi compounds

    SciTech Connect

    Knyazev, Yu. V.; Lukoyanov, A. V. Kuz’min, Yu. I.; Gupta, S.; Suresh, K. G.

    2016-10-15

    The electronic structure and the optical properties of the HoCoSi and ErNiSi compounds are studied. Spin-polarized band calculations are performed in the local electron density approximation corrected for the strong electron–electron interactions in the 4f shell of a rare-earth ion (LSDA + U method [11]). The optical constants are measured by ellipsometry in a wide wavelength range, and the frequency dependences of a number of spectral parameters are determined. The calculated densities of states are used to interpret the structural features of the interband optical conductivities of the intermetallic compounds.

  6. 4f-3d interaction and magnetic anisotropy in ThMn12-type rare-earth transition-metal compounds

    NASA Astrophysics Data System (ADS)

    de Boer, F. R.; Zhao, Z. G.; Buschow, K. H. J.

    1996-05-01

    Rare-earth (R) transition-metal (T) compounds of the R(T,M)12-type with R=Y or one of the heavy-rare-earth elements, T=Fe or Co and M=Ti, V, Mo or Si, have been studied at 4.2 K in the Amsterdam High-Field Installation in magnetic fields up to 38 T and at temperatures between 4.2 and 1000 K in other magnetometers. The 4f-3d interaction is derived from magnetization measurements on single-crystalline particles that are free to rotate in the applied fields. The stabilizing element M is shown to have a pronounced influence on the 4f-3d interaction strength in these compounds. The large variation in Curie temperatures of the Y compounds and the different types of magnetic anisotropy found in the Y compounds demonstrate that the element M plays an important role in establishing these properties as well.

  7. Deformation-induced amorphization of Cu-Ti intermetallics

    SciTech Connect

    Askenazy, P.D.

    1992-12-31

    Two methods of inducing amorphization in Cu-Ti intermetallic Compounds by mechanical means have been investigated. Ingots of compositions Cu{sub 35}Ti{sub 65} and Cu{sub 33.3}Ti{sub 66.7} were rapidly quenched into ribbons. The microstructure consisted largely of microcrystals in an amorphous matrix, which were either quenched in or grown by annealing. The ribbons were cold-rolled, Which reduced their effective thickness by a factor of about 8. The status of the intermetallic compound CuTi{sub 2} was monitored by x-ray diffraction and transmission electron microscopy (TEM). The crystals were found to amorphize as rolling progressed. This behavior was not reproduced in polycrystalline samples that had no amorphous matrix present initially. The presence of the amorphous phase is thus necessary for amorphization of the crystal: it eliminates the need to nucleate the new glass, and it prevents the ribbon from disintegrating at high deformation stages. It may also change the deformation mechanism that occurs in the crystals, retarding the onset of amorphization. Diffuse scattering is close-packed directions is similar to that seen in electron irradiation experiments. It is postulated that the chemical disorder present in antiphase boundaries cause by deformation raises the free energy of the crystal higher than that of the amorphous phase. Ingots of the same compound were worn against each other in a custom-built wear apparatus. The design eliminates iron contamination of water sample and requires relatively small quantities of material. Alteration of the surface structure was monitored by plan-view and cross-sectional TEM. Larger subsurface crystals exhibit diffuse scattering, similar to that found in the rolled samples. A wide range of grain sizes was observed, due to the inhomogeneous nature of the wear process. An unusual phase was observed at the surface, consisting of a nanometer-scale mixture of aligned nanocrystalline regions and disordered areas.

  8. Heats of formation in transition intermetallic alloys

    SciTech Connect

    Pasturel, A.; Colinet, C.; Hicter, P.

    1984-07-01

    The heats of formation in intermetallic alloys are calculated within a tight-binding scheme for the d band. The difference in bandwidth between the metals and the difference between their energy levels are two dominant effects in determination of the formation energy. The influence of charge transfer on alloy formation is studied.

  9. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  10. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances

    NASA Astrophysics Data System (ADS)

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-05-01

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C.Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C. Electronic supplementary information (ESI) available: Additional characterization data. See DOI: 10.1039/c4nr00313f

  11. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  12. Alkaline earth complexes of silylated aminopyridinato ligands: homoleptic compounds and heterobimetallic coordination polymers.

    PubMed

    Ortu, Fabrizio; Moxey, Graeme J; Blake, Alexander J; Lewis, William; Kays, Deborah L

    2013-11-04

    The synthesis and characterization of magnesium and calcium complexes of sterically demanding aminopyridinato ligands is reported. The reaction of the 2-Me3SiNH-6-MeC5H3N (L(1)H), 2-MePh2SiNH-6-MeC5H3N (L(2)H), and 2-Me3SiNH-6-PhC5H3N (L(3)H) with KH in tetrahydrofuran (THF) yielded potassium salts L(1)K(thf)0.5 (1), L(2)K (2), and L(3)K(thf)0.5 (3), which, through subsequent reaction with MgI2 and CaI2, afforded the homoleptic complexes (L)2Ae(thf)n [L = L(1), Ae = Mg, n = 1 (4); L = L(2), Ae = Mg, n = 0 (5); L = L(3), Ae = Mg, n = 0 (6); L = L(2), Ae = Ca, n = 2 (7)] and heterobimetallic calciates {[(L)3Ca]K}∞ [L = L(1) (8); L = L(2) (9)]. The solid state structure of 8 reveals a polymeric arrangement in which the calciate units are interlocked by bridging potassium ions. Metalation reactions between L(1)H or L(2)H and ((n)Bu)2Mg lead to the solvent-free compounds (L)2Mg [L = L(1) (10); L = L(2) (5)]. The bridged butyl mixed-metal complex [(L(1))Li(μ2-(n)Bu)Mg(L(1))]∞ (11) was also obtained via a cocomplexation reaction with (n)BuLi and ((n)Bu)2Mg. 11, which adopts a monodimensional polymeric array in the solid state, is a rare example of an alkyl-bridged Li/Mg complex and the first complex to feature an unsupported bridging butyl interaction between two metals. Changing the cocomplexation reaction conditions, the order of reagents added to the reactions mixture, and with the use of a coordinating solvent (tetrahydrofuran) formed the magnesiate complex (L(1))3MgLi(thf) (12).

  13. Molecular alloys, linking organometallics with intermetallic Hume-Rothery phases: the highly coordinated transition metal compounds [M(ZnR)(n)] (n >or= 8) containing organo-zinc ligands.

    PubMed

    Cadenbach, Thomas; Bollermann, Timo; Gemel, Christian; Tombul, Mustafa; Fernandez, Israel; von Hopffgarten, Moritz; Frenking, Gernot; Fischer, Roland A

    2009-11-11

    This paper presents the preparation, characterization and bonding analyses of the closed shell 18 electron compounds [M(ZnR)(n)] (M = Mo, Ru, Rh, Ni, Pd, Pt, n = 8-12), which feature covalent bonds between n one-electron organo-zinc ligands ZnR (R = Me, Et, eta(5)-C(5)(CH(3))(5) = Cp*) and the central metal M. The compounds were obtained in high isolated yields (>80%) by treatment of appropriate GaCp* containing transition metal precursors 13-18, namely [Mo(GaCp*)(6)], [Ru(2)(Ga)(GaCp*)(7)(H)(3)] or [Ru(GaCp*)(6)(Cl)(2)], [(Cp*Ga)(4)RhGa(eta(1)-Cp*)Me] and [M(GaCp*)(4)] (M = Ni, Pd, Pt) with ZnMe(2) or ZnEt(2) in toluene solution at elevated temperatures of 80-110 degrees C within a few hours of reaction time. Analytical characterization was done by elemental analyses (C, H, Zn, Ga), (1)H and (13)C NMR spectroscopy. The molecular structures were determined by single crystal X-ray diffraction. The coordination environment of the central metal M and the M-Zn and Zn-Zn distances mimic the situation in known solid state M/Zn Hume-Rothery phases. DFT calculations at the RI-BP86/def2-TZVPP and BP86/TZ2P+ levels of theory, AIM and EDA analyses were done with [M(ZnH)(n)] (M = Mo, Ru, Rh, Pd; n = 12, 10, 9, 8) as models of the homologous series. The results reveal that the molecules can be compared to 18 electron gold clusters of the type M@Au(n), that is, W@Au(12), but are neither genuine coordination compounds nor interstitial cage clusters. The molecules are held together by strong radial M-Zn bonds. The tangential Zn-Zn interactions are generally very weak and the (ZnH)(n) cages are not stable without the central metal M.

  14. Alumina as diffusion barrier to intermetallic formation in thermal interface materials made from indium and copper

    NASA Astrophysics Data System (ADS)

    Saleh, Ibrahim Khalifa

    Indium and copper react at wide range of temperatures to form intermetallic compounds that have different physical, mechanical and thermal properties. Liquid Phase Sintered indium-copper composite long-term performance as thermal interface material is adversely affected by the evolution of the intermetallic. In this study, i) the effect of intermetallic formation and growth on the performance of Liquid Phase Sintered copper-indium composite, ii) the effect of alumina as diffusion barrier between indium and copper, (iii) thermal stability and wettability between indium and alumina, iv) the indium and quartz wettability, v) indium and tungsten oxide wettability have been studied. Deleterious effect of the intermetallic formation and growth on the thermal and mechanical properties has been observed. 5nm of alumina deposited by Atomic Layer Deposition on flat copper surface has been optimized to prevent diffusion process between indium and copper at 120°C. 15nm of alumina prevented the reaction at 230°C. Instability of indium thin film thermally deposited on sapphire substrate was observed. Also, decrease in the sintering density of indium-alumina composite with increasing temperature was observed. The dewetting contact angle between liquid indium and sapphire was ˜127°. The wetting experiments between indium and different oxides showed that indium wets tungsten oxide and quartz..

  15. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  16. Ab initio calculation of crystal field parameters in several RT{sub 5} (R= rare earth; T = Co,Ni) compounds

    SciTech Connect

    Novak, P.; Kuriplach, J.

    1994-03-01

    Electronic structure of RNi{sub 5} (R=Nd, Sm, Eu, Gd) and SmCo{sub 5} compounds is calculated using the FLAPW method. The parameters of the effective crystal field hamiltonian acting on 4f states of the rare-earth atom are then determined from the nonspherical part of the crystal potential.

  17. Negative thermal expansion induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-01-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4−xMnxO12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding −70 × 10−6 K−1 near room temperature, in the temperature range which can be controlled by substitution. PMID:27877801

  18. High pressure Mössbauer studies of magnetic Np intermetallics

    NASA Astrophysics Data System (ADS)

    Moser, J.; Gal, J.; Potzel, W.; Wortmann, G.; Kalvius, G. M.; Dunlap, B. D.; Lam, D. J.; Spirlet, J. C.

    1980-10-01

    A high pressure (50 kbar) Mössbauer spectrometer for the 60 keV resonance in 237Np for temperatures between 1.4 and 100 K is described. It was used to study the magnetic properties of some neptunium intermetallics under pressure. For the cubic Laves phase compounds NpOs 2 and NpAl 2 a drastic decrease of the ordering temperature, the hyperfine field, and the isomer shift under increasing pressure was observed. It shows that their magnetic properties are primarily determined by the Np-Np separation which controls the width and hybridization of the 5f band. In contrast, an increase of ordering temperature coupled with a decrease of isomer shift with pressure was found in tetragonal NpCo 2Si 2, while the hyperfine field remains constant. This suggests that its magnetic properties must arise from different sources.

  19. Soft X-ray synchrotron radiation spectroscopy study of rare-earth chalcogenide charge-density wave compounds

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, Hyun Woo; Seong, Seungho; Denlinger, J. D.; Kwon, Y. S.; Kang, J.-S.

    2017-02-01

    The electronic structures of the layered rare-earth chalcogenide compounds of CeTe2, PrTe2, and PrTe3, which have the charge-density wave (CDW) transition and possibly the chiral transition, have been investigated by employing soft X-ray absorption spectroscopy (XAS) and angle-resolved photoemission spectroscopy (ARPES). R 3 d XAS measurements show that the valence states of Ce and Pr ions are nearly trivalent in all the compounds. Similar band dispersions are observed in their measured ARPES data, but with the band positions in PrTe3 being shifted up in energy compared to those in CeTe2 and PrTe2. These findings suggest that their Te 5 p band structures are determined mainly by the 2D interactions in the Te(2)/Te(3) sheets, but with a larger number of holes in the Te 5 p bands in PrTe3 than in CeTe2 and PrTe2. The measured constant energy maps of CeTe2, PrTe2, and PrTe3 for high binding energies are similar to one another, reflecting the Te 5 p band structures of the Te(2)/Te(3) square nets. In contrast, the Fermi surfaces (FSs) of CeTe2 and PrTe3 exhibit extra features, different from the FS of the ideal Te(2)/Te(3) square nets, which arise from the CDW-induced FS reconstruction in the Te(2)/Te(3) sheets.

  20. Elastic anisotropy, vibrational, and thermodynamic properties of U{sub 2}Ti intermetallic compound with AlB{sub 2}-type structure under high pressure up to 100 GPa

    SciTech Connect

    Yang, Jinwen; Gao, Tao; Liu, Benqiong; Sun, Guangai; Chen, Bo

    2015-03-28

    Structural, elastic anisotropy, dynamical, and thermodynamic properties of U{sub 2}Ti have been studied by employing density functional theory and density functional perturbative theory. The optimized lattice parameters a, c, unit volume V, bulk modulus B, and bond lengths d{sub U-U}, d{sub U-Ti} of U{sub 2}Ti are in favorable agreement with the available experimental data and other theoretical values. The elastic constants under pressure were obtained using “energy-strain” method. The polycrystalline modulus, Poisson's ratio, brittle/ductile characteristics, Debye temperature and the integration of elastic wave velocities over different directions, and hardness under pressure are also evaluated successfully. The anisotropy of the directional bulk modulus and the Young's modulus is systematically predicted for the first time. It turns out that U{sub 2}Ti should be stabilized mechanically up to 100 GPa, this compound just possesses slightly elastic anisotropy at zero pressure; however, the anisotropy becomes more and more significant with the increasing pressure. In particular, the phonon dispersion curves and phonon density of state under pressure are reported for the first time. The Raman and infrared-active phonon modes at Γ point are further assigned. Our results indicate that U{sub 2}Ti is also stable dynamically up to 100 GPa. Additionally, within the calculated phonon density of states, the thermodynamic properties are predicted.

  1. Interference of spin-, charge- and orbital degrees of freedom in low-carrier rare earth compounds, investigated by NMR

    NASA Astrophysics Data System (ADS)

    Wada, S.

    2006-05-01

    In rare earth compounds, the concentration of charge carriers is known to strongly influence the nature, and the charge carriers caused by valence fluctuations result in a complete suppression of the magnetic state, as typically observed for YbInCu4. The notable exception has been reported for the cubic (NaCl structure) TmX and YbX families with low carrier, that exhibits antiferro-magnetic (AFM) order at low temperatures. Among these families, TmTe and YbSb with degenerate low-lying multiplets have an additional transition of antiferro-quadrupolar (AFQ) orderings. To elucidate the interplay between the electronic transport and magnetic and/or orbital phenomena close to a semiconductor-to-metal transition, we have carried NMR measurements of 63Cu in YbInCu4, 125Te in TmTe, and 121Sb in YbSb down to 1.2 K and the implication of NMR findings is discussed in terms of the CEF splitting.

  2. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    NASA Astrophysics Data System (ADS)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  3. Magnetic Anisotropy in Uranium Intermetallics

    NASA Astrophysics Data System (ADS)

    Nakotte, H.

    1997-03-01

    Neutron diffraction and High-Field Magnetisation have been used to study the magnetic anisotropy of antiferromagnetic metallic uranium compounds. In particular, noncollinear magnetic structures have now been determined unambiguously in a number of cases, most notably in the tetragonal U_2T_2X and orthorhombic UTX series, using powder, single-crystal and polarized-neutron diffraction techniques. These results will be compared with state-of-the-art total-energy calculations: both theory and experiment lead to the conjecture that substantial noncollinearity occurs in these compounds whenever it is allowed by symmetry. In addition, one can infer the magnitude of different anisotropy and exchange constants, and compare with the magnetization steps and transition fields of field-induced transitions: this has been done in the case of U_2Pd_2In which has such a transition at 26 T.

  4. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  5. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  6. Plasma spray forming metals, intermetallics, and composites

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay; Herman, Herbert

    1993-07-01

    Plasma spray processing is a droplet deposition method that combines the steps of melting, rapid solidification, and consolidation into a single step. The versatility of the technology enables the processing of freestanding bulk, near-net shapes of a wide range of alloys, intermetallics, ceramics, and composites, while still retaining the benefits of rapid solidification processing. In particular, it is possible to produce dense forms through vacuum plasma spraying.

  7. Single-ion anisotropy in compounds of rare earths other than Sm: Importance of J-mixing in the room-temperature range

    NASA Astrophysics Data System (ADS)

    Kuz'min, M. D.

    2002-12-01

    Contrary to the established view, J-mixing is found to strongly affect the magnetic anisotropy of compounds of all light rare earths and also of terbium. The fractional contribution of J-mixing to second-order anisotropy constants in the room-temperature range is proportional to absolute temperature and depends on the rare earth element involved but not on the characteristics of the specific solid. For the light rare earths this contribution is given by 12(2J-1)-1kT/Δso, where Δso is the spin-orbit splitting between the centers of gravity of the ground and first excited multiplets, and amounts to 22% for Pr and Nd and to as much as 83% for Sm at T=400 K. For the heavy rare earths the corresponding expression is 12(2J+3)-1kT/Δso, which is 11% for Tb at T=400 K and significantly less for the rest of the rare earth series. Analytical expressions are obtained which allow for the J-mixing and are accurate in the room-temperature range for all rare earths with the possible exception of Sm.

  8. cis-trans Germanium chains in the intermetallic compounds ALi{sub 1-x}In{sub x}Ge{sub 2} and A{sub 2}(Li{sub 1-x}In{sub x}){sub 2}Ge{sub 3} (A=Sr, Ba, Eu)-experimental and theoretical studies

    SciTech Connect

    You, Tae-Soo; Bobev, Svilen

    2010-12-15

    Two types of strontium-, barium- and europium-containing germanides have been synthesized using high temperature reactions and characterized by single-crystal X-ray diffraction. All reported compounds also contain mixed-occupied Li and In atoms, resulting in quaternary phases with narrow homogeneity ranges. The first type comprises EuLi{sub 0.91(1)}In{sub 0.09}Ge{sub 2}, SrLi{sub 0.95(1)}In{sub 0.05}Ge{sub 2} and BaLi{sub 0.99(1)}In{sub 0.01}Ge{sub 2}, which crystallize in the orthorhombic space group Pnma (BaLi{sub 0.9}Mg{sub 0.1}Si{sub 2} structure type, Pearson code oP16). The lattice parameters are a=7.129(4)-7.405(4) A; b=4.426(3)-4.638(2) A; and c=11.462(7)-11.872(6) A. The second type includes Eu{sub 2}Li{sub 1.36(1)}In{sub 0.64}Ge{sub 3} and Sr{sub 2}Li{sub 1.45(1)}In{sub 0.55}Ge{sub 3}, which adopt the orthorhombic space group Cmcm (Ce{sub 2}Li{sub 2}Ge{sub 3} structure type, Pearson code oC28) with lattice parameters a=4.534(2)-4.618(2) A; b=19.347(8)-19.685(9) A; and c=7.164(3)-7.260(3) A. The polyanionic sub-structures in both cases feature one-dimensional Ge chains with alternating Ge-Ge bonds in cis- and trans-conformation. Theoretical studies using the tight-binding linear muffin-tin orbital (LMTO) method provide the rationale for optimizing the overall bonding by diminishing the {pi}-p delocalization along the Ge chains, accounting for the experimentally confirmed substitution of Li forIn. -- Graphical abstract: Presented are the single-crystal structures of two types of closely related intermetallics, as well as their band structures, calculated using tight-binding linear muffin-tin orbital (TB-LMTO-ASA) method. Display Omitted

  9. Erosion of a TiAl intermetallic alloy under conditions simulating plasma disruptions

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Yakushin, V. L.; Polsky, V. I.; Dzhumaev, P. S.; Fedotov, V. T.; Sevryukov, O. N.; Golikov, M. Yu.; Zolotarev, M. V.

    2009-04-01

    Radiation erosion and thermal stability of TiAl-based intermetallic alloys produced by vacuum-arc melting, compacting of microcrystal powders with binder and impregnantion by melt, and their brazed joints with bronze have been investigated under irradiation by high-temperature pulsed hydrogen plasma flows (the flow energy density Q = 0.2-0.9 MJ/m 2, the pulse duration 15 μs, the number of pulses 1-21) which simulate the expected plasma disruptions in a fusion reactor. It has been found that the erosion coefficients and thermal stability of alloys are determined by the way of their fabrication, and compacted intermetallides have a higher thermal stability in comparison with the cast ones. The brazed joints of the intermetallic compound with bronze under irradiation by pulsed hydrogen plasma up to the energy density Q = 0.75 MJ/m 2 have a high thermal stability and formation of cracks was not observed.

  10. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction.

    PubMed

    Cui, Zhiming; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2016-04-13

    Extensive efforts to develop highly active and strongly durable electrocatalyst for oxygen reduction are motivated by a need for metal-air batteries and fuel cells. Here, we report a very promising catalyst prototype of structurally ordered Pd-based alloys, Pd3Pb intermetallic compound. Such structurally ordered Pd3Pb/C exhibits a significant increase in mass activity. More importantly, compared to the conventional Pt/C catalysts, ordered Pd3Pb/C is highly durable and exhibits a much longer cycle life and higher cell efficiency in Zn-air batteries. Interestingly, ordered Pd3Pb/C possesses very high methanol tolerance during electrochemical oxygen reduction, which make it an excellent methanol-tolerant cathode catalyst for alkaline polymer electrolyte membrane fuel cells. This study provides a promising route to optimize the synthesis of ordered Pd-based intermetallic catalysts for fuel cells and metal-air batteries.

  11. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  12. Metastable phase formation in Be-Nb intermetallic compounds

    SciTech Connect

    Brimhall, J.L.; Charlot, L.A.; Bruemmer, S.M.

    1990-11-01

    Amorphous structures or metastable crystalline phases are produced in sputter-deposited Beryllium-Niobium (Be-Nb) alloys (5-15 at. % Nb) depending on the substrate temperature. The metastable phases transform to the stable Be{sub 12}Nb, Be{sub 17}Nb{sub 2}Nb phases on annealing at temperatures >800{degree}C. No Be{sub 5}Nb phase was found and the Be{sub 17}Nb{sub 2} phase is stable to low temperature. The Be{sub 12}Nb phase appeared to have a stoichiometric range of about 5.5 to 7.7 at. % Nb. The formation of the metastable phases is consistent with current models and theories. 17 refs., 1 fig., 2 tabs.

  13. Study of irradiation-induced amorphization in intermetallic compounds

    SciTech Connect

    Koike, J.

    1989-01-01

    Irradiation-induced amorphization was studied in situ in the high voltage electron microscope interfaced to a tandem accelerator. Variation of elastic properties during irradiation was studied with Brillouin scattering spectroscopy, and its relation to amorphization were explored. Four important topics were investigated. (1) The temperature dependence of the critical dose for amorphization and its correlation with chemical disordering were studied in CuTi and Zr{sub 3}Al with 1-MeV electron irradiation from 10 to 295 K. Similar temperature dependence was observed in CuTi between the critical dose for amorphization and the chemical disordering rate. Chemical disordering is a major driving force for amorphization. The critical dose for amorphization of Zr{sub 3}Al was twenty times larger than that of CuTi and attributed to the differences in point defect mobility and ordering energy. (2) Projectile mass dependence of amorphization behavior was studied in CuTi irradiated with Ne{sup +},Kr{sup +},Xe{sup +}ions. The dose dependence of the amorphous volume fraction indicated that with increasing mass from Ne{sup +} to Kr{sup +} amorphization kinetics changes from the cascade overlap to the direct-impact amorphization. In relation to the kinetics variation, the critical temperature increased with increasing projectile mass and explained in terms of the thermal stability of the primary damage. (3) Effects of simultaneous and sequential irradiation with Kr+ and electrons were studied in CuTi and Zr{sub 3}Al. Both additive and retardation effects were observed depending on temperature and the electron-to-Kri dose rate ratio and explained as the interaction between point defects and cascade damages. (4) Study of elastic properties during Kr{sup +} irradiation revealed that in FeTi, a large dilation and shear modulus softening accompanied with chemical disordering preceded amorphization, but not observed in NiAl.

  14. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  15. Evolution, interaction, and intrinsic properties of dislocations in intermetallics: Anisotropic three-dimensional dislocation dynamics approach

    NASA Astrophysics Data System (ADS)

    Chen, Qian

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  16. Magneto-structural correlations in rare-earth cobalt pnictides

    NASA Astrophysics Data System (ADS)

    Thompson, Corey Mitchell

    Magnetic materials are used in many applications such as credit cards, hard drives, electric motors, sensors, etc. Although a vast range of magnetic solids is available for these purposes, our ability to improve their efficiency and discover new materials remains paramount to the sustainable progress and economic profitability in many technological areas. The search for magnetic solids with improved performance requires fundamental understanding of correlations between the structural, electronic, and magnetic properties of existing materials, as well as active exploratory synthesis that targets the development of new magnets. Some of the strongest permanent magnets, Nd 2Fe14B, SmCo5, and Sm2Co17, combine transition and rare-earth metals, benefiting from the strong exchange between the 4f and 3d magnetic sublattices. Although these materials have been studied in great detail, the development of novel magnets requires thorough investigation of other 3d-4 f intermetallics, in order to gain further insights into correlations between their crystal structures and magnetic properties. Among many types of intermetallic materials, ternary pnictides RCo 2Pn2 (R = La, Ce, Pr, Nd; Pn = P, As) are of interest because, despite their simple crystal structures, they contain two magnetic sublattices, exchange interactions between which may lead to rich and unprecedented magnetic behavior. Nevertheless, magnetism of these materials was studied only to a limited extent, especially as compared to the extensive studies of their silicide and germanide analogues. The ThCr2Si2 structure type, to which these ternary pnictides belong, is one of the most ubiquitous atomic arrangements encountered among intermetallic compounds. It accounts for over 1000 known intermetallics and has received increased attention due to the recently discovered FeAs-based superconductors. This dissertation is devoted to the investigation of

  17. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.

    PubMed

    Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa

    2016-02-14

    We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.

  18. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment.

    PubMed

    Parker, Eric T; Cleaves, H James; Callahan, Michael P; Dworkin, Jason P; Glavin, Daniel P; Lazcano, Antonio; Bada, Jeffrey L

    2011-06-01

    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH(4)), hydrogen sulfide (H(2)S), ammonia (NH(3)), and carbon dioxide (CO(2)). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H(2)S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  19. Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; Lazcano, Antonio

    2010-01-01

    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was farmed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  20. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  1. Cold Sprayed Intermetallic Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Evgeny

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat-isolative topcoat. Several recent research activities are concentrated on the development of improved multilayer bond coat and TBC materials. This study represents an investigation performed for the aluminum based bond coats, especially those with reduced thermal conductivities. Using alternative TBC materials, such as metal alloys and intermetallics, their processing methods can be further optimized to achieve the best thermal physical parameters. One example is the ten-layer system in which cold sprayed aluminum based intermetallics are synthesized. These systems demonstrated improved heat insulation and thermal fatigue capabilities compared to conventional TBC. The microstructures and properties of the laminar coatings were characterized by SEM, EDS, XRD; micromechanical and durability tests were performed to define the structure and coating formation mechanisms. Application prospects for HCCI engines are discussed. Fuel energy can be utilized more efficiently with the concept of low heat rejection engines with applied TBC.

  2. Nonstoichiometry of Al-Zr intermetallic phases

    SciTech Connect

    Radmilovic, V.; Thomas, G.

    1994-06-01

    Nonstoichiometry of metastable cubic {beta}{prime} and equilibrium tetragonal {beta} Al-Zr intermetallic phases of the nominal composition Al{sub 3}Zr in Al-rich alloys has been extensively studied. It is proposed that the ``dark contrast`` of {beta}{prime} core in {beta}{prime}/{sigma}{prime} complex precipitates, in Al-Li-Zr based alloys, is caused by incorporation of Al and Li atoms into the {beta}{prime} phase on Zr sublattice sites, forming nonstoichiometric Al-Zr intermetallic phases, rather than by Li partitioning only. {beta}{prime} particles contain very small amounts of Zr, approximately 5 at.%, much less than the stoichiometric 25 at.% in the Al{sub 3}Zr metastable phase. These particles are, according to simulation of high resolution images, of the Al{sub 3}(Al{sub 0.4}Li{sub 0.4}Zr{sub 0.2}) type. Nonstoichiometric particles of average composition Al{sub 4}Zr and Al{sub 6}Zr are observed also in the binary Al-Zr alloy, even after annealing for several hours at 600{degree}C.

  3. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    PubMed Central

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed. PMID:28067334

  4. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    NASA Astrophysics Data System (ADS)

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  5. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    PubMed Central

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  6. Possibility of enhancement of the high-temperature strength and the heat resistance of a nickel aluminide-based structural intermetallic alloy

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Shestakov, A. V.; Arginbaeva, E. G.; Turenko, E. Yu.

    2016-01-01

    The assimilation of a number of rare-earth metals (REM = praseodymium, neodymium, erbium) in a cast high-temperature nickel aluminide-based intermetallic alloy and the effect of REM alloying of the alloy on the critical temperatures, the high-temperature strength, and the heat resistance (time to failure) of the structural alloy are studied. It is shown that the heat resistance and the time to failure of the alloy at 1200°C can be increased by microalloying of the intermetallic alloy with REM.

  7. Exploration of new multifunctional magnetic materials based on a variety of Heusler alloys and rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun Kumar

    2011-12-01

    Magnetic, magnetocaloric, magnetotransport and magnetoelastic properties of Ni-Mn-X (X = In, and Ga) Heusler alloys and La-Fe-Si based rare earth compounds have been synthesized and investigated by x-ray diffraction, magnetization, strain, and electrical resistivity measurements. The phase transitions, magnetic, magnetocaloric, magnetotransport and magnetoelastic properties strongly depend on the composition of these systems. In Ni50Mn50-xInx with x = 13.5, magnetocaloric and magnetotransport properties associated with the paramagnetic martensitic to paramagnetic austenitic transformation were studied. It was shown that magnetic entropy changes (DeltaSM) and magnetoresistance (MR) associated with this transformation are larger and the hysteresis effect is significantly lower when compared to that associated with paramagnetic-ferromagnetic transitions or ferromagnetic-antiferromagnetic/paramagnetic transitions in other systems. The Hall resistivity and the Hall angle shows unusual behavior in the vicinity of the martensitic phase transition for Ni50Mn 50-xInx with x = 15.2. The observed Hall resistivity and Hall angle are 50 μO·cm and tan-1 0.5, respectively. It was observed that the presence of Ge, Al and Si atoms on the In sites strongly affects the crystal structure, and the electric and magnetic behaviors of Ni50Mn35In15. It was found that the partial substitution of In atoms by Si in Ni50Mn35In15 results in an increase in the magnetocaloric effect, exchange bias and shape memory effect. In Ni50Mn35In15-xSi x, the peak values of positive DeltaSM for magnetic field changes H = 5 T were found to depend on composition and vary from 82 J·kg -1·K-1 for x = 1 (at T = 275 K) to 124 J·kg -1·K-1 for x = 3 (at T = 239 K). The partial substitution of Ni by Co in Ni50Mn35In15 significantly improves the magnetocaloric effect and MR in the vicinity of martensitic transition. In addition, significantly large inverse DeltaS M and MR were observed at the inverse

  8. Decoupling between rare-earth moment and transition metal moment in NdCo12-xVx compounds

    NASA Astrophysics Data System (ADS)

    Liu, W. F.; Rao, G. H.; Ouyang, Z. W.; Yang, H. F.; Liu, G. Y.; Feng, X. M.; Chang, H.; Liang, J. K.

    2003-06-01

    Single-phase compounds NdCo12-xVx (x=2.2-2.6) crystallizing in the tetragonal ThMn12 structure with space group I4/mmm are synthesized. The lattice parameters a and c increase linearly with increasing V content. The Curie temperature of the compounds shows a linear decrease from 309 K for x=2.2 to 147 K for x=2.6. A domain-wall pinning phenomenon is observed in all of the compounds. It is intriguing that the Nd ions seem to make no contribution to the total moment of the compounds in an applied magnetic field up to 50 kOe. A further increase of the applied field induces a moment of a Nd sublattice that ferromagnetically couples with the moment of a Co sublattice. The instability of the Nd moment in NdCo12-xVx compounds can be well understood by the local environment effect.

  9. Magnetic, resonance, and optical properties of Cu3Sm (SeO3)2O2Cl : A rare-earth francisite compound

    NASA Astrophysics Data System (ADS)

    Zakharov, K. V.; Zvereva, E. A.; Markina, M. M.; Stratan, M. I.; Kuznetsova, E. S.; Dunaev, S. F.; Berdonosov, P. S.; Dolgikh, V. A.; Olenev, A. V.; Klimin, S. A.; Mazaev, L. S.; Kashchenko, M. A.; Ahmed, Md. A.; Banerjee, A.; Bandyopadhyay, S.; Iqbal, A.; Rahaman, B.; Saha-Dasgupta, T.; Vasiliev, A. N.

    2016-08-01

    In this combined experimental and theoretical paper, we study the properties of Cu3Sm (SeO3)2O2Cl belonging to the francisite family of compounds, which are novel frustrated layered compounds. Cu3Sm (SeO3)2O2Cl is synthesized through a solid state reaction. Characterizations through measurements of magnetization, specific heat, X-band electron spin resonance, and rare-earth optical spectroscopy, establish that the compound orders antiferromagnetically at TN=35 K and undergoes a spin-reorientation phase transition at TC=8.5 K due to the interplay of anisotropies in transition metal and rare-earth subsystems. The ground state Kramers doublet of Sm is found to split only at T

  10. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  11. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGES

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; ...

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  12. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    SciTech Connect

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; Huang, Wenyu

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similar activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.

  13. Hot isostatic pressing of intermetallic powders

    NASA Astrophysics Data System (ADS)

    Schaefer, R. J.; Kushner, B. G.

    The application of the intelligent processing of materials (IPM) approach to powder densification by hot isostatic pressing (HIP) is made possible by the development of in situ sensors, process models and adaptive control strategies. The challenge is to optimize the process schedule for new materials to achieve densification, shape and microstructural goals. The development of an IPM system for HIP of intermetallic powders is described. The primary sensor used in this system employs eddy currents to measure changes of sample dimensions, while the process model is that of Ashby et al., reformulated to more closely describe real materials in real HIP process cycles. Process cycles are developed by combining a knowledge base derived from experts with the process model refined by sensor measurements.

  14. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect

    Jon M Lawrence

    2011-02-15

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected

  15. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    PubMed

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  16. Magnetic characteristics of R 2Fe 14B systems prepared with high purity rare earths (R =Y, Nd, Sm or Gd)

    NASA Astrophysics Data System (ADS)

    Huang, M. Q.; Oswald, E.; Boltich, E.; Hirosawa, S.; Wallace, W. E.; Schwab, E.

    1985-05-01

    Commercially procured rare earth metals frequently contain 2-5 atomic per cent oxygen. Rare earth intermetallic compounds prepared from these materials with compositions estimated by synthesis can significantly deviate from the intended composition. Several R 2Fe 14B systems have been synthesized using rare earth metals obtained from the Ames Laboratory which typically contain <25 ppm oxygen (by weight) and their fun damental magnetic properties determined. Curie temperatures range from 565 (for Y 2Fe 14B) to 669 K (for Gd 2Fe 14B). Anisotropy fields (20 C) range from 27 to 71 kOe. Results for Y 2Fe 14B and Gd 2Fe 14B suggest that about 40% of the anisotropy in Nd 2Fe 14B originates with the Fe sublattice. The Fe moment in these systems exceeds by a small margin that of elemental Fe, suggesting that B is acting as an electron donor. The Nd moment in Nd 2Fe 14B is estimated as 3.0 μ B, which is 92% of the free ion moment. The NdFe and GdFe couplings are ferromagnetic and antiferromagnetic, respectively. Coupling for these systems conforms to the systematics observed earlier for simpler rare earth intermetallics.

  17. R3Au(6+x)Al26T (R = Ca, Sr, Eu, Yb; T = early transition metal): a large family of compounds with a stuffed BaHg11 structure type grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2009-02-16

    A collection of new quaternary intermetallic compounds with a cubic, stuffed BaHg(11) structure type has been synthesized by the combination of a divalent rare earth or alkaline earth metal R, an early transition metal T, and gold in an excess of molten aluminum. Structural characterization of these R(3)Au(6+x)Al(26)T compounds by powder and single crystal X-ray diffraction indicates that the unit cell varies with the radii of the early transition metal T and the rare earth/alkaline earth R as expected. The element T (where T = group 4, 5, 6, and 7 element) appears to be responsible for the stabilization of up to 43 different members of the R(3)Au(6+x)Al(26)T family of compounds. Varying amounts of disorder and trends in partial occupancies of the Au stuffed site--the site that is vacant in the parent compound BaHg(11)--are also indicated by the diffraction studies of this family of compounds. Magnetic susceptibility data reveals that the transition metal atoms in these materials do not possess local magnetic moments. For the magnetic rare earth containing materials, the europium compounds undergo a ferromagnetic transition at 10 K, and the ytterbium analogues show mixed valent behavior. Band structure calculations also support a mixed valent state for Yb in these compounds.

  18. Local Strain Development and Property Variability in B2 Intermetallics

    DTIC Science & Technology

    2005-09-19

    COVERED (From - To) 19092005 Final Report 15 Jan 2001 - 30 Apr 2005 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Local Strain Development and Property...Variability in B2 Intermetallics 5b. GRANT NUMBER F49620-01-1-0159 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER Professor Tresa M. Pollock 5e... 4 3.0 The Strain Mapping Technique .............................................. 4 4.0 Intermetallic

  19. Quasi-one-dimensional magnons in an intermetallic marcasite.

    PubMed

    Stone, M B; Lumsden, M D; Nagler, S E; Singh, D J; He, J; Sales, B C; Mandrus, D

    2012-04-20

    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb(2). The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

  20. Quasi-One-Dimensional Magnons in an Intermetallic Marcasite

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Lumsden, M. D.; Nagler, S. E.; Singh, D. J.; He, J.; Sales, B. C.; Mandrus, D.

    2012-04-01

    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb2. The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.