Science.gov

Sample records for earth intermetallic compounds

  1. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  2. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    SciTech Connect

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-15

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.

  3. Magnetostriction and magnetism of rare earth intermetallic compounds: First principle study

    SciTech Connect

    Gavrilenko, V. I.; Wu, R. Q.

    2001-06-01

    Magnetism and magnetostriction of rare earth intermetallic compounds, GdCo{sub 2}, GdFe{sub 2}, NdCo{sub 2}, SmCo{sub 2}, and ErCo{sub 2}, have been studied by using the first principles full-potential linearized augmented plane-wave method with the generalized gradient approximation. The calculated magnetostriction coefficients agree well with experiment. The itinerant electrons of transition metal elements are found to play a significant role in magnetoelastic coupling. The strong anisotropy of magnetostriction in GdCo{sub 2} is explained. Contributions due to spatial anisotropic charge distribution of the incomplete 4f shells are calculated and discussed. {copyright} 2001 American Institute of Physics.

  4. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  5. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    NASA Astrophysics Data System (ADS)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  6. MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS.

    DTIC Science & Technology

    AGING(MATERIALS), AGING(MATERIALS), INTERMETALLIC COMPOUNDS, VANADIUM ALLOYS, COBALT ALLOYS, NICKEL ALLOYS, MECHANICAL PROPERTIES, TEMPERATURE, TIME ... CRYSTAL STRUCTURE, MICROSTRUCTURE, HARDNESS, TRANSFORMATIONS, ELECTRICAL RESISTANCE, MEASUREMENT, MICROSCOPY, ALLOYS, METALLOGRAPHY, X RAY DIFFRACTION.

  7. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-02

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20 000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types.

  8. Manifestation of spin-charge fluctuations in the spectral and thermodynamic properties of quasi-two-dimensional rare-earth intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Zlotnikov, A. O.

    2017-02-01

    In the framework of the modified periodic Anderson model with exchange interaction in the subsystem of localized states, it is shown that spin-charge fluctuations in quasi-two-dimensional intermetallic compounds with rare-earth ions in the mixed valence state significantly affect both the spectrum of magnetic excitations and the conditions at which the antiferromagnetic phase is realized. The spectral characteristics of the phase were obtained by the method of the diagram technique for Hubbard operators in the one-loop approximation, which allows to account for the spin-charge fluctuation contributions to the components of the mass and the force operators. The developed theory allowed to quantitatively describe the pressure dependence of the Néel temperature observed in a quasi-two-dimensional antiferromagnetic heavy-fermion intermetallic compound CeRhIn5.

  9. Metamagnetism-enhanced magnetocaloric effect in the rare earth intermetallic compound Ho5Ge4

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Morozkin, A. V.; Rajivgandhi, R.; Nigam, A. K.; Quezado, S.; Malik, S. K.

    2016-11-01

    Magnetic and magnetocaloric properties of polycrystalline Ho5Ge4 (orthorhombic, Sm5Ge4-type, Space group Pnma, No. 62, oP36) compound have been studied. This compound orders antiferromagnetically at ~24 K (TN). From the magnetization vs field isotherms obtained close to the magnetic transition temperature, magnetocaloric effect (MCE) has been estimated. The isothermal magnetic entropy change (ΔSM) reaches a maximum value of ~-27 J/kg-K at ~30 K for a field change of 140 kOe. A metamagnetic transition is observed in the field dependent magnetization data at temperatures below 20 K, for critical fields above 20 kOe, giving rise to a ferromagnetic order and hence a large MCE. The magnetic moment value at 2.5 K is ~8μB/Ho3+ in 90 kOe field.

  10. Metamagnetism and giant magnetoresistance of the rare-earth intermetallic compounds R2Ni2Pb (R=Er,Ho,Dy)

    NASA Astrophysics Data System (ADS)

    Chinchure, Aravind D.; Muñoz Sandoval, E.; Mydosh, J. A.

    2002-07-01

    We have measured the magnetization and magnetoresistance for a series of rare-earth (R=Er,Ho,Dy) plumbide intermetallic compounds, R2Ni2Pb. These materials form in an unusual orthorhombic structure with space group Cmmm. After multiple magnetic transitions, the ground state exhibits a steplike series of large-moment metamagnetic transitions in low fields (1-2 T) concomitant with switchinglike properties of the magnetoresistance where sharp changes of up to 30% are found. We relate these properties to the layered magnetic structure of the compound.

  11. Hall Effect in R_2Fe_14B Rare-Earth Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Jolanta; Bartolomé, Juan

    2004-03-01

    We have studied the variation of the a.c. resistivity and of the low-field Hall effect in a single Gd_2Fe_14B crystal over a wide temperature range(4-750 K). The magnetic field dependence of the resistivity up to 5 T was also measured at several temperatures. Using results we have obtained previously for single crystals with R = Y, Nd, and Tm, we find that, away from magnetic transition regions, the anomalous Hall resistivity is proportional to the square of total resistivity, as predicted for side-jump scattering. Below the Curie temperature, the Hall effect arising from skew scattering is alike for all compounds except for Gd, where it is much larger. Coulomb interactions between conductions electrons and localized 4f electrons fail to account for such behavior since they do not give rise to asymmetric scattering for S-state ions. Other mechanisms, mainly covalent mixing interactions and the formation of virtual 5d states, including their spin-orbit interaction, are also considered.

  12. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Park, Jongik

    2004-01-01

    EuNi2Ge2 and GdNi2Ge2 are two members of the RT2X2 (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr2Si2 structure are known for their wide variety of magnetic properties, Extensive studies of the RT2X2 series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi2Ge2 were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi2Ge2 and GdNi2Ge2 and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  13. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  14. Synthesis of Xenon and Iron/Nickel Intermetallic Compounds Under the Thermodynamic Conditions of the Earth's Core.

    NASA Astrophysics Data System (ADS)

    Stavrou, E.; Zaug, J. M.; Crowhurst, J.; Lobanov, S.; Goncharov, A. F.; Prakapenka, V.; Prescher, C.; Yao, Y.; Liu, H.; Dai, Z.; Oleynik, I.; Steele, B.; Cong, K. N.

    2015-12-01

    The lower Xe abundance in Earth's atmosphere, in comparison to other noble gases like Ar and Kr, is one of the most challenging open questions in geosciences [1]. The origin of the so-called "missing Xe paradox" is usually attributed to the inclusion of Xe in the interior of Earth[2]. Although Xe is known to form compounds (e.g. with hydrogen, oxygen), none of them can be related with Earth's interior. Indeed, only a very low amount of Xe can be incorporated in silica at <1 GPa and 500K [3]. On the other hand, experimental attempts have failed to trace possible formation of Fe-Xe compounds up to 155 GPa and bellow 2500K [4]. A very recent theoretical study, suggests that Xe-Ni and Xe-Fe compounds can form at thermodynamic conditions representative of Earth's outer core [5]. Here we explored the possible formation of stable compounds in the Xe-Fe/Ni system at thermodynamic conditions representative of Earth's outer core starting from the following mixtures: a) Xe-Fe, b) Xe-Ni and c) Xe and an Fe/Ni alloy representative of Earth's core (ca 6% Ni). Using in situ synchrotron X-ray diffraction and Raman spectroscopy we report the formation of: a) a XeNi3 compound, in the form of a CrNi3-type FCC solid solution, above 150 GPa and 1500K, b) a Xe(Fe/Ni)3 compound, tentatively characterized as an orthorhombic NbPd3-type solid solution, above 190 GPa and 2000K and c) a still not completely characterized XeFexcompound above 180 GPa and 2000K. This work provides a plausible explanation of the "missing Xe paradox", and underscores the importance of understanding the novel rules of high-pressure chemistry for an improved understanding of the structure and chemistry of the Earth's core. [1] E. Anders, E. and T. Owen, Science 198, 453 (1977). [2] Caldwell, W. A. et al.,Science 277, 930 (1997). [3] C. Sanloup et al.,Science 310, 1174(2005). [4] D. Nishio-Hamane et al.,Geophys. Res. Lett. 37, L04302 (2010). [5] L. Zhu et al., Nature chemistry 6, 664 (2014).

  15. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  16. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  17. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  18. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  19. Effect of microstructure and texture on the magnetic and magnetocaloric properties of the melt-spun rare earth intermetallic compound DyNi

    NASA Astrophysics Data System (ADS)

    Rajivgandhi, R.; Chelvane, J. Arout; Nigam, A. K.; Park, Je-Geun; Malik, S. K.; Nirmala, R.

    2016-11-01

    Magnetization measurements have been carried out on the melt-spun ribbon sample of the rare earth intermetallic compound DyNi (Orthorhombic, FeB-type, Space group Pnma) and its magnetic and magnetocaloric properties are compared with those of the arc-melted analog. The arc-melted DyNi orders ferromagnetically at around 61 K (TC) whereas the melt-spun DyNi orders ferromagnetically at about 47 K. The maximum isothermal magnetic entropy change, ∆Smmax , near TC of the arc-melted and the melt-spun DyNi is found to be -32.7 J/kg K and -22.4 J/kg K, respectively, for a field change of 140 kOe. For low magnetic field changes of ~20 kOe, the relative cooling power (RCP) is ~660 J/kg for the arc melted DyNi and ~460 J/kg for the melt-spun ribbon. The reduction in TC and magnetocaloric effect may be attributed to the microstructure-induced anisotropy developed during the melt-spinning process.

  20. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  1. Intermetallic compounds in heterogeneous catalysis-a quickly developing field.

    PubMed

    Armbrüster, Marc; Schlögl, Robert; Grin, Yuri

    2014-06-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition.

  2. Intermetallic compounds in heterogeneous catalysis—a quickly developing field

    PubMed Central

    Armbrüster, Marc; Schlögl, Robert; Grin, Yuri

    2014-01-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition. PMID:27877674

  3. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  4. Service limitations for oxidation resistant intermetallic compounds

    SciTech Connect

    Smialek, J.L.; Nesbitt, J.A.; Brindley, W.J.; Brady, M.P.; Doychak, J.; Dickerson, R.M.; Hull, D.R.

    1995-07-01

    Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi{sub 2} are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. {beta}-NiAl forms protective {alpha}-Al{sub 2}O scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti{sub 3}Al and TiAl compounds form less protective mixed TiO{sub 2} and Al{sub 2}O{sub 3} scales. However at realistic use temperatures (600--800 C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi{sub 2} materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500 C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO{sub 2}-SiO{sub 2} scales in pores and microcracks.

  5. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-11-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  6. Calculations of the magnetic properties of R2M14B intermetallic compounds (R=rare earth, M=Fe, Co)

    NASA Astrophysics Data System (ADS)

    Ito, Masaaki; Yano, Masao; Dempsey, Nora M.; Givord, Dominique

    2016-02-01

    The hard magnetic properties of "R-M-B" (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R2M14B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R2Fe14B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe.

  7. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  8. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content

    PubMed Central

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  9. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3-xTi2 (0 ≤ x ≤ 3)

    DOE PAGES

    Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; ...

    2016-11-28

    Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3) and saturation magnetic polarization (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancymore » disorder.« less

  10. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  11. Magnetic properties of a new intermetallic compound Ho2Ni2Pb

    NASA Astrophysics Data System (ADS)

    Muñoz-Sandoval, E.; Chinchure, A. D.; Hendrikx, R. W. A.; Mydosh, J. A.

    2001-10-01

    Single-phase, textured samples of a new orthorhombic intermetallic compound Ho2Ni2Pb have been fabricated (space group Cmmm). Here the bulk magnetic properties are presented as determined via magnetization, susceptibility, heat capacity and resistivity measurements. The results exhibit two distinct magnetic transitions and large metamagnetic effects. Such behaviour is related to the unusual rare-earth symmetry of the highly anisotropic crystal structure.

  12. Magnetization of RFe3 intermetallic compounds: Molecular field theory analysis

    NASA Astrophysics Data System (ADS)

    Herbst, J. F.; Croat, J. J.

    1982-06-01

    We report magnetization measurements of all RFe3 intermetallic compounds known to form (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm). A two-sublattice molecular field model is employed to analyze the data except in the case of YFe3, for which one magnetic sublattice is assumed. In general, the model adequately describes the temperature dependence of the magnetization. For SmFe3 our results suggest that the samarium and iron moments are ferromagnetically coupled.

  13. Oxygen-stabilized zirconium-vanadium intermetallic compound

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-10-06

    An oxygen stabilized intermetallic compound having the formula Zr/sub x/OV/sub y/ where x = 0.7 to 2.0 and y = 0.18 to 0.33 is described. The compound is capable of reversibly sorbing hydrogen at temperatures from - 196/sup 0/C to 450/sup 0/C at pressures down to 10/sup -6/ Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO/sub 2/.

  14. Large magnetocaloric effect and near-zero thermal hysteresis in the rare earth intermetallic Tb1-x Dy x Co2 compounds

    NASA Astrophysics Data System (ADS)

    Zeng, Yuyang; Tian, Fanghua; Chang, Tieyan; Chen, Kaiyun; Yang, Sen; Cao, Kaiyan; Zhou, Chao; Song, Xiaoping

    2017-02-01

    We report the magnetocaloric effect in a Tb1-x Dy x Co2 compound which exhibits a wide working temperature window around the Curie temperature (T C) and delivers a large refrigerant capacity (RC) with near-zero thermal hysteresis. Specifically, the wide full width at half maxima ({δ\\text{WFHM}} ) can reach up to 62 K and the RC value changes from 216.5 to 274.3 J Kg-1 when the external magnetic field increases to 5 T. Such magnetocaloric effects are attributed to a magnetic and structural transition from a paramagnetic and cubic phase to a ferromagnetic (M S along [1 1 1] direction) and rhombohedral phase or ferromagnetic (M S along [0 0 1] direction) and tetragonal phase.

  15. Extreme Poisson's ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Jones, Travis E.; Li, W.; Zhou, Y. C.

    2012-04-01

    Negative Poisson's ratios have been observed in a variety of metals and alloys. However, the electronic origin of this effect remains unclear, as is evident by our limited knowledge about intermetallics showing this behavior. In an effort to clarify the electronic origin of a negative Poisson's ratio, we have performed a systematic and comprehensive study of extreme (both positive and negative) Poisson's ratios behavior in the B2 CsCl-type AB intermetallic family (including 14 common intermetallics and 128 rare-earth-metal transition or main-group-metal intermetallics) by way of density functional theory calculations. We found a pronounced correlation between the extreme Poisson's ratios and the elastic anisotropy, with approximately 70% of the B2 intermetallics showing intrinsic auxetic behavior. We went on to examine the topology and geometry of the electron charge density and found that the extreme Poisson's ratios are attributable to the directionality of the bonds of the material. Auxetic materials were found to have nondirectional bonds, and nonauxetic compounds had directional bonds. Our findings provide an essential electronic perspective to forecast the auxetic behavior, and suggest a new application for intermetallic compounds.

  16. High Temperature Advanced Structural Composites. Book 1: Executive Summary and Intermetallic Compounds

    DTIC Science & Technology

    1993-04-02

    reprints of papers on Intermetallic Compounds. Volume two contains reprints of papers on Ceramic Matrix Composites, Fiber Processi and Properties and...SUMMARY OF TABLE OF CONTENTS BOOK 1: EXECUTIVE SUMMARY INTERMETALLIC COMPOUNDS BOOK 2: CERAMIC MATRIX COMPOSITES FIBER PROCESSING AND PROPERTIES INTERFACES...COMPOUNDS .................................. 1 1. Processing ...................... ................... 1 2. Mechanical Properties

  17. Unexpected Xe anions in XeLin intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Botana, Jorge; Miao, Maosheng; Yan, Dadong

    2017-01-01

    The reactivity of Xe is important in both fundamental chemistry and geological science. The discovery of the reductive reactivity of Xe extended the doctrinal boundary of chemistry for which a completed shell is inert to reaction. The oxidation of Xe by various elements has been explored. On the other hand, the opposite chemical inclination, i.e., gaining electrons and forming anions, has not been thoroughly studied for Xe or other noble-gas elements. In this work, we demonstrate, using first-principles calculations and an efficient structure prediction method, that Xe can form stable \\text{XeLi}n (n=1\\text{--}5) compounds under high pressure. These compounds are intermetallic and Xe are negatively charged. The stability of these compounds indicates that atoms or ions with completely filled shell may still gain electrons in chemical reactions.

  18. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  19. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    SciTech Connect

    K.A. Gschneidner; A.O. Pecharsky; V.K. Pecharsky

    2004-09-30

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from {approx}3 to {approx}350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature (<15 K) prototype cryocooler regenerator materials HoCu{sub 2}, Er{sub 3}Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K.

  20. CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-02-01

    Titanium aluminide intermetallic compound is studied to find out good welding conditions using CO2 laser irradiation. In the experiment, we used the casting titanium aluminide containing iron, vanadium and boron with a thickness of 2 mm. We carried out bead-on-plate laser welding at various initial temperatures of specimens varied from room temperature to 873 [K] in inert gas environment filled with argon. We measured fused depth, bead width and Vickers hardness. As a result of experiments, welding speeds that allow full bead-on- plate welding to be possible were strongly by dependent on the initial temperature, 3000 [mm/min], initial temperature 873 [K], 2600 [mm/mm], initial temperature 673 [K], and 2000 [mm/min] with 300 [K]. Transverse crack-free welding was achieved, when initial temperature was at 873 [K].

  1. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect

    Stegmaier, Saskia; Faessler, Thomas F.

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding

  2. Ultra-high vacuum compatible preparation chain for intermetallic compounds.

    PubMed

    Bauer, A; Benka, G; Regnat, A; Franz, C; Pfleiderer, C

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  3. Intermetallic compounds as negative electrodes of Ni/MH batteries

    NASA Astrophysics Data System (ADS)

    Cuevas, F.; Joubert, J.-M.; Latroche, M.; Percheron-Guégan, A.

    2001-04-01

    This review is devoted to the main families of thermodynamically stable intermetallic compounds (AB5-, AB2- and AB-type alloys) that have been researched in the last thirty years as materials for negative electrodes in nickel-metal hydride batteries. The crystal structure of these compounds and their hydrides is widely described. Their solid-gas hydrogenation properties and, particularly, the related desorption isotherm curves are examined as a useful criterion for the selection of suitable battery materials. The electrochemical performances obtained with these alloys are reported and the given solutions to common problems such as corrosion, passivation, decrepitation and short cycle life are discussed. Only AB5-based compounds have achieved, up to now, enough development for being widely present on the market, and exhibit improved battery performances in comparison with the polluting Ni/Cd batteries. The high capacity of AB2-based compounds and the remarkable electrochemical activity of some AB-based alloys make, however, further research on all the reviewed families still valuable.

  4. Ultra-high vacuum compatible preparation chain for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  5. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect

    Han, M. K.

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  6. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect

    Han, Mi-Kyung

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  7. Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Nguyen, M. C.; Zhang, W. Y.; Wang, C. Z.; Kramer, M. J.; Sellmyer, D. J.; Li, X. Z.; Zhang, F.; Ke, L. Q.; Antropov, V. P.; Ho, K. M.

    2014-01-01

    Solving the crystal structures of novel phases with nanoscale dimensions resulting from rapid quenching is difficult due to disorder and competing polymorphic phases. Advances in computer speed and algorithm sophistication have now made it feasible to predict the crystal structure of an unknown phase without any assumptions on the Bravais lattice type, atom basis, or unit cell dimensions, providing a novel approach to aid experiments in exploring complex materials with nanoscale grains. This approach is demonstrated by solving a long-standing puzzle in the complex crystal structures of the orthorhombic, rhombohedral, and hexagonal polymorphs close to the Zr2Co11 intermetallic compound. From our calculations, we identified the hard magnetic phase and the origin of high coercivity in this compound, thus guiding further development of these materials for use as high performance permanent magnets without rare-earth elements.

  8. Formation of intermetallic compound coating on magnesium AZ91 cast alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Tianping; Gao, Wei

    2009-08-01

    This study describes an intermetallic compound coating formed on AZ91 Mg cast alloy. The Al sputtered on AZ91 cast alloy reacted with substrate during a short period of heat treatment at 435°C, resulting in the formation of a continuous intermetallic compound layer. The short period treatment has the advantage of minimizing the negative effect on the microstructure of substrate and the mechanical properties, comparing with the reported diffusion coatings. DSC measurement and examination on the cross-section of Al sputtered samples show that local melting occurred along the Al/substrate interface at the temperature range between 430~435°C. The formation mechanism of intermetallic compound coating is proposed in terms of the local melting at Al/substrate interface. The salt water immersion test showed significant improvement in corrosion resistance of the intermetallic compound coated AZ91 cast alloy compared with the as-cast alloys.

  9. Intermetallic compound formation at Cu-Al wire bond interface

    NASA Astrophysics Data System (ADS)

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du, Yong

    2012-12-01

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 °C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable θ'-CuAl2 IMC phase (tetragonal, space group: I4¯m2, a = 0.404 nm, c = 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable θ'-CuAl2 phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and θ'-CuAl2, which can minimize lattice mismatch for θ'-CuAl2 to grow on Cu.

  10. New Interest in Intermetallic Compound ZnSb

    NASA Astrophysics Data System (ADS)

    Fedorov, M. I.; Prokof'eva, L. V.; Pshenay-Severin, D. A.; Shabaldin, A. A.; Konstantinov, P. P.

    2014-06-01

    The intermetallic compound ZnSb has been known since the 1830s. It has semiconductor properties, but its mechanical, thermal, and chemical properties are very close to those of a metallic alloy. When thermoelectrics based on (BiSb)2(TeSe)3 solid solutions were created, interest in ZnSb subsided. However, the current situation is different, as tellurium has become expensive and rare. Moreover, its compounds are too toxic, and it is too difficult to produce such materials and devices from these solid solutions. Recently, n-type material based on Mg2(SnSi) solid solution was proposed in the Laboratory of Physics for Thermoelements of the Ioffe Physical-Technical Institute. This material together with ZnSb may form a promising couple for creating various thermoelectric modules. In this paper, various properties (Hall and Seebeck coefficients, electrical and thermal conductivities) are reported in the temperature range from 80 K to 797 K. Different acceptor impurities have been tested. The Hall concentration at room temperature varied from 1.5 × 1018 cm-3 to 2.7 × 1019 cm-3. Some features have been discovered in the behavior of the thermoelectric parameters of double-doped ZnSb samples at temperatures above 500 K. Their nature points to a temperature-dependent increase of the Hall concentration. The existence of two temperature ranges with additional doping is revealed by Hall coefficient and electrical conductivity measurements in the range from 80 K to 797 K. The experimental data are discussed based on a model of the energy spectrum with impurity and native defect states localized in the energy gap. It is shown that the dimensionless thermoelectric figure of merit of ZnSb: Cd, Ag, Sn is not less than 1.0 at 600 K.

  11. Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds

    DTIC Science & Technology

    1988-12-15

    Niobium aluminides and silicides as well as other intermetallic corn unds have potential for use in advanced gas turbines where increased operating...diffusion aluminide coatings on Ni-base alloys(10), Fe- silicides (l 1), and Ni- ’ silicides (12) indicate similar behavior to that in Figure 8. Typical... Niobium W MAR- 2 7 1983 Base Alloys and Other Selected Intermetallic Compounds &Simukx Defense Advanced Research Projects Agency . DARPA Order No. 6155

  12. Twinning Mechanisms in Complex High Tm Intermetallic Compounds

    DTIC Science & Technology

    2007-11-02

    Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, Editors, TMS, Warrendale, PA (1993), pp 637-646. 12. "Deformation...of the 1995 Hume -Rothery Award Symposium, TMS, Warrendale, PA. 18. "Ductility and Toughness Considerations in Intermetallics", Y. Kimura and D.P...Pope, in Structural Intermetallics 1997, M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle , R. Wagner, and M. Yamaguchi, Editors, TMS

  13. Point Defects Quenched in Nickel Aluminide and Related Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Fan, Jiawen

    Point defects in the highly ordered B2 compounds NiAl, CoAl and FeAl were studied using the perturbed gammagamma angular correlations (PAC) technique. Quadrupole interactions detected at dilute ^{111}In probes on Al sites in NiAl and CoAl were identified with complexes containing one or two vacancies in the first atomic shell. Measurements on rapidly quenched NiAl and CoAl exhibited increases in site fractions of vacancy-probe complexes caused by formation of thermal defects. Site fractions were analyzed using the law of mass action to obtain absolute vacancy concentrations. PAC is shown to be a powerful new technique for the quantitative study of equilibrium defects in solids. For NiAl, the vacancy concentration quenched-in from a given temperature was found to be independent of composition over the range 50.4 -53.5 at.% Ni, identifying the Schottky defect (vacancy pair) as the dominant equilibrium defect, and ruling out the so-called triple defect. Formation energies and entropies of Schottky pairs were determined to be 2.66(8) and 3.48(12) eV, and 12(1) and 17(2) k_{rm B}, respectively, for NiAl and CoAl. The entropies suggest huge vacancy concentrations, 13%, at the melting temperatures of NiAl and CoAl. Migration energies of Ni and Co vacancies were found to be 1.8(2) and 2.5(2) eV, respectively. FeAl exhibited complex behavior. A low-temperature regime was detected in NiAl and CoAl within which vacancies are mobile but do not anneal out, so that the vacancy concentration remains constant. In NiAl, this "bottleneck" regime extends from 350 to 700 ^circC. Vacancies were found to be bound to the In probes with an energy very close to 0.20 eV in NiAl and CoAl. An explanation of the bottleneck is proposed in terms of saturation of all lattice sinks. This annealing bottleneck should exist in a wide range of intermetallic compounds when there is a sufficiently high vacancy concentration.

  14. Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Park, Chun Woong; Suk, Myung-Jin; Kim, Young Do

    2016-01-01

    In general, size, shape and dispersion of phases in alloys significantly affect mechanical properties. In this study, the mechanical properties of Mo-Si-B alloys were experimentally investigated with regards to the refinement of intermetallic compound. To confirm the size effect of the intermetallic compound phases on mechanical properties, two differently sized intermetallic compound powders consisting Mo5SiB2 and Mo3Si were fabricated by mechano-chemical process and high-energy ball milling. A modified powder metallurgy method was used with core-shell intermetallic powders where the intermetallic compound particles were the core and nano-sized Mo particles which formed by the hydrogen reduction of Mo oxide were the shells, leading to the microstructures with uniformly distributed intermetallic compound phases within a continuous α-Mo matrix phase. Vickers hardness and fracture toughness were measured to examine the mechanical properties of sintered bodies. Vickers hardness was 472 Hv for the fine intermetallic compound powder and 415 Hv for the coarse intermetallic compound powder. The fracture toughness was 12.4 MPa·√m for the fine IMC powders and 13.5 MPa·√m for the coarse intermetallic compound powder.

  15. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  16. Micromechanisms of intergranular brittle ftacture in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vitek, V.

    1991-06-01

    Grain boundaries in intermetallic compounds such as Ni3A1 are inherently brittle. The reason is usually sought in grain boundary cohesion but in metals even brittle fracture is accompanied by some local plasticity and thus not only cohesion but also dislocation mobility in the boundary region need to be studied. We first discuss here the role of an irreversible shear deformation at the crack tip during microcrack propagation assuming that these two processes are concomitant. It is shown that a pre-existing crack cannot propagate in a brittle manner once the dislocation emission occurs. However, if a microcrack nucleates during loading it can propagate concurrently with the development of the irreversible shear deformation at the crack tip. The latter is then the major energy dissipating process. In the second part of this paper we present results of atomistic studies of grain boundaries in Ni3A1 and CU3Au which suggest that substantial structural differences exist between strongly and weakly ordered L12 alloys. We discuss then the consequence of these differences for intergranular brittleness in the framework of the above model for microcrack propagation. On this basis we propose an explanation for the intrinsic intergranular brittleness in some L12 alloys and relate it directly to the strength of ordering. Les joints de grains dans les composés intermétalliques de type Ni3AI sont de nature fragile. L'origine de cette fragilité est habituellement dans la cohésion des joints de grains. Dans les métaux, cependant, même la rupture fragile est accompagnée d'une certaine déformation plastique locale, de telle sorte que non seulement la cohésion mais aussi la mobilité des dislocations près des joints doit être étudiée. Nous discutons d'abord le rôle d'une déformation en cisaillement irréversible en tête de fissure pendant la propagation de cette fissure, en supposant que les deux processus sont concomitants. Nous montrons qu'une fissure préexistante ne

  17. Electronic and high pressure elastic properties of RECd and REHg (RE=Sc, La and Yb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Devi, Hansa; Pagare, Gitanjali; Chouhan, Sunil S.; Sanyal, Sankar P.

    2015-01-01

    Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B‧) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson's ratio (σ), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen's method has been used to predict the Vicker's hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.

  18. Resonant ultrasound spectroscopy: Elastic properties of some intermetallic compounds

    SciTech Connect

    Chu, F.; Thoma, D.J.; He, Y.; Maloy, S.A.; Mitchell, T.E.

    1996-09-01

    A novel nondestructive evaluation method, resonant ultrasound spectroscopy (RUS), is reviewed with an emphasis upon defining the elastic properties of intermetallic phases. The applications and advantages of RUS as compared to other conventional elastic constant measurement methods are explained. RUS has been employed to measure the elastic properties of single crystal and/or polycrystalline intermetallics, such as Laves phases (C15 HfV{sub 2} and NbCr{sub 2}), Nb-modified titanium aluminides, and transition metal disilicides (C11{sub b} MoSi{sub 2}, C40 NbSi{sub 2} and TaSi{sub 2}). For Laves phases, the elastic properties of HfV{sub 2}-based C15 phases show various anomalies and those of C15 NbCr{sub 2} do not. For Nb-modified titanium aluminides, the elastic properties of O-phase alloys are investigated as a function of alloying content. For transition metal disilicides, single crystal elastic constants of MoSi{sub 2}, NbSi{sub 2}, and TaSi{sub 2} are obtained and compared. Based on the experimentally determined elastic properties, the characteristics of interatomic bonding in these materials are examined and the possible impact of the elastic properties on mechanical behavior is discussed.

  19. Hydrides of intermetallic compounds and alloys: their properties and application in atomic technology

    SciTech Connect

    Perevezentsev, A. N.; Andreev, B. M.; Kapyshev, V. K.; Rivkis, L. A.; Malek, M. P.; Bystritskii, V. M.; Stolupin, V. A.

    1988-11-01

    The Soviet and foreign literature is reviewed and an attempt is made to systematize the large amount of information on the fundamental properties of most of the well-known hydride-forming intermetallic compounds and their practical use for the extraction, cleaning, and storage of hydrogen and the separation of its isotopes.

  20. RESEARCH ON THE DEPOSITION OF MAGNETIC INTERMETALLIC COMPOUNDS IN THIN FILMS.

    DTIC Science & Technology

    A process for the vacuum deposition of thin films of intermetallic compounds of cobalt and yttrium, samarium, or neodymium, was developed. The...of the evaporation rates. Thin films of the desired stoichiometric compositions, Co5R, were produced in an extensive series of sequential experiments

  1. Evaluation of Gibbs free energies of formation of Ce-Cd intermetallic compounds using electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Hayashi, Hirokazu; Akabori, Mitsuo; Arai, Yasuo; Kurata, Masaki

    2014-08-01

    Gibbs free energies of formation of six Ce-Cd intermetallic compounds, CeCd, CeCd2, CeCd3, CeCd58/13, CeCd6 and CeCd11, were evaluated systematically using electrochemical techniques in the temperature range of 673-923 K in the LiCl-KCl-CeCl3-CdCl2 molten salt bath. The linear dependence of the Gibbs free energies of formation on temperature yields to the enthalpies and entropies of formation of these intermetallic compounds. By extrapolating the Gibbs free energy of Ce-Cd intermetallic compounds to the Cd distillation temperature, it was clear that the Gibbs free energy of Ce-Cd intermetallic compounds decreases gradually from CeCd6 to CeCd2 and attains minimum value at CeCd2. This suggests on the Cd distillation from the U-Pu-Ce-Cd alloy that the dissolution of U or Pu into CeCd2 should be mostly taken into consideration.

  2. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3-xTi2 (0 ≤ x ≤ 3)

    SciTech Connect

    Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; Xu, Xiaoshan; Zhang, Jie; Zhang, Xiaozhe; Liu, Yaohua; Huq, Ashfia; Valloppilly, Shah R.; Jin, Yunlong; Wang, Cai -Zhuang; Ho, Kai -Ming; Sellmyer, David J.

    2016-11-28

    Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3) and saturation magnetic polarization (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.

  3. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  4. Targeted crystal growth of rare Earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity.

    PubMed

    Schmitt, Devin C; Drake, Brenton L; McCandless, Gregory T; Chan, Julia Y

    2015-03-17

    The single-crystal growth of extended solids is an active area of solid-state chemistry driven by the discovery of new physical phenomena. Although many solid-state compounds have been discovered over the last several decades, single-crystal growth of these materials in particular enables the determination of physical properties with respect to crystallographic orientation and the determination of properties without possible secondary inclusions. The synthesis and discovery of new classes of materials is necessary to drive the science forward, in particular materials properties such as superconductivity, magnetism, thermoelectrics, and magnetocalorics. Our research is focused on structural characterization and determination of physical properties of intermetallics, culminating in an understanding of the structure-property relationships of single-crystalline phases. We have prepared and studied compounds with layered motifs, three-dimensional magnetic compounds exhibiting anisotropic magnetic and transport behavior, and complex crystal structures leading to intrinsically low lattice thermal conductivity. In this Account, we present the structural characteristics and properties that are important for understanding the magnetic properties of rare earth transition metal intermetallics grown with group 13 and 14 metals. We present phases adopting the HoCoGa5 structure type and the homologous series. We also discuss the insertion of transition metals into the cuboctahedra of the AuCu3 structure type, leading to the synthetic strategy of selecting binaries to relate to ternary intermetallics adopting the Y4PdGa12 structure type. We provide examples of compounds adopting the ThMn12, NaZn13, SmZn11, CeCr2Al20, Ho6Mo4Al43, CeRu2Al10, and CeRu4Al16-x structure types grown with main-group-rich self-flux methods. We also discuss the phase stability of three related crystal structures containing atoms in similar chemical environments: ThMn12, CaCr2Al10, and YbFe2Al10. In

  5. TiNiSn: A gateway to the (1,1,1) intermetallic compounds

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A.

    1996-06-01

    Recent awareness of the transport properties of Skutterudite pnictides has stimulated an interest in numerous other intermetallic compounds having a gap in the density of states at the Fermi level including the MNiSn compounds where M = (Ti, Zr, Hf). These intermetallic half-Heusler compounds are characterized by high Seebeck coefficients ({minus}150 to {minus}300 {micro}V/deg.) and reasonable carrier mobilities (30 to 50 cm{sup 2}/V-s) at room temperature which make them attractive candidates for intermediate temperature thermoelectric applications. Samples of TiNiSn were prepared by arc melting and homogenized by heat treatment. The temperature dependence of the electrical resistivity, Seebeck coefficient, and thermal diffusivity of these samples was characterized between 22 C and 900 C. The electrical resistivity and thermopower both decrease with temperature although the resistivity decreases at a faster rate. Electrical power factors in excess of 25 {micro}W/cm-C{sup 2} were observed in nearly single phase alloys within a 300 to 600 C temperature range. A brief survey of other selected ternary intermetallic compounds is also presented.

  6. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound.

    PubMed

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-04

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  7. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  8. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    PubMed Central

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  9. On the origin of magnetic a.c. susceptibility non-SRT anomalies in intermetallic compounds

    SciTech Connect

    Bartolome, J.; Garcia, L.M.; Lazaro, F.J.; Grincourt, Y.; Fuente, L.G. de la; Francisco, C. de; Munoz, J.M.; Fruchart, D.

    1994-03-01

    The anomaly detected in the magnetic a.c. susceptibility of many intermetallic compounds between 100 and 300 K, and in particular in Nd{sub 2}Fe{sub 14}B at 220 K, has been induced in a controlled manner by thermal annealing. The anomaly has been interpreted in terms of thermal activated processes of defects imposing their dynamical behavior on the domain walls coupled to them, thus solving the controversy on its origin.

  10. Domain Structure of R2Fe17 Intermetallic Compounds with Planar-Type Anisotropy

    NASA Astrophysics Data System (ADS)

    Pastushenkov, Yu. G.; Skokov, K. P.; Lyakhova, M. B.; Antonova, E. S.

    2017-01-01

    Magnetic domain structure is studied in single crystals of R2Fe17 (R = Tb, Dy, Ho, Er) intermetallic compounds in a wide range of temperatures (10 - 300 K) and magnetic fields (μ0 H = 0 - 0.1 T). It is shown that single crystal specimens of hexagonal magnetics with planar-type anisotropy acquire domain structures containing not only 180-degree domain boundaries but also 60- and 120-degree ones.

  11. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    NASA Astrophysics Data System (ADS)

    Filipek, S. M.; Paul-Boncour, V.; Liu, R. S.; Jacob, I.; Tsutaoka, T.; Budziak, A.; Morawski, A.; Sugiura, H.; Zachariasz, P.; Dybko, K.; Diduszko, R.

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT2, MeNi5, Me7T3, Y6Mn23 and YMn12 (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe2H4 due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  12. Long-Term Behavior of the Tritides Formed by Nickel-Based Intermetallic Compounds

    SciTech Connect

    Bowman, Jr., R. C.; Steinmeyer, R. H.; Matson, L. K.; Attalla, A.; Craft, B. D.

    1985-04-01

    Some properties of the tritide phases formed by the intermetallic compounds Mg2Ni, ZrNi, and LaNi5 have been studied. Whereas ZrNiT3 will retain its stoichiometry indefinitely when sufficient gaseous tritium is available, the stoichiometries of Mg2NiT4 and LaNi5T6.9 decrease with time. Although all three intermetallic tritides can retain large quantities of the helium-3 tritium decay daughter product in the solid phase, irreversible release of helium begins after several hundred days for ZrNiTx and Mg2NiTx. However, LaNi5Tx retains all of the helium generated in the solid for at least 2400 days. NMR measurements for ZrNiTx and Mg2NiTx imply that helium is retained in microscopic bubbles as previously observed in several binary metal tritides.

  13. Na-Au intermetallic compounds formed under high pressure at room temperature

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Fujihisa, H.

    2011-07-01

    High-pressure powder x-ray diffraction experiments have revealed that sodium and gold react at room temperature and form Na-Au intermetallic compounds under high pressure. We have identified four intermetallic phases up to 60 GPa. The first phase (phase I) is the known Na2Au with the tetragonal CuAl2-type structure. It changed to the second phase (phase II) at ˜0.8 GPa, which has the composition Na3Au with the trigonal Cu3As-type or hexagonal Cu3P-type structure. Phase II further transformed to phase III at 3.6 GPa. Phase III has the same composition, Na3Au, with the cubic BiF3-type structure. Finally, phase III changed to phase IV at ˜54 GPa. Phase IV gives broad diffraction peaks, indicating large structural disorder.

  14. Neutron Scattering Study of TbPtin Intermetallic Compound

    SciTech Connect

    Garlea, Vasile O; Morosan, E.; Bud'ko, S. L.; Zarestky, Jerel L; Canfield, P. C.; Stassis, C.

    2005-01-01

    Neutron diffraction techniques have been used to study the magnetic properties of a TbPtIn single-crystal as a function of temperature and magnetic field. In the absence of an externally applied magnetic field, the compound orders, below approximately 47 K, in an antiferromagnetic structure with propagation vector k=(1/2,0,1/2); the magnetic moments were found to be parallel to the [1 {ovr 2} 0] direction. Measurements at 4.2 K, with a magnetic field applied along the [1 {ovr 2} 0] direction, revealed metamagnetic transitions at approximately 20 kG and 40 kG.

  15. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  16. Characterization of second-phase plates in a Gd5Ge3 intermetallic compound

    SciTech Connect

    Cao, Qing; Chumbley, Leonard S.

    2013-05-16

    Rare-earth compounds based on the stoichiometry R5(SixGe1-x)4 (R = rare-earth elements) exhibit many unusual features, including possessing R5(SixGe1-x)3 thin plates which always precipitate from the matrix despite efforts to suppress their formation. In an effort to better understand the unique relationship between these two intermetallic alloy systems, the bulk microstructure of the compound Gd5Ge3 was examined using scanning (SEM) and transmission electron microscopy (TEM) and optical microscopy. Surprisingly, SEM examination revealed a series of thin plates present in the Gd5Ge3 matrix similar to what is seen in Gd5Ge4. TEM observation revealed that a role reversal had occurred, with the thin plates possessing the orthorhombic structure and composition of Gd5Ge4. The orientation relationship between Gd5Ge4 thin plates and the Gd5Ge3 matrix was determined to be Graphic the same relationship reported for Gd5Ge3 plates precipitating from a Gd5Ge4 matrix. However, by exchanging the respective roles of the phases as regards matrix vs. precipitate, the total number of precipitation variants seen can be increased from two to six. The persistence with which these two intermetallic systems co-exist is truly unique. However, understanding exactly the kinetic and thermodynamic conditions that lead to their unique relationship is hampered by the high formation temperatures at which the observed reaction occurs.

  17. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  18. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  19. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  20. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  1. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  2. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  3. Superplasticity and solid state bonding of the TiAl intermetallic compound with micro- and submicrocrystalline structure

    SciTech Connect

    Lutfullin, R.Ya.; Imayev, R.M.; Kaibyshev, O.A.; Hismatullin, F.N.; Imayev, V.M.

    1995-11-01

    The use of superplastic phenomenon makes it possible to reduce considerably the temperature of solid state bonding of the TiAl intermetallic compound as compared with conventional diffusion bonding. At decreasing the superplastic deformation temperature due to the reduction of the grain size an adequate decrease of the temperature threshold of solid state weldability of the TiAl intermetallic compound was observed. In the TiAl intermetallic compound with submicrocrystalline grain size the formation of a sound solid state joint occurs in the process of deformation at the temperature t = 850 C and strain {var_epsilon} = 10%. Since the temperature-strain-rate conditions of solid state bonding and those of superplasticity coincide, it is assumed that the mechanism controlling the bonding process is grain boundary sliding, the main deformation mechanism of superplasticity.

  4. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    SciTech Connect

    Jagannadham, K.

    2016-03-15

    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu{sub 4}Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m{sup −1} K{sup −1}. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m{sup −2} K{sup −1}. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature.

  5. Surface structures of In-Pd intermetallic compounds. II. A theoretical study

    SciTech Connect

    Gaudry, É.; McGuirk, G. M.; Ledieu, J.; Fournée, V.

    2014-08-28

    The (110) surface of the InPd intermetallic compound and the In–Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate to the surface in off-stoichiometric InPd(110) systems. Concerning surface alloys obtained by burying In-doped Pd layers in Pd(111), we demonstrated that the most stable ones are those presenting atomic indium concentrations below 50 at. % (11 at. %, 25 at. %, 33 at. %). According to our calculations, the In-doped Pd layers with concentration above or equal to 50% lead to In-doped Pd multilayers, each presenting an atomic indium concentration below 50 at. %. Alloying and segregation effects in InPd intermetallic compound and In–Pd surface alloys clearly agree with the larger bonding strength of In–Pd (−0.44 eV) compared to In–In (−0.29 eV) and Pd–Pd (−0.31 eV)

  6. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.

  7. Dispersion of electronic bands in intermetallic compound LiBe and related properties

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2015-10-01

    Based on the all-electron full-potential linearized augmented plane wave within density functional theory calculations dispersion of the electronic band structure, total and the angular momentum resolved projected density of states, the shape of Fermi surface, the electronic charge density distribution and the optical response of the intermetallic LiBe compound are performed. Seeking the influence of the different exchange correlations on the ground state properties of the intermetallic LiBe, calculations are performed within four types of exchange correlations, namely the local density approximation, general gradient approximation, Engel-Vosko generalized gradient approximation and the modified Becke-Johnson potential. It has been found that replacing the exchange correlations exhibit insignificant influence on the bands dispersion, density of states and hence the optical properties. The obtained results suggest that there exists a strong hybridization between the states resulting in covalent bonds. The Fermi surface is formed by two bands and the center of the Fermi surface is formed by holes. The electronic charge density distribution confirms that the charge is attracted toward Be atoms and the calculated bond lengths are in good accordance with the available experimental data. To get deep insight into the electronic structure, the optical properties are investigated and analyzed in accordance with the calculated band structure and the density of states.

  8. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  9. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  10. Application of random walk concept to the cyclic diffusion mechanisms for self-diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Tiwari, G. P.; Mehrotra, R. S.; Iijima, Y.

    2014-02-01

    Huntington-Elcock-McCombie (HEM) mechanism involving six consecutive and correlated jumps, a triple-defect mechanism (TDM) involving three correlated jumps and an anti-structure bridge (ASB) mechanism invoking the migration of an anti-structure atom are the three mechanisms currently in vogue to explain the self- and solute diffusion in intermetallic compounds. Among them, HEM and TDM are cyclic in nature. The HEM and TDM constitute the theme of the present article. The concept of random walk is applied to them and appropriate expressions for the diffusion coefficient are derived. These equations are then employed to estimate activation energies for self-diffusion via HEM and TDM processes and compared with the available experimental data on activation energy for self-diffusion in intermetallic compounds. The resulting activation energies do not favour HEM and TDM for the self-diffusion in intermetallic compounds. A comparison of the sum of experimentally determined activation energies for vacancy formation and migration with the activation energies for self-diffusion determined from radioactive tracer method favours the conventional monovacancy-mediated process for self-diffusion in intermetallic compounds.

  11. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-11-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  12. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, Iver E.; Lograsso, Barbara K.; Ellis, Timothy W.

    1994-01-01

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.

  13. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  14. Intermetallic compounds, copper and palladium alloys in Au-Pd ore of the Skaergaard pluton, Greenland

    NASA Astrophysics Data System (ADS)

    Rudashevsky, N. S.; Rudashevsky, V. N.; Nielsen, T. F. D.

    2015-12-01

    Copper-palladium intermetallic compounds and alloys (2314 grains) from the Au-Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd-Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe-Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe-Cu sulfide phase as Pd-Cu and Cu-Au alloys.

  15. On pseudoelasticity in single crystals of the intermetallic compound Fe{sub 3}Al

    SciTech Connect

    Brinck, A.; Engelke, C.; Neuhaeuser, H.

    1997-09-01

    Only few notes can be found in literature which report on pseudoelastic effects in Fe{sub 3}Al intermetallic compounds. Reversible deformation on {l_brace}110{r_brace} and {l_brace}112{r_brace} planes was observed in shear and compression experiments by Guedou and Rieu and explained by microtwinning, while Kubin et al. showed by in-situ TEM observations that the motion of the front partial of a superdislocation appeared to cause the slip reversal on {l_brace}110{r_brace} planes. The authors have recently observed such a similar effect during in-situ slip line formation studies of Fe{sub 3}Al crystals with a special crystal orientation deformed in compression at and above room temperature. In the following these observations are described and the possible reasons are discussed in connection with the data from literature.

  16. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  17. Fundamental study about CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Tetsuka, Masato; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-11-01

    Titanium aluminide intermetallic compound is attracting attentions as heat-resistant and high-specific strength material in the next generation, especially, it is promising material in the field of aerospace components. Conventional machining process including welding, however, can be hardly applied due to its very low ductility. The objective of this study, as a first stage, is to find out paying attention to crack and hardness the fundamental good conditions of the bead-on-plate welding of TiAl intermetallic compound using CO2 laser irradiation. In the experiment, we used the casting gamma titanium aluminide contained iron, vanadium and boron with a thickness of 2mm. We carried out bead-on-plate laser welding in the titanium aluminide material in inert gas environment filled with argon. We measured fused depth, Vickers hardness, transverse crack numbers and so on as major parameters of welding speed from 1000 to 4600 mm/min and initial temperature of specimen from R.T. to 873 K with a beam spot size of 0.5 mm and an output power of 1.5 kW. In addition, the specimens were analyzed by Electron Probe X-ray Micro Analyzer, Energy Dispersive X-ray Spectroscopy and X-ray Diffractometry. As a result of experiments, transverse crack-free welding was achieved, when initial temperature was at 873 K. In every condition, the value of Vickers hardness of fused zone increased compared with base. We think the reason of it is an increase of (alpha) 2(Ti3Al) phase, which is caused by rapid cooling, taking in Oxygen, fine structure and so on.

  18. Surface structure of the Ag-In-(rare earth) complex intermetallics

    NASA Astrophysics Data System (ADS)

    Hars, S. S.; Sharma, H. R.; Smerdon, J. A.; Yadav, T. P.; Al-Mahboob, A.; Ledieu, J.; Fournée, V.; Tamura, R.; McGrath, R.

    2016-05-01

    We present a study of the surface structure of the Ag-In-RE (RE: rare-earth elements Gd, Tb, and Yb) complex intermetallics using scanning tunneling microscopy and low-energy electron diffraction. The surface of the Ag-In-Yb approximant prepared by sputter-annealing methods under ultrahigh-vacuum conditions produces a flat (100) surface with no facets. However, the Ag-In-Gd and Ag-In-Tb 1/1 approximants, which have a surface miscut of about 12∘ relative to the (100) plane, develop surface facets along various crystallographic directions. The structure of each facet can be explained as a truncation of the rhombic triacontahedral clusters, i.e., the main building blocks of these systems. Despite their differences in atomic structure, symmetry, and density, the facets show common features. The facet planes are In rich. The analysis of the nearest-neighbor atom distances suggests that In atoms form bonds with the RE atoms, which we suggest is a key factor that stabilizes even low-density facet planes.

  19. Hydrogen occupancy in the RNi{sub 4}Mg (R=Y, La, Ce, and Nd) intermetallic compounds and hydrides

    SciTech Connect

    Hahn-Herrera, Otto; Orgaz, Emilio; Aburto, Andrea

    2009-10-15

    We have investigated the effect of hydrogen on the electronic strtucture of the RNi{sub 4}Mg (R=Y, La, Ce, Pr, and Nd) intermetallics. By means of a two-step approach, the projected plane-wave and linearized plane-waves methods, we studied the hydrogen-insertion energetics on the intermetallic matrix and the H-vacancy formation in the hydride compound. We found that particular interstitial sites in the intermetallics are suitable to allocate hydrogen and form a solid solution. The effect of these interstitials on the electronic structure is discussed. In the other hand, the hydrogen-occupied sites in the hydride are found to be energetically equivalent.

  20. Hydrogen in the Ti3Al intermetallic compound: Study by the NMR method

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Aleksashin, B. A.; Medvedev, E. Yu.

    2017-02-01

    The times of nuclear spin-lattice relaxation have been measured and the spectra of NMR for 1H and 27Al in Ti3AlH x hydrogenated intermetallic compounds with hydrogen concentrations of x = 0, 0.31, 0.51, 1.0, 2.0, and 4.32 in a wide range of temperatures (10-500 K) and resonance frequencies (8.2-90 MHz) have been recorded. The analysis of low-temperature relaxation data has shown that the addition of hydrogen with a concentration of x ≥ 2 leads to a significant change in the density of electron states at the Fermi level. It has been found that the hydrogen mobility in Ti3AlH x strongly depends on its concentration. For solid solutions of hydrogen in Ti3Al with x < 1, the mobility of hydrogen atoms on the scale of frequencies of NMR in the investigated temperature range has not been detected. In Ti3AlH x compounds with x ≥ 2, the fast diffusion of hydrogen is observed, which can be related to changes in the structure of these compounds.

  1. Observation of superconductivity in the intermetallic compound β-IrSn4

    NASA Astrophysics Data System (ADS)

    Tran, Vinh Hung; Bukowski, Zbigniew; Wiśniewski, Piotr; Tran, Lan Maria; Zaleski, Andrzej J.

    2013-04-01

    Low-temperature dc-magnetization, ac electrical resistivity and specific heat measurements were performed on single crystals of the intermetallic compound β-IrSn4. The compound crystallizes in the tetragonal MoSn4-type structure (space group I41/acd) and exhibits superconductivity below Tc = 0.9 ± 0.05 K. Further, the magnitude of the ratios ΔCp/(γnkBTc) = 1.29, 2Δ/(kBTc) = 3.55 and of the electron-phonon coupling {\\overline{\\lambda }}_{e-p h}=0.5 imply that superconductivity in β-IrSn4 can be ascribed to a s-wave weak coupling regime. We determined crucial thermodynamic characteristics of the superconducting state. It turned out that depending on the assumption of either a spherical or non-spherical Fermi surface, the superconductivity can be ascribed to either a type-I and type-II/1 or type-II in clean limit, respectively. However, the behavior of the upper critical field and the anisotropic crystalline structure of the studied compound provide strong support to the type-II superconductivity. In the normal state the resistivity exhibits a prominent quadratic temperature dependence, which together with a large Kadowaki-Woods ratio and with the enhanced effective mass indicate that the electrons in β-IrSn4 are strongly correlated.

  2. Observation of superconductivity in the intermetallic compound β-IrSn4.

    PubMed

    Tran, Vinh Hung; Bukowski, Zbigniew; Wiśniewski, Piotr; Tran, Lan Maria; Zaleski, Andrzej J

    2013-04-17

    Low-temperature dc-magnetization, ac electrical resistivity and specific heat measurements were performed on single crystals of the intermetallic compound β-IrSn4. The compound crystallizes in the tetragonal MoSn4-type structure (space group I41/acd) and exhibits superconductivity below Tc = 0.9 ± 0.05 K. Further, the magnitude of the ratios ΔCp/(γnkBTc) = 1.29, 2Δ/(kBTc) = 3.55 and of the electron-phonon coupling λ[overline](e-ph) = 0.5 imply that superconductivity in β-IrSn4 can be ascribed to a s-wave weak coupling regime. We determined crucial thermodynamic characteristics of the superconducting state. It turned out that depending on the assumption of either a spherical or non-spherical Fermi surface, the superconductivity can be ascribed to either a type-I and type-II/1 or type-II in clean limit, respectively. However, the behavior of the upper critical field and the anisotropic crystalline structure of the studied compound provide strong support to the type-II superconductivity. In the normal state the resistivity exhibits a prominent quadratic temperature dependence, which together with a large Kadowaki-Woods ratio and with the enhanced effective mass indicate that the electrons in β-IrSn4 are strongly correlated.

  3. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  4. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    SciTech Connect

    Pike, L.M.; Chen, S.L.; Chang, Y.A.

    1995-12-31

    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms, Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  5. First-principles study of Ni-Al intermetallic compounds under various temperature and pressure

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqin; Zhao, Yuhong; Hou, Hua; Tian, Jinzhong; Han, Peide

    2017-03-01

    The pressure dependence behaviors of structural and mechanical properties as well as the effect of temperature on thermodynamic properties of Ni-Al ordered intermetallic compounds (i. e. Ni3Al, Ni5Al3, NiAl, Ni2Al3 and NiAl3) are investigated in details by implementing first-principles calculations. The calculated lattice parameters, bulk modulus and its pressure derivative are well in agreement with available experimental and theoretical values at zero pressure. All the compounds are mechanically stable with pressure going up to 50 GPa, and the volume change resistance of nickel aluminum alloys can be improved by increasing pressure and Ni concentration. The shear deformation resistance, elastic stiffness and microhardness of nickel aluminum alloys can be strengthened by increasing the content of Ni5Al3 and Ni2Al3, and pressure can also enhance these properties of Ni5Al3, NiAl and Ni2Al3. The ductility of Ni3Al, Ni5Al3 and NiAl can be improved by increasing pressure, while brittle nature turns into ductile nature in 20-30 GPa and 10-20 GPa for Ni2Al3 and NiAl3, respectively. Furthermore, the elastic anisotropy of Ni3Al, Ni5Al3, Ni2Al3 and NiAl3 enhances with pressure, while NiAl shows few change with pressure increasing. In addition, Ni3Al is the most sensitive to pressure change among considered compounds. Finally, the Debye temperature, linear thermal expansion coefficient and heat capacity of these compounds are calculated using the quasi-harmonic Debye model in pressure ranging from 0 to 50 GPa and temperature ranging from 0 to 1200 K to elucidate the relationships between thermodynamic parameters and temperature under various pressure. The results are helpful insights into the study of nickel aluminum alloys.

  6. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  7. Investigation of InBi intermetallic compounds as possible topological insulators

    NASA Astrophysics Data System (ADS)

    Lin, Y. T.; Chen, Q. Y.; Hseih, W. C.; Chang, C. F.; Chuang, F. C.; Liao, H. H.

    2015-03-01

    InBi intermetallic compounds were found to be potentially 2-dimensional topological insulators from first-principle calculations. In our experiment, InBi, In2Bi3andIn3Bi5 were fabricated either in bulk or thin film, by depositing In and Bi into 2 layers by e-beam evaporation of proper thickness ratios for each stoichiometry. The bi-layers were rapid thermal annealed to accomplish the reaction or intermixing well above their temperatures of phase transition. EDS and secondary electron imaging were used to determine the obtained stoichiometry. CVD using a 3-zone furnace was as tested with various combinations of zone temperatures, types and flow rates of carrying gases to investigate the feasibility of epitaxial growth. Samples were characterized by XRD to obtain the crystalline phase, magneto-transport measurements to determine the carrier concentration and mobility using a PPMS to correlate the measured results. We will ponder on the implication of our findings in regards to the possibilities of being a candidate for topological insulator as predicted by the calculations.

  8. Machinability of Intermetallic Compound Fe3Al from the Viewpoint of Tool Wear

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomohiro; Yakou, Takao

    The intermetallic compound Fe3Al was processed by a reactive sintering process, and its machinability from the viewpoint of tool wear was investigated using dry turning. In cutting Fe3Al with a cemented carbide tool, the tool life was approximately one tenth that of cutting carbon tool steel SK3 because of intense flank wear. The tool life for cutting Fe3Al using the cemented carbide P20(WC-TiC-TaC-Co) tool was longer than for cemented carbide K10(WC-Co). In addition, a cermet tool reached its tool life limit by chipping for the whole cutting speed range measured. The roughness of the machined surface of Fe3Al cut using a cemented carbide tool was much smaller than for SK3. However, for cutting using the cermet tool, the roughness showed a sharp rise due to chipping. It was found that the wear rate of the WC particles in the tool material is larger than TiC particles. The results of the study suggest that the cemented carbide P20 is suitable for cutting Fe3Al.

  9. Kinetics of intermetallic compound formation in thermally evaporated Ag-In bilayers

    NASA Astrophysics Data System (ADS)

    Rossi, P. J.; Zotov, N.; Mittemeijer, E. J.

    2016-10-01

    The kinetics of intermetallic compound (IMC) formation in thermally evaporated Ag-In bilayers, with In on top of Ag, was investigated using X-ray diffractometry, applied to the surfaces of the bilayer specimens, as well as scanning electron microscopy, applied to cross-sections of the bilayer specimens, prepared by a focused ion beam instrument. IMC formation was followed at room temperature as well as at elevated temperatures of 50 ° C , 60 ° C , and 70 ° C . Two distinct growth regimes were observed coinciding with the availability of pure In. The AgIn2 IMC nucleated initially, followed by nucleation of the Ag2In IMC. The growth of AgIn2 was found to be controlled by both diffusional processes as well as interfacial reactions. The growth of the Ag2In IMC is dominantly diffusion-controlled. An interdiffusion coefficient of D = 1.1 ± 3.9 . 10 - 4 cm 2 s - 1 exp ( - 60.5 ± 9.2 kJ mol - 1 R - 1 T - 1 ) was obtained for the Ag2In IMC. The observations were discussed in terms of the interplay of thermodynamic and kinetic constraints.

  10. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cieślak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100−x}Re{sub x} (x = 43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ∼65 K for x = 43 and ∼23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  11. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  12. Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.

    PubMed

    Rajasekharan, T; Seshubai, V

    2012-01-01

    It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.

  13. The atomic structure of low-index surfaces of the intermetallic compound InPd.

    PubMed

    McGuirk, G M; Ledieu, J; Gaudry, É; de Weerd, M-C; Hahne, M; Gille, P; Ivarsson, D C A; Armbrüster, M; Ardini, J; Held, G; Maccherozzi, F; Bayer, A; Lowe, M; Pussi, K; Diehl, R D; Fournée, V

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  14. The atomic structure of low-index surfaces of the intermetallic compound InPd

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de; Hahne, M.; Gille, P.; Ivarsson, D. C. A.; Armbrüster, M.; Ardini, J.; Held, G.; Maccherozzi, F.; Bayer, A.; Lowe, M.; Pussi, K.; Diehl, R. D.

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  15. Atomic jump frequencies in intermetallic compounds studied using perturbed angular correlation of gamma rays

    NASA Astrophysics Data System (ADS)

    Newhouse, Randal Leslie

    Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using ab initio relaxation models created using the program PolyPacFit. Jump frequency activation enthalpies were determined from measurements over a range of temperatures. Diffusion was studied in the following systems: 1) Pseudo-binary alloys having the L12 crystal structure such as In3(La1-xPrx). The goal was to see how jump frequencies were affected by random disorder. 2) The family of layered phases, LanCoIn3n+2 ( n=0,1,2,3…∞). The goal was to see how jump frequencies varied with the spacing of Co layers, which were found to block diffusion. 3) Phases having the FeGa3 structure. The goal was to analyze dynamical relaxation for probe atoms having multiple inequivalent jump vectors. 4) Phases having the tetragonal Al4Ba structure. The goal was to search for effects in the PAC spectra caused by fluctuations in magnitudes of EFGs without fluctuations in orientations. Ab initio relaxation models were developed to simulate and fit dynamical relaxation for PAC spectra of FeGa3, and several phases with the Al4Ba structure in order to determine underlying microscopic jump frequencies. In the course of this work, site preferences also were observed for 111In/Cd probe atoms in several FeGa 3 and Al4Ba phases.

  16. Smart Solution Chemistry to Sn-Containing Intermetallic Compounds through a Self-Disproportionation Process.

    PubMed

    Zhang, Yuelan; Li, Liping; Li, Qi; Fan, Jianming; Zheng, Jing; Li, Guangshe

    2016-09-26

    Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn-containing intermetallics is challenging. In this work, we demonstrated for the first time that a self-disproportionation-induced in situ process produces cavernous Sn-Cu intermetallics (Cu3 Sn and Cu6 Sn5 ). The successful synthesis is realized by introducing inorganic metal salts (SnCl2 ⋅2 H2 O) to NaOH aqueous solution to form an intermediate product of reductant (Na2 SnO2 ) and by employing steam pressures that enhance the reduction ability. Distinct from the traditional in situ reduction, the current reduction process avoided the uncontrolled phase composition and excessive use of organic regents. An insight into the mechanism was revealed for the Sn-Cu case. Moreover, this method could be extended to other Sn-containing materials (Sn-Co, Sn-Ni). All these intermetallics were attempted in the catalytic effect on thermal decompositions of ammonium perchlorate. It is demonstrated that Cu3 Sn showed an outstanding catalytic performance. The superior property might be primarily originated from the intrinsic chemical compositions and cavernous morphology as well. We supposed that this smart solution reduction methodology reported here would provide a new recognition for the reduction reaction, and its modified strategy may be applied to the synthesis of other metals, intermetallics as well as some unknown materials.

  17. Point defects quenched in NiAl and related intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Fan, Jiawen

    1991-08-01

    Point defects in the highly ordered B2 compounds NiAl, CoAl and FeAl were studied using the perturbed gamma-gamma angular correlations (PAC) technique. Quadrupole interactions detected at dilute In-111 probes on Al sites in NiAl and CoAl were identified with complexes containing one or two vacancies in the first atomic shell. Measurements on rapidly quenched NiAl and CoAl exhibited increases in site fractions of vacancy-probe complexes caused by formation of thermal defects. Site fractions were analyzed using the law of mass action to obtain absolute vacancy concentrations. PAC is shown to be a powerful new technique for the quantitative study of equilibrium defects in solids. For NiAl, the vacancy concentration quenched-in from a given temperature was found to be independent of composition over the range 50.4 to 53.5 at. pct. Ni, identifying the Schottky defect (vacancy pair) as the dominant equilibrium defect, and ruling out the so-called triple defect. Formation energies and entropies of Schottky pairs were determined to be 2.66(8) and 3.48(12) eV, and 12(1) and 17(2) k sub B, respectively, for NiAl and CoAl. The entropies suggest huge vacancy concentrations, 13 pct. at the melting temperatures of NiAl and CoAl. Migration energies of Ni and Co vacancies were found to be 1.8(2) and 2.5(2) eV, respectively. FeAl exhibited complex behavior. A low temperature regime was detected in NiAl and CoAl within which vacancies are mobile but do not anneal out, so that the vacancy concentration remains constant. In NiAl, this 'bottleneck' regime extends from 350 to 700 C. Vacancies were found to be bound to the In probes with an energy very close to 0.20 eV in NiAl and CoAl. An explanation of the bottleneck is proposed in terms of saturation of all lattice sinks. This annealing bottleneck should exist in a wide range of intermetallic compounds when there is a sufficiently high vacancy concentration.

  18. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    SciTech Connect

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  19. Formation of GaPd2 and GaPd intermetallic compounds on GaN(0001)

    NASA Astrophysics Data System (ADS)

    Grodzicki, M.; Mazur, P.; Pers, J.; Brona, J.; Zuber, S.; Ciszewski, A.

    2015-09-01

    Palladium was deposited gradually under ultrahigh vacuum onto a well-defined surface of (0001)-oriented n-type GaN, at room temperature. Each deposition step was followed by annealing. Physicochemical properties of the Pd adlayers were in situ investigated prior to and after annealing by the X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and atomic force microscopy techniques. Annealing resulted in the formation of GaPd2 and GaPd intermetallic compounds at 550 °C and at 800 °C. Even for thicker layers, the compounds were strongly dispersed, forming 3D nanostructures. The substrate uncovered by the compounds revealed Ga-rich GaN(0001)-(1 × 1) surface. Formation of Ga-Pd-N bonds or Pd nitrides was not detected at the surface. The Ga-Pd intermetallic compound surface engineered on the GaN(0001) substrate can be used as the strongly dispersed catalyst or a model catalyst.

  20. Ternary rare-earth aluminium intermetallics RE10TAl3 (RE = Y, Ho, Tm, Lu; T = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) with an ordered anti-Co2Al5 structure.

    PubMed

    Benndorf, Christopher; Eckert, Hellmut; Janka, Oliver

    2017-01-24

    Twenty new rare-earth metal rich intermetallic aluminium compounds, RE10TAl3 (RE = Y, Ho, Tm, Lu; T = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt), were synthesized by arc melting the elements. The compounds crystallize, in analogy to e.g. the respective Cd representatives, with a ternary ordered structure as anti-type to the hexagonal Co2Al5 type, with the space group P63/mmc. The three crystallographically independent rare-earth metal sites occupy the aluminium positions of the aristotype, while the transition metal and aluminium atoms are ordered on the two cobalt sites. Like other rare-earth rich compounds the RE10TX3 members also exhibit transition-metal-centred T@RE6 trigonal prisms as striking structural building units. The prepared compounds have been investigated by susceptibility measurements and (27)Al solid-state MAS-NMR measurements conducted on the Pauli-paramagnetic Y and Lu compounds. Some compounds show a certain amount of disorder as seen from the single crystal structure analysis and from signal broadening in the NMR investigations. By separating Knight shifts from second-order quadrupolar shifts via field dependent measurements, monotonic trends can be discerned regarding the effect of the T atom valence electron concentration and period number, as well as the effect of the closed 4f shell contributed in the Lu compounds. The results confirm that a comparison of Knight shifts within a series of isotypic compounds can reveal important electronic structure information in intermetallic systems.

  1. Behavior of alloys of the PtPd intermetallic compound with Hf and Zr in the electrosynthesis of peroxo salts

    SciTech Connect

    Toroptseva, N.T.; Vaseva, A.Yu.

    1988-08-10

    The objective of this study was to investigate the behavior of anodes made of alloys of the PtPd intermetallic compound with Hf and Zr in the synthesis of potassium peroxodicarbonates and peroxoborates. The investigations were based on polarization measurements in different regimes on stationary and rotating electrodes, the determination of the current yield of active oxygen in galvano- and potentiostatic syntheses, and the study of the kinetics of catalytic decomposition of peroxide solutions in the presence of the electrode in the range 289-308 K.

  2. Hydrides of intermetallic compounds with a H/M ratio greater than unity obtained at high hydrogen pressures

    SciTech Connect

    Semenenko, K.N.; Klyamkin, S.N.

    1993-11-01

    Novel hydride phases with H/M > 1 based on Zr{sub 2}Pd, Hf{sub 2}Pd, and Hf{sub 2}Cu (structures of the MoSi{sub 2} type) have been synthesized at high H{sub 2} pressures. The X-ray diffraction investigations of the resulting hydrides have been carried out. Some factors determining the maximum hydrogen content in the hydrides of intermetallic compounds are discussed. A model structure of the hydrides obtained is proposed, which assumes the possibility of direct H-H interactions when the interatomic distances are less than 1 {angstrom}.

  3. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  4. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    SciTech Connect

    Haseeb, A.S.M.A. Arafat, M.M. Johan, Mohd Rafie

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  5. Enthalpies of formation of Cd–Pr intermetallic compounds and thermodynamic assessment of the Cd–Pr system

    PubMed Central

    Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert

    2014-01-01

    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be −46.0, −38.8, −35.2 and −24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475

  6. The role of zinc on the chemistry of complex intermetallic compounds

    SciTech Connect

    Xie, Weiwei

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  7. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  8. Effect of cooling condition and Ag on the growth of intermetallic compounds in Sn-based solder joints

    NASA Astrophysics Data System (ADS)

    Ma, Haoran; Kunwar, Anil; Guo, Bingfeng; Sun, Junhao; Jiang, Chengrong; Wang, Yunpeng; Song, Xueguan; Zhao, Ning; Ma, Haitao

    2016-12-01

    The intermetallic compound growth in Sn/Cu and Sn-3.5Ag/Cu solder joints undergoing cooling has been in-situ observed using synchrotron radiation X-ray imaging technique. The overall thickness of intermetallic compound attained during cooling condition is dependent on the rates of Cu precipitation or deposition from the bulk solder and Cu diffusion from grain boundary at interface. Although the net increase in IMC thickness contributed predominantly by deposition kinetics is greater for air cooling than in furnace cooling from the start temperature of 300°C for the first 20 min, the former solidifies before 30 min and the latter stays in liquid state for 1 h due to slower cooling rate and attains a bigger IMC of size about 14.5 μm. In context of Sn-3.5Ag solders subjected to air cooling from 275°C, the presence of Ag contributes to the increment in overall IMC thickness during the cooling period. For the improvement in solder joints reliability, faster cooling rate and limiting the Ag content can be employed as the materials design and processing parameters.

  9. Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry.

    PubMed

    Liu, Ya L; Liu, Kui; Yuan, Li Y; Chai, Zhi F; Shi, Wei Q

    2016-08-15

    In this work, the compositions of Ce-Al, Er-Al and La-Bi intermetallic compounds were estimated by the cyclic voltammetry (CV) technique. At first, CV measurements were carried out at different reverse potentials to study the co-reduction processes of Ce-Al, Er-Al and La-Bi systems. The CV curves obtained were then re-plotted with the current as a function of time, and the coulomb number of each peak was calculated. By comparing the coulomb number of the related peaks, the compositions of the Ce-Al, Er-Al and La-Bi intermetallic compounds formed in the co-reduction process could be estimated. The results showed that Al11Ce3, Al3Ce, Al2Ce and AlCe could be formed by the co-reduction of Ce(iii) and Al(iii). For the co-reduction of Er(iii) and Al(iii), Al3Er2, Al2Er and AlEr were formed. In a La(iii) and Bi(iii) co-existing system in LiCl-KCl melts, LaBi2, LaBi and Li3Bi were the major products as a result of co-reduction.

  10. The characteristics of hot swaged NiAl intermetallic compounds with ternary additions consolidated by HIP techniques

    SciTech Connect

    Ishiyama, S.; Eto, M.; Mishima, Y.; Miura, S.; Suzuki, T.

    1995-12-31

    Stoichiometric and non-stoichiometric NiAl intermetallics with ternary additives, such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or Mo/e, W, Mn, Fe, Cu and B, fabricated with the combination of Hot Isostatic Pressing (HIP) and hot swaging techniques have been investigated. The mechanical properties of hot swaged NiAl with various ternary additives, consolidated by ion beam casting or HIP techniques, have been tested at temperatures ranging from R.T. to 1,000 C. It is found that significant tensile elongation at room temperature can be achieved by hot swaged as-HIP`ed NiAl compounds with Mo or Mo/Re additives, whereas cast and hot swaged compounds with Mo addition resulted in some elongation above 400 C.

  11. Structure comparison between Th2Zn17-type and TbCu7-type Sm Fe intermetallic compounds and their nitrides by means of 57Fe-Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Yoichi; Omatsuzawa, Ryo; Sakazaki, Iwao; Suzuki, Sayaka; Hashino, Hayato; Saito, Takanobu; Iriyama, Takahiko

    2005-11-01

    Samarium iron intermetallic compounds were prepared by a melt spinning method with low and high wheel speeds, which resulted in a Th2Zn17-type and a TbCu7-type structure, respectively. Structure comparison between these types was investigated for Sm Fe intermetallic compounds and their nitrides by 57Fe-Mössbauer spectroscopy.

  12. Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3

    SciTech Connect

    Cao, Qing

    2012-01-01

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R5(SixGe1-x)4 family (R = rare earths, 0 ≤ x ≤ 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R5(SixGe1-x)4 compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er5Si4 compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd5Si4-type orthorhombic to Gd5Si2Ge2-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 °C.

  13. First principle investigation of crystal lattice structure, thermodynamics and mechanical properties in ZnZrAl2 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Wei, Zhenyi; Tou, Shushi; Wu, Bo; Bai, Kewu

    2016-12-01

    ZnZrAl2 is a kind of heterogeneous nucleation to promote the refine of grain of ZA43 alloy. ZnZrAl2 intermetallic is also considered as a candidate for superalloys. The crystal lattice structure, alloy thermodynamics and mechanical properties of ZnZrAl2 intermetallic compound were investigated by ab initio calculations based on density functional theory (DFT). In particular, the site preference of atoms in different sublattices was predicted based on alloy thermodynamics. At ground state, the most stable structure is L12 structure with sublattice model (Zn)1a(Zr0.3333Al0.6667)3c or (Zr)1a(Zn0.3333Al0.6667)3c, and the occupying preferences of Zn, Zr and Al atoms are independent with the increasing temperature. The bulk, shear, Young's modulus and the Poisson's ratio of the L12 structure ZnZrAl2 were calculated based on the site occupying configurations. The results show that ZnZrAl2 is a brittle material in nature. Electronic structures analysis revealed that Al-Zr atoms possess a covalent bonding character, while the Zn-Zr atoms have a metallic bonding character. ZnZrAl2 has stable mechanical properties at high temperature. The grain refinement effect of ZnZrAl2 precipitates in Zn-Al alloys were discussed based on crystal lattice match theory.

  14. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    SciTech Connect

    Pagare, Gitanjali Jain, Ekta; Abraham, Jisha Annie; Sanyal, Sankar P.

    2015-08-28

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.

  15. Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun

    2014-02-01

    In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.

  16. In search of the elusive amalgam SrHg8: a mercury-rich intermetallic compound with augmented pentagonal prisms.

    PubMed

    Tkachuk, Andriy V; Mar, Arthur

    2010-08-14

    In confirmation of its predicted existence in the Sr-Hg phase diagram, the mercury-rich intermetallic compound SrHg(8) has been prepared by reaction of the elements at 200 degrees C. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Pearson symbol oP72, space group Pnma, a = 13.328(1) A, b = 4.9128(5) A, c = 26.446(3) A). The Sr atoms are centred within two types of 18-vertex Hg polyhedra formed by augmenting pentagonal prisms with octagonal waists. The condensation of these Sr@Hg(18) clusters is associated with the formation of a complex anionic Hg-Hg bonding network, as supported by electronic structure calculations which reveal strong mixing of Hg 6s and 6p states in highly delocalized bands superimposed with a narrower 5d band below the Fermi level.

  17. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    SciTech Connect

    Tao, Xiaoma; Wang, Ziru; Lan, Chunxiang; Xu, Guanglong; Ouyang, Yifang; Du, Yong

    2016-05-15

    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.

  18. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process.

  19. Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X=transition or main group metal) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Tian, T.; Wang, X. F.; Li, W.

    2013-03-01

    As high-temperature structural materials, L12 intermetallic compounds have attracted the strong interest from both fundamental and industrial aspects. Understanding of elastic property is a basis for the complete investigations of mechanical behavior of L12 alloys. In an effort to explore the electronic origin of elastic properties of L12 intermetallics, we have performed a systematic study on elastic constants for single crystals, and Young's modulus, shear modulus, bulk modulus and Poisson's ratio for poly-crystals of 22 known Al3X and X3Al-type (X=transition or main group metal) intermetallics using the ab initio calculations. Based on the calculations of elastic constants and extreme (both positive and negative) Poisson's ratios, we found a pronounced correlation between the extreme Poisson's ratio and the elastic anisotropy, i.e., approximate 40% of the investigated L12 intermetallics exhibit intrinsic auxetic behavior. Furthermore, based on the distribution of bonding charge densities, we revealed that the ductility and extreme Poisson's ratios were attributable to the directionality of bonds of these alloys. Our findings provide a new method to predict mechanical behavior of intermetallics.

  20. Studies of magnetostriction and spin polarized band structures of rare earth intermetallics

    NASA Technical Reports Server (NTRS)

    Wallace, W. E.

    1979-01-01

    Anisotropic magnetostriction measurements of R6Fe23, R = (Tb, Dy, Ho, and Er) were carried out from 77 K to room temperature. Magnetic fields up to 2.1 Tesla were applied. All the compounds exhibited large magnetostrictions at 77 K, the largest effect being obtained for Tb6Fe23. Saturation magnetostriction values for the compounds were also determined for 77 K and room temperature. Results of the temperature dependence of magnetostriction for Er6Fe23 are in good agreement with Callen and Callen's single ion theory. Therefore, the main sources of magnetostriction in this compound is the Er ion. The spin-up and spin-down electronic energy bands, the density of states and the magnetic moments of YCo5, SmCo5, and GdCo5 were calculated by the spin polarized augmented plane wave technique. The calculations obtained show the origin of the moment, provide good estimates of its magnitude and variation, and the reasons for those variations. They also show the important role of partial charge transfer and of d-d electronic coupling. Calculations for LaNi5 and GdNi5 systems are discussed.

  1. The Intermetallic Compound Formation for the Wire Bond Between an Al Pad and Ag-xPd Alloy Wire

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsiang; Lin, Kwang-Lung; Lin, Yu-Wei; Cheng, Yun-Kai

    2016-12-01

    Silver-palladium alloy wire has been shown as an economical and reliable substitute for gold wire in various applications in the electronic packaging industry. The success of wire bonding relies on the formation of an interfacial intermetallic compound (IMC). This study is aimed to investigate the formation behavior of IMCs between an Al pad and Ag-Pd alloy wire with various Pd concentrations of 1.0-6.0% for the as-bonded commercial Ag/Al joint. The interfacial IMCs were investigated with scanning electron microscopy and energy-dispersive x-ray spectroscopy. The IMCs formed are separate (Ag, Pd)2Al and (Ag, Pd)3Al2 for a Ag6Pd wire bond, while (Ag, Pd)2Al and (Ag, Pd)3Al2 are mixed for the other Ag(1-4.5)Pd alloy wire bonds. The thickness of the total IMC layer varies from 0.65 μm for Ag1Pd to 0.91 μm for Ag6Pd, yet a minimum of 0.44 μm exists for Ag3.5Pd. The compound formation behavior was found to correspond with the Ag-Al phase diagram. After pressure cooker tests, a less stable IMC (Ag, Pd)3Al formed at the AgxPd/Al interface.

  2. Ba 5Ti 12Sb 19+x, a polar intermetallic compound with a stuffed γ-brass structure

    NASA Astrophysics Data System (ADS)

    Bie, Haiying; Mar, Arthur

    2009-11-01

    The polar intermetallic compound Ba 5Ti 12Sb 19+x ( x⩽0.2) has been synthesized by reaction of the elements. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Ba 5Ti 12Sb 19.102(6), space group P43¯m, Z=2, a=12.4223(11) Å, V=1916.9(3) Å 3). The set of Ba and Sb sites corresponds to the structure of Cu 9Al 4, a γ-brass type with a primitive cell. A complex three-dimensional framework of Ti atoms, in the form of linked planar Ti 9 clusters, is stuffed within the γ-brass-type Ba-Sb substructure. Notwithstanding its relationship to the γ-brass structure, the compound does not appear to conform to the Hume-Rothery electron concentration rules. Band structure calculations on an idealized Ba 5Ti 12Sb 19 model suggest that the availability of bonding states above the Fermi level is responsible for the partial occupation, but only to a limited degree, of an additional Sb site within the structure. Magnetic measurements indicated Pauli paramagnetic behaviour.

  3. New insights into rare-earth intermetallic alloys for cryogenic Peltier cooling

    NASA Astrophysics Data System (ADS)

    Boona, Stephen; Morelli, Donald

    2013-03-01

    Strongly correlated materials such as intermediate valence CePd3 have long been considered attractive candidates for cryogenic Peltier cooling due to the combination of metallic electrical resistivity concurrent with Seebeck coefficient values on the order of 100 μ V/K at low temperatures. This behavior is a direct result of the strong hybridization of localized 4f states with delocalized conduction electrons, which gives rise to several unusual structural, electronic, thermal, and magnetic properties. Our recent work on this compound has helped to unravel some of the complex ways in which these properties are correlated, and we have successfully utilized this improved understanding to enhance ZT up to 0.3. We present a broad overview of these new insights and provide suggestions for how they may be exploited to achieve enhanced thermoelectric performance in other strongly correlated materials. Work supported by AFOSR-MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533.

  4. Magnetic Properties of Some Gadolinium, Erbium, Dysprosium, Manganese Substituted Samarium-2 Cobalt-17 Intermetallic Compounds.

    DTIC Science & Technology

    1979-08-01

    that excellent temperature compensation could be achieved in these compounds in the teinper~ture (cont’d) ~‘ DD I ? ) 1Q3 L°’TI°M °’ INOV BI...following prop— erties: energy products in excess of 30 MGOe, low reversible tem- perature coefficients of magnetization , c~, and linear demagnetiza...Sm2(Co,Fe) i7 compounds significantly enhances their coercivities and energy products. Thus, we have been investigating the magnetic properties of these

  5. Nanoclusters based on pentagondodecahedra with shells in the form of D32, D42, and D50 deltahedra in crystal structures of intermetallic compounds

    SciTech Connect

    Pankova, A. A.; Ilyushin, G. D.; Blatov, V. A.

    2012-01-15

    The TOPOS software package has been used to form a database of intermetallic compounds containing pentagondodecahedral d clusters (528 crystal structures of intermetallic compounds, 111 topological types, and 47 space symmetry groups). On the whole, 606 atomic d configurations have been selected which are described by 14 point symmetry groups. Examples of nanoclusters are presented which are precursors of the crystal structures of intermetallic compounds with the outer shell in the form of deltahedra D, which are formed above dodecahedra. These nanoclusters are identified in the automatic mode of structural data processing: D32 (K{sub 8}In{sub 6}Ge{sub 40}, Cs{sub 30}Na{sub 3}Sn{sub 162}), D{sub 42} (Ru{sub 3}Be{sub 17}, Y{sub 3}Cd{sub 18}, Ca{sub 3}(Cd{sub 17}Al)), and D{sub 50} (Yb{sub 3}Zn{sub 18}, Ce{sub 3}(Au{sub 14}Sn{sub 3}), Pr{sub 3}Cd{sub 18}, Eu{sub 4}Cd{sub 25}), where 32, 42, and 50 are the numbers of atoms in the shell. Similar deltahedra were found previously in icosahedral nanoclusters (precursors of intermetallic compounds). Structures with the dodecahedral nanocluster precursors containing D42 and D50 deltahedra are approximants of MCd{sub 5.7} (M = Yb or Ca) quasicrystals and belong to the family of MCd{sub 6} (M = Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, or Ca).

  6. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  7. Effect of Sn Grain Orientation on Formation of Cu6Sn5 Intermetallic Compound Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Yao; Lin, Han-wen; Chen, Chih

    2016-12-01

    Solder joints with Cu/Sn-Ag/Cu structure and bump height of 15 μm have been used to investigate the electromigration phenomenon at different temperatures and current densities. Moreover, the grain orientation was analyzed using electron backscatter diffraction. It was found that the anisotropic properties of tin affected the formation rate of Cu-Sn intermetallic compounds (IMCs), and that the angle between the electron flow direction and tin grain orientation played an important role in the formation of Cu6Sn5 IMC. With changes in angle, the diffusion rate of copper atoms in tin also varied. When the c-axis of tin was parallel to the electron flux, copper atoms diffused rapidly, resulting in fast formation of Cu-Sn IMCs. On the other hand, if the angle between the c-axis of the grain and the electron flow direction was large, the tin grains were more resistant to Cu diffusion during current stressing, leading to a very slow IMC formation rate.

  8. Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds.

    PubMed

    Kronmüller, H; Yang, J B; Goll, D

    2014-02-12

    The uniaxial intermetallic compounds of L10-FePt and the low temperature NiAs structure of MnBi are suitable alloys for application as high-density recording materials or as high-coercivity permanent magnets. Single domain particles of these materials are characterized by coercive fields above 1 T over a large temperature range. In particular MnBi shows a coercive field of 2 T at 450 K. Its extraordinary magnetic properties in the temperature range up to 600 K are due to an increase of the magnetocrystalline anisotropy constant from 1.2 MJ m(-3) at 300 K to 2.4 MJ m(-3) at 450 K. In spite of the large coercivities obtained for both type of materials their experimental values deviate considerably from the theoretical values Hc = 2K1/Js valid for a homogeneous rotation process in spherical particles. As is well known these discrepancies are due to the deteriorating effects of the microstructure. For an analysis of the coercive fields the Stoner-Wohlfarth theory has to be expanded with respect to higher anisotropy constants and to microstructural effects such as misaligned grains and grain surfaces with reduced anisotropy constants. It is shown that the temperature dependence and the angular dependence of Hc for FePt as well as MnBi can be quantitatively interpreted by taking into account the above mentioned intrinsic and microstructural effects.

  9. The magnetic behavior of the intermetallic compound NdMn2Ge2 studied by magnetization and hyperfine interactions measurements

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-01

    The magnetic behavior of the intermetallic compound NdMn2Ge2 was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ-γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around TN ˜ 425 K and a well defined ferromagnetic transition at TC ˜ 320 K. Moreover, at ˜210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ˜25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using 140La(140Ce) and 111In(111Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (Bhf) at Nd and Mn sites, respectively. PAC results with 111Cd probe nuclei at Mn sites show that the dependence of Bhf with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with 140Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to Bhf.

  10. Influence of Ti and La Additions on the Formation of Intermetallic Compounds in the Al-Zn-Si Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Gu, Qin-Fen; Li, Qian; Lu, Hu-Sheng

    2016-12-01

    The effect of Ti and La additions on the formation of intermetallic compounds (IMCs) in the galvalume (55Al-Zn-1.6Si wt pct) bath was investigated experimentally and further studied with first-principles calculation. The studied baths contain: 1 wt pct Fe, with Ti content ranging from 0.05 to 0.15 wt pct and La content ranging from 0.05 to 0.30 wt pct. Combination of the experimental results with the thermodynamic analysis shows that the solubility of Fe in the alloy bath decreases with an increase of Ti content, which results in the formation of mass dross. Compared with the Ti-containing alloy, La promotes the formation of τ 5 phase (Fe2Al8Si). When both Ti and La are added, Fe4Al13, τ 5, τ 6 (β-Al4.5FeSi), TiAl3, and Ti2Al20La phases were observed. Since these IMCs would consume more Si in the bath, the decrease of Si content with Ti and La additions is more significant than that of the bath without these additions. Furthermore, the formation mechanism of Ti/TiAl3/Ti2La20La core-shell structure in the coating bath is proposed. This study has implications for strategic design of industry hot-dip production with exceptional mechanical properties of Al alloy coating.

  11. Effect of Sn Grain Orientation on Formation of Cu6Sn5 Intermetallic Compound Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Yao; Lin, Han-wen; Chen, Chih

    2017-04-01

    Solder joints with Cu/Sn-Ag/Cu structure and bump height of 15 μm have been used to investigate the electromigration phenomenon at different temperatures and current densities. Moreover, the grain orientation was analyzed using electron backscatter diffraction. It was found that the anisotropic properties of tin affected the formation rate of Cu-Sn intermetallic compounds (IMCs), and that the angle between the electron flow direction and tin grain orientation played an important role in the formation of Cu6Sn5 IMC. With changes in angle, the diffusion rate of copper atoms in tin also varied. When the c-axis of tin was parallel to the electron flux, copper atoms diffused rapidly, resulting in fast formation of Cu-Sn IMCs. On the other hand, if the angle between the c-axis of the grain and the electron flow direction was large, the tin grains were more resistant to Cu diffusion during current stressing, leading to a very slow IMC formation rate.

  12. In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction

    SciTech Connect

    Qu, Lin; Zhao, Ning; Ma, Haitao Zhao, Huijing; Huang, Mingliang

    2014-05-28

    Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu{sub 6}Sn{sub 5} IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end after solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu{sub 6}Sn{sub 5} IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.

  13. Rare earth-transition metal-magnesium compounds-An overview

    SciTech Connect

    Rodewald, Ute Ch.; Chevalier, Bernard Poettgen, Rainer

    2007-05-15

    Intermetallic rare earth-transition metal-magnesium compounds play an important role as precipitations in modern light weight alloys and as host materials for hydrogen storage applications. Recent results on the crystal chemistry, the chemical bonding peculiarities, physical properties, and hydrogenation behavior of these materials are reviewed. - Graphical abstract: View of the Sm{sub 4}RhMg crystal structure approximately along the direction. Samarium, rhodium, and magnesium atoms are drawn as medium gray, filled (hidden in the trigonal prisms), and open circles, respectively. The three-dimensional network of corner-sharing RhSm{sub 6} trigonal prisms and the Mg{sub 4} tetrahedra are emphasized. The Sm1 atoms do not participate in the network of condensed trigonal prisms.

  14. Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System

    NASA Astrophysics Data System (ADS)

    Pan, Yanfang; Ye, Haimei; Chen, Xiaoxian; Jiang, Wenping; Yang, Wenchao; Zhan, Yongzhong

    2016-12-01

    Phase relations in the Si-V-Zr ternary system at 973 K (700 °C) were experimentally investigated using X-ray powder diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The isothermal section at 973 K (700 °C) is governed by seventeen three-phase regions, thirty-two two-phase regions, and sixteen single-phase regions. Ten binary compounds and one ternary compound (SiVZr) were confirmed. There are two new ternary compounds found in this work for the first time. One of them (Si4V3Zr2) was found in the stoichiometric composition around V 38 pct, Si 50 pct, and Zr 12 pct. The existence of another one (V17Si12Zr3) was observed while analyzing the XRD results of large quantities of equilibrated samples in the region around 54 at. pct V, 33 at. pct Si, and 13 at. pct Zr.

  15. Crystallographic superstructure in R2PdSi3 compounds (R=heavy rare earth)

    NASA Astrophysics Data System (ADS)

    Tang, Fei; Frontzek, Matthias; Dshemuchadse, Julia; Leisegang, Tilmann; Zschornak, Matthias; Mietrach, Robert; Hoffmann, Jens-Uwe; Löser, Wolfgang; Gemming, Sibylle; Meyer, Dirk C.; Loewenhaupt, Michael

    2011-09-01

    The R2PdSi3 intermetallic compounds have been reported to crystallize in a hexagonal AlB2-derived structure, with the rare earth atoms on the Al sites and Pd and Si atoms randomly distributed on the B sites. However, the intricate magnetic properties observed in the series of compounds have always suggested complications to the assumed structure. To clarify the situation, x-ray and neutron diffraction measurements were performed on the heavy rare earth compounds with R=Gd, Tb, Dy, Ho, Er, Tm, which revealed the existence of a crystallographic superstructure. The superstructure features a doubled unit cell in the hexagonal basal plane and an octuplication along the perpendicular c direction with respect to the primitive cell. No structural transition was observed between 300 and 1.5 K. Extended x-ray absorption fine structure (EXAFS) analysis as well as density functional theory (DFT) calculations were utilized to investigate the local environments of the respective atoms. In this paper the various experimental results will be presented and it will be shown that the superstructure is mainly due to the Pd-Si order on the B sites. A structure model will be proposed to fully describe the superstructure of Pd-Si order in R2PdSi3. The connection between the crystallographic superstructure and the magnetic properties will be discussed in the framework of the presented model.

  16. Chemical hydrogenation of La(Fe,Si) family of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Polak, M.; Hawelek, L.; Kowalczyk, M.; Hreczka, M.; Kolano-Burian, A.

    2016-11-01

    In the present work, the chemical hydrogenation process of La(Fe,Si)13 compounds has been shown. It was found, that the La(Fe,Si) compound can be easily saturated with hydrogen by performing reaction with 0.6 M hydrochloric acid (HCl) for 2 h. After reaction, the heat treatment process is necessary to make hydrogenated powder homogenous. For the LaFe11.8Si1.2 micronized (<50 μm) and hydrogenated powder, the strength of the magnetocaloric effect was estimated by means of magnetocalorimetric measurements on plates consolidated with PVDF thermoplastic polymer. Magnetic entropy change was calculated by use of magnetization data acquired at magnetic fields with induction up to 2T. The adiabatic temperature change is equal to 3 K in magnetic field change 0-1.7T at 335 K, while magnetic entropy change is equal 13 J/kg*K at 2T. The structural homogeneity of initial and hydrogenated powders was validated by powder X-ray diffraction method. The amount of hydrogen in the hydrogenated compounds was evaluated using thermogravimetry method (4 H atoms per formula unit LaFe11.8Si1.2).

  17. Processing, phase equilibria and environmental degradation of molybdenum (silicom,aluminum)(2) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Eason, Paul Duane

    The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of

  18. Coherent cluster atomic ordering in the Fe-27Al intermetallic compound

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Mukhametuly, B.; Sumnikov, S. V.; Golovin, I. S.

    2016-10-01

    Neutron diffraction studies of the Fe0.735Al0.265 compound are performed in a wide temperature range (20-900°C) in order to determine its structural states and the mechanism of ordering of atoms. The combination of high-resolution diffraction and the real-time detection of diffraction spectra makes it possible to establish that, in contrast to traditional notions, the structure of this compound at room temperature is a phase with only a partially ordered arrangement of Fe and Al in a unit cell. A completely ordered phase (such as Fe3Al) is present in the form of mesoscopic ( 200Å) clusters coherently incorporated into the disordered matrix of the main phase. After the transition of the sample to a disordered state ( T> 740°C) and slow cooling to room temperature, the size of structurally ordered clusters increases to 900 Å. A high contrast in the coherent neutron scattering lengths of iron and gallium nuclei allows the accurate determination of the temperature dependence of the occupancy factors of sites by Fe and Al atoms up to a phase transition to the disordered state.

  19. First principles study of structural, electronic, mechanical and thermal properties of A15 intermetallic compounds Ti3X (X=Au, Pt, Ir)

    NASA Astrophysics Data System (ADS)

    Rajagopalan, M.; Rajiv Gandhi, R.

    2012-12-01

    The structural, electronic, elastic, mechanical and thermal properties of Ti3Au, Ti3Pt and Ti3Ir intermetallic compounds crystallizing in A15 structure have been studied using density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Elastic properties such as Young's modulus (E), rigidity modulus (G), bulk modulus (B), Poisson's ratio (σ) and elastic anisotropic factor (A) have been calculated. From the present study it is noted that Ti3Ir is the hardest compound among the three materials studied due to its larger bulk modulus. Also, it is more ductile in nature.

  20. Theoretical studies of strongly correlated rare-earth intermetallics RIn₃ and RSn₃ (R=Sm, Eu, and Gd)

    SciTech Connect

    Shafiq, M.; Ahmad, Iftikhar E-mail: dr.iftikhar@uom.edu.pk; Jalali Asadabadi, S.

    2014-09-14

    In this paper, the structural, elastic, and electronic properties of RIn₃ and RSn₃ (R = Sm, Eu, Gd) compounds have been investigated using the full potential linearized augmented plane wave plus local orbital method within the density functional theory. The structural properties are investigated using the LDA, GGA, and the band correlated LDA+U and GGA+U schemes. The lattice parameters are in good agreement with the available experimental results and the divalent state of Eu is also verified. The spin-orbit coupling is included in order to predict the correct electronic properties and splitting of 4f states of the rare earth elements is also incorporated. We calculated Bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Kleinman parameters, Poisson's ratio, Lame's co-efficient, sound velocities for shear and longitudinal waves, and Debye temperature. We also predict the Cauchy pressure and B/G ratio in order to explore the ductile and brittle behaviors of these compounds.

  1. Electrocatalytic Formation and Inactivation of Intermetallic Compounds in Electrorefining of Silicon

    NASA Astrophysics Data System (ADS)

    Olsen, Espen; Rolseth, Sverre; Thonstad, Jomar

    2010-08-01

    Silicon for solar cell purposes is today produced by an energy intensive process exhibiting high irreversible thermodynamic energy losses. The purity of the product; 99,9999999 pct (9N), far exceeds what is generally accepted to be the requirements for photovoltaic purposes (4-6N). According to thermodynamics, all elements except boron may be removed from silicon by three layer electrochemical refining above the melting point of Si. Boron, on the other hand, shows higher affinity to specific transition metals compared to silicon. This may be exploited by applying two principles in parallel; electrochemical refining and electrocatalyzed reaction-precipitation of transition metal borides as heavy, stable particles. In this study we report on the formation of such compounds at the cathode-electrolyte interface during electrochemical refining. The trends and mechanisms observed in the laboratory scale investigation indicate that high purity silicon may be produced in industrial scale reactors at low cost- and energy intensity.

  2. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Chattopadhyay, M. K.; Roy, S. B.

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions.

  3. Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Yang, Dongdong; Zhang, Mingxin; Huang, Jihua; Zhao, Xingke

    2016-10-01

    The interfacial reaction between solid steel and liquid aluminum has been widely investigated in past decades; however, some issues, such as the solid/liquid interfacial structure, formation mechanisms of FeAl3 and Fe2Al5, and interaction between the growth and dissolution of intermetallic compounds, are still not fully understood. In this study, a hot-dipping method is designed to investigate the interfacial reaction in the temperature range between 973 K and 1273 K (700 °C 1000 °C) for 10 to 60 seconds. The intensification of the dissolution leads to the transformation of FeAl3/liquid aluminum into Fe2Al5/liquid aluminum in the solid/liquid structure with increasing reaction temperature. The formation of FeAl3 adhered to the interface depends not only on the reaction mechanism but also on precipitation at relatively low temperatures. In contrast, precipitation is the only formation mechanism for FeAl3 at relatively high temperatures. Austenitizing results in the complete transformation of the tongue-like Fe2Al5/Fe interface to a flat shape. The growth of Fe2Al5 with respect to the maximum thickness is governed by the interfacial reaction process, whereas the growth of Fe2Al5 with respect to the average thickness is governed by the diffusion process in the range of 973 K to 1173 K (700 °C to 900 °C) for 10 to 60 seconds. The dissolution of the parent metal is due to the natural dissolution of FeAl3 at low temperatures and Fe2Al5 at high temperatures.

  4. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  5. Magnetic properties and structures of fibrous R11Ni4In9 intermetallics (R = heavy rare earths)

    NASA Astrophysics Data System (ADS)

    Provino, Alessia; Ritter, Clemens; Gschneidner, Karl A.; Manfrinetti, Pietro; Dhar, Sudesh K.; Pecharsky, Vitalij K.

    2015-03-01

    The existence and the unusual self-assembled nano/microfibrous morphology of the R11T4In9 (R = rare earth, T = Ni, Pd, Pt) phases has been recently studied [1,2,3]. All the rare earths (but Sc, Eu, Yb) form this ternary compound (orthorhombic Nd11Pd4In9-type, oC48, Cmmm). The bundles of fibers grow parallel to the temperature gradient and along the short c-axis. In this presentation we describe the results of a detailed investigation of the physical properties (electrical resistivity, heat capacity, magnetization measurements) of Tb11Ni4In9, Dy11Ni4In9andHo11Ni4In9 by orienting the fibers parallel and orthogonal, respectively, to the electric current and magnetic field. The unusual fibrous microstructure of these compounds leads to a strong anisotropy in their physical properties, with the c-axis of the orthorhombic cell being the easy magnetization and high electrical-conductivity direction. The magnetic structures of Tb11Ni4In9andHo11Ni4In9, which have multiple magnetic orderings, have been investigated by neutron diffraction. The complex magnetic behavior found in these phases is a result of the competing ferrimagnetic (along the c-axis) and antiferromagnetic (on the a - b plane) orderings of the five R sublattices.

  6. R5T4 compounds - unique multifunctional intermetallics for basic research and applications

    SciTech Connect

    Mudryk, Yaroslav

    2016-10-01

    The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd2Fe14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result of a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.

  7. A framework for studying dynamics and stability of diffusive-reactive interfaces with application to Cu6Sn5 intermetallic compound growth.

    PubMed

    Udupa, Anirudh; Sadasiva, Subramanya; Subbarayan, Ganesh

    2016-06-01

    Often during phase growth, the rate of accretion, on the one hand, is determined by a competition between bulk diffusion and surface reaction rate. The morphology of the phase interface, on the other hand, is determined by an interplay between surface diffusivity and surface reaction rate. In this study, a framework to predict the growth and the morphology of an interface by modelling the interplay between bulk diffusion, surface reaction rate and surface diffusion is developed. The framework is demonstrated using the example of Cu-Sn intermetallic compound growth that is of significance to modern microelectronic assemblies. In particular, the dynamics and stability of the interface created when Cu and Sn react to form the compound Cu6Sn5 is explored. Prior experimental observations of the Cu6Sn5-Sn interface have shown it to possess either a scalloped, flat or needle-shaped morphology. Diffuse interface simulations are carried out to elucidate the mechanism behind the interface formation. The computational model accounts for the bulk diffusion of Cu through the intermetallic compound, reaction at the interface to form Cu6Sn5, surface diffusion of Cu6Sn5 along the interface and the influence of the electric current density in accelerating the bulk diffusion of Cu. A stability analysis is performed to identify the conditions under which the interface evolves into a flat, scalloped or needle-shaped structure.

  8. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as

  9. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C. de; Fournée, V.

    2014-08-28

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (√(3)×√(3)) R30{sup ∘} superstructure and an estimated composition close to In{sub 2}Pd{sub 3}. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (√(3)×√(3)) R30{sup ∘} superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In{sub 7}Pd{sub 3} compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600 K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In

  10. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase.

  11. PyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Medasani, Bharat; Chen, Wei; Persson, Kristin A.; Haranczyk, Maciej; Asta, Mark

    2015-08-01

    Point defects play an important role in determining the structural stability and mechanical behavior of intermetallic compounds. To help quantitatively understand the point defect properties in these compounds, we developed PyDII, a Python program that performs thermodynamic calculations of equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallics. The algorithm implemented in PyDII is built upon a dilute-solution thermodynamic formalism with a set of defect excitation energies calculated from first-principles density-functional theory methods. The analysis module in PyDII enables automated calculations of equilibrium intrinsic antisite and vacancy concentrations as a function of composition and temperature (over ranges where the dilute solution formalism is accurate) and the point defect concentration changes arising from addition of an extrinsic substitutional solute species. To demonstrate the applications of PyDII, we provide examples for intrinsic point defect concentrations in NiAl and Al3 V and site preferences for Ti, Mo and Fe solutes in NiAl.

  12. Structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.

  13. Systematics of Mössbauer hyperfine parameters in Np intermetallics

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Gal, J.; Asch, L.; Potzel, W.

    1992-05-01

    Data for intermetallic compounds of neptunium obtained with the 60 keV Mössbauer resonance of237Np are reviewed. Measurements of temperature, pressure and field dependencies are available. The main questions addressed are: (a) the degree of delocalization of 5f-electrons, (b) the formal charge state of Np, and (c) the influence of the ligand on the neptunium electronic structure. For this purpose, we present an evaluation of systematic behavior concerning mainly the hyperfine field and isomer shift in the cubic Laves phase materials NpX2, the NaCl-type monochalcogenides and monopnictides, and intermetallics with AuCu3 and ThCr2Si2 structures. Analogies to corresponding rare-earth compounds will be pointed out.

  14. Effects of TiFe Intermetallic Compounds on the Tensile Behavior of Ti-4Al-4Fe-0.25Si Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Sang Won; Kim, Kyong Min; Park, Chan Hee; Hong, Jea Keun; Yeom, Jong-Taek; Shih, Donald S.

    2017-02-01

    The effect of the B2 (ordered BCC) intermetallic compound TiFe on the tensile behavior of the Ti-4Al-4Fe-0.25Si alloy was investigated. The nucleation mechanism of TiFe was dependent on the solution temperature, and the solution treatment and aging temperatures were also important to the final alloy. The presence of intra-granular TiFe, which nucleated at α' (HCP) sites during aging, resulted in alloy brittleness. Alternatively, the presence of inter-granular TiFe, which nucleated only at nano-sized α (HCP) sites during aging, resulted in an excellent combination of strength and ductility compared to the original microstructure.

  15. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions.

    PubMed

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  16. Intermetallic compounds formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder

    SciTech Connect

    Chang, T.-C.; Hon, M.-H.; Wang, M.-C

    2003-04-30

    The intermetallic compounds (IMCs) formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder alloy have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The XRD patterns show that the main IMCs formed at the interface of Sn-9Zn-0.5Ag/Cu are {gamma}-Cu{sub 5}Zn{sub 8} and {eta}'-Cu{sub 6}Sn{sub 5}. The Ag{sub 3}Sn IMC with orthorhombic structure was also observed at the Sn-9Zn-0.5Ag/Cu interface by TEM and ED analyses. The interfacial adhesion strength between the Cu substrate and Sn-9Zn-0.5Ag lead-free solder alloy is higher than that of the Sn-9Zn alloy due to the formation of Ag{sub 3}Sn IMC at the interface.

  17. LaAu2 and CeAu2 surface intermetallic compounds grown by high-temperature deposition on Au(111)

    NASA Astrophysics Data System (ADS)

    Ormaza, M.; Fernández, L.; Lafuente, S.; Corso, M.; Schiller, F.; Xu, B.; Diakhate, M.; Verstraete, M. J.; Ortega, J. E.

    2013-09-01

    We report on the crystal structure and electronic bands of LaAu2 and CeAu2 surface intermetallic compounds grown by high-temperature deposition on Au(111). By scanning-tunneling microscopy we study the formation of different alloy phases as a function of growth temperature and lanthanide coverage. We determine the specific growth conditions to achieve monolayers and bilayers of LaAu2 and CeAu2 with high crystalline quality. Due to lattice mismatch with the underlying Au substrate, both LaAu2 and CeAu2 exhibit long-range moiré patterns, which can serve as templates for further nanostructure growth. By angle-resolved photoemission we map the two-dimensional band structure of these surface alloys, discussing the nature of the different spectral features in the light of first-principles calculations.

  18. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    PubMed Central

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  19. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  20. A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER

    SciTech Connect

    Izidoro, A.; Winter, O. C.; De Souza Torres, K.; Haghighipour, N.

    2013-04-10

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.

  1. Structural, electronic and elastic properties of the B2-ScM (M =Au, Hg and Tl) intermetallic compounds: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mousa, Ahmad A.; Khalifeh, Jamil M.

    2015-10-01

    Structural, electronic, elastic and mechanical properties of ScM (M =Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants (C11, C12 and C44) confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.

  2. X-ray structural study of intermetallic alloys RT{sub 2}Si and RTSi{sub 2} (R=rare earth, T=noble metal)

    SciTech Connect

    Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Seropegin, Yurii; Giester, Gerald

    2010-06-15

    Two series of intermetallic alloys, RT{sub 2}Si and RTSi{sub 2}, have been synthesized from stoichiometric compositions. The crystal structures of EuPt{sub 1+x}Si{sub 2-x} (CeNiSi{sub 2}-type), CeIr{sub 2}Si (new structure type), YbPd{sub 2}Si and YbPt{sub 2}Si (both YPd{sub 2}Si-type) have been elucidated from X-ray single crystal CCD data, which were confirmed by XPD experiments. The crystal structures of LaRh{sub 2}Si and LaIr{sub 2}Si (CeIr{sub 2}Si-type), {l_brace}La,Ce,Pr,Nd{r_brace}AgSi{sub 2} (all TbFeSi{sub 2}-type), and EuPt{sub 2}Si (inverse CeNiSi{sub 2}-type) were characterized by XPD data. RT{sub 2}Si/RTSi{sub 2} compounds were neither detected in as-cast alloys Sc{sub 25}Pt{sub 50}Si{sub 25}, Eu{sub 25}Os{sub 25}Si{sub 50} and Eu{sub 25}Rh{sub 25}Si{sub 50} nor after annealing at 900 {sup o}C. Instead, X-ray single crystal data prompted Eu{sub 2}Os{sub 3}Si{sub 5} (Sc{sub 2}Fe{sub 3}Si{sub 5}-type) and EuRh{sub 2+x}Si{sub 2-x} (x=0.04, ThCr{sub 2}Si{sub 2}-type) as well as a new structure type for Sc{sub 2}Pt{sub 3}Si{sub 2} (own type). - Graphical abstract: Two series of the intermetallic compounds, RT{sub 2}Si and RTSi{sub 2}, have been investigated by X-ray diffraction methods. The new tetragonal CeIr{sub 2}Si-type of the crystal structure was described and the interrelation between orthorhombic CeNiSi{sub 2} and tetragonal CeIr{sub 2}Si had been discussed as a similar packing of the BaAl{sub 4} and AlB{sub 2} slabs.

  3. Biogenic volatile organic compounds in the Earth system.

    PubMed

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  4. Investigation of modification of hydrogenation and structural properties of LaNi{sub 5} intermetallic compound induced by substitution of Ni by Pd

    SciTech Connect

    Prigent, J.; Joubert, J.-M.; Gupta, M.

    2011-01-15

    The hydrogenation properties of the LaNi{sub 5} (CaCu{sub 5} type, hP6, P6/mmm) and Pd substituted derivatives LaNi{sub 5-x}Pd{sub x} compounds have been studied in the whole homogeneity range of the solid solution (0.25{<=}x{<=}1.5). The pressure versus hydrogen content isotherms show several plateaus and an increase of the plateau pressure as a function of palladium concentration. The volume increase of the Pd substituted alloys should have resulted in a lowering, and not an increase, of the plateau pressure, according to the conventional models based on the size effect. In order to elucidate the origin of this anomalous behavior, both an experimental and a theoretical ab initio electronic structure investigation have been carried out. Experimentally, the nature and the structural properties of the hydrides have been studied by both in situ and ex situ neutron diffraction. The crystal structures of the three hydride phases are reported (LaNi{sub 3.5}Pd{sub 1.5}D{sub 1.96}, filled-up CaCu{sub 5} type, P6/mmm; LaNi{sub 4}PdD{sub 2.72}, LaNi{sub 2}(Ni{sub 0.75}Pt{sub 0.25}){sub 3}H{sub 2.61} type, oI128, Ibam; LaNi{sub 4.75}Pd{sub 0.25}D{sub 5.67}, partly ordered CaCu{sub 5} type, P6mm). In addition, the phase diagram of LaNi{sub 5-x}Pd{sub x}-H system has been investigated. The electronic and thermodynamic properties of both intermetallic compounds and the hydrides have been studied by ab initio electronic structure calculations. The theoretical results are in good agreement with our experimental data, and show that electronic interactions play a major role in the hydrogenation behavior of these Pd substituted intermetallic compounds, and that these effects cannot be accounted for by a simplistic model based on the size effect alone. -- Graphical abstract: Phase diagram of the system LaNi{sub 5-x}Pd{sub x}-D{sub 2} (absorption) at 25 {sup o}C and 25 bar. Display Omitted

  5. The structure and composition of chromate conversion coatings formed on aluminum-copper alloy AA2024-T3 and thin film analogs of constituent intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vasquez, Marvin Jaime

    2002-01-01

    A comprehensive suite of spectroscopy have been used to study the composition and structure of Chromate Conversion Coatings (CCC) formed on Aluminum Copper (Al-Cu) alloy AA2024-T3 and constituent Intermetallic Compounds (IMCs). Based on previous work the CCC formed over the IMCs is expected to be thinner and therefore different in structure and composition than the CCC formed on the matrix. The formation of the CCC over the different IMCs is expected to be dependent on the chemistry and the interaction of the IMCs with accelerators such as ferricyanide. Surface chemical and structural data determined by X-ray Photoelectron Spectroscopy (XPS), Synchrotron Infrared Microspectroscopy, X-ray Absorption Near Edge Spectroscopy (XANES), Extended X-ray Absorption Fine Structure (EXAFS), Secondary Ion Mass Spectrometry (SIMS), and Secondary Electron Microscopy/Energy Dispersive Analysis of X-rays (SEM/EDAX) have been developed to refine an existing model for the CCC formed on the AA2024-T3 surface, an Al-Cu aircraft alloy, by considering the composition and structure of the CCC formed on constituent intermetallic compounds (IMCs). The limited corrosion behavior of AA2024-T3 aluminum alloy is generally attributed to the presence of a variety of constituent IMC. These IMC particles are of the order of 1--20 mum which makes their direct analysis exceedingly difficult and has lead to a limited understanding of their surface chemical properties relative to CCC formation. To overcome this limitation, it was necessary to develop for the first time large area samples composed of compositionally homogenous thin films of the various IMCs found on the AA2024-T3 surface, which were galvanically attached to thin films of Al-4.2wt%Cu (representative of the AA2024-T3 matrix). This was performed in a two-step process: Disks of IMC compositions were formed by Reactive Arc Melting (RAM), followed by ultra-fast laser ablation of the RAM IMCs resulting in the formation of homogenous thin films

  6. Double-exchange mechanism in rare-earth compounds

    SciTech Connect

    Gulacsi, M.

    2015-03-15

    We show that double-exchange mechanism is responsible for ferromagnetism in low dimensional rare-earth compounds. We use the bosonized version of the one-dimensional Anderson lattice model in Toulouse limit to characterize the properties of the emerging ferromagnetic phase. We give a comprehensive description of the ferromagnetic ordering of the correlated electrons which appears at intermediate couplings and doping. The obtained ferromagnetic phase transitions have been identified to be an order–disorder transition of the quantum random transverse-field Ising type.

  7. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  8. Abnormal Intermetallic Compound Evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni Micro Solder Joints Under Thermomigration

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Deng, J. F.; Zhong, Y.; Huang, M. L.; Ma, H. T.

    2017-04-01

    Interfacial reactions in Ni/Sn/Ni and Ni/Sn-9Zn/Ni micro solder joints during thermomigration (TM) have been studied by reflowing solder joints on a hot plate. Asymmetrical growth and transformation of interfacial intermetallic compounds (IMCs) were clearly observed. The growth of the Ni3Sn4 IMC in the Ni/Sn/Ni solder joints was always fast at the cold end and relatively slow at the hot end. Only asymmetrical growth of the Ni5Zn21 IMC in the Ni/Sn-9Zn/Ni solder joints occurred at the beginning because Zn was the dominant TM species; however, asymmetrical transformation of the Ni5Zn21 IMC also occurred under the combined effect of Zn depletion and Ni dissolution and migration, resulting in formation of a thin τ-phase layer at the hot end and a thick τ-phase/Ni5Zn21/τ-phase sandwich structure at the cold end. TM of Ni and Zn atoms was identified towards the cold end, being responsible for the abnormal IMC evolution. Addition of Zn was found to slow the TM-induced IMC growth and Ni dissolution.

  9. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  10. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    SciTech Connect

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.

    1987-05-01

    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  11. Magnetostriction of some rare earth-aluminum Laves phase compounds

    NASA Technical Reports Server (NTRS)

    Pourarian, F.; Wallace, W. E.

    1979-01-01

    Measurements of the linear and volume magnetostriction of RAl2 cubic Laves compounds in which R is one of the rare earth elements Gd, Dy, Ho or Er, at temperatures between 4.2 K and the Curie temperature of each compound, are reported. Magnetic fields up to 2.5 Tesla were applied, and magnetostriction was measured using standard strain gage techniques. Saturation magnetostrictions of 17 x 10 to the -6th, -1420 x 10 to the -6th, 60 x 10 to the -6th and -920 x 10 to the -6th are determined at 4.2 K for GdAl2, DyAl2, HoAl2 and ErAl2, respectively. Large forced magnetostriction is observed in GdAl2 above the saturation field and the strain temperature dependence shows a decrease in magnitude below 40 K. A linear dependence of magnetostriction on magnetic field was observed for DyAl2 above 40 K, and the observed temperature dependence is interpreted in terms of the lowest order single-ion magnetoelastic theory. An observed decrease in the magnitude of the strain of HoAl2 below 15 K is associated with a change of the easy direction of magnetization, while in the case of ErAl2, magnetostriction is observed to occur normally up to the Curie temperature. Large volume magnetostriction is obtained for all the compounds with the exception of GdAl2.

  12. Greenhouse gases and ozone depleting compounds in the earth`s atmosphere

    SciTech Connect

    Khalil, M.A.K.

    1996-12-31

    Global warming and ozone depletion are the main environmental problems caused by changes in atmospheric composition. These changes come from human activities that add to the natural cycles of atmospheric gases or put entirely new compounds into the earth`s atmosphere. At present only a few gases play a major role in global climate change and ozone depletion. These are carbon dioxide, methane, nitrous oxide, trichlorofluoromethane (F-11), and dichlorofluoromethane (F-12). There are other gases that also add to these problems but to a lesser extent. This paper is about global warming, ozone depletion and the trends and budgets of the gases that can change the climate or deplete the ozone layer. 8 refs., 3 tabs.

  13. Exposure, metabolism, and toxicity of rare earths and related compounds.

    PubMed Central

    Hirano, S; Suzuki, K T

    1996-01-01

    For the past three decades, most attention in heavy metal toxicology has been paid to cadmium, mercury, lead, chromium, nickel, vanadium, and tin because these metals widely polluted the environment. However, with the development of new materials in the last decade, the need for toxicological studies on those new materials has been increasing. A group of rare earths (RE) is a good example. Although some RE have been used for superconductors, plastic magnets, and ceramics, few toxicological data are available compared to other heavy metals described above. Because chemical properties of RE are very similar, it is plausible that their binding affinities to biomolecules, metabolism, and toxicity in the living system are also very similar. In this report, we present an overview of the metabolism and health hazards of RE and related compounds, including our recent studies. Images Figure 1. A Figure 1. B Figure 1. C PMID:8722113

  14. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    NASA Astrophysics Data System (ADS)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  15. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  16. The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} studied by magnetization and hyperfine interactions measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-07

    The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ–γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around T{sub N} ∼ 425 K and a well defined ferromagnetic transition at T{sub C} ∼ 320 K. Moreover, at ∼210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ∼25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using {sup 140}La({sup 140}Ce) and {sup 111}In({sup 111}Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (B{sub hf}) at Nd and Mn sites, respectively. PAC results with {sup 111}Cd probe nuclei at Mn sites show that the dependence of B{sub hf} with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with {sup 140}Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to B{sub hf}.

  17. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging

    NASA Astrophysics Data System (ADS)

    Hong, K. K.; Ryu, J. B.; Park, C. Y.; Huh, J. Y.

    2008-01-01

    The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1- x Ni x )6Sn5 layer on the Ni side and the (Cu1- y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1- x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1- y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.

  18. e/a determination for 4d- and 5d-transition metal elements and their intermetallic compounds with Mg, Al, Zn, Cd and In

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Sato, H.; Inukai, M.; Zijlstra, E. S.

    2013-08-01

    The present work is devoted to the determination of the effective electrons per atom ratio e/a by means of first-principles full-potential linearized augmented plane wave-Fourier method for elements from Rb to Ag in Period 5 and from Cs to Au in Period 6 of the periodic table and is regarded as a continuation of the preceding work done for elements from K to Cu in Period 4. The value of e/a was determined by reading off the square of the Fermi diameter, ? from the dispersion relation for electrons outside the Muffin-Tin spheres. A straightforward reading of the ordinate at the Fermi level, i.e. local reading method was validated for Rb and Cs in Group 1, Sr in Group 2, Y in Group 3, Pd and Pt in Group 10 and Ag and Au in Group 11. Instead, the nearly free electron (NFE) method was found to be indispensable for TM elements from Zr to Rh in Period 5 and those from Ba to Ir in Period 6. The composition dependence of e/a values for intermetallic compounds in X-TM (X = Mg, Al, Zn, Cd and In) alloy systems was also studied. The new Hume-Rothery electron concentration rule was established by constructing e/uc, the number of electrons per unit cell, vs. square of critical reciprocal lattice vector, ? , diagram for structurally complex metallic alloys having a pseudogap at the Fermi level. A proper use of either the local reading- or the NFE-e/a for the elements as indicated above is found to be essential.

  19. NFE approximation for the e/a determination for 3d-transition metal elements and their intermetallic compounds with Al and Zn

    NASA Astrophysics Data System (ADS)

    Sato, H.; Inukai, M.; Zijlstra, E. S.; Mizutani, U.

    2013-08-01

    First-principles full-potential linearized augmented plane wave (FLAPW) band calculations with subsequent FLAPW-Fourier analyses have been performed for elements from K to Cu in period 4 of the periodic table to determine the effective electrons per atom ratio (e/a). For the series of 3d-transition metals (TM), the determination of the square of the Fermi diameter ? , from which e/a is derived, has been recognized not to be straightforward because of the presence of a huge anomaly associated with the TM-d states across the Fermi level in the energy dispersion relation for electrons outside the muffin-tin sphere. The nearly free electron (NFE) approximation is newly devised to circumvent this difficulty. The centre of gravity energy ? is calculated from the energy distribution of the square of the Fourier coefficients for the FLAPW state ? . The NFE dispersion relation is constructed for the set of ? and ? in combination with the tetrahedron method. The resulting e/a values are distributed over positive numbers in the vicinity of unity for elements from Ti to Co. Instead, the e/a values for the early elements K, Ca and Sc and the late TM elements Ni and Cu were determined to be close to one, two, three, 0.50 and unity, respectively, using our previously designed local reading method. In addition, the composition dependence of e/a values for intermetallic compounds in X-TM (X = Al and Zn) alloy systems was studied to justify an appropriate choice between the local reading and NFE methods for respective elements.

  20. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-02

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface.

  1. FORMATION OF INTERMETALLIC COMPOUND DISPERSIONS

    DOEpatents

    Bryner, J.S.

    1959-12-01

    BS>A method is presented for preparing dispersions containing thorium bismuthide in equiaxed form and having an average particle size of about 30 microns. Thorium particles having one dimension not greater than 0.015 in. are immersed in liquid bismuth at a temperature between 500 and 600 deg C, the quantity of thorium being in excess of its solubility in the bismuth.

  2. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  3. Occupational radiation exposure due to norm in a rare-earth compounds production facility.

    PubMed

    Haridasan, P P; Pillai, P M B; Tripathi, R M; Puranik, V D

    2008-01-01

    In India, rare-earth compounds are produced from the beach sand mineral monazite. Caustic digestion of the mineral followed by selective acid extraction is the method used to separate composite rare-earth fraction. The composite rare-earth chloride contains low levels of natural radionuclides and is the starting material for individual rare-earth compounds which have wide applications. Activity concentrations in composite rare-earth compounds such as chlorides, fluorides, carbonates and oxides of Ce, Nd, Pr, Sm, Gd, etc. are presented in this paper. The external gamma exposure rates and airborne activity due to thorium and thoron progeny in the occupational environment are studied. The activity levels in liquid effluent are presented. The potential individual occupational dose is estimated to be 1.9 mSv per annum.

  4. Self-assemblies of luminescent rare earth compounds in capsules and multilayers.

    PubMed

    Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth

    2014-05-01

    This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out.

  5. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    SciTech Connect

    Priyotomo, Gadang Nuraini, Lutviasari; Kaneno, Yasuyuki

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  6. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  7. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  8. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe(11.6)Si(1.4)C(0.2)H(1.7).

    PubMed

    Song, Ning-Ning; Ke, Ya-Jiao; Yang, Hai-Tao; Zhang, Hu; Zhang, Xiang-Qun; Shen, Bao-Gen; Cheng, Zhao-Hua

    2013-01-01

    Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe(11.6)Si(1.4)C(0.2)H(1.7) intermetallic compound exhibits the advantages of both giant microwave absorption exceeding -42 dB and magnetic entropy change of -20 Jkg(-1)K(-1). The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth.

  9. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Astrophysics Data System (ADS)

    Bada, J. L.; Miller, S. L.

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  10. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  11. Thermal barrier coating system with intermetallic overlay bond coat

    SciTech Connect

    Duderstadt, E.C.; Nagaraj, B A.

    1993-08-24

    A superalloy article is described having a thermal barrier coating system thereon, comprising: a substrate made of a material selected from the group consisting of a nickel-based superalloy and a cobalt-based superalloy; and a thermal barrier coating system on the substrate, the thermal barrier coating system including an intermetallic bond coat overlying the substrate, the bond coat being selected from the group consisting of a nickel aluminide and a platinum aluminide intermetallic compound, a thermally grown aluminum oxide layer overlying the intermetallic bond coat, and a ceramic topcoat overlying the aluminum oxide layer.

  12. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  13. Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  14. Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump.

    PubMed

    Kim, Seung-Hyun; Park, Gyu-Tae; Park, Jong-Jin; Park, Young-Bae

    2015-11-01

    The effects of annealing, thermomigration (TM), and electromigration (EM) on the intermetallic com- pound (IMC) growth kinetics of Cu/Sn-2.5Ag microbumps were investigated using in-situ scanning electron microscopy at 120-165 degrees C with a current density of 1.5 x 10(5) A/cm2. The IMC growth kinetics was controlled by a diffusion-dominant mechanism and a chemical-reaction-dominant mechanism with annealing and current-stressing conditions, respectively. Before all of the Sn was fully transformed into IMCs, the activation energies of the Cu3Sn IMCs were 0.54 eV, 0.50 eV, and 0.40 eV for annealing, TM, and EM, respectively, which is closely related to the acceleration effect of the interfacial reaction by electron wind force under current stressing. After all of the Sn was fully transformed into IMCs by reacting with Cu, the Cu3Sn IMC growth rates of the three structures became similar due to the reduced and similar diffusion rates inside the IMCs with and without current stressing.

  15. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  16. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.

    2001-01-01

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  17. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth.

    PubMed

    Cooper, G; Kimmich, N; Belisle, W; Sarinana, J; Brabham, K; Garrel, L

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  18. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  19. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7

    PubMed Central

    Song, Ning-Ning; Ke, Ya-Jiao; Yang, Hai-Tao; Zhang, Hu; Zhang, Xiang-Qun; Shen, Bao-Gen; Cheng, Zhao-Hua

    2013-01-01

    Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe11.6Si1.4C0.2H1.7 intermetallic compound exhibits the advantages of both giant microwave absorption exceeding −42 dB and magnetic entropy change of −20 Jkg−1K−1. The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth. PMID:23887357

  20. Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al3Ti, AlTi, AlCu, AlTiCu2) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, Yong; Ma, Xiao-Juan; Liu, Qi-Jun; Kong, Ge-Xing; Ma, Hai-Xia; Wang, Wen-Peng; Wang, Yi-Gao; Jiao, Zhen; Liu, Fu-Sheng; Liu, Zheng-Tang

    2016-11-01

    First-principle simulations have been applied to investigate the effect of copper (Cu) or aluminum (Al) content on the ductility of Al3Ti, AlTi, AlCu, and AlTiCu2 alloys. The mechanical stable and elastic properties of Al-based intermetallic compounds are researched by density functional theory with the generalized gradient approximation (DFT-GGA). The calculated lattice constants are in conformity with the previous experimental and theoretical data. The deduced elastic constants show that the investigated Al3Ti, AlTi, AlCu, and AlTiCu2 structures are mechanically stable. Shear modulus, Young’s modulus, Poisson’s ratio, and the ratio B/G have also been figured out by using reckoned elastic constants. A further analysis of Young’s modulus and Poisson’s ratio reveals that the third added element copper content has significant effects on the Al-Ti-based ICs ductile character. Project supported by the National Natural Science Foundation of China (Grant Nos. 41674088, 11574254, 11272296, and 11547311), the National Basic Research Program of China (Grant No. 2011CB808201), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2682014ZT30 and 2682014ZT31), and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201511).

  1. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  2. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  3. Comets and the formation of biochemical compounds on the primitive earth - A review

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.; Lazcano, A.

    1992-01-01

    Thirty years ago it was suggested that comets impacting on the primitive earth may have represented a significant source of terrestrial volatiles, including some important precursors for prebiotic synthesis (Oro, 1961). This possibility is strongly supported not only by models of the collisional history of the early earth, but also by astronomical evidence that suggests that frequent collisions of cometlike bodies from the circumstellar disk around the star Beta Pictoris are taking place. Although a significant fraction of the complex organic compounds that appear to be present in cometary nuclei were probably destroyed during impact, it is argued that cometary collisions with the primitive earth represented an important source of both free-energy and volatiles, and may have created transient, gaseous environments in which prebiotic synthesis may have taken place.

  4. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOEpatents

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  5. Homoleptic alkaline earth metal bis(trifluoromethanesulfonyl)imide complex compounds obtained from an ionic liquid.

    PubMed

    Babai, Arash; Mudring, Anja-Verena

    2006-04-17

    The first homoleptic alkaline earth bis(trifluoromethanesulfonyl)imide (Tf2N) complexes [mppyr]2[Ca(Tf2N)4], [mppyr]2[Sr(Tf2N)4], and [mppyr][Ba(Tf2N)3] were crystallized from a solution of the respective alkaline earth bis(trifluoromethanesulfonyl)imide and the ionic liquid [mppyr][Tf2N] (mppyr = 1,1-N-methyl-N-propylpyrrolidinium). In the calcium and strontium compounds, the alkaline earth metal (AE) is coordinated by four bidentately chelating Tf2N ligands to form isolated (distorted) square antiprismatic [AE(Tf2N)4]2- complexes which are separated by N-methyl-N-propylpyrrolidinium cations. In contrast, the barium compound, [mppyr][Ba(Tf2N)3], forms an extended structure. Here the alkaline earth cation is surrounded by six oxygen atoms belonging to three Tf2N- anions which coordinate in a bidentate chelating fashion. Three further oxygen atoms of the same ligands are linking the Ba2+ cations to infinite (infinity)(1)[Ba(Tf2N)3] chains.

  6. Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM', where M =Ge, Sn, Pb, and element 114, and M'=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114

    NASA Astrophysics Data System (ADS)

    Pershina, V.; Anton, J.; Fricke, B.

    2007-10-01

    Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M =Ge, Sn, Pb, and element 114, and M'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties—atomization energies De, vibrational frequencies ωe, and bond lengths Re, as a function of M', are similar for compounds of Ge, Sn, Pb, and element 114, except for De of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(M ') atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np1/2(M ) AOs. Overall, De of the element 114 dimers are about 1eV smaller and Re are about 0.2a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p1/2(114) AO. On the basis of the calculated De for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150kJ/mol smaller than those of Pb.

  7. A rule for counting neighbours in rare-earth transition metal compounds

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.

    1991-09-01

    In (R, T) compounds (R: rare earth; T: 3d transition metal) such as R 2T 17, R 2T 14B, and so on, the exchange interaction between a rare-earth spin (operator) SR and the neighbouring 3d spins can be written as -2 JRTzRTSR·< ST>, where < ST> is a site average of the expectation value of the transition metal spins in the molecular field approximation. zRT is the number of nearest T neighbours of an R-atom. A more precise definition is given in the main text. Analogously, zTR, the average number of nearest R neighbours of a T atom can be defined. We stress that a consistent definition must lead to the relation zRTNR = zTRNT for a stoichiometric compound containing NR rare-earth atoms and NT transition metal atoms per formula unit. Appropriate definitions are discussed for more intricate cases, in particular for off-stoichiometric compounds.

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo

    2009-11-01

    The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.

  9. The structural, elastic and optical properties of ScM (M = Rh, Cu, Ag, Hg) intermetallic compounds under pressure by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur; Rahman, Md. Atikur

    2016-11-01

    The influence of pressure on the structural and elastic properties of ScM (M = Rh, Cu, Ag, Hg) compounds has been investigated by using ab initio approach pseudopotential plane-wave method based on the density functional theory within the generalized gradient approximation (GGA). The optical properties have been investigated under zero pressure. It is found that the optimized lattice parameters for all metals are in good agreement with the experimental data and other available theoretical values. We obtained three independent elastic constants Cij (C11,C12 and C44) and various elastic parameters such as bulk modulus B, shear modulus G, Young’s modulus E,B/G, Poisson’s ratio ν and anisotropy factor A as a function of pressure. In addition, the mechanical stability and ductile/brittle nature are also investigated from the calculated elastic constants. The study of optical properties reveals that all of these compounds possess good absorption coefficient in the high energy region and the refractive index of all these compounds is higher in the low energy region and gradually decreased in the high energy region. All these calculations have been carried out using the CASTEP computer code.

  10. Origin of organic compounds on the primitive earth and in meteorites

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Urey, H. C.; Oro, J.

    1976-01-01

    The paper examines the role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth and in the solar nebula. Attention is directed mainly to the activation steps and formation of reactive intermediate compounds. Electric discharges appear to be not only the most efficient energy for amino acid synthesis but also yield a mixture of amino acids that is qualitatively and quantitatively the same as that found in the Murchison carbonaceous chondrite. Ultraviolet light is likely to have played a major role in prebiotic synthesis. The reaction of CO plus H2 plus NH3 on the surface of a Fischer-Tropsch catalyst produces reactive intermediates which lead to amino acids and other organic compounds in a much less efficient way than electric discharges.

  11. Magnetic behavior of the neptunium intermetallic compound NpCo2Si2 under high pressure: A Mössbauer study

    NASA Astrophysics Data System (ADS)

    Potzel, W.; Moser, J.; Kalvius, G. M.; de Novion, C. H.; Spirlet, J. C.; Gal, J.

    1981-12-01

    High-pressure Mössbauer studies of 237Np in the tetragonal compound NpCo2Si2 are reported. The pressure dependence of the hyperfine field (Beff), the isomer shift (S), and the Néel temperature (TN) have been measured for pressures up to 35 kbar, at temperatures from 1.4 to 77 K. While Beff remains constant, both S and TN change markedly. The constancy of Beff fits well into the picture of localized 5f moments. The variation of TN is treated within the rigidspin model of Ruderman, Kittel, and Arrott. The prediction of a linear relation between T12N and S is consistent with the reported results.

  12. Crystal structure and magnetic properties of new Fe3Co3 X 2 (X  =  Ti, Nb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Nguyen, Manh Cuong; Balasubramanian, Balamurugan; Das, Bhaskar; Sellmyer, David J.; Zeng, Zhi; Ho, Kai-Ming; Wang, Cai-Zhuang

    2016-05-01

    The structure and magnetic properties of new magnetic Fe3Co3 X 2 (X  =  Ti, Nb) compounds are studied by genetic algorithm, first-principles density functional theory (DFT) calculations, and experiments. The atomic structure of a hexagonal structure with P-6m2 symmetry is determined. The simulated x-ray diffraction (XRD) spectra of the P-6m2 structures agree well with experimental XRD data for both Fe3Co3Ti2 and Fe3Co3Nb2. The magnetic properties of these structures as well as the effect of the disorder of Fe and Co on their magnetic properties are also investigated. The magnetocrystalline anisotropy energy is found to be very sensitive to the occupancy disorder between Fe and Co.

  13. New icosahedral nanoclusters in crystal structures of intermetallic compounds: Topological types of 50-atom deltahedra D50 in samson phases β-Mg2Al3 and ɛ-Mg23Al30

    NASA Astrophysics Data System (ADS)

    Blatov, V. A.; Ilyushin, G. D.

    2012-12-01

    A database of intermetallic compounds has been compiled using the TOPOS program package. This database includes 514 topological types, containing 12- and 13-atom icosahedral i clusters. An isolated group of 1649 i clusters is described by 14 point groups and their maximum symmetry D 3 d (bar 3 m) and T h ( m bar 3) is established, respectively, in 47 and 25 types of crystal structures. A structural analysis of the outer quasispherical shells showed that local 63-atom i configurations 1@12@50, which contain 50 atoms in the second layer, are implemented in 8 out of 19 cases. Examples of new topologically different types of 50-atom D50 deltahedra in the Samson phases ɛ-Mg23Al30 and β-Mg2Al3 are presented. Four topologically different sites with coordination numbers of 5, 6, 6, or 7 are established in the ɛ shell and seven sites with coordination numbers of 5, 5, 6, 6, 6, 6, or 7 are found in the β shell. The inner i clusters for the β-Mg2Al3 structure (with the symmetry bar 3 m) and the ɛ-Mg23Al30 structure (with the symmetry bar 3) have a similar chemical composition, i.e., Mg7Al6 and Mg6Al7, and their 50-atom shells are chemically identical to 18Mg + 32Al. The configurations found supplement the series of known two-layer icosahedral Bergman and Mackay clusters in the form of deltahedra with 32- and 42-atom shells.

  14. Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints

    NASA Astrophysics Data System (ADS)

    Zhou, M. B.; Ma, X.; Zhang, X. P.

    2012-11-01

    The microstructure of microscale solder interconnects and soldering defects have long been known to have a significant influence on the reliability of electronic packaging, and both are directly related to the solidification behavior of the undercooled solder. In this study, the undercooling behavior and solidification microstructural evolution of Sn-3.0Ag-0.5Cu solder balls with different diameters (0.76 mm, 0.50 mm, and 0.30 mm) and the joints formed by soldering these balls on Cu open pads of two diameters (0.48 mm and 0.32 mm) on a printed circuit board (PCB) substrate were characterized by differential scanning calorimetry (DSC) incorporated into the reflow process. Results show that the decrease in diameter of the solder balls leads to an obvious increase in the undercooling of the balls, while the undercooling of the solder joints shows a dependence on both the diameter of the solder balls and the diameter ratio of solder ball to Cu pad (i.e., D s/ D p), and the diameter of the solder balls has a stronger influence on the undercooling of the joints than the dimension of the Cu pad. Coarse primary intermetallic compound (IMC) solidification phases were formed in the smaller solder balls and joints. The bulk Ag3Sn IMC is the primary solidification phase in the as-reflowed solder balls. Due to the interfacial reaction and dissolution of Cu atoms into the solder matrix, the primary Ag3Sn phase can be suppressed and the bulk Cu6Sn5 IMC is the only primary solidification phase in the as-reflowed solder joints.

  15. Recent developments in the field of organic heterobimetallic compounds of the alkaline-earth metals.

    PubMed

    Westerhausen, Matthias

    2006-10-28

    Heterobimetallic compounds of the alkaline-earth metals show a wide structural variety with strongly differing reactivity patterns. The combination of magnesium and alkali metal amides yields cyclic molecules with an extreme high reactivity which often are considered as "inverse crowns" with the metal atoms as coordination sites for Lewis bases. In other metallates of the alkaline-earth metals an activation of alkyl groups succeeds. In alkaline-earth metal zincates an inverse coordination of the type M(2)[(mu-R)(2)ZnR](2) is observed and the alkyl groups are in bridging positions between zinc and the s-block metals thus forming a very reactive M-C-Zn three-center-two-electron bond. Furthermore, the metals of the carbon group form alkaline-earth metal-silicon, -germanium and -tin bonds or, in the presence of very strong Lewis bases, even solvent-separated ion pairs. For electronegative substituents at tin an inverse coordination mode such as M[(mu-R)(2)SnR](2) is observed.

  16. Highly-dispersive spin gapless semiconductors in rare-earth-element contained quaternary Heusler compounds

    NASA Astrophysics Data System (ADS)

    Xu, Guizhou; You, Yurong; Gong, Yuanyuan; Liu, Er; Xu, Feng; Wang, Wenhong

    2017-03-01

    The acquisition of high mobility electrons in the zero-gap band of spin gapless semiconductors is crucial for their practical applications in spintronic devices. In this work, we propose to design a higher dispersive band by importing the rare-earth atom into the Heusler compounds. With first principles calculations, we identify several new spin gapless semiconductor candidates in the 21-electron LiMgPdSn-type quaternary Heusler alloys of (Y, La, Lu)CoCr/FeMn(Al, Ga). Densities of states for most of them reveal large band gaps in the minority spin direction, and relatively low states near the Fermi level in the majority spin. According to the electron projected band analysis, we find the import of the rare earth atom can enhance the sp component in the band across the Fermi level, which is conducive to form a linear-dispersive band that is promising to enhance the carrier mobility of spin gapless semiconductors.

  17. Determination of the intersublattice exchange interactions in GdCo12-xFexB6 (x = 0-3) intermetallic compounds by high field magnetization measurements

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Isnard, O.; Skourski, Y.; Ballon, G.

    2013-05-01

    High field magnetization measurements up to 60 T on free powder samples from GdCo12-xFexB6 (x = 0-3) compounds are reported. The data were used to evaluate the microscopic exchange interaction integral, JGd-3d, between Gd and 3d (Co,Fe) spins. The systems are ferrimagnets; they order magnetically between TC = 95 K for x = 3 and TC = 165 K for x = 0. The low temperature magnetization curves as well as the temperature dependence of intrinsic magnetic parameters are determined by magnetic measurements in pulsed magnetic field. The average magnetic moment ⟨μCo+Fe⟩ per mean transition metal atom (Co + Fe) is small and increases with increasing Fe concentration from 0.44 μΒ for x = 0 to 0.51 μΒ for x = 3 at T = 4 K. From high field magnetization curves, a value of JGd-3d/kB = -4.65 K is derived for x = 0, whereas mean field approximation yields a much larger 3d-3d exchange integral of JCo-Co/kB = 105 K. The obtained results reveal an increase of -JGd-3d/kB with Fe concentration. For x = 0.5, the intersublattice coefficient nGd-3d is found to keep an almost constant value of 5.87 ± 0.13 T*f.u.*μB-1 whatever the temperature in the 2 to 60 K range.

  18. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  19. Magnetic hyperfine interactions on Cd sites of the rare-earth cadmium compounds R Cd (R =Ce , Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Leite Neto, O. F. L. S.; Saitovitch, H.; Cavalcante, J. T. P. D.; Carbonari, A. W.; Saxena, R. N.; Bosch-Santos, B.; Pereira, L. F. D.; Mestnik-Filho, J.; Forker, M.

    2016-08-01

    This paper reports the investigation of the magnetic hyperfine field Bh f in a series of rare-earth (R ) cadmium intermetallic compounds R Cd and GdCd2 measured by perturbed angular correlation (PAC) spectroscopy using 111In/111Cd as probe nuclei at Cd sites as well as first-principles calculations of Bh f at Cd sites in the studied compounds. Vapor-solid state reaction of R metals with Cd vapor and the 111In radioisotope was found to be an appropriate route of doping rare-earth cadmium compounds with the PAC probe 111In/111Cd. The observation that the hyperfine parameters depend on details of the sample preparation provides information on the phase preference of diffusing 111In in the rare-earth cadmium phase system. The 111Cd hyperfine field has been determined in the compounds R Cd for the R constituents Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er, in several cases as a function of temperature. For most R constituents, the temperature dependence Bh f(T ) of 111Cd:R Cd is consistent with ferromagnetic order of the compound. DyCd, however, presents a remarkable anomaly: a finite magnetic hyperfine field is observed only in the temperature interval 35 K ≤ T ≤ 80 K which indicates a transition from ferromagnetic order to a spin arrangement where all 4 f -induced contributions to the magnetic hyperfine field at the Cd site cancel. First-principles calculation results for DyCd show that the (π , π , 0) antiferromagnetic configuration is energetically more favorable than the ferromagnetic. The approach used in the calculations to simulate the R Cd system successfully reproduces the experimental values of Bh f at Cd sites and shows that the main contribution to Bh f comes from the valence electron polarization. The de Gennes plot of the hyperfine field Bh f of 111Cd:R Cd vs the 4 f -spin projection (g -1 )J reflects a decrease of the strength of indirect 4 f -4 f exchange across the R series. Possible mechanisms are discussed and the experimental results indicate that

  20. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  1. Magnetization, Magnetocrystalline Anisotropy and Magnetostriction in Some Rare-Earth-Cobalt Compounds, R2 C017.

    DTIC Science & Technology

    1976-12-01

    AlP Conference Proceedings, 18, 1212—1216, (1973). 0 _~ £ i 16. Steven K.W .H., Matrix Elements and Operator Equiva—t O 0.9 0.0 07 0.6 0.5 0.4 0.3 0.2...constant K2 and the meg— the rare earth i~n in compounds with transition metals netostriction Constant ÀY of single crystals of and in pure elements ...of the Tb3 ~~o1, and Ho;Co27 are both easy basal plane and R;Co1, compound is positive whereas the contribution Er;Co17 is easy C axis. The field

  2. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  3. Intermetallic insertion anodes for lithium batteries.

    SciTech Connect

    Thackeray, M. M.; Vaughey, J.; Johnson, C. S.; Kepler, K. D.

    1999-11-12

    Binary intermetallic compounds containing lithium, or lithium alloys, such as Li{sub x}Al, Li{sub x}Si and Li{sub x}Sn have been investigated in detail in the past as negative electrode materials for rechargeable lithium batteries. It is generally acknowledged that the major limitation of these systems is the large volumetric expansion that occurs when lithium reacts with the host metal. Such large increases in volume limit the practical use of lithium-tin electrodes in electrochemical cells. It is generally recognized that metal oxide electrodes, MO{sub y}, in lithium-ion cells operate during charge and discharge by means of a reversible lithium insertion/extraction process, and that the cells offer excellent cycling behavior when the crystallographic changes to the unit cell parameters and unit cell volume of the Li{sub x}MO{sub y} electrode are kept to a minimum. An excellent example of such an electrode is the spinel Li{sub 4}Ti{sub 5}O{sub 12}, which maintains its cubic symmetry without any significant change to the lattice parameter (and hence unit cell volume) during lithium insertion to the rock-salt composition Li{sub 7}Ti{sub 5}O{sub 12}. This spinel electrode is an example of a ternary Li{sub x}MO{sub y} system in which a binary MO{sub y} framework provides a stable host structure for lithium. With this approach, the authors have turned their attention to exploring ternary intermetallic systems Li{sub x}MM{prime} in the hope of finding a system that is not subject to the high volumetric expansion that typifies many binary systems. In this paper, the authors present recent data of their investigations of lithium-copper-tin and lithium-indium-antimonide electrodes in lithium cells. The data show that lithium can be inserted reversibly into selected intermetallic compounds with relatively small expansion of the lithiated intermetallic structures.

  4. Analytical results for crystalline electric field eigenvalues of trivalent rare-earth ions using computer algebra: application to the magnetism of PrX2 ( X = Mg, Al, Ru, Rh, Pt)

    NASA Astrophysics Data System (ADS)

    Sobral, R. R.; Guimarães, A. P.; da Silva, X. A.

    1994-10-01

    The eigenvalues of the Crystalline Electric Field (CEF) Hamiltonian with cubic symmetry are analytically obtained for trivalent rare-earth ions of ground state J= {5}/{2}, {7}/{2}, 4, {9}/{2}, 6, {15}/{2} and 8, via a Computer Algebra approach. In the presence of both CEF and an effective exchange field, Computer Algebra still allows a partial factorization of the characteristic polynomial equation associated to the total Hamiltonian, a result of interest to the study of the magnetic behavior of rare-earth intermetallics. An application to the PrX2 intermetallic compounds ( X = Mg, Al, Ru, Rh, Pt) is reported.

  5. Synchrotron Diffraction Studies of Spontaneous Magnetostriction in Rare Earth Transition Metal Compounds

    SciTech Connect

    Yang, Ning

    2004-12-19

    Thermal expansion anomalies of R2Fe14B and R2Fe17Cx (x = 0,2) (R = Y, Nd, Gd, Tb, Er) stoichiometric compounds are studied with high-energy synchrotron X-ray powder diffraction using Debye-Schemer geometry in temperature range 10K to 1000K. Large spontaneous magnetostriction up to their Curie temperatures (Tc) is observed. The a-axes show relatively larger invar effects than c-axes in the R2Fe14B compounds whereas the R2Fe17Cx show the contrary anisotropies. The iron sub-lattice is shown to dominate the spontaneous magnetostriction of the compounds. The contribution of the rare earth sublattice is roughly proportional to the spin magnetic moment of the rare earth in the R2Fe14B compounds but in R2Fe17Cx, the rare earth sub-lattice contribution appears more likely to be dominated by the local bonding. The calculation of spontaneous magnetostrain of bonds shows that the bonds associated with Fe(j2) sites in R2Fe14B and the dumbbell sites in R2Fe17Cx have larger values, which is strongly related to their largest magnetic moment and Wigner-Seitz atomic cell volume. The roles of the carbon atoms in increasing the Curie temperatures of the R2Fe17 compounds are attributed to the increased separation of Fe hexagons. The R2Fe17 and R2Fe14B phases with magnetic rare earth ions also show anisotropies of thermal expansion above c. For R2Fe17 and R2Fe14B the a a/a c > 1 whereas the anisotropy is reversed with the interstitial carbon in R2Fe17. The average bond magnetostrain is shown to be a possible predictor of the magnetic moment of Fe sites in the compounds. Both of the theoretical and

  6. High-quality single crystal growth and strongly correlated electronic states in rare earth and actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Honda, Fuminori; Hirose, Yusuke; Settai, Rikio; Takeuchi, Tetsuya

    2016-11-01

    We review the nature of strongly correlated electronic states in rare earth and actinide compounds, focusing on localized versus itinerant electronic states in CeRhIn5, quantum critical phenomena in YbIr2Zn20, residual resistivity in CeCu6, metamagnetism in heavy fermion compounds, and unconventional superconductivity in CeIrSi3 without inversion symmetry in the crystal structure, emphasizing that sample quality is essentially important to clarify the characteristic features for the heavy fermion compounds.

  7. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  8. Fundamentals of mechanical behavior in structural intermetallics: A synthesis of atomistic and continuum modeling

    SciTech Connect

    Yoo, M.H.; Fu, C.L.

    1993-08-01

    After a brief account of the recent advances in computational research on mechanical behavior of structural intermetallics, currently unresolved problems and critical issues are addressed and the knowledge base for potential answers to these problems is discussed. As large-scale problems (e.g., dislocation core structures, grain boundaries, and crack tips) are treated by atomistic simulations, future development of relevant interatomic potentials should be made consistent with the results of first-principles calculations. The bulk and defect properties calculated for intermetallic compounds, both known and as yet untested, can furnish insights to alloy designers in search of new high-temperature structural intermetallics.

  9. Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications

    NASA Astrophysics Data System (ADS)

    Sun, Tian-Ying; Zhang, Da-Quan; Yu, Xue-Feng; Xiang, Yang; Luo, Min; Wang, Jia-Hong; Tan, Guo-Long; Wang, Qu-Quan; Chu, Paul K.

    2013-01-01

    A new class of ratiometric fluorescence sensors composed of rare-earth (RE) compound nanotubes is described. Polyethylenimine-coated yttrium hydroxide fluoride nanotubes (YHF NTs) that were synthesized hydrothermally exhibit highly efficient fluorescence when doped with RE ions. The polyethylenimine on the NTs facilitates the incorporation of phosphors such as quantum dots or organic dyes onto the NT surface to produce dual-emitting nanocomposites which are excellent ratiometric fluorescence sensors. The phosphor layer and underlying tubes in the nanocomposites act as the indicator and reference probes, respectively. This ratiometric fluorescence method which can be applied to the detection of heavy metals in solutions, temperature sensing, and pH sensing boasts high sensitivity and selectivity as well as better accuracy than traditional intensity-based fluorescence methods.A new class of ratiometric fluorescence sensors composed of rare-earth (RE) compound nanotubes is described. Polyethylenimine-coated yttrium hydroxide fluoride nanotubes (YHF NTs) that were synthesized hydrothermally exhibit highly efficient fluorescence when doped with RE ions. The polyethylenimine on the NTs facilitates the incorporation of phosphors such as quantum dots or organic dyes onto the NT surface to produce dual-emitting nanocomposites which are excellent ratiometric fluorescence sensors. The phosphor layer and underlying tubes in the nanocomposites act as the indicator and reference probes, respectively. This ratiometric fluorescence method which can be applied to the detection of heavy metals in solutions, temperature sensing, and pH sensing boasts high sensitivity and selectivity as well as better accuracy than traditional intensity-based fluorescence methods. Electronic supplementary information (ESI) available: EA and TGA profiles, emission spectra of YHF:Eu NTs. See DOI: 10.1039/c2nr33217e

  10. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  11. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  12. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  13. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    SciTech Connect

    Jia, Shuang

    2008-01-01

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  14. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  15. First principle studies of electronic and magnetic properties of Lanthanide-Gold (RAu) binary intermetallics

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Ahmad, Rashid; Jalali-Asadabadi, S.; Ali, Zahid; Ahmad, Iftikhar

    2017-01-01

    In this article we explore the electronic and magnetic properties of RAu intermetallics (R=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) for the first time. These properties are calculated by using GGA, GGA+U and hybrid density functional theory (HF) approaches. Our calculations show that HF provides superior results, consistent to the experimentally reported data. The chemical bonding between rare-earth and gold atoms within these compounds are explained on the basis of spin dependent electronic clouds in different planes, which shows predominantly ionic and metallic nature between Au and R atoms. The Cohesive energies of RAu compounds show direct relation with the melting points. Spin-dependent electronic band structure demonstrates that all these compounds are metallic in nature. The magnetic studies show that HoAu and LuAu are stable in non-magnetic structure, PrAu is stable in ferromagnetic phase and CeAu, NdAu, SmAu, GdAu, TbAu, DyAu, ErAu, TmAu, YbAu are anti-ferromagnetic materials.

  16. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  17. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials.

    PubMed

    Parker, David; Singh, David J

    2013-10-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli-roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  18. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials

    SciTech Connect

    Parker, David S; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  19. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  20. A COMPARISON OF FAR INFRARED AND RAMAN SPECTRA OF SOME RARE EARTH GARNET SINGLE CRYSTALS,

    DTIC Science & Technology

    RARE EARTH COMPOUNDS, *INFRARED SPECTRA), (*GARNET, RARE EARTH COMPOUNDS), (* RAMAN SPECTROSCOPY, RARE EARTH COMPOUNDS), SINGLE CRYSTALS, ALUMINATES...PHONONS, YTTRIUM COMPOUNDS, YTTERBIUM COMPOUNDS, TERBIUM COMPOUNDS, DYSPROSIUM COMPOUNDS, CANADA

  1. Suppressors made from intermetallic materials

    SciTech Connect

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  2. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.

    PubMed

    Yan, Yucong; Du, Jingshan S; Gilroy, Kyle D; Yang, Deren; Xia, Younan; Zhang, Hui

    2017-02-24

    At the forefront of nanochemistry, there exists a research endeavor centered around intermetallic nanocrystals, which are unique in terms of long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure. In contrast to alloy nanocrystals with no elemental ordering, it is challenging to synthesize intermetallic nanocrystals with a tight control over their size and shape. Here, recent progress in the synthesis of intermetallic nanocrystals with controllable sizes and well-defined shapes is highlighted. A simple analysis and some insights key to the selection of experimental conditions for generating intermetallic nanocrystals are presented, followed by examples to highlight the viable use of intermetallic nanocrystals as electrocatalysts or catalysts for various reactions, with a focus on the enhanced performance relative to their alloy counterparts that lack elemental ordering. Within the conclusion, perspectives on future developments in the context of synthetic control, structure-property relationships, and applications are discussed.

  3. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds.

    PubMed

    Miller, S L; Schlesinger, G

    1983-01-01

    The prebiotic synthesis of organic compounds using a spark discharge on various simulated prebiotic atmospheres at 25 degrees has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and the presence of added NH3, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all give about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For the H2/CO and H2/CO2 ratios less than 1, the yields fall off drastically to as low as 10(-3)%. Glycine is almost the only amino acid produced from CO and CO2 atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these results indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde parallel the amino acid results, with yields of HCN and H2CO as high as 13% based on the carbon. Ammonia is also produced from N2 in experiments with no added NH3 in yields as high as 4.9%. These results show that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges. The amount of ammonia formed by hydrolysis of HCN and various nitriles may have exceeded that formed directly in electric discharges.

  4. Sonochemical formation of intermetallic coatings

    SciTech Connect

    Sweet, J.D.; Casadonte, D.J. Jr.

    1994-11-01

    An energy-dispersive X-ray (EDX) study of the agglomerates produced during the sonication of a series of mixed-metal powders in decane indicates that metal particles are both fused by the action of ultrasound and develop coatings which are intermetallic in nature. The principal mechanism of these effects is believed to be interparticle collision caused by the rapid movement of particles of less than 50 {mu}m diameter which are propelled by shockwaves generated at cavitation sites. By examination of mixed-metal systems including Ni/Co, Al/Ni, Al/Co, Ni/Mg, and Cu/Mo with substantially different tribological characteristics, it has been determined that the coatings are generated by both adhesive wear and direct impact. The fusion of Cu and Mo is particularly intriguing, as these two metals are immiscible below 1000{degrees}C. This indicates the enormous impact temperatures produced in sonically induced collisions. The mechanisms of intermetallic coatings produced via ultrasound are discussed. 26 refs., 4 figs.

  5. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  6. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  7. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  8. High Temperature Chemistry of Rare Earth Compounds: Dramatic Examples of Periodicity.

    ERIC Educational Resources Information Center

    Cater, E. David

    1978-01-01

    Reports that energy required to promote a 4f electron to the 5d level has a profound and predictable influence on the systematics of reactions involving conversion of rare earth atoms from combined to free states. (Author/MA)

  9. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  10. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  11. RE2MAl6Si4 (RE = Gd, Tb, Dy; M = Au, Pt): layered quaternary intermetallics featuring CaAl2Si2-type and YNiAl4Ge2-type slabs grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2003-12-01

    Six new intermetallic aluminum silicides--Gd(2)PtAl(6)Si(4), Gd(2)AuAl(6)Si(4), Tb(2)PtAl(6)Si(4), Tb(2)AuAl(6)Si(4), Dy(2)PtAl(6)Si(4), and Dy(2)AuAl(6)Si(4)--have been obtained from reactions carried out in aluminum flux. The structure of these compounds was determined by single-crystal X-ray diffraction. They form in space group Rthremacr;m with cell constants of a = 4.1623(3) A and c = 51.048(5) A for the Gd(2)PtAl(6)Si(4) compound. The crystal structure is comprised of hexagonal nets of rare earth atoms alternating with two kinds of layers that have been observed in other multinary aluminide intermetallic compounds (CaAl(2)Si(2) and YNiAl(4)Ge(2)). All six RE(2)MAl(6)Si(4) compounds show antiferromagnetic transitions at low temperatures (T(N) < 20 K); magnetization studies of the Dy compounds show metamagnetic behavior with reorientation of spins at 6000 G. Band structure calculations indicate that the AlSi puckered hexagonal sheets in this structure are electronically distinct from the other surrounding structural motifs.

  12. Thermodynamic stability of perovskites and related compounds in some alkaline earth-transition metal-oxygen systems

    NASA Astrophysics Data System (ADS)

    Yokokawa, Harumi; Sakai, Natsuko; Kawada, Tatsuya; Dokiya, Masayuki

    1991-09-01

    The thermodynamic properties of some alkaline earth ( A)-transition metal ( M) perovskites and K 2NiF 4 compounds have been collected, analyzed, and utilized to examine their stabilities by constructing the chemical potential diagrams of a log [ {a(A)}/{a(M)}] vs log P(O 2) plot. A thermodynamic analysis was performed on the dissociation reaction of K 2NiF 4 compounds ( A2MO 4) into perovskites ( AMO 3) and alkaline earth oxides ( AO) using empirical correlations between stabilization energy and tolerance factor. It has been found that the softness of calcium ions, which shrink markedly with decreasing coordination number from 12 to 9, makes the calcium K 2NiF 4 compounds (Ca 2MO 4) relatively less stable with increasing radius of the transition metal ions, r( M4+). This destabilization related to the coordination-number-dependent radii implies that when compared with the strontium perovskites, the calcium analogous perovskites may have a smaller number of oxygen vacancies, because the formation of oxygen vacancies should be accompanied with a decrease in coordination number of A-site ions.

  13. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  14. Understanding and prediction of electronic-structure-driven physical behaviors in rare-earth compounds.

    PubMed

    Paudyal, Durga; Pathak, Arjun K; Pecharsky, V K; Gschneidner, K A

    2013-10-02

    Rare-earth materials, due to their unique magnetic properties, are important for fundamental and technological applications such as advanced magnetic sensors, magnetic data storage, magnetic cooling and permanent magnets. For an understanding of the physical behaviors of these materials, first principles techniques are one of the best theoretical tools to explore the electronic structure and evaluate exchange interactions. However, first principles calculations of the crystal field splitting due to intra-site electron-electron correlations and the crystal environment in the presence of exchange splitting in rare-earth materials are rarely carried out despite the importance of these effects. Here we consider rare-earth dialuminides as model systems and show that the low temperature anomalies observed in these systems are due to the variation of both exchange and crystal field splitting leading to anomalous intra-site correlated-4f and itinerant-5d electronic states near the Fermi level. From calculations supported by experiments we uncover that HoAl2 is unique among rare-earth dialuminides, in that it undergoes a cubic to orthorhombic distortion leading to a spin reorientation. Calculations of a much more extended family of mixed rare-earth dialuminides reveal an additional degree of complexity: the effective quadrupolar moment of the lanthanides changes sign as a function of lanthanide concentration, leading to a change in the sign of the anisotropy constant. At this point the quadrupolar interactions are effectively reduced to zero, giving rise to lattice instability and leading to new phenomena. This study shows a clear picture that accurate evaluation of the exchange, crystal field splitting and shape of the charge densities allows one to understand, predict and control the physical behaviors of rare-earth materials.

  15. Negative thermal expansion induced by intermetallic charge transfer.

    PubMed

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4-x Mn x O12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10(-6) K(-1) near room temperature, in the temperature range which can be controlled by substitution.

  16. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    SciTech Connect

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys.

  17. Magnetostrictive properties of the heavy-rare-earth-free Sm1-xNdxFe2 compounds

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ren, W. J.; Yang, Y. H.; Li, B.; Li, J.; Zhang, Z. D.

    2013-04-01

    In this work, we report the magnetostrictive properties of Sm1-xNdxFe2 compounds, which are free of (expensive) heavy rare earths. Anomalies are observed in the temperature dependence of both the magnetization and the magnetostriction of these compounds, which are ascribed to spin-reorientation transitions. At low fields, the quasi-static magnetostriction and the piezomagnetic coefficient d33 of Sm0.88Nd0.12Fe2 are larger than those of SmFe2, which is due to the compensation of the anisotropy of the Sm3+ and Nd3+ ions. At a magnetic-field strength of 6 kOe, the static magnetostriction of Sm0.88Nd0.12Fe2 is -1244 ppm at 225 K and -1022 ppm at 290 K and, at a bias magnetic field of 700 Oe, the d33 equals 0.55 ppm/Oe (6.8 nm/A).

  18. Processing - Property Relationship in Advanced Intermetallics

    DTIC Science & Technology

    1994-07-01

    AD-A285 262 - IlE I !!III Illl iIII c.,. Processing- Property Relationship I in Advanced Intermetallics Final Report For Period March 4,1991 through...through 03-03-94 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Processing- Property Relationship in Advanced Intermetallics; 4. AUTHOR(S) D.A. Hardwick and P.L...2 M echanical Properties ......................................................................... 9 3 C

  19. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  20. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  1. In situ examination of moving crack tips in ordered intermetallics.

    SciTech Connect

    Heuer, J.; Lam, N. Q.; Okamoto, P. R.; Stubbins, J. F.

    1999-01-25

    Recent studies have shown that high stress concentrations at moving crack tips in the intermetallic compound NiTi can induce a crystalline-to-amorphous (C-A) transformation of the crack tip region. This stress-induced C-A transformation has a temperature dependence and crystallization behavior similar to those of ion irradiation-induced C-A transformation of NiTi. The present study examines if these similarities between stress- and irradiation-induced amorphization hold true for two other intermetallic compounds, CuTi and Ni{sub 3}Ti. In situ straining was performed in an intermediate-voltage transmission electron microscope. The presence or absence of an amorphous phase was determined by dark field imaging and selected area diffraction of crack tip regions. Crack tips in both CuTi and Ni{sub 3}Ti were found to remain crystalline upon fracture. The observed absence of stress-induced amorphization in Ni{sub 3}Ti is consistent with its known absence during irradiation, but the absence in CuTi differs from its known irradiation-induced amorphization behavior. Reasons for the similarity and difference are discussed.

  2. Comparison of various organic compounds destruction on rare earths doped Ti/Sb-SnO2 electrodes.

    PubMed

    Cui, Yu-Hong; Feng, Yu-Jie; Liu, Junfeng; Ren, Nanqi

    2012-11-15

    Ti/Sb-SnO2 and three kinds of rare earths (REs), namely Ce, Gd, and Eu doped Ti/Sb-SnO2 electrodes were prepared and tested for their capacity on electrocatalytic degradation of three kinds of basal aromatic compounds (benzoquinone, hydroquinone and catechol) and six kinds of aliphatic acids (maleic acid, fumaric acid, succinic acid, malonic acid, oxalic acid and acetic acid). The elimination of selected organics as well as their TOC removal with different doped Ti/Sb-SnO2 electrodes was described by first-order kinetics. Compared with Ti/Sb-SnO2, the Gd and Eu doped electrodes show better performance on the degradation of most of the selected organics, while Ce doped electrode shows either closely or lower efficiency on the degradation of these selected organics. Besides electrode material, the molecular structure of organic compound has obvious effect on its degradation in the electrocatalytic process. Catechol is more resistant to the electrophilic attack by hydroxyl radicals than benzoquinone and hydroquinone. The compound with more complicate molecular structure or longer carbon chain is more difficult to be mineralized. The aliphatic acid with higher oxygen content or more double bonds is more readily to be oxidized in the electrocatalytic process.

  3. Magnetic properties and electronic structures of R Ni B compounds where R is a heavy rare earth

    NASA Astrophysics Data System (ADS)

    Burzo, E.; Bucur, N.; Chioncel, L.; Rednic, V.

    2008-07-01

    Magnetic measurements were performed in the temperature range 4.2-300 K and fields up to 70 kOe on R3Ni7B2 compounds with R = Gd, Tb, Dy, Ho, Er. The Curie temperatures decrease from 38.5 K (Gd) to 7 K (Er). Band structure calculations show that nickel, at 0 K, has a very small magnetic polarization, oriented antiparallel to the rare-earth moment. The XPS measurements suggest the presence of unoccupied Ni3d states. The reciprocal susceptibilities follow a Curie-Weiss type behaviour. Effective nickel moments of 1.33 ± 0.25 µB were determined. The magnetic behaviour of nickel is analysed in models which take into account electron correlation effects in d bands.

  4. Equiatomic AEAuX (AE=Ca-Ba, X=Al-In) Intermetallics: A Systematic Study of their Electronic Structure and Spectroscopic Properties.

    PubMed

    Benndorf, Christopher; Stegemann, Frank; Seidel, Stefan; Schubert, Lea; Bartsch, Manfred; Zacharias, Helmut; Mausolf, Bernhard; Haarmann, Frank; Eckert, Hellmut; Pöttgen, Rainer; Janka, Oliver

    2017-01-31

    The three intermetallic compounds SrAuGa, BaAuAl and BaAuGa were synthesised from the elements in niobium ampoules. The Sr compound crystallises in the orthorhombic KHg2 -type structure (Imma, a=465.6(1), b=771.8(2), c=792.6(2) pm, wR2 =0.0740, 324 F(2) values, 13 variables), whereas the Ba compounds were both found to crystallise in the cubic non-centrosymmetric LaIrSi-type structure (P21 3, BaAuAl: a=696.5(1) pm; wR2 =0.0427, 446 F(2) values, 12 variables; BaAuGa: a=693.49(4) pm, wR2 =0.0717, 447 F(2) values, 12 variables). The samples were investigated by powder X-ray diffraction and their structures refined on the basis of single-crystal X-ray diffraction data. The title compounds, along with references from the literature (CaAuAl, CaAuGa, CaAuIn, and SrAuIn), were characterised further by susceptibility measurements and (27) Al and (71) Ga solid-state NMR spectroscopy. Theoretical calculations of the density of states (DOS) and the NMR parameters were used for the interpretation of the spectroscopic data. The electron transfer from the alkaline-earth metals and the group 13 elements onto the gold atoms was investigated through X-ray photoelectron spectroscopy (XPS), classifying these intermetallics as aurides.

  5. Structural distortion in RPt sub 2 Sn sub 2 compounds (R = rare earth)

    SciTech Connect

    Latroche, M.; Selsane, M.; Godart, C.; Schiffmacher, G. , 92 - Meudon-Bellevue ); Beyerman, W.P.; Thompson, J.D. )

    1991-01-01

    CeM{sub 2}X{sub 2} compounds (M-transition metals, X = Si, Ge, Sn) exhibit very exotic properties such as intermediate valence state, heavy fermion, magnetism, and superconductivity. Most of them crystallize in the ThCr{sub 2}Si{sub 2} type structure (14/nmm) while a few adopt the CeBe{sub 2}Ge{sub 2} primitive one (P4/nmmm). Among these compounds, CePt{sub 2}Sn{sub 2} has the heaviest known specific heat coefficient ({gamma} = 3.5 J/mol-K{sup 2}) and orders antiferromagnetically at T{sub N} = 0.88 K. Samples of CePt{sub 2}Sn{sub 2}, Ce{sub 0.e}La{sub 0.2}Pt{sub 2}Sn{sub 2}, and LaPt{sub 2}Sn{sub 2} have been studied by X-ray powder diffraction experiments including Rietveld calculations before and after annealing. As-cast samples can be indexed in the tetragonal primitive cell; however, re- examination of annealed samples (1 3 days at 800{degrees}C and 3 weeks at 700{degrees}C) reveals a monoclinic distortion of the lattice. Such a distortion has already been observed for CeNi{sub 2}Sn{sub 2}. Furthermore, our diffraction patterns show evidence for superlattice lines at twice the unit cell parameters, which was verified by transmission electron microscopy. Microprobes analysis on these samples show that the Pt sublattice is slightly substoichiometric (97.5%). Thus strains due to large atomic radii and ordering of Pt vacancies could be responsible for the monoclinic distortion and superlattice lines. 13 refs., 3 figs., 1 tab.

  6. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  7. A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Pang, Mingjun; Tan, Yong; Zhan, Yongzhong

    2016-11-01

    An investigation into the bulk properties, elastic properties and Debye temperature under pressure, and deformation mode under tension of Al8Cu4Y and Al8Cr4Y compounds was investigated by using first principles calculations based on density functional theory. The calculated lattice constants for the ternary compounds (Al8Cu4Y and Al8Cr4Y) are in good agreement with the experimental data. It can be seen from interatomic distances that the bonding between Al1 atom and Cr, Y, and Al2 atoms in Al8Cr4Y are stronger than Al8Cu4Y. The results of cohesive energy show that Al8Cr4Y should be easier to be formed and much stronger chemical bonds than Al8Cu4Y. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν can be obtained by using the Voigt-Reuss-Hill averaging scheme. From the results of elastic properties, Al8Cr4Y has the stronger mechanical behavior than Al8Cu4Y. Our calculations also show that pressure has a greater effect on mechanical behavior for both compounds. The ideal tensile strength are obtained by stress-strain relationships under [001](001) uniaxial tensile deformation, which are 15.4 and 23.4 GPa for Al8Cu4Y and Al8Cr4Y, respectively. The total and partial density of states and electron charge density under uniaxial tensile deformations for Al8Cu4Y and Al8Cr4Y compounds are also calculated and discussed in this work.

  8. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  9. Polar intermetallic compounds as catalysts for hydrogenation reactions: synthesis, structures, bonding, and catalytic properties of Ca(1-x)Sr(x)Ni4Sn2 (x=0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2.

    PubMed

    Hlukhyy, Viktor; Raif, Fabian; Claus, Peter; Fässler, Thomas F

    2008-01-01

    The potential of polar intermetallic compounds to catalyze hydrogenation reactions was evaluated. The novel compounds CaNi4Sn2, SrNi4Sn2, and Ca(0.5)Sr(0.5)Ni(4)Sn(2) were tested as unsupported alloys in the liquid-phase hydrogenation of citral. Depending on the reaction conditions, conversions of up to 21.0 % (253 K and 9.0 MPa hydrogen pressure) were reached. The binary compounds Ni3Sn and Ni3Sn2 were also tested in citral hydrogenation under the same conditions. These materials gave conversions of up to 37.5 %. The product mixtures contained mainly geraniol, nerol, citronellal, and citronellol. The isotypic stannides CaNi4Sn2, Ca(0.5)Sr(0.5)Ni4Sn2, and SrNi4Sn2 were obtained by melting mixtures of the elements in an arc-furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The novel structures were established by single-crystal X-ray diffraction. They crystallize in the tetragonal space group I4/mcm with parameters: a=7.6991(7), c=7.8150(8) A, wR2=0.034, 162 F(2) values, 14 variable parameters for CaNi4Sn2; a=7.7936(2), c=7.7816(3) A, wR2=0.052, 193 F(2) values, 15 variable parameters for Ca(0.5)Sr(0.5)Ni4Sn2; and a=7.8916(4), c=7.7485(5) A, wR2=0.071, 208 F(2) values, 14 variable parameters for SrNi4Sn2. The Ca(1-x)Sr(x)Ni(4)Sn(2) (x=0.0, 0.5, 1.0) structures can be represented as a stuffed variant of the CuAl2 type by the formal insertion of one-dimensional infinite Ni-cluster chains [Ni4] into the Ca(Sr)Sn2 substructure. The Ni and Sn atoms form a three-dimensional infinite [Ni4Sn2] network in which the Ca or Sr atoms fill distorted octagonal channels. The densities of states obtained from TB-LMTO-ASA calculations show metallic character for both compounds.

  10. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances.

    PubMed

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-06-21

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C.

  11. Alkaline earth complexes of silylated aminopyridinato ligands: homoleptic compounds and heterobimetallic coordination polymers.

    PubMed

    Ortu, Fabrizio; Moxey, Graeme J; Blake, Alexander J; Lewis, William; Kays, Deborah L

    2013-11-04

    The synthesis and characterization of magnesium and calcium complexes of sterically demanding aminopyridinato ligands is reported. The reaction of the 2-Me3SiNH-6-MeC5H3N (L(1)H), 2-MePh2SiNH-6-MeC5H3N (L(2)H), and 2-Me3SiNH-6-PhC5H3N (L(3)H) with KH in tetrahydrofuran (THF) yielded potassium salts L(1)K(thf)0.5 (1), L(2)K (2), and L(3)K(thf)0.5 (3), which, through subsequent reaction with MgI2 and CaI2, afforded the homoleptic complexes (L)2Ae(thf)n [L = L(1), Ae = Mg, n = 1 (4); L = L(2), Ae = Mg, n = 0 (5); L = L(3), Ae = Mg, n = 0 (6); L = L(2), Ae = Ca, n = 2 (7)] and heterobimetallic calciates {[(L)3Ca]K}∞ [L = L(1) (8); L = L(2) (9)]. The solid state structure of 8 reveals a polymeric arrangement in which the calciate units are interlocked by bridging potassium ions. Metalation reactions between L(1)H or L(2)H and ((n)Bu)2Mg lead to the solvent-free compounds (L)2Mg [L = L(1) (10); L = L(2) (5)]. The bridged butyl mixed-metal complex [(L(1))Li(μ2-(n)Bu)Mg(L(1))]∞ (11) was also obtained via a cocomplexation reaction with (n)BuLi and ((n)Bu)2Mg. 11, which adopts a monodimensional polymeric array in the solid state, is a rare example of an alkyl-bridged Li/Mg complex and the first complex to feature an unsupported bridging butyl interaction between two metals. Changing the cocomplexation reaction conditions, the order of reagents added to the reactions mixture, and with the use of a coordinating solvent (tetrahydrofuran) formed the magnesiate complex (L(1))3MgLi(thf) (12).

  12. Heats of formation in transition intermetallic alloys

    SciTech Connect

    Pasturel, A.; Colinet, C.; Hicter, P.

    1984-07-01

    The heats of formation in intermetallic alloys are calculated within a tight-binding scheme for the d band. The difference in bandwidth between the metals and the difference between their energy levels are two dominant effects in determination of the formation energy. The influence of charge transfer on alloy formation is studied.

  13. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  14. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances

    NASA Astrophysics Data System (ADS)

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-05-01

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C.Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C. Electronic supplementary information (ESI) available: Additional characterization data. See DOI: 10.1039/c4nr00313f

  15. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  16. Molecular alloys, linking organometallics with intermetallic Hume-Rothery phases: the highly coordinated transition metal compounds [M(ZnR)(n)] (n >or= 8) containing organo-zinc ligands.

    PubMed

    Cadenbach, Thomas; Bollermann, Timo; Gemel, Christian; Tombul, Mustafa; Fernandez, Israel; von Hopffgarten, Moritz; Frenking, Gernot; Fischer, Roland A

    2009-11-11

    This paper presents the preparation, characterization and bonding analyses of the closed shell 18 electron compounds [M(ZnR)(n)] (M = Mo, Ru, Rh, Ni, Pd, Pt, n = 8-12), which feature covalent bonds between n one-electron organo-zinc ligands ZnR (R = Me, Et, eta(5)-C(5)(CH(3))(5) = Cp*) and the central metal M. The compounds were obtained in high isolated yields (>80%) by treatment of appropriate GaCp* containing transition metal precursors 13-18, namely [Mo(GaCp*)(6)], [Ru(2)(Ga)(GaCp*)(7)(H)(3)] or [Ru(GaCp*)(6)(Cl)(2)], [(Cp*Ga)(4)RhGa(eta(1)-Cp*)Me] and [M(GaCp*)(4)] (M = Ni, Pd, Pt) with ZnMe(2) or ZnEt(2) in toluene solution at elevated temperatures of 80-110 degrees C within a few hours of reaction time. Analytical characterization was done by elemental analyses (C, H, Zn, Ga), (1)H and (13)C NMR spectroscopy. The molecular structures were determined by single crystal X-ray diffraction. The coordination environment of the central metal M and the M-Zn and Zn-Zn distances mimic the situation in known solid state M/Zn Hume-Rothery phases. DFT calculations at the RI-BP86/def2-TZVPP and BP86/TZ2P+ levels of theory, AIM and EDA analyses were done with [M(ZnH)(n)] (M = Mo, Ru, Rh, Pd; n = 12, 10, 9, 8) as models of the homologous series. The results reveal that the molecules can be compared to 18 electron gold clusters of the type M@Au(n), that is, W@Au(12), but are neither genuine coordination compounds nor interstitial cage clusters. The molecules are held together by strong radial M-Zn bonds. The tangential Zn-Zn interactions are generally very weak and the (ZnH)(n) cages are not stable without the central metal M.

  17. Alumina as diffusion barrier to intermetallic formation in thermal interface materials made from indium and copper

    NASA Astrophysics Data System (ADS)

    Saleh, Ibrahim Khalifa

    Indium and copper react at wide range of temperatures to form intermetallic compounds that have different physical, mechanical and thermal properties. Liquid Phase Sintered indium-copper composite long-term performance as thermal interface material is adversely affected by the evolution of the intermetallic. In this study, i) the effect of intermetallic formation and growth on the performance of Liquid Phase Sintered copper-indium composite, ii) the effect of alumina as diffusion barrier between indium and copper, (iii) thermal stability and wettability between indium and alumina, iv) the indium and quartz wettability, v) indium and tungsten oxide wettability have been studied. Deleterious effect of the intermetallic formation and growth on the thermal and mechanical properties has been observed. 5nm of alumina deposited by Atomic Layer Deposition on flat copper surface has been optimized to prevent diffusion process between indium and copper at 120°C. 15nm of alumina prevented the reaction at 230°C. Instability of indium thin film thermally deposited on sapphire substrate was observed. Also, decrease in the sintering density of indium-alumina composite with increasing temperature was observed. The dewetting contact angle between liquid indium and sapphire was ˜127°. The wetting experiments between indium and different oxides showed that indium wets tungsten oxide and quartz..

  18. Soft X-ray synchrotron radiation spectroscopy study of rare-earth chalcogenide charge-density wave compounds

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, Hyun Woo; Seong, Seungho; Denlinger, J. D.; Kwon, Y. S.; Kang, J.-S.

    2017-02-01

    The electronic structures of the layered rare-earth chalcogenide compounds of CeTe2, PrTe2, and PrTe3, which have the charge-density wave (CDW) transition and possibly the chiral transition, have been investigated by employing soft X-ray absorption spectroscopy (XAS) and angle-resolved photoemission spectroscopy (ARPES). R 3 d XAS measurements show that the valence states of Ce and Pr ions are nearly trivalent in all the compounds. Similar band dispersions are observed in their measured ARPES data, but with the band positions in PrTe3 being shifted up in energy compared to those in CeTe2 and PrTe2. These findings suggest that their Te 5 p band structures are determined mainly by the 2D interactions in the Te(2)/Te(3) sheets, but with a larger number of holes in the Te 5 p bands in PrTe3 than in CeTe2 and PrTe2. The measured constant energy maps of CeTe2, PrTe2, and PrTe3 for high binding energies are similar to one another, reflecting the Te 5 p band structures of the Te(2)/Te(3) square nets. In contrast, the Fermi surfaces (FSs) of CeTe2 and PrTe3 exhibit extra features, different from the FS of the ideal Te(2)/Te(3) square nets, which arise from the CDW-induced FS reconstruction in the Te(2)/Te(3) sheets.

  19. Negative thermal expansion induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-01-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4−xMnxO12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding −70 × 10−6 K−1 near room temperature, in the temperature range which can be controlled by substitution. PMID:27877801

  20. High pressure Mössbauer studies of magnetic Np intermetallics

    NASA Astrophysics Data System (ADS)

    Moser, J.; Gal, J.; Potzel, W.; Wortmann, G.; Kalvius, G. M.; Dunlap, B. D.; Lam, D. J.; Spirlet, J. C.

    1980-10-01

    A high pressure (50 kbar) Mössbauer spectrometer for the 60 keV resonance in 237Np for temperatures between 1.4 and 100 K is described. It was used to study the magnetic properties of some neptunium intermetallics under pressure. For the cubic Laves phase compounds NpOs 2 and NpAl 2 a drastic decrease of the ordering temperature, the hyperfine field, and the isomer shift under increasing pressure was observed. It shows that their magnetic properties are primarily determined by the Np-Np separation which controls the width and hybridization of the 5f band. In contrast, an increase of ordering temperature coupled with a decrease of isomer shift with pressure was found in tetragonal NpCo 2Si 2, while the hyperfine field remains constant. This suggests that its magnetic properties must arise from different sources.

  1. Interference of spin-, charge- and orbital degrees of freedom in low-carrier rare earth compounds, investigated by NMR

    NASA Astrophysics Data System (ADS)

    Wada, S.

    2006-05-01

    In rare earth compounds, the concentration of charge carriers is known to strongly influence the nature, and the charge carriers caused by valence fluctuations result in a complete suppression of the magnetic state, as typically observed for YbInCu4. The notable exception has been reported for the cubic (NaCl structure) TmX and YbX families with low carrier, that exhibits antiferro-magnetic (AFM) order at low temperatures. Among these families, TmTe and YbSb with degenerate low-lying multiplets have an additional transition of antiferro-quadrupolar (AFQ) orderings. To elucidate the interplay between the electronic transport and magnetic and/or orbital phenomena close to a semiconductor-to-metal transition, we have carried NMR measurements of 63Cu in YbInCu4, 125Te in TmTe, and 121Sb in YbSb down to 1.2 K and the implication of NMR findings is discussed in terms of the CEF splitting.

  2. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    NASA Astrophysics Data System (ADS)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  3. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  4. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  5. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  6. Plasma spray forming metals, intermetallics, and composites

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay; Herman, Herbert

    1993-07-01

    Plasma spray processing is a droplet deposition method that combines the steps of melting, rapid solidification, and consolidation into a single step. The versatility of the technology enables the processing of freestanding bulk, near-net shapes of a wide range of alloys, intermetallics, ceramics, and composites, while still retaining the benefits of rapid solidification processing. In particular, it is possible to produce dense forms through vacuum plasma spraying.

  7. Erosion of a TiAl intermetallic alloy under conditions simulating plasma disruptions

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Yakushin, V. L.; Polsky, V. I.; Dzhumaev, P. S.; Fedotov, V. T.; Sevryukov, O. N.; Golikov, M. Yu.; Zolotarev, M. V.

    2009-04-01

    Radiation erosion and thermal stability of TiAl-based intermetallic alloys produced by vacuum-arc melting, compacting of microcrystal powders with binder and impregnantion by melt, and their brazed joints with bronze have been investigated under irradiation by high-temperature pulsed hydrogen plasma flows (the flow energy density Q = 0.2-0.9 MJ/m 2, the pulse duration 15 μs, the number of pulses 1-21) which simulate the expected plasma disruptions in a fusion reactor. It has been found that the erosion coefficients and thermal stability of alloys are determined by the way of their fabrication, and compacted intermetallides have a higher thermal stability in comparison with the cast ones. The brazed joints of the intermetallic compound with bronze under irradiation by pulsed hydrogen plasma up to the energy density Q = 0.75 MJ/m 2 have a high thermal stability and formation of cracks was not observed.

  8. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction.

    PubMed

    Cui, Zhiming; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2016-04-13

    Extensive efforts to develop highly active and strongly durable electrocatalyst for oxygen reduction are motivated by a need for metal-air batteries and fuel cells. Here, we report a very promising catalyst prototype of structurally ordered Pd-based alloys, Pd3Pb intermetallic compound. Such structurally ordered Pd3Pb/C exhibits a significant increase in mass activity. More importantly, compared to the conventional Pt/C catalysts, ordered Pd3Pb/C is highly durable and exhibits a much longer cycle life and higher cell efficiency in Zn-air batteries. Interestingly, ordered Pd3Pb/C possesses very high methanol tolerance during electrochemical oxygen reduction, which make it an excellent methanol-tolerant cathode catalyst for alkaline polymer electrolyte membrane fuel cells. This study provides a promising route to optimize the synthesis of ordered Pd-based intermetallic catalysts for fuel cells and metal-air batteries.

  9. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    DTIC Science & Technology

    2010-02-28

    material cost and density than austenitic and ferritic stainless steels [3,4]. They contain enough aluminum to form a thin film of aluminum oxide (in...1 t-\\ a) > —, :— sm . c) • / ""•••• Figure 8. Surface morphologies of...low material cost and density than austenitic and ferritic stainless steels [3,4]. They contain enough aluminum to form a thin film of aluminum oxide

  10. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  11. Metastable phase formation in Be-Nb intermetallic compounds

    SciTech Connect

    Brimhall, J.L.; Charlot, L.A.; Bruemmer, S.M.

    1990-11-01

    Amorphous structures or metastable crystalline phases are produced in sputter-deposited Beryllium-Niobium (Be-Nb) alloys (5-15 at. % Nb) depending on the substrate temperature. The metastable phases transform to the stable Be{sub 12}Nb, Be{sub 17}Nb{sub 2}Nb phases on annealing at temperatures >800{degree}C. No Be{sub 5}Nb phase was found and the Be{sub 17}Nb{sub 2} phase is stable to low temperature. The Be{sub 12}Nb phase appeared to have a stoichiometric range of about 5.5 to 7.7 at. % Nb. The formation of the metastable phases is consistent with current models and theories. 17 refs., 1 fig., 2 tabs.

  12. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  13. Magneto-structural correlations in rare-earth cobalt pnictides

    NASA Astrophysics Data System (ADS)

    Thompson, Corey Mitchell

    Magnetic materials are used in many applications such as credit cards, hard drives, electric motors, sensors, etc. Although a vast range of magnetic solids is available for these purposes, our ability to improve their efficiency and discover new materials remains paramount to the sustainable progress and economic profitability in many technological areas. The search for magnetic solids with improved performance requires fundamental understanding of correlations between the structural, electronic, and magnetic properties of existing materials, as well as active exploratory synthesis that targets the development of new magnets. Some of the strongest permanent magnets, Nd 2Fe14B, SmCo5, and Sm2Co17, combine transition and rare-earth metals, benefiting from the strong exchange between the 4f and 3d magnetic sublattices. Although these materials have been studied in great detail, the development of novel magnets requires thorough investigation of other 3d-4 f intermetallics, in order to gain further insights into correlations between their crystal structures and magnetic properties. Among many types of intermetallic materials, ternary pnictides RCo 2Pn2 (R = La, Ce, Pr, Nd; Pn = P, As) are of interest because, despite their simple crystal structures, they contain two magnetic sublattices, exchange interactions between which may lead to rich and unprecedented magnetic behavior. Nevertheless, magnetism of these materials was studied only to a limited extent, especially as compared to the extensive studies of their silicide and germanide analogues. The ThCr2Si2 structure type, to which these ternary pnictides belong, is one of the most ubiquitous atomic arrangements encountered among intermetallic compounds. It accounts for over 1000 known intermetallics and has received increased attention due to the recently discovered FeAs-based superconductors. This dissertation is devoted to the investigation of

  14. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment.

    PubMed

    Parker, Eric T; Cleaves, H James; Callahan, Michael P; Dworkin, Jason P; Glavin, Daniel P; Lazcano, Antonio; Bada, Jeffrey L

    2011-06-01

    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH(4)), hydrogen sulfide (H(2)S), ammonia (NH(3)), and carbon dioxide (CO(2)). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H(2)S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  15. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.

    PubMed

    Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa

    2016-02-14

    We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.

  16. Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; Lazcano, Antonio

    2010-01-01

    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was farmed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  17. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  18. Cold Sprayed Intermetallic Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Evgeny

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat-isolative topcoat. Several recent research activities are concentrated on the development of improved multilayer bond coat and TBC materials. This study represents an investigation performed for the aluminum based bond coats, especially those with reduced thermal conductivities. Using alternative TBC materials, such as metal alloys and intermetallics, their processing methods can be further optimized to achieve the best thermal physical parameters. One example is the ten-layer system in which cold sprayed aluminum based intermetallics are synthesized. These systems demonstrated improved heat insulation and thermal fatigue capabilities compared to conventional TBC. The microstructures and properties of the laminar coatings were characterized by SEM, EDS, XRD; micromechanical and durability tests were performed to define the structure and coating formation mechanisms. Application prospects for HCCI engines are discussed. Fuel energy can be utilized more efficiently with the concept of low heat rejection engines with applied TBC.

  19. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    NASA Astrophysics Data System (ADS)

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  20. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    PubMed Central

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed. PMID:28067334

  1. Exploration of new multifunctional magnetic materials based on a variety of Heusler alloys and rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun Kumar

    2011-12-01

    Magnetic, magnetocaloric, magnetotransport and magnetoelastic properties of Ni-Mn-X (X = In, and Ga) Heusler alloys and La-Fe-Si based rare earth compounds have been synthesized and investigated by x-ray diffraction, magnetization, strain, and electrical resistivity measurements. The phase transitions, magnetic, magnetocaloric, magnetotransport and magnetoelastic properties strongly depend on the composition of these systems. In Ni50Mn50-xInx with x = 13.5, magnetocaloric and magnetotransport properties associated with the paramagnetic martensitic to paramagnetic austenitic transformation were studied. It was shown that magnetic entropy changes (DeltaSM) and magnetoresistance (MR) associated with this transformation are larger and the hysteresis effect is significantly lower when compared to that associated with paramagnetic-ferromagnetic transitions or ferromagnetic-antiferromagnetic/paramagnetic transitions in other systems. The Hall resistivity and the Hall angle shows unusual behavior in the vicinity of the martensitic phase transition for Ni50Mn 50-xInx with x = 15.2. The observed Hall resistivity and Hall angle are 50 μO·cm and tan-1 0.5, respectively. It was observed that the presence of Ge, Al and Si atoms on the In sites strongly affects the crystal structure, and the electric and magnetic behaviors of Ni50Mn35In15. It was found that the partial substitution of In atoms by Si in Ni50Mn35In15 results in an increase in the magnetocaloric effect, exchange bias and shape memory effect. In Ni50Mn35In15-xSi x, the peak values of positive DeltaSM for magnetic field changes H = 5 T were found to depend on composition and vary from 82 J·kg -1·K-1 for x = 1 (at T = 275 K) to 124 J·kg -1·K-1 for x = 3 (at T = 239 K). The partial substitution of Ni by Co in Ni50Mn35In15 significantly improves the magnetocaloric effect and MR in the vicinity of martensitic transition. In addition, significantly large inverse DeltaS M and MR were observed at the inverse

  2. Magnetic, resonance, and optical properties of Cu3Sm (SeO3)2O2Cl : A rare-earth francisite compound

    NASA Astrophysics Data System (ADS)

    Zakharov, K. V.; Zvereva, E. A.; Markina, M. M.; Stratan, M. I.; Kuznetsova, E. S.; Dunaev, S. F.; Berdonosov, P. S.; Dolgikh, V. A.; Olenev, A. V.; Klimin, S. A.; Mazaev, L. S.; Kashchenko, M. A.; Ahmed, Md. A.; Banerjee, A.; Bandyopadhyay, S.; Iqbal, A.; Rahaman, B.; Saha-Dasgupta, T.; Vasiliev, A. N.

    2016-08-01

    In this combined experimental and theoretical paper, we study the properties of Cu3Sm (SeO3)2O2Cl belonging to the francisite family of compounds, which are novel frustrated layered compounds. Cu3Sm (SeO3)2O2Cl is synthesized through a solid state reaction. Characterizations through measurements of magnetization, specific heat, X-band electron spin resonance, and rare-earth optical spectroscopy, establish that the compound orders antiferromagnetically at TN=35 K and undergoes a spin-reorientation phase transition at TC=8.5 K due to the interplay of anisotropies in transition metal and rare-earth subsystems. The ground state Kramers doublet of Sm is found to split only at T

  3. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  4. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    SciTech Connect

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; Huang, Wenyu

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similar activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.

  5. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGES

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; ...

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  6. Hot isostatic pressing of intermetallic powders

    NASA Astrophysics Data System (ADS)

    Schaefer, R. J.; Kushner, B. G.

    The application of the intelligent processing of materials (IPM) approach to powder densification by hot isostatic pressing (HIP) is made possible by the development of in situ sensors, process models and adaptive control strategies. The challenge is to optimize the process schedule for new materials to achieve densification, shape and microstructural goals. The development of an IPM system for HIP of intermetallic powders is described. The primary sensor used in this system employs eddy currents to measure changes of sample dimensions, while the process model is that of Ashby et al., reformulated to more closely describe real materials in real HIP process cycles. Process cycles are developed by combining a knowledge base derived from experts with the process model refined by sensor measurements.

  7. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    PubMed

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  8. Magnetic characteristics of R 2Fe 14B systems prepared with high purity rare earths (R =Y, Nd, Sm or Gd)

    NASA Astrophysics Data System (ADS)

    Huang, M. Q.; Oswald, E.; Boltich, E.; Hirosawa, S.; Wallace, W. E.; Schwab, E.

    1985-05-01

    Commercially procured rare earth metals frequently contain 2-5 atomic per cent oxygen. Rare earth intermetallic compounds prepared from these materials with compositions estimated by synthesis can significantly deviate from the intended composition. Several R 2Fe 14B systems have been synthesized using rare earth metals obtained from the Ames Laboratory which typically contain <25 ppm oxygen (by weight) and their fun damental magnetic properties determined. Curie temperatures range from 565 (for Y 2Fe 14B) to 669 K (for Gd 2Fe 14B). Anisotropy fields (20 C) range from 27 to 71 kOe. Results for Y 2Fe 14B and Gd 2Fe 14B suggest that about 40% of the anisotropy in Nd 2Fe 14B originates with the Fe sublattice. The Fe moment in these systems exceeds by a small margin that of elemental Fe, suggesting that B is acting as an electron donor. The Nd moment in Nd 2Fe 14B is estimated as 3.0 μ B, which is 92% of the free ion moment. The NdFe and GdFe couplings are ferromagnetic and antiferromagnetic, respectively. Coupling for these systems conforms to the systematics observed earlier for simpler rare earth intermetallics.

  9. Second-order nonlinear optical Langmuir-Blodgett films based on a series of azo rare-earth coordination compounds

    SciTech Connect

    Gao, L.H.; Wang, K.Z.; Huang, C.H.

    1995-06-01

    A series of novel azo dyes composed of a lanthanide complex anion and an azo cation, in which strongly electron-donating (dihexadecylamino)phenyl and electron-accepting pyridinium groups are separated by an azo group, was designed as second-order nonlinear optical Langmuir-Blodgett (LB) film materials. The compounds are of good film-forming properties. The values of second-order molecular hyperpolarizability {beta} were determined to be (1.20-3.03) x 10{sup {minus}27} esu, comparable to the largest value known for azo LB materials. The compounds studied may be attactive in the application in future optical devices. 13 refs., 5 figs., 1 tab.

  10. R3Au(6+x)Al26T (R = Ca, Sr, Eu, Yb; T = early transition metal): a large family of compounds with a stuffed BaHg11 structure type grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2009-02-16

    A collection of new quaternary intermetallic compounds with a cubic, stuffed BaHg(11) structure type has been synthesized by the combination of a divalent rare earth or alkaline earth metal R, an early transition metal T, and gold in an excess of molten aluminum. Structural characterization of these R(3)Au(6+x)Al(26)T compounds by powder and single crystal X-ray diffraction indicates that the unit cell varies with the radii of the early transition metal T and the rare earth/alkaline earth R as expected. The element T (where T = group 4, 5, 6, and 7 element) appears to be responsible for the stabilization of up to 43 different members of the R(3)Au(6+x)Al(26)T family of compounds. Varying amounts of disorder and trends in partial occupancies of the Au stuffed site--the site that is vacant in the parent compound BaHg(11)--are also indicated by the diffraction studies of this family of compounds. Magnetic susceptibility data reveals that the transition metal atoms in these materials do not possess local magnetic moments. For the magnetic rare earth containing materials, the europium compounds undergo a ferromagnetic transition at 10 K, and the ytterbium analogues show mixed valent behavior. Band structure calculations also support a mixed valent state for Yb in these compounds.

  11. Local Strain Development and Property Variability in B2 Intermetallics

    DTIC Science & Technology

    2005-09-19

    COVERED (From - To) 19092005 Final Report 15 Jan 2001 - 30 Apr 2005 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Local Strain Development and Property...Variability in B2 Intermetallics 5b. GRANT NUMBER F49620-01-1-0159 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER Professor Tresa M. Pollock 5e... 4 3.0 The Strain Mapping Technique .............................................. 4 4.0 Intermetallic

  12. A Nanocrystalline Ni2(Cr,Mo) Intermetallic with Potentially Useful Combination of Properties for Gas Turbine Seal Ring Applications

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.; Al-Hadhrami, Luai M.

    2012-07-01

    Seal rings are installed for each turbine stage in gas turbine engines to minimize the loss in gas pressure and maintain engine efficiency. During service, seal rings become susceptible to failure by thermal fatigue as demonstrated by a case study. Therefore, a lower coefficient of thermal expansion is among the most important requirements for these applications. We show that long-range ordering in a Ni-Cr-Mo alloy can be used to synthesize a nanocrystalline intermetallic compound combining high strength, high ductility, low coefficient of thermal expansion, and an adequate oxidation resistance up to at least 700 °C. Twinning rather than slip is found to be the predominant deformation mechanism of the intermetallic compound, which is correlated with the crystallography of the disorder-to-order transformation and microstructure evolution. This could explain the enhanced plasticity of the intermetallic compound. The combination of enhanced plasticity, low-thermal expansion, and nano-sized crystals is expected to improve the resistance to thermal fatigue failure.

  13. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  14. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    SciTech Connect

    Xia Zhengqiang; Chen Sanping; Wei Qing; Qiao Chengfang

    2011-07-15

    Two new energetic compounds, [M(BTE)(H{sub 2}O){sub 5}]{sub n} (M=Sr(1), Ba(2)) [H{sub 2}BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs linked up by two independent binding modes of H{sub 2}BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face {pi}-{pi} stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two independent binding modes of H{sub 2}BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: > Two novel alkaline earth energetic coordination polymers have been prepared.{yields} Both structures are layered based on 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two distinct H{sub 2}BTE coordination modes.{yields} The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  15. Electronic and optical properties of RESn3 (RE=Pr & Nd) intermetallics: A first principles study

    NASA Astrophysics Data System (ADS)

    Pagare, G.; Abraham, Jisha A.; Sanyal, S. P.

    2015-06-01

    A theoretical study of structural, electronic and optical properties of RESn3 (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linear optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.

  16. Transient liquid phase bonding of intermetallics

    NASA Astrophysics Data System (ADS)

    Guan, Yimin

    The present work was undertaken to examine the applicability of transient liquid phase bonding to structural intermetallics. This research was based on an investigation of the mechanisms governing microstructural development in the joint and adjacent substrates during the joining process. The bonding systems investigated included polycrystalline NiAl/Cu/Ni, polycrystalline NiAl/Cu/superalloys (Martin-Marietta (MM)-247, Inconel (IN) 718 and Nimonic 90), single-crystal NiAl (with 1.5 at % Hf) joined to MM-247 using different filler metals (Cu foil, powder filler metal and electro-plated thin Cu film), and martensitic NiAl joined with martensitic NiTi using Cu foil and specially designed powder filler metals. In polycrystalline NiAl/Cu/Ni bonds, the mechanism of isothermal solidification is considered. Changes in the microstructure of the bond centerline due to element redistribution are discussed. The precipitation of both L1sb2 type gammasp' and B2 type beta phase at the joint centerline is investigated. The formation of martensitic L1sb0 type NiAl is also examined. The mechanical properties of the joints are investigated using shear strength and microhardness tests. In TLP bonding of polycrystalline NiAl with MM-247, both the epitaxial growth of the beta phase NiAl into the joint and the formation of non-epitaxial beta-phase layers are considered. The formation of second-phases, including the gammasp' phase, carbides, and sigma-phase intermetallics is also examined. Bond-line and adjacent substrate microstructures for the NiAl/Cu/MM-247 bonds are correlated with joint mechanical properties determined by room temperature shear testing. Single-crystal NiAl (1.5 at % Hf)/Cu/MM-247 joints are examined and compared with polycrystalline NiAl/Cu/MM247 joints. The effect of Hf on the microstructure of joints is investigated. The influence of different filler metals (i.e., wide-gap powder filler metal and electro-plated thin film filler metal) on the joining process is also

  17. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  18. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  19. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  20. MEASUREMENT OF INFRARED SPECTRA AND CHEMICAL BONDING OF INORGANIC COMPOUNDS.

    DTIC Science & Technology

    CHROMATES, SELENIUM COMPOUNDS, PERMANGANATES, FLUOBORATES , LITHIUM FLUORIDES, BELGIUM...CRYSTAL STRUCTURE, SODIUM CHLORIDE, LITHIUM COMPOUNDS, BARIUM COMPOUNDS, ALKALINE EARTH COMPOUNDS, ALKALI METAL COMPOUNDS, SULFATES, PERCHLORATES

  1. Marine and terrestrial sources of reactive volatile organic compounds and their impact on the tropospheric ozone chemistry of the earth

    NASA Astrophysics Data System (ADS)

    Riemer, Daniel David

    Two areas integral to the global cycle of tropospheric ozone were studied. The first segment of this investigation involved the study of marine ecosystems to define the sources of nonmethane hydrocarbons (NMHCs) in the surface ocean. This included laboratory and field investigations conducted to determine the function and importance of dissolved organic matter (DOM) in the abiotic photochemical production of nonmethane hydrocarbons (NMHCs) in surface seawater. Concurrently, phytoplankton were investigated as a biogenic source of NMHCs in the surface ocean. Low molecular weight alkenes, compounds observed in the greatest quantities in the surface ocean, are formed almost exclusively as a result of DOM-mediated photochemistry. Isoprene was found to be produced by all phytoplankton species investigated. The primary sink for NMHCs found in surface seawater was gas exchange. The second segment of this study focused on the prevalence of NMHCs and oxygenated volatile organic compounds (OVOCs) in the rural southeastern United States. To characterize the importance of NMHCs and OVOCs to the process of atmospheric reactivity and tropospheric ozone chemistry, mixing ratios for a number of NMHCs and OVOCs were determined. Isoprene and its primary oxidation products, methacrolein and methyl vinyl ketone, were observed to be the dominant hydroxyl radical (OH) sink in the rural atmosphere. Certain OVOCs, namely methanol, acetone and acetaldehyde-although not as important on a reactivity basis-were the most prevalent in terms of mass. Methanol was the dominant OVOC measured in the rural atmosphere and serves as an important source of formaldehyde in the rural atmosphere. On the basis of the mixing ratio patterns exhibited by many of the OVOCs present in the rural atmosphere, considerable biogenic sources are likely.

  2. Electron microscopy of severely deformed L12 intermetallics

    NASA Astrophysics Data System (ADS)

    Geist, D.; Gammer, C.; Mangler, C.; Rentenberger, C.; Karnthaler, H. P.

    2010-12-01

    Severe plastic deformation (SPD) can be used to make bulk, nanostructured materials. Three L12 long-range ordered (LRO) intermetallic compounds were studied by TEM methods. The superlattice glide dislocations can dissociate according to two schemes: antiphase boundary (APB) coupled unit dislocations or superlattice intrinsic stacking fault (SISF) coupled super Shockley partials; both of them are analysed by weak-beam TEM methods. The nanostructures resulting from SPD carried out by high pressure torsion (HPT) are strongly affected by the different dissociation schemes of the dislocations. APB-dissociated superlattice dislocations and especially the APB tubes they form lead to the destruction of the LRO by HPT deformation as observed in Cu3Au and Ni3Al, whereas in Zr3Al heavily deformed (∼100,000% shear strain) at low temperatures the order is not destroyed since the deformation occurs by SISF-dissociated dislocations. In addition to the effects on the LRO the different dissociation schemes of the dislocations have a strong impact on the refinement and destruction of the crystalline structure by SPD. They seem to be decisive for the dynamic recovery considered as the limiting factor for the final grain sizes and the possibility of reaching amorphisation. Finally, the correlation between the reduction of the LRO and the structural refinement occurring during SPD is different in the three different alloys: In Cu3Au, the LRO is already strongly reduced before the structural refinement reaches saturation, in Ni3Al both are occurring simultaneously, whereas in Zr3Al, the formation of the nanograins does not seem to be connected with disordering.

  3. Synthesis of cerium rich intermetallics using molten metal eutectics

    NASA Astrophysics Data System (ADS)

    Tucker, Patricia Christine

    Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4. Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K. Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was

  4. Photochemical studies in low Earth orbit for organic compounds related to small bodies, Titan and Mars. Current and future facilities.

    NASA Astrophysics Data System (ADS)

    Cottin, H.; Saiagh, K.; Nguyen, D.; Grand, N.; Bénilan, Y.; Cloix, M.; Coll, P.; Gazaux, M.-C.; Fray, N.; Khalaf, D.; Raulin, F.; Stalort, F.; Carrasco, N.; Szopa, C.; Chaput, D.; Bertrand, M.; Westall, F.; Mattioda, A.; Quinn, R.; Ricco, A.; Santos, O.; Baratta, G. A.; Strazzulla, G.; Palumbo, M. E.; Le Postollec, A.; Dobrijevic, M.; Coussot, G.; Vigier, F.; Vandenabeele-Trambouze, O.; Incerti, S.; Berger, T.

    2015-01-01

    The study of the evolution of organic matter subjected to space conditions, and more specifically to solar photons in the vacuum ultraviolet range (120-200 nm) has been undertaken in low Earth Orbit since the 90's, and implemented on various space platforms. The most recent exposure facilities are BIOPAN outside the Russian automatic capsules FOTON, and EXPOSE-E & -R (1&2) outside the International Space Station. They allow the photolysis of many different samples simultaneously, and provide us with valuable data about the formation and evolution of organic matter in the Solar System (meteorites, comets, Titan's atmosphere, the Martian surface...) and in the Interstellar Medium. They have been used by European teams in the recent past(ORGANIC on BIOPAN V-FOTON M2 and UVolution on BIOPAN VI-FOTON M3, PROCESS on EXPOSE-E, AMINO and ORGANICS on EXPOSE-R), and a new EXPOSE set is currently exposed outside the ISS (PSS on EXPOSE-R2). These existing tools are very valuable; however, they have significant limitations that limit their capabilities and scientific return. One of the most critical issues for current studies is the lack of any in-situ analysis of the evolution of the samples as a function of time. Only two measurements are available for the experiment: one before and one after the exposure. A significant step forward has been achieved with the O/OREOS NASA nanosatellite and the OREOcube ESA project with onboard UV-visible measurements. However, for organic samples, following the evolution of the samples would be more informative and provide greater insight with infrared measurements, which display specific patterns characteristic of major organic functionalities in the mid-infrared range (4000-1000 cm-1).

  5. Corrosion behavior of binary titanium aluminide intermetallics

    SciTech Connect

    Saffarian, H.M.; Gan, Q.; Hadkar, R.; Warren, G.W.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit} decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.

  6. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  7. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics.

    PubMed

    Booth, C H; Jiang, Yu; Wang, D L; Mitchell, J N; Tobash, P H; Bauer, E D; Wall, M A; Allen, P G; Sokaras, D; Nordlund, D; Weng, T-C; Torrez, M A; Sarrao, J L

    2012-06-26

    Uranium and plutonium's 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials.

  8. RE(AuAl2)nAl2(AuxSi1-x)2: a new homologous series of quaternary intermetallics grown from aluminum flux.

    PubMed

    Latturner, Susan E; Kanatzidis, Mercouri G

    2008-03-17

    The combination of early rare earth metals (La- to Gd and Yb), gold, and silicon in molten aluminum results in the formation of intermetallic compounds with four related structures, forming a new homologous series: RE[AuAl2]nAl2(AuxSi(1-x))2, with x approximately 0.5 for most of the compound and n = 0, 1, 2, and 3. Because of the highly reducing nature of the Al flux, rare earth oxides instead of metals can also be used in these reactions. These compounds grow as large plate-like crystals and have tetragonal structure types that can be viewed as intergrowths of the BaAl4 structure and antifluorite-type AuAl2 layers. REAuAl2Si materials form with the BaAl4 structure type in space group I4/mmm (cell parameters for the La analogue are a = 4.322(2) A, c = 10.750(4) A, and Z = 2). REAu2Al4Si forms in a new ordered superstructure of the KCu4S3 structure type, with space group P4/nmm and cell parameters of the La analogue of a = 6.0973(6) A, c = 8.206(1) A, and Z = 2. REAu3Al6Si forms in a new I4/mmm symmetry structure type with cell parameters of a = 4.2733(7) A, c = 22.582(5) A, and Z = 2 for RE = Eu. The end member of the series, REAu4Al8Si, forms in space group P4/mmm with cell parameters for the Yb analogue of a = 4.2294(4) A, c = 14.422(2) A, and Z = 1. New intergrowth structures containing two different kinds of AuAl2 layers were also observed. The magnetic behavior of all these compounds is derived from the RE ions. Comparison of the susceptibility data for the europium compounds indicates a switch from 3-D magnetic interactions to 2-D interactions as the size of the AuAl2 layer increases. The Yb ions in YbAu(2.91)Al(6)Si(1.09) and YbAu(3.86)Al(8)Si(1.14) are divalent at high temperatures.

  9. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  10. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  11. Intermetallic phase detection in lead-free solders using synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jackson, Gavin J.; Lu, Hua; Durairaj, Raj; Hoo, Nick; Bailey, Chris; Ekere, Ndy N.; Wright, Jon

    2004-12-01

    The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

  12. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  13. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  14. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents.

  15. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    PubMed

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  16. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  17. Materials Processing and Microstructure Control in High Temperature Ordered Intermetallics.

    DTIC Science & Technology

    2007-11-02

    an integrated approach that couples processing with microstructure control as guided by the operative phase equilibria has been used to identify...several promising intermetallic alloys. The experimental efforts have focused on three areas involving a coordination of phase equilibria information with

  18. Crystal structure, chemical bonding and magnetism studies for three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases.

    PubMed

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-04-22

    Three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like "12-membered rings" for the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series or the cis-trans Ge/Sn-chains for the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13.

  19. NMR study of valence fluctuating state in rare-earth based materials with multi-4f electrons

    NASA Astrophysics Data System (ADS)

    Mito, Takeshi

    2013-02-01

    Intermetallic compounds containing rare-earth elements have been a focus of interest due to their variety of intriguing phenomena, such as heavy fermion, valence fluctuation, magnetism, and superconductivity. Nuclear magnetic resonance (NMR) has played an important role in uncovering electronic states in those rare-earth based materials at the microscopic level. Among them, while cerium based materials have been intensively studied, there are so far a little NMR investigations on materials containing other rare-earth elements, such as samarium, europium, ytterbium, and so on, in spite of their attractive properties. We have recently concentrated on investigating the valence fluctuating states in the compounds with multi-4f electron configurations by NMR. Intermediate valence compound SmB6 undergoes an insulator-metal transition at the critical pressure 6-10 GPa [1,2], accompanied by the occurrence of a long-range magnetic order. In order to investigate intimate relationships between the insulating gap-formation, valence change, and magnetization as a function of pressure, we have successfully performed 11B-NMR up to ˜6 GPa. In this talk, we shall also present the result on EuPtP which shows two valence transitions at 235 K and 190 K [3].

  20. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  1. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  2. Oxidation of high-temperature intermetallics; Proceedings of the Workshop, Cleveland, OH, Sept. 22, 23, 1988

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni (Editor); Doychak, Joseph (Editor)

    1989-01-01

    The present conference on the high-temperature oxidation behavior of aerospace structures-applicable intermetallic compounds discusses the influence of reactive-element additions on the oxidation of Ni3Al base alloys, the effect of Ni3Al oxidation below 850 C on fracture behavior, the oxidation of FeAl + Hf, Zr, and B, the synergistic effect of Al and Si on the oxidation resistance of Fe alloys, and pack cementation coatings of Cr-Al on Fe, Ni, and Co alloys. Also discussed are the formation of alumina on Nb- and Ti-base alloys, the oxidation behavior of titanium aluminide alloys, silicide coatings for refractory metals, the oxidation of chromium disilicide, and the oxidation behavior of nickel beryllides.

  3. Magnetic properties of RCo2 compounds in the exchange-striction model of ferrimagnets

    NASA Astrophysics Data System (ADS)

    Valiev, E. Z.; Teplykh, A. E.

    2017-01-01

    The original version of the exchange-striction model of a ferrimagnet has been employed for calculating a number of magnetic properties of RCo2 ferrimagnets, where R = Er, Ho, Dy, Tb, and Gd are rareearth ions. The following magnetic properties are calculated: pressure dependence of the Curie temperature ( T C), temperature dependences of magnetization in sublattices of cobalt and rare-earth atoms, and isotherms of magnetization of these lattices at T > T C. For an ErCo2 sample, the H-T phase diagram has been constructed and the magnetization in the magnetic fields H = 0-70 T has been calculated. The calculated and experimental results have been compared. Based on the exchange-striction model, the qualitative explanation of the difference in the type of the magnetic phase transformation in the intermetallic compounds with R = Tb and Gd and R = Er, Ho, and Dy is given.

  4. First principles study of halogens adsorption on intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Quanxi; Wang, Shao-qing

    2016-02-01

    Halides are often present at electrochemical environment, they can directly influence the electrode potential or zero charge potential through the induced work-function change. In this work, we focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine on Al2Au and Al2Pt (110) surfaces. Results show that the real relation between work function change and dipole moment change for halogens adsorption on intermetallic surfaces is just a common linear relationship rather than a directly proportion. Besides, the different slopes between fitted lines and the theoretical slope employed in pure metal surfaces demonstrating that the halogens adsorption on intermetallic surfaces are more complicated. We also present a weight parameter β to describe different factors effect on work function shift and finally qualify which factor dominates the shift direction.

  5. Laser Metal Deposition of the Intermetallic TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Thomas, Marc; Malot, Thierry; Aubry, Pascal

    2017-03-01

    Laser metal deposition of the commercial intermetallic Ti-47Al-2Cr-2Nb alloy was investigated. A large number of experiments were conducted under controlled atmosphere by changing the processing parameters to manufacture a series of beads, thin walls, and massive blocks. Optimal process parameters were successfully found to prevent cracking which is generally observed in this brittle material due to built-up residual stresses during fast cooling. These non-equilibrium cooling conditions tend to generate ultra-fine and metastable structures exhibiting high microhardness values, thus requiring post-heat treatments. The latter were successfully used to restore homogeneous lamellar or duplex microstructures and to relieve residual stresses. Subsequent tensile tests enabled us to validate the soundness and homogeneity of the Intermetallic TiAl alloy. Finally, a higher mechanical performance was achieved for the LMD material with respect to cast+HIP and EBM counterparts.

  6. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  7. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  8. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    SciTech Connect

    Pagare, G.; Abraham, Jisha A.; Sanyal, S. P.

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linear optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.

  9. Superplastic ceramics and intermetallics and their potential applications

    SciTech Connect

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al{sub 2}O{sub 3} Hydroxyapatite, {beta}-spodumene glass ceramics, Al{sub 2}0{sub 3}-YTZP two-phase composites, SiC-Si{sub 3}N{sub 4} and Fe-Fe{sub 3}C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni{sub 3}Al and Ni{sub 3}Si) and titanium-base intermetallics (TiAl and T1{sub 3}Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application.

  10. Laves intermetallics in stainless steel-zirconium alloys

    SciTech Connect

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-05-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni){sub 2+x}, have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni){sub 23}Zr{sub 6} during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy.

  11. Magnetic properties of PrX 2 compounds (X = Pt, Rh, Ru, Ir) studied by hyperfine specific heat, magnetization and neutron-diffraction measurements

    NASA Astrophysics Data System (ADS)

    Greidanus, F. J. A. M.; de Jongh, L. J.; Huiskamp, W. J.; Fischer, P.; Furrer, A.; Buschow, K. H. J.

    1983-04-01

    Magnetic ordering phenomena in rare-earth intermetallic compounds can be unravelled most advantageously in the case of simple crystallographic structure and when a combination of microscopic techniques is applied. Here we shall present the temperature and magnetic field dependence of the magnetic moment of the cubic PrX 2 compounds (X = Pt, Rh, Ru, Ir), as inferred from hyperfine specific-heat, magnetization and neutron-diffraction measurements. The results are compared with a mean-field calculation, taking crystalline electric field and bilinear (dipolar) exchange interactions into account. Adopting experimental values of the Lea, Leask and Wolf parameters x and W from inelastic neutron scattering results, we find satisfactory agreement between our magnetic data and the mean-field theory. An observed discrepancy of about 15% between the calculated and measured saturation values of the spontaneous magnetization can be explained by the presence of quadrupolar interactions.

  12. New rare-earth metal germanides with bismuth substitution. Synthesis, structural variations, and magnetism of the RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=Y, Pr, Nd, Sm, Gd-Tm, Lu) compounds

    SciTech Connect

    Zhang, Jiliang; Hmiel, Benjamin; Antonelli, Anthony; Tobash, Paul H.; Bobev, Svilen; Saha, Shanta; Kirshenbaum, Kevin; Greene, Richard L.; Paglione, Johnpierre

    2012-12-15

    Single-crystals of the novel rare-earth metal-bismuth digermanides with idealized formula RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=Y, Pr, Nd, Sm, Gd-Tm, Lu; x<0.16(1)) have been obtained using the Bi-flux technique. Their structures have been established by single-crystal X-ray diffraction; they can be divided into three classes, closely related to the ZrSi{sub 2} structure with the space group Cmcm (no. 63). The structural relationship and the variations with the type of the rare-earth metal have been explored and discussed. Temperature-dependent magnetization measurements on the single-crystals reveal magnetic behavior, which have been rationalized based on the mean-field theory. At cryogenic temperatures, the localized 4f electrons in most of the compounds exhibit antiferromagnetic ordering, mediated by the conduction electrons via Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interactions. - Graphical abstract: This paper details the synthesis and the structural characterization of an extended series of rare-earth metal-bismuth-germanides RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=Y, Pr-Sm, Gd-Tm, Lu). They crystallize with the same extended symmetry (space group Cmcm), but with three distinct structures, which are closely related. Magnetization measurements show low-temperature antiferromagnetic ordering. RE[Bi{sub x}Ge{sub 1-x}]{sub 2} are the first compounds between these elements. Highlights: Black-Right-Pointing-Pointer RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=rare-earth metal) are the first compounds of the respective elements. Black-Right-Pointing-Pointer Their structures are closely related. Black-Right-Pointing-Pointer Three structures can be distinguished based on the packing of the REGe{sub 6} triangular prisms. Black-Right-Pointing-Pointer All compounds show low-temperature antiferromagnetic ordering.

  13. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    SciTech Connect

    Wiezorek, Jorg

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  14. Structural flexibility in magnetocaloric RE5T4 (RE = rare-earth; T = silicon, germanium, gallium) materials: Effect of chemical substitution on structure, bonding and properties

    NASA Astrophysics Data System (ADS)

    Misra, Sumohan

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE5 Tt4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd5Si 2Ge2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs and the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid "playground" to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE5T4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.

  15. Oxide composite prepared from intermetallic and amorphous Zr67Fe30M3- (M=Au, Pt) alloys and their catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Han; Wang, Sea-Fue; Kameoka, Satoshi; Miyamoto, Kanji; Tsai, An-Pang

    2017-01-01

    In this study, Zr67Fe30M3 (M=Au, Pt) intermetallic compounds and amorphous alloys were prepared and used as precursors for the synthesis of oxides. Oxidation treatment of the intermetallic compounds at 500 °C followed by X-ray diffraction (XRD) analysis indicated that zirconium and iron were oxidized to ZrO2 and Fe2O3, respectively. In the case of Zr67Fe30M3 amorphous alloys, cubic Zr6Fe3O was observed on the surface of the ribbons after heat treatment at 500 °C in vacuum. Addition of 3% of gold or platinum to the alloy resulted in an increase in the lattice constants of the Zr6Fe3O phase. Grounding the treated ribbons into powders followed by an oxidation treatment at 500 °C in air produced Fe2O3 and ZrO2 supports, where Au and Pt are dissolved in the oxides as confirmed by X-ray photoelectron spectroscopy (XPS). No matter precursors are intermetallics or amorphous phases, the resultant oxides are the same. Although Pt and Au dissolved in the oxides, catalytic activities for CO oxidation were significant improved.

  16. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes.

    PubMed

    Yannello, Vincent J; Fredrickson, Daniel C

    2015-12-07

    Intermetallic phases exhibit a vast structural diversity in which electron count is known to be one controlling factor. However, chemical bonding theory has yet to establish how electron counts and structure are interrelated for the majority of these compounds. Recently, a simple bonding picture for transition metal (T)-main group (E) intermetallics has begun to take shape based on isolobal analogies to molecular T complexes. This bonding picture is summarized in the 18-n rule: each T atom in a T-E intermetallic phase will need 18-n electrons to achieve a closed-shell 18-electron configuration, where n is the number of electron pairs it shares with other T atoms in multicenter interactions isolobal to T-T bonds. In this Article, we illustrate the generality of this rule with a survey over a wide range of T-E phases. First, we illustrate how three structural progressions with changing electron counts can be accounted for, both geometrically and electronically, with the 18-n rule: (1) the transition between the fluorite and complex β-FeSi2 types for TSi2 phases; (2) the sequence from the marcasite type to the arsenopyrite type and back to the marcasite type for TSb2 compounds; and (3) the evolution from the AuCu3 type to the ZrAl3 and TiAl3 types for TAl3 phases. We then turn to a broader survey of the applicability of the 18-n rule through a study of the following 34 binary structure types: PtHg4, CaF2 (fluorite), Fe3C, CoGa3, Co2Al5, Ru2B3, β-FeSi2, NiAs, Ni2Al3, Rh4Si5, CrSi2, Ir3Ga5, Mo3Al8, MnP, TiSi2, Ru2Sn3, TiAl3, MoSi2, CoSn, ZrAl3, CsCl, FeSi, AuCu3, ZrSi2, Mn2Hg5, FeS2 (oP6, marcasite), CoAs3 (skutterudite), PdSn2, CoSb2, Ir3Ge7, CuAl2, Re3Ge7, CrP2, and Mg2Ni. Through these analyses, the 18-n rule is established as a framework for interpreting the stability of 341 intermetallic phases and anticipating their properties.

  17. Development of intermetallic coatings for fusion power applications

    SciTech Connect

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880{degrees}C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000{degrees}C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures.

  18. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    NASA Astrophysics Data System (ADS)

    Jain, Ekta; Pagare, Gitanjali; Sanyal, S. P.

    2016-05-01

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B2-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a0), bulk modulus (B) and first-order pressure derivative of bulk modulus (B') are presented. The density of states are derived which show the metallic character of present compound. Our results for C11, C12 and C44 agree well with previous theoretical data. Using Pugh's criteria (B/GH < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (GH), Young's modulus (E), sound wave velocities and Debye temperature (θD) have also been estimated.

  19. Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl

    NASA Astrophysics Data System (ADS)

    Kristanovski, Oleg; Richter, Raphael; Krivenko, Igor; Lichtenstein, Alexander I.; Lechermann, Frank

    2017-01-01

    Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al system, we perform a realistic many-body investigation based on a combination of density functional theory with dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of the phase stability of bcc-based D 03-Fe3Al through an improved description of the correlated charge density and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

  20. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnics. Advantages include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. This paper reviews the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. 50 refs, tables.

  1. Microplasticity and fatigue in a damage tolerant niobium aluminide intermetallic

    SciTech Connect

    Soboyejo, W.O.; DiPasquale, J.; Srivatsan, T.S.; Konitzer, D.

    1997-12-31

    In this paper, the micromechanisms of microplasticity and fatigue are elucidated for a damage tolerant niobium aluminide intermetallic deformed to failure under both monotonic and cyclic loading. Localized microplasticity is shown to occur by the formation of slip bands at stresses as low as 9% of the bulk yield stress. Formation and presence of slip bands is also observed upon application of the first cycle of fatigue load. The deformation and cracking phenomena are discussed in light of classical fatigue crack initiation and propagation models. The implications of microplasticity are elucidated for both fatigue crack initiation and crack growth.

  2. Exo-Melt{trademark} process for intermetallic powders

    SciTech Connect

    Sikka, V.K.; Deevi, S.C.

    1996-06-01

    The methods of powder production for intermetallics are reviewed. An innovative method known as Exo-Melt{trademark} is described for producing molten aluminides for gas- and water-atomization processes that require a molten metal stream. The Exo-Melt{trademark} process is based on the effective utilization of the heats of formation of aluminides from their constituent elements. The Exo-Melt{trademark} process principles are discussed along with a description of a furnace-loading sequence that uses the principles for practical applications. The benefits of the Exo-Melt{trademark} process are compared with the problems associated with the conventional melting process.

  3. Study of Intermetallic Nanostructures for Light-Water Reactors

    SciTech Connect

    Jensen, Niels Grobech; Asta, Mark D.; Hosemann, Peter; Maloy, Stuart

    2015-09-30

    High temperature mechanical measurements were conducted to study the effect of the dynamic precipitation process of PH 13-8 Mo maraging steel. Yield stress, ultimate tensile strength, total elongation, hardness, strain rate sensitivity and activation volume were evaluated as a function of the temperature. The dynamic changes in the mechanical properties at different temperatures were evaluated and a balance between precipitation hardening and annealed softening is discussed. A comparison between hardness and yield stress and ultimate tensile strength over a temperature range from 300 to 600 °C is made. The behavior of the strain rate sensitivity was correlated with the intermetallic precipitates formed during the experiments.

  4. Transformation Superplasticity of Intermetallic and Ceramic Matrix Composites

    DTIC Science & Technology

    2000-07-14

    Ti6Al4V -TiC, Ti6Al4V -TiB and Fe-TiC), intermetallic matrix composites (NiAl-ZrO2), ceramics (Bi2O3) and ceramic matrix composites (zirconia-based system...than when held at a constant equivalent temperature . Furthermore, theoretical modeling was performed using both analytical closed- form solution...ceramic systems (bismuth oxide and zirconia), first numerical model (finite-element), new continuum model (at high stresses), first demonstration of

  5. Electronic structure properties of neptunium intermetallics under pressure from Moessbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Potzel, W.; Zwirner, S.; Gal, J.; Nowik, I.

    1994-10-01

    Electronic structure properties of neptunium intermetallics obtained by the 60 keV Moessbauer resonance in Np-237 in the pressure range up to 9 GPa and at temperatures from 1.5 K to about 150 K together with X-ray determinations of the bulk modulus are discussed. Samples of the NaCl compounds NpX, the Laves phases NpX2 and the AuCu3 materials NpX3 as well as the tetragonal series NpX2S2 have been studied. The volume coefficients of magnetic moment and magnetic transition temperature allow the classification in terms of 5f bandwidth arising either from 5f-5f overlap or hybridization with ligand s, p, or d electrons. The pressure-temperature magnetic phase diagram of some of these compounds has also been investigated. In NpGa3 and NpIn3 we find a preference for ferromagnetic order under reduced volume. Finally we address the question of crystal field interactions and show that even in a somewhat delocalized case (NpAl2) they are decisive in determining the high pressure Moessbauer spectra.

  6. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  7. Intermetallic and titanium matrix composite materials for hypersonic applications

    SciTech Connect

    Berton, B.; Surdon, G.; Colin, C. |

    1995-09-01

    As part of the French Program of Research and Technology for Advanced Hypersonic Propulsion (PREPHA) which was launched in 1992 between Aerospatiale, Dassault Aviation, ONERA, SNECMA and SEP, an important work is specially devoted to the development of titanium and intermetallic composite materials for large airframe structures. At Dassault Aviation, starting from a long experience in Superplastic Forming - Diffusion Bonding (SPF-DB) of titanium parts, the effort is brought on the manufacturing and characterization of composites made from Timet beta 21S or IMI 834 foils and Textron SCS6 fiber fabrics. At `Aersopatiale Espace & Defence`, associated since a long time about intermetallic composite materials with university research laboratories, the principal effort is brought on plasma technology to develop the gamma titanium aluminide TiAl matrix composite reinforced by protected silicon carbide fibers (BP SM 1240 or TEXTRON SCS6). The objective, is to achieve, after 3 years of time, to elaborate a medium size integrally stiffened panel (300 x 600 sq mm).

  8. New promising bulk thermoelectrics: intermetallics, pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Gonçalves, Antonio P.; Godart, Claude

    2014-02-01

    The need of alternative "green" energy sources has recently renewed the interest in thermoelectric (TE) materials, which can directly convert heat to electricity or, conversely, electric current to cooling. The thermoelectric performance of a material can be estimated by the so-called figure of merit, zT = σ α 2 T/ λ ( α the Seebeck coefficient, σ α 2 the power factor, σ and λ the electrical and thermal conductivity, respectively), that depends only on the material. In the middle 1990s the "phonon glass and electron crystal" concept was developed, which, together with a better understanding of the parameters that affect zT and the use of new synthesis methods and characterization techniques, has led to the discovery of improved bulk thermoelectric materials that start being implemented in applications. During last decades, special focus has been made on skutterudites, clathrates, half-Heusler alloys, Si1- x Ge x-, Bi2Te3- and PbTe-based materials. However, many other materials, in particular based on intermetallics, pnictides, chalcogenides, oxides, etc. are now emerging as potential advanced bulk thermoelectrics. Herein we discuss the current understanding in this field, with special emphasis on the strategies to reduce the lattice part of the thermal conductivity and maximize the power factor, and review those new potential thermoelectric bulk materials, in particular based on intermetallics, pnictides and chalcogenides. A final chapter, discussing different shaping techniques leading to bulk materials (eventually from nanostructured TE materials), is also included.

  9. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  10. The Electronic, Elastic, and Structural Properties of Ti-Pd Intermetallics and Associated Hydrides from First-Principles Calculations

    SciTech Connect

    Chen, Xingqiu; Fu, Chong Long; Morris, James R

    2010-01-01

    Using an ab initio density functional approach, we report on the ground-state phase stabilities, enthalpies of formation, electronic, and elastic properties of the Ti-Pd alloy system. The calculated enthalpies of formation are in excellent agreement with available calorimetric data. We found a linear dependence between the calculated enthalpies of formation of several intermetallic structures and the Pd-concentration, indicating that each of these compounds has a very limited composition range. The elastic constants for many of these Ti-Pd intermetallics were calculated and analyzed. The B2 TiPd phase is found to be mechanically unstable with respect to the transformation into the monoclinic B19 structure. A series of hydrides, Ti2PdHx (x=1, 1.5, 2, 3, 4), have been investigated in terms of electronic structure, enthalpies of hydrogen absorption, and site preference of H atoms. Our results illustrate the physical mechanism for hydrogen absorption in term of the charge transfer, and explain why TiPd2 does not form a stable hydride.

  11. Intermetallic charge transfer between A-site Cu and B-site Fe in A-site-ordered double perovskites

    NASA Astrophysics Data System (ADS)

    Long, Youwen; Shimakawa, Yuichi

    2010-06-01

    In this review article, we describe in detail the temperature-induced intermetallic charge transfer between A-site Cu and B-site Fe ions in the A-site-ordered double perovskites RCu3Fe4O12 (R=La, Bi). In these compounds, a very rare Cu3+ valence state at the square-planar-coordinated A sites was stabilized by high-pressure synthesis. By increasing the temperature, a Cu-Fe intermetallic charge transfer producing a high Fe3.75+ valence state occurred. This charge transfer gave rise to a first-order isostructural phase transition with unusual volume contraction, as well as to antiferromagnetism-to-paramagnetism and insulator-to-metal transitions. The substitution of Bi for La stabilized the low-temperature phase containing Cu3+ and increased the charge transfer transition temperature from 393 K for LaCu3Fe4O12 to 428 K for BiCu3Fe4O12.

  12. Electronic packing frustration in complex intermetallic structures: the role of chemical pressure in Ca2Ag7.

    PubMed

    Fredrickson, Daniel C

    2011-07-06

    The assignment of distinct roles to electronics and sterics has a long history in our rationalization of chemical phenomena. Exploratory synthesis in the field of intermetallic compounds challenges this dichotomy with a growing list of phases whose structural chemistry points to an interplay between atomic size effects and orbital interactions. In this paper, we begin with a simple model for how this interdependence may arise in the dense atomic packing of intermetallics: correlations between interatomic distances lead to the inability of a phase to optimize bonds without simultaneously shortening electronically under-supported contacts, a conflict we term electronic packing frustration (EPF). An anticipated consequence of this frustration is the emergence of chemical pressures (CPs) acting on the affected atoms. We develop a theoretical method based on DFT-calibrated μ(2)-Hückel calculations for probing these CP effects. Applying this method to the Ca(2)Ag(7) structure, a variant of the CaCu(5) type with defect planes, reveals its formation is EPF-driven. The defect planes resolve severe CPs surrounding the Ca atoms in a hypothetical CaCu(5)-type CaAg(5) phase. CP analysis also points to a rationale for these results in terms of a CP analogue of the pressure-distance paradox and predicts that the impetus for defect plane insertion is tunable via variations in the electron count.

  13. Superconductivity by rare earth doping in the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) with RE=Y, La-Nd, Sm-Lu

    NASA Astrophysics Data System (ADS)

    Stürzer, Tobias; Derondeau, Gerald; Bertschler, Eva-Maria; Johrendt, Dirk

    2015-01-01

    We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) up to Tc=35 K with RE=Y, La-Nd, Sm, Gd-Lu. The critical temperatures are nearly independent of the trivalent rare earth element used, yielding a common Tc(xRE) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu2+ doped samples, as well as the close resemblance of (Ca1-xREx) 10(FeAs)10(Pt3As8) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with simpler crystal structures.

  14. Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements

    NASA Technical Reports Server (NTRS)

    Chu, C. W.; Bechtold, J.; Gao, L.; Hor, P. H.; Huang, Z. J.

    1988-01-01

    Stable superconductivity up to 114 K has been reproducibly detected in Bi-Al-Ca-Sr-Cu-O multiphase systems without any rare-earth elements. Pressure has only a slight positive effect on T(c). These observations provide an extra material base for the study of the mechanism of high-temperature superconductivity and also the prospect of reduced material cost for future applications of superconductivity.

  15. [Experimental study of catalytic reduction of SO2 on CeO2-La2O3/gamma-Al2O3 rare earth mixed compounds].

    PubMed

    Hu, Hui; Li, Jin; Zhang, Shun-xi; Li, Sheng-li

    2004-03-01

    Addition of rare earth oxide CeO2 with variable valences to La2O3 formed a mixture of rare earth oxides. This mixture can be used as the catalyst for the reduction of SO2 by CO. In a fixed-bed flow reactor, experimental were investigated for studying the activation process of this catalyst and effect factors such as temperature and concentration ratio of reactant on the activation reaction under the following conditions: composition of the gas mixture SO2:CO = 1:3, balancing with N2 and feed flow rate 1000 mL/min. The phase structure changes of this catalyst were expressed with XRD and XPS. The results demonstrated that the activation temperature of CeO2-La2O3/gamma-Al2O3 is 50-100 degrees C lower than that of a single component La2O3/gamma-Al2O3 or CeO2/gamma-Al2O3, and the mixture of rare earth oxides has higher activity on catalytic reduction of SO2 by CO. It's most likely that the result reveals on the synergism between CeO2 and La2O3.

  16. Early Earth

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2015-05-01

    Earth has continents, subduction and mobile lid plate tectonics, but details of the early evolution are poorly understood. Here I summarize the Hadean-Archean record, review evidence for a hotter Earth and consider geodynamic models for early Earth.

  17. Magnetoelastic properties of substituted Er1-xGdxMn6Sn6 intermetallic system

    NASA Astrophysics Data System (ADS)

    Tabatabai Yazdi, Sh.; Tajabor, N.; Roknabadi, M. Rezaee; Behdani, M.; Pourarian, F.

    2014-06-01

    The forced magnetostriction of polycrystalline samples of Er1-xGdxMn6Sn6 (0≤x≤1) intermetallics with hexagonal HfFe6Ge6-type structure is investigated in the temperature range of 77-480 K. Gd substitution has a significant effect on interatomic distances and especially on inter-sublattice R-Mn couplings. The replacement of Er by Gd results in increasing the ordering temperature followed by reinforcement of the R-Mn coupling, as well as decreasing the magnetostriction values owing to the S-state character of Gd3+ ions. The results show that the contribution of Er sublattice to anisotropic magnetoelastic effects is positive, while that of Gd and Mn is negative. All the examined samples exhibit considerable magnetovolume anomalies at the ordering temperature (TC=338, 381, 412 and 434 K for the samples with x=0, 0.2, 0.6 and 1.0, respectively). While the unsubstituted sample exhibits metamagnetic transitions, Gd-contained compounds do not show this behavior, owing to the strong Gd-Mn coupling. The experimental results obtained are discussed in the framework of the two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in these layered compounds. From the temperature dependence of magnetostriction values and considering the magnetostriction equation for a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for these compounds and the influence of Gd substitution on them.

  18. {sup 57}Fe Moessbauer and x-ray magnetic circular dichroism study of magnetic compensation of the rare-earth sublattice in Nd{sub 2-x}Ho{sub x}Fe{sub 14}B compounds

    SciTech Connect

    Chaboy, J.; Piquer, C.; Plugaru, N.; Bartolome, F.; Laguna-Marco, M. A.

    2007-10-01

    We present here a study of the magnetic properties of the Nd{sub 2-x}Ho{sub x}Fe{sub 14}B series. The macroscopic properties of these compounds evolve continuously from those of Nd{sub 2}Fe{sub 14}B to those of Ho{sub 2}Fe{sub 14}B as Ho gradually replaces Nd. The system shows a compensation of the rare-earth sublattice magnetization for a critical concentration, x{sub c}=0.55, that is reflected into the anomalous behavior of both macroscopic and microscopic magnetic probes. The combined analysis of magnetization, {sup 57}Fe Moessbauer spectroscopy and Fe K-edge x-ray magnetic circular dichroism (XMCD) measurements suggests that the origin of the anomalous magnetic behavior found at x{sub c}=0.55 is mainly due to the Ho sublattice. Moreover, the analysis of the Fe K-edge XMCD signals reveal the presence of a rare-earth contribution, reflecting the coupling of the rare-earth and Fe magnetic moments, which can lead to the possibility of disentangling the magnetic behavior of both Fe and R atoms using a single absorption edge.

  19. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  20. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  1. Compton Profile Study of Intermetallic Ti{sub 3}Al

    SciTech Connect

    Vyas, V.; Sharma, G.; Mishra, M. C.; Sharma, B. K.; Joshi, K. B.

    2011-10-20

    The Compton scattering measurement on intermetallic alloy Ti{sub 3}Al is reported in this work. The measurement is made using 59.54 keV gamma-rays from Am{sup 241} source. Theoretical calculation of Compton profile is also performed employing CRYSTAL code within the framework of density functional theory to compare with the measurement. The theoretical profile of the alloy is also synthesized following the superposition model taking the published Compton profiles of elemental solids from the APW method. The experimental study of charge transfer in the alloys has also been done by performing the experimental Compton profile measurements on Ti and Al following the superposition model and charge transfer from Al to Ti is clearly seen on the alloy formation.

  2. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  3. Innovative processing to produce advanced intermetallic materials. Phase 1 final report

    SciTech Connect

    Loutfy, R.O.

    1989-09-01

    The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

  4. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs.

  5. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  6. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  7. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  8. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  9. Ternary rare earth osmium aluminides R(7+)(x)Os(12)Al(61+)(y) belonging to a structural family with layered topology.

    PubMed

    Niermann, Jens; Jeitschko, Wolfgang

    2004-05-17

    The 10 intermetallic compounds R(7+)(x)Os(12)Al(61+)(y) (R = Y, Nd, Sm, Gd-Tm) were prepared by arc-melting of the elemental components. They crystallize with a hexagonal structure very similar to that of Y(7.28)Re(12)Al(61.38). The structure was determined from four-circle diffractometer data of Y(7+)(x)Os(12)Al(61+)(y): P6(3)/mcm, a = 1301.5(2) pm, c = 903.0(2) pm, Z =1. Four atomic sites, all located on the 6(3) axis, show fractional occupancy, resulting in the composition Y(7.86(1))Os(12)Al(61.51(4)), corresponding to the Pearson symbol hP90-8.63. The structure may be viewed as consisting of alternating atomic layers of two kinds, although chemical bonding within and between the layers is of similar character as can be judged from the near-neighbor environments, where all of the 11 atomic sites have high coordination numbers. One kind of layers (A). is relatively loosely packed and contains the yttrium and some aluminum atoms. The other kind (B). consists of the osmium and the remaining aluminum atoms in a nearly hexagonal close-packed arrangement. These layers are stacked in the sequence ABAB. A similar building principle has recently been recognized for several other structures of ternary intermetallic compounds of rare earth and transition metals with a high content of aluminum or gallium, where the structures of CeOsGa(4), Ho(3)Ru(4)Ga(15), and Y(2)Pt(6)Al(15) are the most recent examples. This structural family is briefly reviewed. The cell volume of Yb(7+)(x)Os(12)Al(61+)(y) indicates a mixed or intermediate valence character +2/+3 for the ytterbium atoms of this compound.

  10. Hydrogen Impurity Effects. A5Tt3 Intermetallic Compounds between A=Ca, Sr, Ba, Eu and Tt=Si, Ge, Sn with Cr 5B 3-like Structures that are Stable Both as Binary and as Ternary Hydride and Fluoride Phases

    NASA Astrophysics Data System (ADS)

    Leon-Escamilla, E. Alejandro; Corbett, John D.

    2001-06-01

    All of the binary systems Ca, Sr, Ba, or Eu (A) with Tt (tetrel)=Si or Ge as well as Sr-Sn form both binary Cr5B3-type A5Tt3 phases and the corresponding ternary hydrides with stuffed Cr5B3- (Ca5Sn3F-) type structures. All of those tested, Ca-Si, Ba-Si, Ca-Ge, also yield the isotypic A5Tt3Fx phases. The tetragonal structures of Ca5Si3, Ca5Si3F0.42, Sr5Si3, Eu5Si3Hx, Ca5Ge3, Ca5Ge3Hx, Ca5Ge3F0.66(I4/mcm, No. 140) and of Ba5Si3F0.16 (P4/ncc, Ba5Si3-type) were refined from single-crystal X-ray diffraction data. The interstitial H, F atoms are bound in a constricted tetrahedral (A2+)4 cavity in the Cr5B3-type heavy atom structure, which can be described ideally as (A2+)5(Tt2)6-(Tt)4-. Many of 14 previous reports of the phases reported here were apparently hydrides according to lattice constant differences or, for Sr5Si3, the fractional coordinates of Sr2 about the tetrahedral site. An articulated model is developed that allows description of the relationship between the dimensions of the tetrahedral interstitial site and the cation cavity about Tt2 and for some matrix effects in this structure type. The model suggests limitations on the stability of these binary A5Tt3 compounds for the heavier tetrels, as observed. The resistivities of Ca5Ge3 and Ca5Ge3Hx are both characteristic of poor metals, and Pauli-like magnetic susceptibilities are exhibited by Ca5Ge3, Ca5Ge3Hx, Ca5Ge3F0.66, Sr5Ge3, and Sr5Sn3. The characteristic ideal Tt6-2 dimers are evidently not realistic descriptions for these phases; rather at least some of the π*4 electrons in the dimers are delocalized in a conduction band. This effect appears to be greater in two europium salts. Bond lengths of dimers in the Ca-Si and Ca-Ge families appear to shorten slightly in three instances of their oxidation to form the hydride or the fluoride, as might be expected.

  11. Transport and magnetic properties of RTX and related compounds

    NASA Astrophysics Data System (ADS)

    Goruganti, Venkateshwarlu

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new magnetic materials is always an interesting topic from both a technological and basic research prospective; it is even more interesting when unusual magnetic phases are observed. Ternary intermetallic plumbides are interesting because of their unconventional magnetic ordering and variety of multiple magnetic transitions. Crystalline electric fields (CEF) also strongly effect the magnetic properties of these intermetallics. To understand the phase transitions, CEF effects, and magnetic interactions, a systematic study of the RNiPb, R 2Ni2Pb, R5NiPb3 and RCuGe systems were conducted. Among the results for NdNiPb a single antiferromagnetic transition was found at 3.5K, while the superconductivity found in some ingots of this material was shown not to correspond to a bulk behavior for this phase. Nd2Ni 2Pb was shown to have a canted zero field magnetic structure with a low temperature metamagnetic transition 3 T. In NdCuGe, a 3K AF transition was found along with a corresponding magnon contribution to the specific heat and magnetic and thermodynamic behavior from which the detailed CEF configuration was obtained. In a series of measurements on recently-synthesized R 5NiPb3 (R=Ce, Nd, Gd), for Ce5NiPb 3 a transition at 48 K was found, which was confirmed to be ferromagnetic character from field dependent heat capacity and Curie-Weiss susceptibility. Nd5NiPb3 exhibits two transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. For Gd5NiPb3, a ferro- or ferrimagnetic transition was found at 68 K. For the Ce and Nd materials metamagnetism was also observed at low temperatures. In addition, very large metallic type gamma terms were found in the specific heat, as well as a

  12. Formation of multinary intermetallics from reduction of perovskites by aluminum flux: M(3)Au(6+)(x)()Al(26)Ti (M = Ca, Sr, Yb), a stuffed variant of the BaHg(11) type.

    PubMed

    Latturner, Susan E; Kanatzidis, Mercouri G

    2004-01-12

    New intermetallic phases were synthesized by reacting oxidic perovskites and gold metal in aluminum flux. The combination of MTiO(3) (M = Ca, Sr, Ba) and Au metal in excess molten aluminum produces quaternary compounds M(3)Au(6+)(x)()Al(26)Ti with a stuffed BaHg(11) structure type. An analogue with M = Yb was also synthesized; it shows mixed valent behavior.

  13. Preparation and Pore Structure Stability at High Temperature of Porous Fe-Al Intermetallics

    NASA Astrophysics Data System (ADS)

    Shen, P. Z.; Gao, H. Y.; Song, M.; He, Y. H.

    2013-12-01

    Porous Fe-Al intermetallics with different nominal compositions (from Fe-8 wt.% Al to Fe-50 wt.% Al) were fabricated by Fe and Al elemental powders through reaction synthesis. The effects of the Al content on the pore structure properties, and the comparison of pore structure stabilities at high-temperatures among the porous Fe-Al intermetallics and porous Ti, Ni, 316L stainless steel samples, were systematically studied. Results showed that the open porosity, maximum pore size, and permeability vary with the Al content. Porous Fe-(25-30 wt.%) Al intermetallics show good shape controllability and excellent pore structure stability at 1073 K in air, which suggests that these porous Fe-Al intermetallics could be used for filtration at high temperatures.

  14. The role of ALCHEMI in understanding the properties of ordered intermetallic alloys

    SciTech Connect

    Anderson, I.M.

    1998-11-01

    After one and one-half decades of development, ALCHEMI is approaching the status of an established analytical technique. Many of the problems that have plagued ALCHEMI, especially for the analysis of ordered intermetallic alloys, are now well understood, and accurate site-distributions can be extracted from a variety of intermetallic alloys. This paper begins with an overview of the factors that can lead to large systematic errors or gross misinterpretations of ALCHEMI data, with illustrations from a variety of ordered intermetallic alloys. The paper concludes with a discussion of ALCHEMI in the broader context of understanding the properties of ordered intermetallic alloys. The results of systematic studies are used to illustrate the role of ALCHEMI in determining the competing effects of thermodynamic and kinetic factors during alloy processing and the correlation of alloy properties with the atomic site distributions on which the properties ultimately depend.

  15. Solid/gas heterogeneous chemistry of organic compounds related to comets, Titan and Mars, through experiments in the laboratory and in Earth orbit

    NASA Astrophysics Data System (ADS)

    Cottin, H.; Amino/Process Team

    Solar UV radiation is a major source of energy to initiate chemical evolution towards complex organic structures but it can also photodissociate the most elaborate molecules Thus Solar UV can erase the organic traces of past life on the surface of planets like Mars or it can influence the production of extended sources in comets AMINO PROCESS and UV-olution are three experiments selected to be flown on the EXPOSE facility on the International Space Station or on the BIOPAN facility during the next FOTON M3 space capsule mission The goal of our experiments is to improve our knowledge of the chemical nature and evolution of organic molecules involved in extraterrestrial environments with astrobiological implications Similar experiments implemented in space so far were carried out in vented cells exposed to solar UVs For the first time sealed exposition cells will be used which will allow us to study chemical evolution in the gaseous phase as well as heterogeneous processes degradation of solid compounds and release of gaseous fragments Three kinds of experiments will be carried out The first ones deal with comets and are related to the Rosetta mission the second ones deal with Titan and are related to the Cassini-Huygens mission while the third ones are related to the search for life-related organic compounds on Mars Concerning comets we plan to study the photodegradation of high molecular weight organic compounds which might be responsible for the wide range of organics polyoxymethylene hexamethylenetetramine HCN polymers and carbon suboxide

  16. New rare earth metal complexes with nitrogen-rich ligands: 5,5'-bitetrazolate and 1,3-bis(tetrazol-5-yl)triazenate-on the borderline between coordination and the formation of salt-like compounds.

    PubMed

    Eulgem, Patrick J; Klein, Axel; Maggiarosa, Nicola; Naumann, Dieter; Pohl, Roland W H

    2008-01-01

    From the two nitrogen-rich ligands BT(2-) (BT=5,5'-bitetrazole) and BTT(3-) (BTT=1,3-bis(1H-tetrazol-5-yl)triazene), a series of novel rare earth metal complexes were synthesised. For the BT ligand, a vast number of these complexes could be structurally characterised by single-crystal XRD, revealing structures ranging from discrete molecular aggregates to salt-like compounds. The isomorphous complexes [La2(BT)3]14 H2O (1) and [Ce2(BT)3]14 H2O (2) reveal discrete molecules in which one BT(2-) acts as a bridging ligand and two BT groups as chelating ligands. The complexes, [M(BT)(H2O)7]2[BT] x (x) H2O (3-5), (M=Nd (3), Sm (4), and Eu (5)), are also isomorphous and consist of [M(BT)(H2O)7]+ ions in which only one BT(2-) acts as a chelate ligand for each metal centre. [Tb(H2O)8]2[BT]3 x H2O (6) and [Er(H2O)8](2)[BT](3)x H2O (7) are salt-like compounds that do not exhibit any significant metal-nitrogen contacts. In the BTT-samarium compound 9, discrete molecules were found in which BTT(3-) acts as a tridentate ligand with three Sm--N bonds.

  17. Life on Earth: From Chemicals in Space?

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses experimental evidence for the existence of organic material in the solar system prior to the earth's formation. Indicates that the earth could have received much of its organic compounds from meteors falling on its primitive surface. (CC)

  18. Intermetallic R-phase in maraging steels of the Fe-Cr-Ni-Co-Mo system

    NASA Astrophysics Data System (ADS)

    Tarasenko, L. V.; Titov, V. I.

    2006-07-01

    Concentration and temperature conditions of formation of intermetallic R-phase in margining steels of the Fe-Cr-Ni-Co-Mo system are studied with the help of methods of physicochemical phase analysis and x-ray diffraction analysis. The role of chemical elements in the formation of the multicomponent R-phase is determined. A hypothesis employing the Kasper dimensional principle is suggested for multicomponent intermetallics formed in steels.

  19. Features of Intermetallic Alloy TNM-B1 High-Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Smyslov, A. M.; Bybin, A. A.; Dautov, S. S.

    2016-09-01

    Features of intermetallic alloy based on titanium aluminide high-temperature oxidation at 800 - 850°C are studied. A mathematical dependence is obtained for oxidation rate on test duration. The structure and composition of an oxide layer formed during high-temperature oxidation are studied. It is shown that under operating conditions at the maximum working temperatures the intermetallic alloy exhibits low heat resistance.

  20. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  1. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  2. Biosignatures of Early Earths

    NASA Astrophysics Data System (ADS)

    Pilcher, Carl B.

    2003-11-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1½ billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH3SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-μm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  3. Earth Resources

    ERIC Educational Resources Information Center

    Brewer, Tom

    1970-01-01

    Reviews some of the more concerted, large-scale efforts in the earth resources areas" in order to help the computer community obtain insights into the activities it can jointly particpate in withthe earth resources community." (Author)

  4. Electronic Structure and Magnetic Properties of the ND2FE14B Intermetallic Compound

    NASA Astrophysics Data System (ADS)

    Aly, Abeer E.

    2013-03-01

    The calculations on electronic structures of Nd2Fe14B are calculated using first-principles full-potential linearized augmented plane wave (FPLAPW) method. We study the magnetic properties of Nd2Fe14B using the LDA+U and spin-orbit coupling methods. Results are presented for total density of states (DOS) as well as the site-projected partial density of states (PDOS) and the spin magnetic moment of Fe at each of the six in-equivalent transition-metal sites. The total spin-magnetic moments and the average Fe moment are in a good agreement with the values deduced from the neutron scattering experiment. The spin-polarized calculations, excluding the Hubbard and SO interaction, resulted in the total spin magnetic moment is 46.6 μB compared to the experimental values 34.63 μB to the value of 39.6 μB we obtained using LDA+U scheme without Spin-Orbit coupling(SO). But using LDA+U +SO the total spin magnetic moment is 37.6 μB.

  5. Study of the feasibility of producing Al-Ni intermetallic compounds by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Mohammed, Kahtan S.; Naeem, Haider T.; Iskak, Siti Nadira

    2016-08-01

    Mechanical alloying (MA) was employed to synthesize Al-Zn-Mg-Cu alloys of high weight percentage of the nickel component from the elemental powders of constituents via high-energy ball milling. The mixed powders underwent 15 h of milling time at 350 rpm speed and 10: 1 balls/powder weight ratio. The samples were cold-compacted and sintered thereafter. The sintered compacts underwent homogenization treatments at various temperatures conditions and were aged at 120°C for 24 h (T6). The milled powders and heat-treated Al alloy products were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The crystallite sizes and microstrains of the alloyed powder were estimated via measuring the broadening of XRD peaks using the Williamson-Hall equation. The results have revealed that optimum MA time of 15 h has led to the formation of Al-based solid solutions of Zn, Mg, Cu, and Ni. The outcomes showed that the Vickers hardness of the sintered Al-Zn-Mg-Cu compacts of Ni alloys was enhanced following aging at T6 tempering treatments. Higher compression strength of Al-alloys with the addition of 15% nickel was obtained next to the aging treatment.

  6. Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Thomas, Fransua; DellaCorte, Christopher

    2012-01-01

    The effect of various high temperature heat treatments and cooling rates on the hardness of cast 60-NITINOL (60wt%Ni- 40wt%Ti) was studied. The hardness ranged from approximately 33 HRC for annealed specimens to 63 HRC for water quenched specimens. Aging did not have a further effect on the hardness of the heat-treated and quenched material. The issue of material contamination and its possible effect on quench cracking during heat treatment above 1000 C was explored. The Charpy impact energy of the material was found to be relatively low (ranging from 0.4 to 1.0 J) and comparable to that of cast magnesium. Selection of service environments and applications for this material based on these findings should consider the processing route by which it was produced.

  7. RETRACTED ARTICLE: Microstructure and strengthening mechanism of Ni3Al intermetallic compound

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Sup; Han, Chang-Suk

    2013-09-01

    Structural studies have been performed on precipitation hardening found in Ni3Al-base ordered alloys using transmission electron microscopy. The γ' phase hardens appreciably by the fine precipitation of disordered γ. The strength of γ' increases over the temperature range of experiment by the precipitation of fine γ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Superlattice dislocations dissociate into fourfold Shockley partial dislocations in a uniform supersaturated solid solution of the γ' phase. Dislocations are attracted into the disordered γ phase and dissociate further in the particles. At any stage of aging, dislocations cut through the particles and the Orowan bypassing process does not occur even in the overaged stage of this alloy system. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in γ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in γ' containing γ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered γ particles. The orientation dependence of strength is decreased by the fine precipitation of a disordered γ phase.

  8. Crystallographic features of the structure of a martensite packet of the NiMn intermetallic compound

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Belosludtseva, E. S.; Kazantsev, V. A.

    2016-06-01

    Optical microscopy, scanning electron microscopy, and X-ray diffraction are used to show that a pseudosingle crystal forms upon cooling of an alloy Ni49Mn51 single crystal below the temperature of the β→θ (bcc → fct) transformation. At room temperature, this pseudosingle crystal has the structure of tetragonal L10 martensite with parameters a = 0.3732 nm and c = 0.3537 nm and a tetragonality c/ a = 0.94775. The temperatures of the forward and reverse B2 → L10 transformations are determined. The crystallographic features of martensite packet formation are analyzed. As shown by EBSD, neighboring martensite packets always have three kinds of tetragonal martensite plates, which are in a twin position and have different tetragonality axis directions. Repeated heating and quenching of the pseudosingle crystal result in recrystallization with the formation of coarse grains. The packet structure of the tetragonal martensite is retained in this case, and the sizes of the packets formed within a grain decrease by a factor of 2-3 as compared to the initial pseudosingle crystal.

  9. Mechanical properties and determination of slip systems of the B2 YZn intermetallic compound

    SciTech Connect

    Cao, G. H.; Becker, A. T.; Wu, D.; Chumbley, L. S.; Lograsso, T. A.; Russell, A. M.; Gschneidner Jr., K. A.

    2010-04-30

    Single crystal specimens of YZn (B2) were tested in tension at room temperature. Specimens with a [1 0 1] tensile axis orientation exhibited {r_brace}0 1 1{l_brace} <100> primary slip and an ultimate tensile strength of 365MPa at 3.7% elongation. Specimens with [0 0 1] and [1 1 1] tensile axis orientations showed no slip lines and fractured at a stress of 180MPa at 3.3% and 130MPa at 2.9% elongation, respectively. Transmission electron microscopy (TEM) examination of the Burger's vector of dislocations in tensile tested specimens revealed <1 0 0>-type dislocations. TEM analysis suggested that a secondary slip system, {l_brace}0 0 1{r_brace}<1 0 0>, may be active. Banded features with a {l_brace}0 2 1{r_brace} orientation were observed in deformed YZn; these may be slip traces produced by the cross-slip of <1 0 0> dislocations. Acting together, {l_brace}0 1 1{r_brace} <1 0 0> and {l_brace}0 0 1{r_brace} <1 0 0> slip provide only three independent slip systems, and no extra independent systems are provided by the cross-slip. This finding is consistent with the low ductility of YZn.

  10. Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds

    DTIC Science & Technology

    1991-04-30

    anions as well as being highly stable. Thus the addition of Al to Ni, as in the case of aluminide coatings on nickel-base alloys , or Si to Mo, as in...For example, Ni-Al alloys form protective alumina scales more readily at high temperatures whereas y-TiAl forms alumina scales at low temperatures in... coatings on Ni-base alloys (1’, Fe-silicides €9), and Ni-silicides(" ) indicate similar behavior to that described above. 8 EFFECTS OF ALLOYING ELEMENTS

  11. Fabrication and Investigation of Intermetallic Compound-Glassy Phase Composites having Tensile Ductility

    DTIC Science & Technology

    2012-08-09

    with Mg-Y-Cu BGA, MgY phase also has a cP2 B2 structure), Mg-Y-Ag (AgMg phase also has a cP2 B2 structure and is ductile) and Y-Cu-Zn and some other...result were obtained is connected with cP2 TiNi phase which demonstrates martensitic transformations. Choice of alloys and sample preparation...1. The tentative compositions at which bulk glassy phase formation and possible formation of cP2 crystal-glassy composites are Cu-Y (starting from

  12. Processing and properties of molybdenum silicide intermetallics containing boron

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.; Heatherly, L.; Wright, J.L.; Carmichael, C.A.

    1997-08-01

    Molybdenum-silicon-boron intermetallics with the composition Mo-10.5 Si-1.1 B, wt% (Mo-26.7 Si-7.3 B, at. %) were fabricated by several processing techniques. Powder processing (PM) resulted in macrocrack-free material containing no or only few microcracks. The PM materials contained quasi-equilibrium pores and large concentrations of oxygen. Average room temperature flexure strengths of 270 MPa were obtained. At 1,200 C in air, flexure strengths as high as 600 MPa were observed. These high values are attributed to crack healing and incipient plasticity. Ingot metallurgy (IM) materials contained much less oxygen than their PM counterparts. Depending on the cooling rate during solidification, they developed either mostly macrocracks or mostly microcracks. Due to the high flaw densities, the room temperature flexure strengths were only of the order of 100 MPa. However, the flexure strengths at 1,200 C were up to 3 times higher than those at room temperature. Again, this is attributed to crack healing and incipient plasticity. The IM materials will require secondary processing to develop their full potential. A preliminary examination of secondary processing routes included isothermal forging and hot extrusion.

  13. Determination of site-occupancies in aluminide intermetallics by ALCHEMI

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-04-01

    The site-distributions of Fe in four B2-ordered NiAl-based alloys with Fe concentrations of 10%, 2%, and 0.5% have been determined by ALCHEMI (atom-location by channeling-enhanced microanalysis). Site-distributions have been extracted with standard errors between {approximately} 1.5% (10% Fe concentration) and {approximately} 6% (0.5% Fe concentration). The results show that Fe has no strong site-preference in NiAl and tends to reside on the site of the stoichiometrically deficient host element. An improved ALCHEMI analysis procedure is outlined. The analysis explicitly addresses the phenomenon of ionization delocalization, which previously complicated the determination of site-distributions in aluminide intermetallics, leading to inaccurate and oftentimes nonphysical results. The improved ALCHEMI analysis also addresses the presence of anti-site defects. The data acquisition conditions have been optimized to minimize the sources of statistical and systematic error. This optimized procedure should be suitable for all analyses of B2-ordered alloys. Several analyses at different channeling orientations show that the extracted site-occupancies are robust as long as the data are acquired at orientations that are remote from any major pole of the crystal.

  14. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Lin, Chen-Han

    2015-08-01

    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  15. Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds

    SciTech Connect

    Birkel, Christina S.; Zeier, Wolfgang G.; Douglas, Jason E.; Lettiere, Bethany R.; Mills, Carolyn E.; Seward, Gareth; Birkel, Alexander; Snedaker, Matthew L.; Zhang, Yichi; Snyder, G. Jeffrey; Pollock, Tresa M.; Seshadri, Ram; Stucky, Galen D.

    2012-10-25

    The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initial preparation is followed by a densification step involving hot-pressing, which reduces the amount of secondary phases, as verified by synchrotron X-ray diffraction, leading to the desired half-Heusler compounds, demonstrating that hot-pressing should be treated as part of the preparative process. For TiNiSn, high thermoelectric power factors of 2 mW/mK{sup 2} at temperatures in the 700 to 800 K range, and zT values of around 0.4 are found, with the microwave-prepared sample displaying somewhat superior properties to conventionally prepared half-Heuslers due to lower thermal conductivity. The TiCoSb sample shows a lower thermoelectric figure of merit when prepared using microwave methods because of a metallic second phase.

  16. Rare earth thermoelectrics

    SciTech Connect

    Mahan, G.D.

    1997-09-01

    The author reviews the thermoelectric properties of metallic compounds which contain rare-earth atoms. They are the group of metals with the largest value ever reported of the Seebeck coefficient. An increase by 50% of the Seebeck would make these compounds useful for thermoelectric devices. The largest Seebeck coefficient is found for compounds of cerium (e.g., CePd{sub 3}) and ytterbium (e.g., YbAl{sub 3}). Theoretical predictions are in agreement with the maximum observed Seebeck. The author discusses the theoretical model which has been used to calculate the Seebeck coefficient. He is solving this model for other configurations (4f){sup n} of rare-earth ground states.

  17. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  18. Analysis of self-propagating intermetallic reaction in nanoscale multilayers of binary metals

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungjin

    2017-03-01

    Nanoscale multilayers of two different metals could exhibit super-fast intermetallic reaction wave that accompanies high level of exothermic heat release, while additional advantage is a very small ignition delay. They could be a promising candidate for the core technology in realizing micron-sized initiation device for explosives detonation or propellants ignition in various defense and civilian applications. This numerical investigation focuses on the numerical modeling and computations of the ignition and self-propagating reaction behaviors in nanoscale intermetallic multilayer structures made of alternating binary metal layers of boron and titanium. Due to thin film nature of metallic multilayers, intermetallic reaction propagation across the repeating bimetallic multilayers is approximated to the one-dimensional transient model of thermal diffusion and atomic species diffusion, and the intermetallic reaction between two metal species is assumed to follow Arrhenius dependence on temperature. The computational results show the details of ignition and propagation characteristics of intermetallic reaction wave by evaluating and discussing the effects of key parameters, such as multilayer thickness, excess of one metal species, and presence of atomic premixing at interface of boron and titanium layers, on ignition delay and propagation speed of self-sustaining reaction wave.

  19. Study on the Formation and Characterization of the Intermetallics in Friction Stir Welding of Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Ghosh, R. N.; Pal, T. K.

    2014-10-01

    Multimaterial fabrication such as joining of steel and aluminum is currently prominent in a variety of industries. Friction stir welding is a novel solid-state welding process that causes good joint strength between steel and aluminum. However, the phenomenon contributing significant strength at the interface is not yet clear. In the present study, the interface of the friction stir lap-welded aluminum and coated steel sheet having joint strength maximum (71.4 pct of steel base metal) and minimum, respectively, under two parameter combinations, i.e., 1000 rpm 50 mm min-1 and 500 rpm 100 mm min-1, was exclusively characterized by X-ray diffraction, transmission electron microscopy (TEM), concentration profile, and elemental mapping by electron-probe microanalysis. A TEM-assisted EDS study identifies the morphologies of large size Al13Fe4 and small size Fe3Al-type intermetallic compounds at the interface. The diffusion-induced intermetallic growth (thickness) measured from a backscattered image and concentration profile agreed well with the numerically calculated one. The growth of these two phases at 1000 rpm 50 mm min-1 is attributed to the slower cooling rate (~3.5 K/s) with higher diffusion time (44 seconds) along the interface in comparison to the same for 500 rpm 100 mm min-1 with faster cooling rate (~10 K/s) and less diffusion time (13.6 seconds). The formation of thermodynamically stable and hard intermetallic phase Al13Fe4 at 1000 rpm and travel speed 50 mm min-1 in amounts higher than 500 rpm and a travel speed of 100 mm min-1 results in better joint strength, i.e., 71.4 pct, of the steel base metal.

  20. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  1. Effect of Ca and Rare Earth Elements on Impression Creep Properties of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Nami, B.; Razavi, H.; Mirdamadi, S.; Shabestari, S. G.; Miresmaeili, S. M.

    2010-08-01

    Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.

  2. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  3. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  4. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  5. Numerical simulations of creep in ductile-phase toughened intermetallic matrix composites

    SciTech Connect

    Henshall, G.A.; Strum, M.J.

    1994-04-07

    Analytical and finite element method (FEM) simulations of creep in idealized ductile-phase toughened intermetallic composites are described. For these strong-matrix materials, the two types of analyses predict similar time-independent composite creep rates if each phase individually exhibits only steady-state creep. The composite creep rate becomes increasingly higher than that of the monolithic intermetallic as the stress exponent of the intermetallic and the volume fraction and creep rate of the ductile phase increase. FEM analysis shows that the shape of the ductile phase does not affect the creep rate but may affect the internal stress and strain distributions, and thus damage accumulation rates. If primary creep occurs in one or both of the individual phases, the composite also exhibits primary creep. In this case, there can be significant deviations in the creep curves computed by the analytical and FEM models. The model predictions are compared with data for the Nb5Si3/Nb system.

  6. Kinetics of Au-containing ternary intermetallic redeposition at solder/UBM interface

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Hyun; Park, Jong-Hwan; Shin, Dong-Hyuk; Lee, Yong-Ho; Kim, Yong-Seog

    2001-09-01

    In this study, the effects of the under bump metallurgy (UBM) structure and Cu content in solders on the redeposition rate of Au-containing ternary intermetallics at the solder/UBM interface were investigated. A UBM structure with a Ni diffusion barrier, Au/Ni/Cu, appeared to promote the redeposition of ternary Au-containing intermetallics at the solder/UBM interface of the ternary during the solid-state aging treatment and the Au-embrittlement of the solder interconnections. Copper added to the eutectic Sn-Pb and Sn-Ag solders was observed to be very effective in retarding the redeposition by forming the ternary intermetallics in solder matrices and preventing the Au-embrittlement. These phenomena were discussed with the microstructures observed.

  7. Superplasticity and hot rolling of two-phase intermetallic alloy based on TiAl

    SciTech Connect

    Imayev, R.; Shagiev, M.; Salishchev, G.; Imayev, V.; Valitov, V.

    1996-03-15

    The recent investigations of superplasticity (SP) in intermetallic alloys indicate that these materials exhibit lower indices of SP (the relative elongation to rupture) at high enough homologous temperatures and low strain rates compared to conventional alloys. This behavior inhibits application of SP effects in intermetallics. The results of two-phase titanium alloys indicate that the combination of a high stable microstructure with a submicron grain size is necessary to realize the effect of SP at relatively high strain rates. The aim of the present work is to examine the SP behavior of a Ti-46at.%Al intermetallic alloy (TiAl + Ti{sub 3}Al) with micro- and submicron grain sizes and to apply obtained results in hot rolling.

  8. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  9. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  10. Synthesis, crystal structure and properties of Mg3B36Si9C and related rare earth compounds RE3-xB36Si9C (RE=Y, Gd-Lu)

    NASA Astrophysics Data System (ADS)

    Ludwig, Thilo; Pediaditakis, Alexis; Sagawe, Vanessa; Hillebrecht, Harald

    2013-08-01

    We report on the synthesis and characterisation of Mg3B36Si9C. Black single crystals of hexagonal shape were yielded from the elements at 1600 °C in h-BN crucibles welded in Ta ampoules. The crystal structure (space group R3barm, a=10.0793(13) Å, c=16.372(3) Å, 660 refl., 51 param., R1(F)=0.019; wR2(F2)=0.051) is characterized by a Kagome-net of B12 icosahedra, ethane like Si8-units and disordered SiC-dumbbells. Vibrational spectra show typical features of boron-rich borides and Zintl phases. Mg3B36Si9C is stable against HF/HNO3 and conc. NaOH. The micro-hardness is 17.0 GPa (Vickers) and 14.5 GPa (Knoop), respectively. According to simple electron counting rules Mg3B36Si9C is an electron precise compound. Band structure calculations reveal a band gap of 1.0 eV in agreement to the black colour. Interatomic distances obtained from the refinement of X-ray data are biased and falsified by the disorder of the SiC-dumbbell. The most evident structural parameters were obtained by relaxation calculation. Composition and carbon content were confirmed by WDX measurements. The small but significant carbon content is necessary by structural reasons and frequently caused by contaminations. The rare earth compounds RE3-xB36Si9C (RE=Y, Dy-Lu) are isotypic. Single crystals were grown from a silicon melt and their structures refined. The partial occupation of the RE-sites fits to the requirements of an electron-precise composition. According to the displacement parameters a relaxation should be applied to obtain correct structural parameters.

  11. Electric Current Enhanced Point Defect Mobility in Ni3Ti Intermetallic

    SciTech Connect

    Anselmi-Tamburini, U; Asoka-Kumar, P; Garay, J E; Munir, Z A; Glade, S C

    2004-02-05

    The effect of the application of a DC current on the annealing of point defects in Ni{sub 3}Ti was investigated by positron annihilation spectroscopy (PAS). An increased rate of point defect annealing is observed under the influence of a current and is attributed to a 24% decrease in the mobility activation energy. The results are interpreted in terms of the electron wind effect and the complex nature of diffusion in ordered intermetallic phases. This work represents the first direct evidence of the role of the current on the mobility of point defects in intermetallic systems.

  12. Rainbow Earth.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library and Archives, Phoenix.

    The environment is a great concern in the 1990s, and everyone needs to work at maintaining our planet. The 1992 Arizona State Library Reading Program, "Rainbow Earth," provides children with many techniques they can use to help the Earth. This reading program guide provides information on the following: goals, objectives, and evaluation;…

  13. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  14. Mechanical properties and electronic structures of Fe-Al intermetallic

    NASA Astrophysics Data System (ADS)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe3Al, FeAl, FeAl2, Fe2Al5 and FeAl3) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe2Al5 has the lowest formation enthalpy, which shows the Fe2Al5 is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young's modulus and anisotropic index. Fe3Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong's modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  15. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    SciTech Connect

    Hu, Bin; Baker, Ian

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  16. Chemical bonding in equiatomic cerium intermetallics - The case of CeMgSn, CePdSn, and CeMgPb

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2015-10-01

    The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce-Sn in CeMgSn, Ce-Pb in CeMgPb, and Ce-Pd in CePdSn.

  17. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    SciTech Connect

    Sarrao, J L; Thompson, Joe D; Tobash, P H; Bobev, S

    2009-01-01

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  18. The influence of the X atoms and Al 3p occupied states in AlTiX2(X=Fe,Cu,Co,Ni) intermetallics

    NASA Astrophysics Data System (ADS)

    Fu, Hongzhi; Chen, Dong; Cheng, Xinlu; Gao, Tao; Yang, Xiangdong

    2007-01-01

    The electronic structures of the ternary (Heusler) L21-phase compounds AlTiX2(X=Fe,Cu,Co,Ni) are calculated by first-principles using full potential linearized augmented plane wave (FLAPW) method with the generalized gradient approximation (GGA). The ab initio results are analyzed with a simplified model for Al-based compounds containing transition metal (TM) atoms. The results show that the total density of state (DOS) depends strongly on the positions of TM atoms, and the TM d DOS not only connects with the pseudo-gap which is the indication of the stability of the intermetallic ternary Hume-Rothery (H-R) alloys, but also plays a crucial role in hybridization with other element valence electrons. However, the Al 3s states are repelled far away from the Fermi energy in all studied samples, and the Al 3d states are far more extended-like in the character than the d states. Furthermore, the total DOSs in all the studied samples are modulated by Al 3p states and the Al 3p states are more sensitive than d states to change in the electronic interactions. Then, the Al 3p is also responsible for the major part of the H-R stability of the intermetallic compounds which we have concerned with here. Indeed, the DOSs of the studied alloys show a pseudo-gap near the Fermi level, commonly attributed to the H-R phenomenon. Especially, the AlCu2Ti has more particular flat total DOS than the other AlTiX2 alloys (X=Fe,Co,Ni), which shows the so-called half-metallic behavior or poor metallic character.

  19. Thermodynamically Stable Conducting Films of Intermetallic PtGa2 on Gallium Arsenide

    DTIC Science & Technology

    1989-07-01

    should exhibit a thermodynamically stable tieline to the GaAs semiconductor. A further consideration is that the intermetallic should be compatible with...and illustrated in Fig. 1, PtGa2 was selected as a candidate for thin film growth on GaAs (100). The existence of the pseudobinary tieline between

  20. Investigation of Laser Generation and Detection of Ultrasound in Ceramic Matrix Composites and Intermetallics

    NASA Technical Reports Server (NTRS)

    Ehrlich, Michael J.

    1998-01-01

    The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.

  1. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  2. Electrocrystallization: A Synthetic Method for Intermetallic Phases with Polar Metal-Metal Bonding.

    PubMed

    Tambornino, Frank; Sappl, Jonathan; Pultar, Felix; Cong, Trung Minh; Hübner, Sabine; Giftthaler, Tobias; Hoch, Constantin

    2016-11-07

    Isothermal electrolysis is a convenient preparation technique for a large number of intermetallic phases. A solution of the salt of a less-noble metal is electrolyzed on a cathode consisting of a liquid metal or intermetallic system. This yields crystalline products at mild reaction conditions in a few hours. We show the aptness and the limitations of this approach. First, we give an introduction into the relevance of electrolytic synthesis for chemistry. Then we present materials and techniques our group has developed for electrocrystallization that are useful for electrochemical syntheses in general. Subsequently, we discuss different phase formation eventualities and propose basic rationalization concepts, illustrated with examples from our work. The scope of this report is to present electrocrystallization as a well-known yet underestimated synthetic process, especially in intermetallic chemistry. For this purpose we adduce literature examples (Li3Ga14, NaGa4, K8Ga8Sn38), technical advice, basic concepts, and new crystal structures only available by this method: Li3Ga13Sn and CsIn12. Electrocrystallization has recently proven especially helpful in our work concerning synthesis of intermetallic phases with polar metal-metal bonding, especially Hg-rich amalgams of less-noble metals. With the term "polar metal-metal bonding" we describe phases where the constituting elements have large electronegativity difference and yet show incomplete electron transfer from the less-noble to the nobler metal. This distinguishes polar intermetallic phases from classical Zintl phases where the electron transfer is virtually complete. Polar metallic phases can show "bad metal behavior" and interesting combinations of ionic and metallic properties. Amalgams of less-noble metals are preeminent representatives for this class of intermetallic phases as Hg is the only noble metal with endothermic electron affinity and thus a very low tendency toward anion formation. To illustrate both

  3. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  4. Electrochemical properties of the passive film on bulk Zr-Fe-Cr intermetallic fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Bai, Yakui; Ling, Yunhan; Lai, Wensheng; Xing, Shupei; Ma, Wen

    2016-12-01

    Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB2 type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr-Fe-Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr-Fe and Zr-Cr binary intermetallics.

  5. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  6. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  7. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  8. Digital Earth

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, J.

    2001-05-01

    Digital Earth (DE) seeks to make geospatial information broadly and easily available. Vast amounts of natural and cultural information are gathered about the Earth, but it is often difficult to find needed data, to share knowledge across disciplines, and to combine information from several sources. DE defines a framework for interoperability by selecting relevant open standards from the information technology community. These standards specify the technical means by which publishers can provide or sell their data, and by which client applications can find and access data in an automated fashion. The standardized DE framework enables many types of clients--from web browsers to museum kiosks to research-grade virtual environments--to use a common geospatial information infrastructure. Digital Earth can benefit Earth system education in general, and DLESE in particular, in several ways. First, educators, students and creators of instructional material will benefit from standardized access to georeferenced data. Secondly, educational lesson plans that focus on a region or aspect of the Earth can themselves be considered geospatial information resources that could be cataloged and retrieved through DE. Finally, general public knowledge about our planet will by increased by Digital Earth.

  9. Structural and magnetic properties of 2:17-type rare-earth transition-metal magnetic compounds samarium(2)iron(17)M(x) (M = aluminum, silicon) and R(2)iron(17-x)T(x) (R = yttrium, neodymium, gadolinium; T = indium, cobalt, silicon, gallium)

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyuan

    Our aim is to develop new RE-TM intermetallic compounds of the 2:17-type that have high Curie temperature Tc, large saturation magnetization Ms, and strong magnetocrystalline anisotropy (MCA). The new off-stoichiometric compound Sm2Fe17ALx formed the rhombohedral Th2Zn17-type structure when x was less than 6. The addition of Al increased its Tc due to the change of distance between the Fe-Fe pairs that were responsible for the exchange coupling. When Co, or Ni was used to substitute the Fe atoms in Sm2Fe17Al x, the substitution further enhanced Tc whereas Ms increased first and then decreased. A differential thermal analysis was made on the carbides of these samples, the results showed that Sm2Fe 16MnAl2C1.5 was stable even near 950°C. In the second part of the work, the effects of Co substitution on the exchange coupling and the magnetocrystalline anisotropy (MCA) of Sm2Fe 17-xCox were studied. The result was explained by the Mean Field Theory and the Sucksmith Model. It was found that the MCA constant K1 and the coupling constant JFe-Fe increased monotonously with Co concentration which indicated the weakening of the easy axis anisotropy. This result was consistent with the observed fact that the easy magnetization direction did not change with Co concentration as verified by the x-ray diffraction spectra of the aligned samples. Lastly, the electronic structure of the 2:17-type RE-TM compounds were studied by using x-ray photoelectron spectroscopy. An increment of density of state near the Fermi energy level (EF) had been observed on the Y2Fe17-xInx and Nd2Fe17-xMx (M = Ga, Si) compound as the substitution concentration increased, but it was not found in the Gd 2Fe17-xTx (T = Ga, Ti; x = 2). The XPS of the valence band of the Y2Fe17-xInx exhibited a one-peak structure, whereas those of the Nd2Fe 17-xTx and Gd2Fe17-xT x had a two-peak structure. It was evident that the formation of the two-peak structure was due to the presence of the 4f electrons, because the 4f

  10. A Density Functional Investigation of the Structural, Elastic and Thermodynamic Properties of the Au-Sn Intermetallics

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Zhou, Wei; Wu, Ping

    2016-01-01

    The structural, elastic and thermodynamic properties of AuSn, AuSn2, AuSn4 and Au5Sn are investigated by first-principles calculations. Through calculation, the four intermetallic compounds are all thermodynamically stable and AuSn has the largest negative formation energy. They are all ductile, anisotropic and have low stiffness. In addition, Au5Sn is different from the others, since it is elastically unstable and possesses the highest anisotropy and hardness, mainly due to the strong Au-Au covalent bonds. Based on the quasi-harmonic Debye model, the thermodynamic properties of AuSn, such as the volume, thermal expansion coefficient, bulk modulus, Debye temperature and heat capacity with temperature variation in the range of 0-20 GPa, are obtained. The results indicate the increments of both the volume and thermal expansion coefficient with temperature become slow when the pressure is more than 10 GPa, and the bulk modulus and Debye temperature are almost constant below 100 K and then become linear decreasing as temperature increases. It is found that the influence of temperature on heat capacity is much more obvious than that of pressure.

  11. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    PubMed

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-12

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  12. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    PubMed Central

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769

  13. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-11-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  14. Characterization of Nanostructured NbSi2 Intermetallic Coatings Obtained by Plasma Spraying of Mechanically Alloyed Powders

    NASA Astrophysics Data System (ADS)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan

    2015-08-01

    Nanostructured NbSi2 powders plasma sprayed on to Ti-6Al-4V substrates were characterized in this research. After preparation of the nanostructured NbSi2 powders by mechanical alloying of an Nb-Si powder mixture, agglomeration was performed to obtain a particle size suitable for spraying. The agglomerated powders were then sprayed by atmospheric plasma spraying. Structural transformation of the powders and morphological and mechanical changes of the coatings were examined by use of x-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, and microhardness testing. During milling, NbSi2 intermetallic with a grain size of approximately 15 nm was gradually formed. After plasma spraying, a coating of hardness 550 ± 8 HV with a uniform nanocrystalline structure, low oxide content, low porosity, and a good adhesion to the substrate was obtained. No phase change occurred after spraying and the NbSi2 compound remained nanostructured with a grain size of approximately 82 nm.

  15. Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.

    2016-01-01

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni7Zr2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni7Zr2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni7Zr2 alloy fitted by Vogel-Fulcher-Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni7Zr2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s-1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s-1.

  16. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  17. Structure maps in the search for new intermetallics

    SciTech Connect

    Pettifor, D.G. . Dept. of Mathematics)

    1989-01-01

    The data base on the crystal structures of binary compounds may be ordered within two-dimensional structure maps using the recently proposed Mendeleev number which places all the elements in sequential order. This paper reviews the progress made and problems encountered in using the maps as a guide in the search for new pseudobinaries with a required crystal structure. 37 refs., 6 figs.

  18. Effect of rare earth metal Ce addition to Sn-Ag solder on interfacial reactions with Cu substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2014-05-01

    The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.

  19. Study on the Microstructure and Wettability of an Al-Cu-Si Braze Containing Small Amounts of Rare Earth Erbium

    NASA Astrophysics Data System (ADS)

    Shi, Yaowu; Yu, Yang; Li, Yapeng; Xia, Zhidong; Lei, Yongping; Li, Xiaoyan; Guo, Fu

    2009-04-01

    The effect of adding small amounts of rare earth Er on the microstructure of an Al-Cu-Si braze alloy has been investigated. Several Al-20Cu-7Si braze alloys containing various contents of Er were prepared, and their melting temperature, microstructure, hardness, and wettability in contact with 3003 aluminum alloy substrates were determined. The results indicate that the constituents of the microstructure of Al-20Cu-7Si-Er braze alloys are similar to those in the Al-20Cu-7Si alloy, and comprise of solid solutions of aluminum, silicon, and the intermetallic compound CuAl2. When the Er content increases, the size of the Al phase decreases, and the needle-like Si phase is thickened, and transformed to a blocky shape. Moreover, small amounts of Er can improve the wettability and hardness of the Al-20Cu-7Si braze alloy; however, the melting temperature of the Al-20Cu-7Si alloy does not change.

  20. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  1. Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Fernández, J. R.

    2015-12-01

    Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

  2. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  3. Oligonuclear molecular models of intermetallic phases: a case study on [Pd2Zn6Ga2(Cp*)5(CH3)3].

    PubMed

    Bollermann, Timo; Molon, Mariusz; Gemel, Christian; Freitag, Kerstin; Seidel, Rüdiger W; von Hopffgarten, Moritz; Jerabek, Paul; Frenking, Gernot; Fischer, Roland A

    2012-04-16

    The synthesis, characterization, and theoretical investigation by means of quantum-chemical calculations of an oligonuclear metal-rich compound are presented. The reaction of homoleptic dinuclear palladium compound [Pd(2)(μ-GaCp*)(3)(GaCp*)(2)] with ZnMe(2) resulted in the formation of unprecedented ternary Pd/Ga/Zn compound [Pd(2)Zn(6)Ga(2)(Cp*)(5)(CH(3))(3)] (1), which was analyzed by (1)H and (13)C NMR spectroscopy, MS, elemental analysis, and single-crystal X-ray diffraction. Compound 1 consisted of two C(s)-symmetric molecular isomers, as revealed by NMR spectroscopy, at which distinct site-preferences related to the Ga and Zn positions were observed by quantum-chemical calculations. Structural characterization of compound 1 showed significantly different coordination environments for both palladium centers. Whilst one Pd atom sat in the central of a bi-capped trigonal prism, thereby resulting in a formal 18-valence electron fragment, {Pd(ZnMe)(2)(ZnCp*)(4)(GaMe)}, the other Pd atom occupied one capping unit, thereby resulting in a highly unsaturated 12-valence electron fragment, {Pd(GaCp*)}. The bonding situation, as determined by atoms-in-molecules analysis (AIM), NBO partial charges, and molecular orbital (MO) analysis, pointed out that significant Pd-Pd interactions had a large stake in the stabilization of this unusual molecule. The characterization and quantum-chemical calculations of compound 1 revealed distinct similarities to related M/Zn/Ga Hume-Rothery intermetallic solid-state compounds, such as Ga/Zn-exchange reactions, the site-preferences of the Zn/Ga positions, and direct M-M bonding, which contributes to the overall stability of the metal-rich compound.

  4. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W.; Fernando, G.W.; Bennett, L.H.

    1992-10-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions & band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund`s rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  5. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W. ); Fernando, G.W. . Dept. of Physics); Bennett, L.H. . Metallurgy Div.)

    1992-01-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund's rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  6. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  7. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  8. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  9. Think Earth.

    ERIC Educational Resources Information Center

    Niedermeyer, Fred; Ice, Kay

    1992-01-01

    Describes a series of environmental education instructional units for grades K-6 developed by the Think Earth Consortium that cover topics such as conservation, pollution control, and waste reduction. Provides testimony from one sixth-grade teacher that field tested the second-grade unit. (MDH)

  10. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  11. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  12. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    SciTech Connect

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-09-15

    Plate impact experiments were conducted on a {gamma}-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics.

  13. Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface.

    PubMed

    Maurice, Vincent; Despert, Guillaume; Zanna, Sandrine; Bacos, Marie-Pierre; Marcus, Philippe

    2004-10-01

    Oxide layers grown on the surface provide an effective way of protecting metallic materials against corrosion for sustainable use in a broad range of applications. However, the growth of cavities at the metal/oxide interface weakens the adherence of the protective layer and can promote its spallation under service conditions, as observed for alumina layers formed by selective oxidation of aluminide intermetallic alloys used in high-temperature applications. Here we show that direct atomic-scale observations of the interface between an ultrathin protective oxide layer (alumina) grown on an intermetallic titanium aluminide substrate (TiAl) can be performed with techniques sensitive to the topmost atomic layers at the surface. Nanocavities resulting from the self-assembling of atomic vacancies injected at the interface by the growth mechanism of the protective oxide are observed for the first time, bringing new insight into the understanding of the fate of injected cavities in oxidation processes.

  14. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  15. Microstructure of an Ingot of Sm2Fe17 Intermetallic and its Homogenization

    NASA Astrophysics Data System (ADS)

    Buryakov, I. N.; Kamynin, A. V.; Éverstov, A. A.; Kraposhin, V. S.; Talis, A. L.

    2017-01-01

    The phase composition and microstructure of Sm - Fe alloys obtained by vacuum induction melting of the elements are studied near the stoichiometry of Sm2F17 by the methods of scanning electron microscopy, local microanalysis and x-ray analysis. The possibility of coherent junction of all the phase components of an ingot is analyzed with the help of representation of the crystal structures of all intermetallics of the Sm - Fe system in terms of coordination polyhedrons. It is shown that long-term annealing at a high temperature (for 30 h at 1150°C) does not remove from the structure of the ingot the regions of metallic samarium formed due to the peritectic type of solidification of the Sm2Fe17 intermetallic.

  16. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  17. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  18. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  19. Impact Initiation of Pressed Al-based intermetallic Forming Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Du, Siwei; Thadhani, Naresh

    2009-06-01

    Aluminum-based intermetallic forming powder mixtures (Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al) were uniaxially pressed into 80% dense pellets, to study the impact initiation of reactions. The pressed pellets mounted in front of a projectile were impacted onto a steel anvil using a 7.62 mm gas gun, under a 50 millitorr vacuum. Projectiles made of copper, aluminum or poly carbonate and varying impact velocity (up to 500 m/s) provided different levels of stress, strain, and kinetic energy. The IMACON 200 framing camera was used to observe the transient deformation states and reaction ignition characteristics. AUTODYN 2D was used to simulate the densification and deformation process, and correlate with that observed by high-speed imaging. It is found that the continued straining following densification of the powder compact by the kinetic energy of the projectile, and the resulting stress are both contributing to the initiation of the intermetallic reaction. In this presentation the characteristics of impact initiated reactions in the various intermetallic systems will be presented.

  20. Impact Initiation of Pressed Al-Based Intermetallic-Forming Powder Mixture Compacts

    NASA Astrophysics Data System (ADS)

    Du, S. W.; Thadhani, N. N.

    2009-12-01

    Aluminum-based intermetallic forming powder mixtures (Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al) were uniaxially pressed into 90% dense pellets, to study the impact initiation of reactions. The pressed pellets were mounted in front of a projectile and impacted onto a steel anvil using a 7.62 mm gas gun, under a 50 millitorr vacuum. Projectiles made of copper, aluminum or poly carbonate, and varying impact velocity (up to 500 m/s) provided different levels of stress, strain, and kinetic energy. The IMACON 200 framing camera was used to observe the transient densification, deformation, and reaction states. AUTODYN 2D was used to simulate the densification and deformation process, and correlate with that observed by high-speed imaging. It was found that the reaction initiates after continued straining following densification of the powder compact, illustrating that neither the kinetic energy and nor the resulting projectile-anvil equilibrated stress are independently controlling the initiation of the intermetallic reaction. Characteristics of threshold conditions for impact-initiated reactions in the various Al-based intermetallic powder-mixture compacts will be presented.