Sample records for earth ionosphere resonant

  1. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  2. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    NASA Astrophysics Data System (ADS)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  3. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  4. Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; hide

    2012-01-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.

  5. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  6. Experimental study of global electromagnetic resonances of the Earth-ionosphere cavity in high latitudes (Novaya Zemlya Island and settlement Tiksi)

    NASA Astrophysics Data System (ADS)

    Auyrov, D. B.; Khaptanov, V. B.; Bashkuev, Yu. B.; Buyanova, D. G.

    2017-11-01

    The results of measurements of the horizontal electric field Eh components of the natural electromagnetic field of the Earth (Schumann resonances, SR) in the extreme low frequency (ELF) radio wave bands on Novaya Zemlya Island and settlement Tiksi are considered. In the electromagnetic clean arctic region on August 2016 (the Bay of Blagopoluchiya (75°41'59″ N; 63° 42' 36″ E)) the global electromagnetic resonances (SR) of the Earth-ionosphere cavity up to the 7th and 8th resonant peaks in spectra are identified. Calculated and experimental values of the peak frequencies fn and Qnfactors of the cavity "Earth-ionosphere" are presented. On the spectra of records received on July, 2015 also in high latitudes near settlement Tiksi (71°35'3″ N; 128°46'4″ E) we work with the same measuring equipment and observed the 4th and 5th SR resonances. Diurnal variations of basic parameters of Schumann resonances are investigated.

  7. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  8. The peculiarities of power terrestrial ELF emission in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Dudkin, Fedir; Pronenko, Vira; Chvach, Valery

    2016-04-01

    The near-Earth space is saturated with electromagnetic (EM) waves of terrestrial origin in a wide frequency range. The most powerful natural sources of EM emission are thunderstorms and triggered by them Schumann resonance (SR) radiation which is the narrowband EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity in frequency range about 7-100 Hz. The considerable part of the terrestrial EM emission belongs to everyday human activity which increases year by year with unpredictable consequences. At the beginning of space exploration era it was considered that high frequency EM waves freely penetrate through the Earth's ionosphere, but the terrestrial EM emission below very low frequency range is limited by ionospheric F2 layer boundary due to great EM losses in plasma. About 40 years ago the power lines harmonic radiation (multiple of 50/60 Hz) was found at satellite observations in a few kilohertz range, nevertheless the ionosphere was considered fully opaque for extremely low frequency (ELF) EM emission. However recently, in spite of theoretical estimations, the SR harmonics and power line emission (PLE) 50/60 Hz were discovered during flights of low Earth orbiting satellites C/NOFS (Simões et al., 2011) and Chibis-M (Dudkin et al., 2015) at heights 400-800 km, i.e. over F2-layer. Last results are a great challenge to the theory of ELF EM emission propagation in the Earth's ionosphere as well as for study of long-term influence of constantly increasing electric energy consumption by human civilization in the Earth's environment. We present the analysis of the space and time distribution for observed PLE and SR harmonics, their connection with power terrestrial sources of ELF emission and possible relation between measured values and ionosphere conditions. Also some electromagnetic parameters have been estimated. Simões, F. A., R. F. Pfaff, and H. T. Freudenreich (2011), Satellite observations of Schumann resonances in the

  9. Excitation of Ionospheric Alfvén Resonator with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.; Labenski, J.; Milikh, G. M.; Vartanyan, A.; Snyder, A. L.

    2011-12-01

    We report results from numerical and experimental studies of the excitation of ULF waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during October-November 2010 experimental campaign reveal that the IAR quality is higher during night-time conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low-Earth-orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, 1) observations from the ground-based magnetometer at the HAARP site demonstrate no any significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and 2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  10. Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the Lithosphere-Atmosphere-Ionosphere system

    NASA Astrophysics Data System (ADS)

    Liu, L.; Huang, Q.; Wang, Y.

    2012-12-01

    The variations in the strength and frequency shift of the Schumann resonance (SR) of the electromagnetic (EM) field prior to some significance earthquakes were reported by a number of researchers. As a robust physical phenomenon constantly exists in the resonant cavity formed by the lithosphere-atmosphere-ionosphere system, irregular variations in SR parameters can be naturally attributed to be the potential precursory observables for forecasting earthquake occurrences. Schumann resonance (SR) of the EM field between the lithosphere and the ionosphere occurs because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The cavity is naturally excited by electric currents generated by lightning. SR is the principal background in the electromagnetic spectrum at extremely low frequencies (ELF) between 3-69 Hz. We simulated the EM field in the lithosphere-ionosphere waveguide with a 2-dimensional (2D), cylindrical whole-earth model by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and EM wave in this 2D model. The excitation of SR in the background EM field are generated by the electric-current impulses due to lightning thunderstorms within the lowest 10 kilometers of the atmosphere . The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR has reached the steady state, the impulse generated by the seismogenic process (pre-, co- and post-seismic) in the crust is introduced to assess the possible precursory effects on SR strength and frequency. The modeling results explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events; the reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric

  11. The super-low frequency resonances at magnetospheric boundaries versus geostationary and ionospheric data

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Surjalal Sharma, A.; Pilipenko, Viacheslav; Marcucci, Maria Federica; Nemecek, Zdenek; Safrankova, Jana; Consolini, Giuseppe; Belakhovsky, Vladimir; Kozak, Ludmila; Blecki, Jan; Kronberg, Elena

    2016-07-01

    We do a multi-point study of the influence of the lowest frequency resonances (0.02-10 mHz) at the outer magnetospheric boundaries on the fluctuations inside the magnetosphere and ionosphere presented. The correlations of the dynamic pressure data from CLUSTER, DOUBLE STAR, GEOTAIL, ACE/ WIND, particle data from LANL, GOES with the magnetic data from polar ionospheric stations on March 27, 2005, show that: i) the waves generated by boundary resonances and their harmonics penetrate inside the magnetosphere and reach the ionosphere; ii) correlations between the dynamic pressure fluctuations at the magnetospheric boundaries and magnetospheric/ ionospheric disturbances, including indices such as AE and SYM-H, can exceed 80%; iii) the new resonance frequencies are lower by an order of magnitude compared with our previous studies, which are as low as 0.02 mHz. Furthermore, such resonances are characteristic also for the night-side geostationary/ionospheric data and for the middle tail, i.e., they are global magnetospheric features. Analysis of different types of correlations yields the unexpected result that in ~48% of the cases with pronounced maximum in the correlation function the geostationary/ ionospheric response is seen before the magnetosheath (MSH) response. We propose that some global magnetospheric resonances (e.g. membrane bow shock surface (0.2-0.5 mHz) and/or magnetopause (0.5-0.9 mHz) modes along with the cavity MHS/ cusp (3-10 mHz) and magnetospheric global modes (0.02-0.09mHz)) can account for the data presented. The multiple jets at the sampled MSH locations can be a consequence of the resonances, while an initial disturbance (e.g. through the interplanetary shocks, Hot Flow Anomalies, foreshock irregularities etc., were not observed by particular spacecraft in MSH because they were localized in the plane perpendicular to the Sun-Earth line. So, in the explorations of the solar wind - magnetosphere interactions one should take into account these

  12. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  13. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  14. `Earth-ionosphere' mode controlled source electromagnetic method

    NASA Astrophysics Data System (ADS)

    Li, Diquan; Di, Qingyun; Wang, Miaoyue; Nobes, David

    2015-09-01

    In traditional artificial-source electromagnetic exploration, the effects of the ionosphere and displacement current (DC) in the air were neglected, and only the geoelectrical structure of the earth's crust and upper mantle was considered, such as for controlled source audio-frequency magnetotelluric (CSAMT). By employing a transmitter (less than 30 kW) to generate source fields, the CSAMT method overcomes the problems associated with weak natural electromagnetic (EM) fields used in magnetotellurics. However, the transmitter is moved and the source-receiver offset is approximately less than 20 km, because of the limitation of emission energy. We put forward a new idea, that is, a fixed artificial source (greater than 200 kW) is used and the source location selected at a high resistivity region (to ensure a high emission efficiency), so there may be a possibility that as long as the source strength magnitude is strong enough, the artificial EM signal can be easily observed within a distance of several thousand kilometres. Previous studies have provided the evidence to support this idea; they used the `earth-ionosphere' mode in modeling the EM fields with the offset up to a thousand kilometres. Such EM fields still have a signal/noise ratio over 10-20 dB; this means that a new EM method with fixed source is feasible. However, in their calculations, the DC which plays a very important role for large offsets was neglected. This paper pays much attention to derive the formulae of the `earth-ionosphere' mode with a horizontal electric dipole source, and the DC is not neglected. We present some three layers modeling results to illustrate the basic EM field characteristics under the `earth-ionosphere' mode. As the offset increases, the contribution of the conduction current decreases, DC and ionosphere were taken into account, and the EM field attenuation decreases. We also quantitatively compare the predicted and observed data. The comparison of these results with the

  15. Quasi-Periodic Pulsations in the Earth's Ionosphere Synchronized with Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, L.; Gallagher, P.; McCauley, J.; Dennis, B. R.; Ireland, J.; Inglis, A. R.

    2017-12-01

    Solar flare activity is a powerful factor affecting the geophysical processes in the Earth's ionosphere. In particular, X-ray photons with wavelength < 10 A can penetrate down to the D-region ( 60-90 km in altitude) resulting in a dramatic increase of ionization in this lowest lying region of the Earth's ionosphere. This manifests as a substantial enhancement of electron density height profile at these altitudes to extents large enough to change the propagation conditions for Very Low Frequency (VLF 3-30 kHz) radio waves that travel in the waveguide formed by the Earth and the lower ionosphere. Recently, it has become clear that flares exhibit quasi-periodic pulsations with periods of seconds to minutes at EUV, X-ray and gamma-ray wavelengths. To date, it has not been known if the Earth's ionosphere is sensitive to these dynamic solar pulsations. Here, we report ionospheric pulsations with periods of 20 minutes that are synchronized with a set of pulsating flare loops using VLF observations of the ionospheric D-layer together with X-ray and EUV observations of a solar flare from the NOAA/GOES and NASA/SDO satellites. Modeling of the ionosphere show that the D-region electron density varies by up to an order of magnitude over the timescale of the pulsations. Our results show that the Earth's ionosphere is more sensitive to small-scale changes in solar activity than previously thought.

  16. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  17. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  18. Excitation of the ionospheric Alfvén resonator from the ground: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.-L.; Labenski, J.; Milikh, G.; Vartanyan, A.; Snyder, A. L.

    2011-10-01

    We report results from numerical and experimental studies of the excitation of ULF shear Alfvén waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during the October-November 2010 experimental campaign reveal that the IAR quality is higher during nighttime conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low Earth orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, (1) observations from the ground-based magnetometer at the HAARP site demonstrate no significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and (2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  19. Pulsations in the Earth's Lower Ionosphere Synchronized With Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, Laura A.; Gallagher, Peter T.; McCauley, Joseph; Dennis, Brian R.; Ireland, Jack; Inglis, Andrew

    2017-10-01

    Solar flare emission at X-ray and extreme ultraviolet (EUV) energies can cause substantial enhancements in the electron density in the Earth's lower ionosphere. It has now become clear that flares exhibit quasi-periodic pulsations with timescales of minutes at X-ray energies, but to date, it has not been known if the ionosphere is sensitive to this variability. Here using a combination of very low frequency (24 kHz) measurement together with space-based X-ray and EUV observations, we report pulsations of the ionospheric D region, which are synchronized with a set of pulsating flare loops. Modeling of the ionosphere show that the D region electron density varies by up to an order of magnitude over the timescale of the pulsations (˜ 20 min). Our results reveal that the Earth's ionosphere is more sensitive to small-scale changes in solar soft X-ray flux than previously thought and implies that planetary ionospheres are closely coupled to small-scale changes in solar/stellar activity.

  20. Amplitude variations of ELF radio waves in the Earth-ionosphere cavity with the day-night non-uniformity

    NASA Astrophysics Data System (ADS)

    Galuk, Yu P.; Nickolaenko, A. P.; Hayakawa, M.

    2018-04-01

    The real structure of lower ionosphere should be taken into account when modeling the sub-ionospheric radio propagation in the extremely low frequency (ELF) band and studying the global electromagnetic (Schumann) resonance of the Earth-ionosphere cavity. In the present work we use the 2D (two dimensional) telegraph equations (2DTE) for evaluating the effect of the ionosphere day-night non-uniformity on the electromagnetic field amplitude at the Schumann resonance and higher frequencies. Properties of the cavity upper boundary were taken into account by the full wave solution technique for realistic vertical profiles of atmosphere conductivity in the ambient day and ambient night conditions. We solved the electromagnetic problem in a cavity with the day-night non-uniformity by using the 2DTE technique. Initially, the testing of the 2DTE solution was performed in the model of the sharp day-night interface. The further computations were carried out in the model of the smooth day-night transition. The major attention was directed to the effects at propagation paths "perpendicular" or "parallel" to the solar terminator line. Data were computed for a series of frequencies, the comparison of the results was made and interpretation was given to the observed effects.

  1. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    NASA Astrophysics Data System (ADS)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  2. Feedback instability of the ionospheric resonant cavity

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.

    1991-01-01

    A model is developed that provides a theoretical basis for previous numerical results showing a feedback instability with frequencies characteristic of Alfven travel times within the region of the large increase of Alfven speed above the ionosphere. These results have been extended to arbitrary ionospheric conductivity by developing a numerical solution of the cavity dispersion relation that involves Bessel functions of complex order and argument. It is concluded that the large contrast between the magnetospheric and ionospheric Alfven speed leads to the formation of resonant cavity modes with frequencies ranging from 0.1 to 1 Hz. The presence of the cavity leads to a modification of the reflection characteristics of Alfven waves with frequencies that compare to the cavity's normal modes.

  3. Ionospheric Alfvén resonator and aurora: Modeling of MICA observations

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Streltsov, A. V.

    2017-07-01

    We present results from a numerical study of small-scale, intense magnetic field-aligned currents observed in the vicinity of the discrete auroral arc by the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) sounding rocket launched from Poker Flat, Alaska, on 19 February 2012. The goal of the MICA project was to investigate the hypothesis that such currents can be produced inside the ionospheric Alfvén resonator by the ionospheric feedback instability (IFI) driven by the system of large-scale magnetic field-aligned currents interacting with the ionosphere. The trajectory of the MICA rocket crossed two discrete auroral arcs and detected packages of intense, small-scale currents at the edges of these arcs, in the most favorable location for the development of the ionospheric feedback instability, predicted by the IFI theory. Simulations of the reduced MHD model derived in the dipole magnetic field geometry with realistic background parameters confirm that IFI indeed generates small-scale ULF waves inside the ionospheric Alfvén resonator with frequency, scale size, and amplitude showing a good, quantitative agreement with the observations. The comparison between numerical results and observations was performed by "flying" a virtual MICA rocket through the computational domain, and this comparison shows that, for example, the waves generated in the numerical model have frequencies in the range from 0.30 to 0.45 Hz, and the waves detected by the MICA rocket have frequencies in the range from 0.18 to 0.50 Hz.

  4. Enchancement of the Ionosphere Alfvén Resonance caused by earthquake: experiment and model

    NASA Astrophysics Data System (ADS)

    Kotsarenko, A.; Grimalsky, V.; Pulinets, S.; Koshevaya, S.; Perez-Enriquez, R.; Cruz Abeyro, J. A. L.

    2009-04-01

    Analysis of geomagnetic and telluric data, measured at the station PRK (Parkfield, ULF flux-gate 3-axial magnetometer) 1 week before (including) the day of major EQ (EarthQuake, Ms=6.0, 28-SEP-2004, 17:15:24) near Parkfield, California, USA, are presented. Spectral analysis reveals enhancement the IAR (Ionosphere Alfvén Resonance) modes, localized in the frequency range 0.25-1 Hz, observed the day before the event, Sep 27, at 15:00-20:00 by UT, and at the day of the EQ, Sep 28, at 11:00-19:00 (9 hours before the event). Estimations of the amplitudes of the signals give following values: up to 20 pT for the magnetic channels and 1.5 mkV/km for the telluric ones. Observed phenomena occurs under quiet geomagnetic conditions (|Dst|< 20 nT). We have calculated the efficiency of the modulation of the Alfvén wave at frequencies f = 0.1 - 10 Hz, which passes from the magnetosphere (z > 600 km) to the ionosphere and the to the Earth's surface and the lithosphere. The set of equations for the both magnetic and electric field components has been solved numerically. It has been obtained that the 20% modulation of the concentration of the ion and electron concentrations (which is also observed experimentally) at the heights z = 200 km can lead to the same (or higher) modulation of the amplitude of the variable magnetic field at the Earth's surface (z = 0) at f = 0.1 - 10 Hz. Moreover, the effect depends weakly on the conductivity of the lithosphere. Therefore, an influence of the coupling mechanisms on the F-layer of the ionosphere could lead to observable effects at the Earth's surface.

  5. Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-10-15

    Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IARmore » modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.« less

  6. The Role of Ionospheric Conductivity in the Response of the Magnetosphere and Ionosphere to Changes in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Wiltberger, M. J.; Richmond, A. D.; Ouellette, J.

    2014-12-01

    The strength and orientation of the Earth's magnetic field play an important role in the magnetosphere-ionosphere-thermosphere system. This is demonstrated in a set of idealized experiments with the Coupled Magnetosphere-Ionosphere-Thermosphere model using a dipolar magnetic field. A decrease of the dipole moment (M) causes an increase in ionospheric conductance. This increase in conductance results in enhanced field-aligned currents (FACs), which change the shape of the magnetosphere, and causes a deviation from theoretical scaling relations of the stand-off distance, the size of the polar cap, and the cross-polar cap potential with M. The orientation of the Earth's magnetic field determines how the angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis varies with season and universal time (UT). The angle μ can affect solar wind-magnetosphere-ionosphere coupling in two distinct ways: via variations in ionospheric conductivity over the polar caps or via a change in the coupling efficiency between the solar wind and magnetosphere as a result of changes in geometry. Simulations in which the ionospheric conductivity was either kept fixed or allowed to vary realistically demonstrated that variations in ionospheric conductance are responsible for ~10-30% of the variations in the cross-polar cap potential associated with variations in μ for southward interplanetary magnetic field (IMF). The remainder was mostly due to variations in the magnetic reconnection rate, which were associated with variations in the length of the section of the separator line along which relatively strong reconnection occurs.

  7. Earth-ionosphere transmission line model for an impulsive geomagnetic disturbance at the dayside geomagnetic equator

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.

    2004-12-01

    The near instantaneous onset of a geomagnetic impulse such as the preliminary reverse impulse (PRI) of the geomagnetic sudden commencement at high latitude and at the dayside geomagnetic equator has been explained by means of the TM0 mode waves in the Earth-ionosphere waveguide (Kikuchi and Araki, J. Atmosph. Terrest. Phys., 41, 927-936, 1979). There is, on the other hand, a time lag of the order of 10 sec in the peak amplitude of the magnetic impulse at the dayside equator. To explain these two temporal aspects, we examine transmission of the TM0 mode in a finite-length Earth-ionosphere transmission line composed of a finitely conducting ionosphere and the perfectly conducting Earth, with a fixed electric potential at one end and null potential at the other end of the transmission line, corresponding to the foot of a field-aligned current on the dawn- or dusk-side in the polar cap and middle point on the noon-midnight meridian at low latitude, respectively. Successive transmission and reflection in the bounded transmission line lead to that the ionospheric currents start to grow instantaneously, but reach a steady state with a relaxation time proportional to the length of the transmission line and the ionospheric conductivity. The relaxation time is of the order of 10 sec when we give high conductivity applicable to the equatorial ionosphere, which matches the observed time lag in the peak amplitude of the equatorial geomagnetic impulse. Consequently, the TM0 mode in the finite-length Earth-ionosphere transmission line explains both the instantaneous onset and time lag in the peak amplitude of the geomagnetic impulse at the dayside geomagnetic equator.

  8. Estimating Parameters for the Earth-Ionosphere Waveguide Using VLF Narrowband Transmitters

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M.

    2017-12-01

    Estimating the D-region (60 to 90 km altitude) ionospheric electron density profile has always been a challenge. The D-region's altitude is too high for aircraft and balloons to reach but is too low for satellites to orbit at. Sounding rocket measurements have been a useful tool for directly measuring the ionosphere, however, these types of measurements are infrequent and costly. A more sustainable type of measurement, for characterizing the D-region, is remote sensing with very low frequency (VLF) waves. Both the lower ionosphere and Earth's ground strongly reflect VLF waves. These two spherical reflectors form what is known as the Earth-ionosphere waveguide. As VLF waves propagate within the waveguide, they interact with the D-region ionosphere, causing amplitude and phase changes that are polarization dependent. These changes can be monitored with a spatially distributed array of receivers and D-region properties can be inferred from these measurements. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a narrow propagation region. We report on an effort to improve the understanding of VLF wave propagation by estimating the commonly known h' and beta two parameter exponential electron density profile. Measurements from multiple narrowband transmitters at multiple receivers are taken, concurrently, and input into an algorithm. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received narrowband amplitude and phase and the outputs are the estimated h' and beta parameters. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Emphasis is placed on profiling the daytime ionosphere, which has a more stable and predictable profile than the nighttime. Daytime ionospheric disturbances, from high solar

  9. Remote double resonance coupling of radar energy to ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1971-01-01

    Experimental results indicate that low frequency modulation of a high power radar beam, tuned to one of the critical frequencies of the ionosphere, may produce field-aligned density irregularities when the modulation frequency matches an ionospheric eigenfrequency. By choosing the radar carrier frequency and polarization, a number of interaction layers were selected. The variety of possible excitations shows that the double resonance technique may be adaptable to a number of different objectives.

  10. Is the ;Earth-ionosphere capacitor; a valid component in the atmospheric global electric circuit?

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Rycroft, Michael; Williams, Earle; Price, Colin

    2017-11-01

    This paper examines whether the Earth-ionosphere capacitor (EIC) model is correct, by comparing observed atmospheric electrical properties with those expected for a spherical capacitor, as defined in electrostatics. The comparisons suggest that the EIC concept cannot be reconciled with, and hence cannot account for, the observations, particularly the rapid reduction of the atmospheric electric field with height that is measured. This means that the spherical EIC concept is incorrect by being too simplistic; it is thus misleading. The reason for this flawed concept is simple: the model disregards the non-uniform conductivity of the atmosphere which requires the presence of a net positive charge in the lower atmosphere that equals in magnitude the Earth's negative charge. This positive charge shields the action of the Earth's negative charge from polarizing the ionosphere positively. Thus, the lower D region ionosphere remains electrically neutral, which makes the EIC concept inappropriate.

  11. Controlling Factors of the Fate of Ionospheric Outflow at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Ganushkina, N. Y.; Johnson, B. C.; Xu, S.; Dong, C.

    2015-12-01

    Both Earth and Mars experience ionospheric outflow, but the radically different magnetic field configurations at the two planets yield significantly different patterns of outflow and processes governing outflow. This study examines a set of numerical simulations for Earth and Mars to explore the factors controlling ionospheric outflow and the fate of the escaping ions (immediate precipitation, magnetospheric recirculation, or loss to deep space). Specifically, simulation results from the Space Weather Modeling Framework (SWMF), which is capable of handling both planetary space environments, are analyzed to assess the physical processes governing the fate of ionospheric ions. Velocity streamlines from the SWMF results are traced from the high-latitude inner boundary of the BATS-R-US MHD simulation domain and followed through geospace. Some of these streamlines return to the inner boundary of the simulation domain, others extend to the outer boundary of the domain, while most others eventually cross (or at least approach) the magnetospheric equatorial plane. At Earth, this plane is well defined, while at Mars there are multiple mini-magnetospheres in which ionospheric ions can become trapped. These streamlines are categorized according to their eventual destination. Multi-fluid MHD simulations are examined in this study, assessing the influence of species mass on trajectories through near-planet space. Steady-state numerical experiments with different levels of solar driving are examined to quantify the influence of each driver on outflow characteristics and the fate of outflowing ions. Real event intervals are considered to assess flows in a time-varying magnetospheric system. For Earth, as solar wind dynamic pressure increases, the dominant outflow region moves to lower latitudes and significantly more of the outflowing ions escape to deep space. As the interplanetary magnetic field increases in southward magnitude, the region of dominant outflow shifts to lower

  12. Significance of the Eccentricity of the Earth's Magnetic Field for the Magnetosphere and Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Koochak, Z.; Fraser-Smith, A. C.

    2016-12-01

    This paper is an extension of an earlier study of the centered and eccentric dipole models of the Earth's magnetic field [Fraser-Smith, 1987]. We have used the 1980-2015 International Geomagnetic Reference Field (IGRF) Gauss coefficients to recalculate the magnetic dipole moments and magnetic pole positions for both the centered and eccentric dipoles for an additional 35 years, thus bringing them up to date. These magnetic field models play an important role in ionosphere modification, since they influence the properties of the ionosphere. However it is not widely known that the nominal origin of the Earth's magnetic field is offset from the center of the Earth by nearly 10% of the Earth's radius, which must similarly lead to an offset of some of the larger-scale modifying effects such as those associated with the magnetosphere. We describe this offset magnetic field here to help identify its effects in ionospheric modification experiments.

  13. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    NASA Technical Reports Server (NTRS)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; hide

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  14. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  15. Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.

  16. Ionospheric Longitude Storm Dependence Upon the Magnitude of the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Schunk, R. W.

    2007-12-01

    The Earth's magnetic field in the ionosphere is understood to be non-dipolar with significant deviations in magnitude and orientation across the globe. This study models the mid-latitude ionospheric response to a geomagnetic storm for different idealizations of the Earth's magnetic field strength. In so doing the study addresses the question whether or not a longitude dependence in ionospheric storm responses could exist due to the longitude dependence of the magnetic field [ Huang et al., 2005], and if so, how significant is the effect? The mechanism by which the magnetic field magnitude has a first order effect is through the E x B plasma drift that has a vertical components, i.e., usually described as a meridional plasma drift caused by the zonal electric field. This vertical drift is inversely proportional to the magnitude of the magnetic field. A vertical drift raises or lowers the F-region into regions of lesser or greater recombination rates respectively, hence, directly affecting the plasma density. The Utah State University (USU) Time Dependent Ionospheric Model (TDIM) uses a tilted dipole magnetic field model to represent the Earth's field. The magnitude of magnetic field is specified by the dipole moment, in fact, the magnetic field strength on the surface of the Earth at the magnetic equator. Changing this one parameter enables studies to be made under identical storm conditions of the effect of different magnetic field magnitudes. For this study the normal 0.31 Gauss surface magnetic field is replaced by 0.24 Gauss and 0.41 Gauss. These two numbers represent the magnitude of the minimum and maximum observed field strength around the Earth equatorial region. The TDIM results are shown for a storm simulation that occurred on 5-6 November 2001. For otherwise identical model conditions and drivers, the difference in magnetic field strength results in a factor of 2 difference in TEC, NmF2, etc. Since the magnetic field magnitude is weakest in the Atlantic

  17. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  18. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be

  19. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  20. From COST 271 to 296 EU actions on ionospheric monitoring and modelling for terrestrial and Earth space radio systems

    NASA Astrophysics Data System (ADS)

    Zolesi, B.; Cander, Lj. R.; Altadill, D.

    The ionospheric community has long been aware that co-operative research on an international basis is essential to deal with temporal and spatial changes in the ionosphere that influence the performance of terrestrial and Earth-space radio systems. The EU COST (Co-operation in the field of Scientific and Technical Research) 271 Action on "Effects of the Upper Atmosphere on Terrestrial and Earth-space Communications" has had during the period of October 2000-August 2004 the following main objectives: (1) to evaluate the influence of upper atmospheric conditions on terrestrial and Earth-space communications, (2) to develop methods and techniques to improve ionospheric models over Europe for telecommunication and navigation applications and (3) to transfer the results to the appropriate radiocommunication study groups of the International Telecommunication Union (ITU-R) and other national and international organizations dealing with the modern communication systems. At the beginning of 2005 the new 296 Action in the COST Telecommunications, Information Science and Technology domain on "Mitigation of Ionospheric Effects on Radio Systems (MIERS)" was approved for the period 2005-2009. The main objectives of the MIERS are: (a) to support and enhanced the existing European facilities for historical and real-time digital ionospheric data collection and exchange; (b) to develop an integrated approach to ionospheric modelling, create the mechanism needed to ingest processed data into models, extend and develop suitable mitigation models and define the protocols needed to link models together; and (c) to strengthen the areas of expertise that already exist by stimulating closer cooperation between scientists and users, focusing the scope of all the previous COST ionospheric related studies to the mitigation of ionospheric effects on radio systems. This paper summarises briefly how the major objectives of the COST271 Action have been achieved and what are the most important

  1. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  2. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  3. Challenges for Future UV Imaging of the Earth's Ionosphere and High Latitude Regions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2006-01-01

    Large scale imaging of Geospace has played a significant role in the recent advances in the comprehension of the coupled Solar-Terrestrial System. The Earth's ionospheric far ultraviolet emissions provide a rich tapestry of observations that play a key role in sorting out the dominant mechanisms and phenomena associated with the coupling of the ionosphere and magnetosphere (MI). The MI coupling is an integral part of the Solar-Terrestrial and as such, future observations in this region should focus on understanding the coupling and the impact of solar variability. This talk will focus on the outstanding problems associated with the coupled Solar-Terrestrial system that can be best addressed using far ultraviolet imaging of the Earthls ionosphere. Challenges of global scale imaging and high-resolution imaging will be discussed and how these are driven by unresolved compelling science questions of magnetospheric configuration, and auroral dynamics.

  4. Backscattering of decametric waves on magnetically oriented ionosphere inhomogeneities

    NASA Astrophysics Data System (ADS)

    Sivokon', V. P.

    2017-05-01

    The method of study of magnetically oriented ionosphere inhomogeneities based on the analysis of radar decametric emission backscattering on inhomogeneities is proposed. It is shown that certain conditions, including the orientation of the propagation route relative to the Earth's magnetic field lines and the polarization and frequency of the emitted wave, make possible resonant backscattering of radiolocation system emission on magnetically oriented ionosphere inhomogeneities. The paper presents the results of experimental observation of scattering in Kamchatka Peninsula. They demonstrated the opportunity to evaluate the extension of the scattering region, the vertical and horizontal components of the velocities of magnetically oriented inhomogeneities, and the frequency dependence of these parameters.

  5. Limitations imposed by ionospheric turbulence on satellite-to-satellite Doppler measurement accuracy. [of earth gravity field

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.

    1982-01-01

    For some time the possibility has been considered to perform an accurate survey from orbit of the earth gravity field by making use of low-low, satellite-to-satellite Doppler tracking with a radio link which operates in the frequency band in the range from 50 to 100 GHz. It is, therefore, of interest to discuss the upper bound in Doppler measurement accuracy imposed by the effects of ionospheric turbulence. The present investigation is concerned with the measurement error induced by ionospheric turbulence. The assumptin is made that the so-called ionospheric refractive 'bias' can be removed with one of the multifrequency methods of the current practice.

  6. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  7. Quasi-thermal noise and shot noise spectroscopy using a CubeSat in Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Maj, R.; Cairns, I.

    2017-12-01

    We investigate the practicality of using quasi-thermal noise (QTN) and shot noisespectroscopy on a CubeSat in the Earth's ionosphere and constrain the satellite antennalength for optimal detection of these signals. The voltage spectra predicted for thermalLangmuir waves (QTN) and particle "shot noise" are modeled, and it is shown that thesignals detected can provide two very good, independent, passive, in situ methods ofmeasuring the plasma density and temperature in the ionosphere. The impact of theantenna potential φ is also discussed, and we show that the negative potential calculatedfor the ionosphere due to natural current flows has a significant impact on the voltagepower level of the shot noise spectrum. The antenna configuration is also shown to playan important role in the shot noise, with a monopole configuration enhancing thespectrum significantly compared with a dipole. Antenna lengths on the order of 20-40cm are found to be ideal for ionospheric plasma conditions, nicely matching CubeSatsizes and producing detectable thermal Langmuir waves and shot noise at the microvoltlevel. Further, with a continuous stream of data points at different latitudes andlongitudes an orbiting CubeSat can produce a global picture for the ionospheric plasmadensity and temperature using QTN and shot noise signals. If implemented, especiallyin a constellation, these data would be more frequent and cover a much greater domainthan current ground-based or single-satellite methods. This could lead to improvedionospheric models, such as the empirically based International Reference Ionosphere.

  8. Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Wallace, T.; Turbe, M.

    2016-12-01

    Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly

  9. Delta function excitation of waves in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Vidmar, R. J.; Crawford, F. W.; Harker, K. J.

    1983-01-01

    Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.

  10. Opportunities investigating the thermosphere/ionosphere system by low Earth orbiting satellite missions (Invited)

    NASA Astrophysics Data System (ADS)

    Stolle, C.; Park, J.; Luhr, H.

    2013-12-01

    New opportunities for investigating the thermosphere/ionosphere interactions arise from in situ measurements on board low Earth orbiting satellites. Ten years of successful operation of the CHAMP satellite mission at a unique orbit altitude of about 400 km revealed many interesting features of the coupling between the thermosphere and ionosphere and the different atmospheric layers. Examples are the investigations of signatures of stratospheric warming events that are known to change significantly the dynamics of the equatorial ionosphere. It was shown that these modifications are due to an enhancement of lunar tidal effects, e.g. reflected in the thermospheric zonal wind, in the equatorial electroje or in the eastward electric field. Another topic concerns the energy deposit in the F-region though cooling of the thermal electron gas caused by elastic and inelastic processes (Schunk and Nagy, 2009). We find that a significant deposition is present during day at mid latitudes. At low latitudes the energy flux remain important until midnight. Observed heating rates depend on the satellite altitudes, but they are globally available from the CHAMP data. Further enhanced investigations are expected from ESA's three-satellite Swarm mission with a launch planned in 2014. The mission will provide observations of electron density, electron and ion temperature, ion drift and the electric field together with neutral density and winds. High-precision magnetic field observations will allow monitoring ionospheric currents.

  11. The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.

    2017-12-01

    Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.

  12. Space weather. Ionospheric control of magnetotail reconnection.

    PubMed

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. Copyright © 2014, American Association for the Advancement of Science.

  13. Excitation of the lower oblique resonance by an artificial plasma jet in the ionosphere

    NASA Astrophysics Data System (ADS)

    Thiel, J.; Storey, L. R. O.; Bauer, O. H.; Jones, D.

    1984-04-01

    Aboard the Porcupine rockets, bursts of noise were detected in the electron whistler range during the operation of a xenon plasma gun on a package ejected from the main payload. These observations can be interpreted in terms of excitation of the lower oblique resonance by instabilities associated with the motion of the xenon ion beam through the ionospheric plasma.

  14. Comparative ionospheres: Terrestrial and giant planets

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  15. Venusian Earthquakes Detection by Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Lognonne, P.; Garcia, R. F.; Gudkova, T.

    2010-12-01

    Thanks to technological advances over the past fifteen years the ionosphere is now a new medium for seismological investigation. As a consequence of density structure in Venus atmosphere, the coupling between solid and fluid part of Venus induce a more significant atmospheric responce to quakes and volcanic eruptions (Lognonné & Johnson, 2007). Equivalent perturbation induced by internal activity has been detected on Earth through their subsequent ionospheric signature imaged by ionospheric tools (Doppler sounding or GPS) (Lognonné et al., 2006, Occhipinti et al., 2010). The strong solid/atmosphere coupling on Venus (Garcia et al., 2005, 2009), the thin ionospheric layer as well as absence of magnetic field present optimal circumstances for a better detection of these signals on Venus than on Earth. Consequently, ionospheric Doppler sounders on-board orbiters or balloons will provide informations on the infrasonic response of the atmosphere/ionosphere to quakes, and will help to constrain the interior structure of Venus through the solid/atmosphere coupling. With this paper we explore the future mission possibility and constrains.

  16. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced

  17. Formation of vortices in the presence of sheared electron flows in the earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Farid, T.; Shukla, P. K.; Sakanaka, P. H.; Mirza, A. M.

    2000-12-01

    It is shown that sheared electron flows can generate long as well as short wavelength (in comparison with the ion gyroradius) electrostatic waves in a nonuniform magnetplasma. For this purpose, we derive dispersion relations by employing two-fluid and hybrid models; in the two-fluid model the dynamics of both the electrons and ions are governed by the hydrodynamic equations and the guiding center fluid drifts, whereas the hybrid model assumes kinetic ions and fluid electrons. Explicit expressions for the growth rates and thresholds are presented. Linearly excited waves attain finite amplitudes and start interacting among themselves. The interaction is governed by the nonlinear equations containing the Jacobian nonlinearities. Stationary solutions of the nonlinear mode coupling equations can be represented in the form of a dipolar vortex and a vortex street. Conditions under which the latter arise are given. Numerical results for the growth rates of linearly excited modes as well as for various types of vortices are displayed for the parameters that are relevant for the F-region of the Earth's ionosphere. It is suggested that the results of the present investigation are useful in understanding the properties of nonthermal electrostatic waves and associated nonlinear vortex structures in the Earth's ionosphere.

  18. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  19. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  20. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  1. Role of the ionosphere for the atmospheric evolution of planets.

    PubMed

    Yamauchi, Masatoshi; Wahlund, Jan-Erik

    2007-10-01

    We have synthesized current understanding, mainly observations, with regard to ion escape mechanisms to space from the ionosphere and exosphere of Titan and Earth-type planets, with the intent to provide an improved input for models of atmospheric evolution on early Earth and Earth-type planets and exoplanets. We focus on the role of the ionosphere and its non-linear response to solar parameters, all of which have been underestimated in current models of ancient atmospheric escape (4 billion years ago). Factors that have been overlooked include the following: (1) Much larger variation of O(+) outflow than H(+) outflow from the terrestrial ionosphere, depending on solar and geomagnetic activities (an important consideration when attempting to determine the oxidized state of the atmosphere of early Earth); (2) magnetization of the ionopause, which keeps ionospheric ions from escaping and controls many other escape processes; (3) extra ionization by, for example, the critical ionization velocity mechanism, which expands the ionosphere to greater altitudes than current models predict; and (4) the large escape of cold ions from the dense, expanded ionosphere of Titan. Here we offer, as a guideline for quantitative simulations, a qualitative diagnosis of increases or decreases of non-thermal escape related to the ionosphere for magnetized and unmagnetized planets in response to changes in solar parameters (i.e., solar EUV/FUV flux, solar wind dynamic pressure, and interplanetary magnetic field).

  2. Gigantic jets between a thundercloud and the ionosphere.

    PubMed

    Su, H T; Hsu, R R; Chen, A B; Wang, Y C; Hsiao, W S; Lai, W C; Lee, L C; Sato, M; Fukunishi, H

    2003-06-26

    Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.

  3. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

    NASA Astrophysics Data System (ADS)

    Kamalabadi, Farzad; Qin, Jianqi; Harding, Brian J.; Iliou, Dimitrios; Makela, Jonathan J.; Meier, R. R.; England, Scott L.; Frey, Harald U.; Mende, Stephen B.; Immel, Thomas J.

    2018-06-01

    The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

  4. If ionospheric and geomagnetic disturbances observed before strong earthquakes may result from simultaneous impact of space weather on all geospheres including solid earth

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina

    2016-07-01

    It is revealed in previous decades that ionospheric disturbances precede strong earthquakes, thus, the ionospheric precursors of strong earthquakes are now under developing [Pulinets and Boyarchuk, 2004]. Simultaneously, it is revealed that strong earthquakes may be preceded by geomagnetic disturbances as well, as a result, the geomagnetic variations, for example, in the ULF band, are considered now as precursory signals [Fraser-Smith, 1990, doi/10.1029/GL017i009p01465]. At the same time, there is currently no reliable theory nor for ionospheric or to magnetic precursors of earthquakes. Moreover, several researches have reexamined some of above results and concluded that observed magnetic disturbances before strong earthquakes could be generated by other sources, such as global magnetic activity [e.g. Campbell, 2009, doi/10.1029/2008JA013932], and that ionospheric anomalies can also be an effect of the increase of the global magnetic activity [e. g. Masci and Thomas, 2015, doi:10.1002/2015RS005734]. Taking into account such conclusions, one may suggest that the observed ionospheric and geomagnetic disturbances before strong earthquakes might be due to simultaneous influence of a space weather on the complicated surrounding system including the solid earth. This report presents some statistical results to prove such suggestion. In particular, it is shown [Khachikyan et al., 2012, doi:10.4236/ijg.2012.35109] that maximal possible earthquake magnitude (seismic potential) can be determined, in first approximation, on the base of geomagnetic Z-component measured in the Geocentric Solar Magnetosphere (GSM) coordinate system, in which the space weather impact on the earth's environment, due to reconnection of the solar wind magnetic field with the earth's magnetic field, is more ordered.

  5. Tsunami Ionospheric warning and Ionospheric seismology

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  6. Analytic Theory of Titans Schumann Resonance: Constraints on Ionospheric Conductivity and Buried Water Ocean

    NASA Technical Reports Server (NTRS)

    Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando

    2013-01-01

    This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while

  7. Penetration of ELF currents and electromagnetic fields into the Earth's equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Papadopoulos, K.

    2009-10-01

    The penetration of extremely low frequency (ELF) transient electromagnetic fields and associated currents in the Earth's equatorial E-region plasma is studied theoretically and numerically. In the low-frequency regime, the plasma dynamics of the E-region is characterized by helicon waves since the ions are viscously coupled to neutrals while the electrons remain mobile. For typical equatorial E-region parameters, the plasma is magnetically insulated from penetration of very long timescale magnetic fields by a thin diffusive sheath. Wave penetration driven by a vertically incident pulse localized in space and time leads to both vertical penetration and the triggering of ELF helicon/whistler waves that carry currents obliquely to the magnetic field lines. The study presented here may have relevance for ELF wave generation by lightning discharges and seismic activity and can lead to new concepts in ELF/ULF injection in the earth-ionosphere waveguide.

  8. Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison

    NASA Astrophysics Data System (ADS)

    Lundin, R. N.

    2012-12-01

    Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced

  9. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  10. Historical overview of HF ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, W.E.; Duncan, L.M.

    1990-10-01

    Radio waves have inadvertently modified the Earth's ionosphere since the Luxembourg observations of Tellegen in 1933 and perhaps since Marconi in 1901. The history of ionospheric modification by radio waves is reviewed, beginning with Marconi, describing the Luxembourg effect and its explanations, and its early use to deduce the properties of the lower ionosphere in the 1930s. The measurements became more sophisticated in the 1950s, leading to the call for high-power high-frequency modification experiments in the upper ionosphere. Beginning in 1970, radio facilities became available of sufficient powers to induce changes in the ionospheric plasma detectable by a wide arraymore » of diagnostic instruments and techniques. A summary of these effects is presented based upon work up to 1990. These studies were originally motivated as a means of better understanding the natural ionosphere using a weak perturbational approach. However, a rich spectrum of nonlinear wave-plasma interactions was quickly discovered and ionospheric modification research became strongly motivated by issues in basic plasma physics. The ionosphere and near-Earth space are now exploited as an exceptional plasma laboratory-without-walls for the study of fundamental plasma processes requiring large spatial or temporal scales. Here we present a brief overview of these processes and phenomena, illustrated using results obtained from the Arecibo ionospheric modification facilities. The lessons learned and phenomena explored thus far offer many opportunities for controlling the ionospheric environment critical to many civilian and military telecommunications systems, both to disrupt systems normally operational and to create new propagation paths otherwise unavailable.« less

  11. Observations of 50/60 Hz Power Line Radiation in the Low Latitude Ionosphere Detected by the Electric Field Instrument on the C/NOFS Satellite

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F., Jr.; Freudenreich, H. T.; Simoes, F. A.; Liebrecht, M. C.; Farrell, W.

    2017-12-01

    One of the most ubiquitous forms of EM radiation emanating from the earth's surface is that of power line radiation. Associated with AC electric power generation, such emissions are typically launched along conducting power lines that may travel hundreds, or even thousands of km, from generating stations. The fundamental frequencies of such emissions are characteristically 50 Hz or 60 Hz, depending on the regional standards for power generation/consumption. The frequency of this radiation is well below that of the plasma frequency of the ionosphere (typically several MHz) and hence is expected to reflect back to the earth and propagate in the waveguide formed by the earth's surface and the bottom ledge of the ionosphere, typically near 100 km. Given that such power lines are widespread on the exposed lithosphere, the leakage of some ELF emissions associated with electric power generation might nevertheless be expected in the ionosphere, in the same manner in which a small fraction of the power associated with ELF Schumann resonances and lightning sferics have been shown to penetrate into the ionosphere. We present direct measurements of 50/60 Hz power line radiation detected by in situ probes on an orbiting satellite in the earth's ionosphere. The data were gathered by the Vector Electric Field Investigation (VEFI) tri-axial double probe detector flown on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS was launched in April, 2008 into a low latitude (13 deg inclination) orbit with perigee and apogee of 400 km and 850 km, respectively. The electric field wave data were gathered by ELF receivers comprised of two orthogonal broadband channels sampled at 512 s/sec each, and digitized with 16 bit A/D converters. The data show distinct 60 Hz emissions while the satellite sampled within the Brazilian sector whereas distinct 50 Hz emissions were detected over India. Other, less distinct, emissions were observed over Africa and southeast Asia

  12. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  13. Considering the potential of IAR emissions for ionospheric sounding

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.

    2017-11-01

    Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to

  14. Global 3-D FDTD Maxwell's-Equations Modeling of Ionospheric Disturbances Associated with Earthquakes Using an Optimized Geodesic Grid

    NASA Astrophysics Data System (ADS)

    Simpson, J. J.; Taflove, A.

    2005-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A

  15. Exploring Earth's Ionosphere with CINDI: Bringing an Upper Atmosphere Mission into Pre-College Classrooms

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Hairston, M. R.; Richardson, J. M.; Olson, C.

    2003-12-01

    We will present the Education and Public Outreach work in progress for the joint Air Force/NASA project CINDI (Coupled Ion Neutral Dynamic Investigation), which will launch in early 2004 on a US Air Force C/NOFS (Communications/Navigations Outage Forecast System) Satellite. CINDI, in conjunction with the other instruments on C/NOFS, will study how radio signals sent through the ionosphere are affected by variability with this layer of the atmosphere. The Educational outreach for CINDI is focused on helping students, educators, and the general public better understand the link between the ionosphere and our technological civilization. The ionosphere is typically neglected in pre-college science classes despite its impact on modern society and the substantial resources invested by funding agencies on furthering our understanding of this atmospheric layer. Our approach is to increase student understanding of the terrestrial ionosphere and Sun-Earth connections through strong connections to existing pre-college curricula and standards. We have created a partnership between the William B. Hanson Center for Space Sciences and the Science Education Program within the University of Texas at Dallas (UTD) to produce a quality Educator Guide and a Summer Educator Workshop. A senior graduate student in physics and an experienced middle school educator in UTD's Science Education Master of Science Teaching Program have been partnered to ensure that our the Educator Guide and Workshop will contain both science and pedagogy, and be easily integrated into secondary science classes. The summer 2004 workshop will be offered in the Dallas area, which has a significant population of minority and economically disadvantaged students. We will recruit teachers from districts that serve a large number of underserved/underrepresented students. The Educator Guide and workshop materials will be made available on the CINDI Web site for distribution to a national audience.

  16. Results From YOUTHSAT - Indian experiment in earths thermosphere-ionosphere region.

    NASA Astrophysics Data System (ADS)

    Tarun Kumar, Pant

    It is known that the characterization and modeling of the ionosphere/thermosphere necessitates a comprehensive understanding of the various processes prevailing therein. India’s first, indigenous and dedicated aeronomy satellite 'YOUTHSAT' carrying two Indian payloads - RaBIT (Radio Beacon for Ionospheric Tomography), and LiVHySI (Limb Viewing Hyper Spectral Imager) and one Russian payload SOLRAD, was conceived primarily to address to this aspect and launched on April 20, 2011 in an 818 Km polar orbit from SHAR on ISRO launch vehicle PSLV. The payloads RaBIT and LiVHySI were designed specifically to observe the ionised and neutral components of the upper atmosphere respectively. YOUTHSAT is a small satellite quiet advanced in its class having all the functionalities which are normally associated with a bigger satellite. The rising phase of the 23rd solar cycle was considered to be the best window for various observations from onboard YOUTHSAT. As an Indo Russian endeavour, it was launched with an objective of investigating the terrestrial upper atmosphere vis-a-vis the activity on the sun. RaBIT, an ISRO venture, is a radio beacon emitting coherent radio signal at 150 and 400 MHz frequencies. These are received using a chain of five receivers deployed along the ~76oE meridian at Trivandrum, Bangalore, Hyderabad, Bhopal and Delhi. The receivers estimate the Total Electron Content (TEC) of the ionosphere through the relative phase change of the received radio signals. The TECs thus estimated near simultaneously, are used to generate a tomogram, which gives an Altitude-Latitude distribution of the ionospheric electron density. For YOUTHSAT configuration, the tomogram covers the ionosphere from a few degrees (5-6o) south of Trivandrum to about 3-4o north of Delhi depending upon the satellite elevation. The RaBIT tomography network is by far the longest network existing anywhere in the world, and is unique therefore. Through RaBIT, a unique dataset leading to

  17. Multi-instrument observations of the ionospheric and plasmaspheric density structure

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.

    2008-05-01

    : The density within the ionosphere and plasmasphere can be monitored using a combination of techniques that use both ground- and space-based instruments. We are combining diagnostic observations of everything, but the kitchen sink. These include observations of GPS TEC, TOPEX and JASON TEC, IMAGE EUV and FUV, GUVI composition data, ULF resonances, and many other multi-satellite data sets such as DMSP in situ observations. The dramatically growing number of GPS receivers on the ground and onboard Low-Earth-Orbit (LEO) satellites offers an excellent opportunity for remote sensing and monitoring of the ionospheric and plasmaspheric density structure using GPS TEC tomographic reconstruction technique. This allows us to clearly quantify magnetosphere-ionosphere (M-I) coupling dynamics, as well as confirm the long-standing conjecture that the mid-latitude trough and plasmapause are on the same field line. This has been demonstrated globally, for the first time, using a combination of data from IMAGE EUV and ground- and space-based GPS receivers. The two dimensional tomographic image of the ionosphere and plasmasphere, using data from the GPS receiver onboard LEO satellites, such as FedSat, CHAMP, COSMIC, etc, also provides a new ability to image the flux tube structure of ionospheric ion outflows, tracking flux tube structure up to 3.17Re (20,200 km) altitude for the first time. The combination of data from the altimeter on JASON and ground-based GPS network also provides an excellent opportunity to experimentally estimate the plasmaspheric density contribution to the ground-based GPS TEC and thus to the degradation of navigation and communication accuracy.

  18. Excitation of earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, E.C.; Bloom, R.M.

    1993-05-21

    In this report the authors use the principal of reciprocity in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Their results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80-to-90 km. The highest efficiency occurs for a sourcemore » altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 Km. Ionospheric modification, Ionospheric currents, Ionospheric heating.« less

  19. Positioning of Ionospheric Irregularities and the Earth's Surface Roughness Using an Over-the-Horizon HF Radar

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Sklyarevsky, M. S.; Vybornov, F. I.

    2018-02-01

    We realize the possibilities for positioning of ionospheric irregularities and the Earth's surface roughness with the chirp-signal ionosonde-radio direction finder used as an over-the-horizon HF radar of bistatic configuration on the Cyprus — Rostov-on-Don and Australia — Rostov-on-Don paths. It is established that the small-amplitude diffuse signals coming from azimuths of 310°-50° on the Cyprus — Rostov-on-Don path in the evening and at night at frequencies above the maximum observable frequency (MOF) of the forward signal are due to backscattering by small-scale irregularities of the mid-latitude ionospheric F Layer. It is shown that the backward obliquesounding signals recorded on the Cyprus — Rostov-on-Don path are caused by the sideband scattering of radio waves from the Caucasus mountain ranges, the Iranian highlands, and the Balkan mountains. It is found that the anomalous signals observed on the Alice Springs (Australia) — Rostov-on-Don path, which come from azimuths of 10°-25° with delays by 10-16 ms exceeding the delay of the forward signal are due to scattering of radio waves by the high-latitude ionospheric F-layer irregularities localized in the evening sector of the auroral oval at latitudes of 70°-80° N.

  20. Ground-based observations and simulation of ionospheric VLF source in experiments on modification of the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Fedorenko, Yu. V.; Blagoveshchenskaya, N. F.; Larchenko, A. V.; Grigor'ev, V. F.; Pil'gaev, S. V.

    2017-11-01

    The phase velocities of TE and TEM waves at frequencies of 1017 and 3017 Hz, as well as the effect of precipitations during auroras on the velocities, are estimated in the Earth-ionosphere waveguide on the basis of observations of electromagnetic fields of an ionospheric source in experiments on modification of the lower ionosphere by a modulated high-power short-wave signals performed by the Arctic and Antarctic Research Institute (AARI) at the EISCAT/Heating test bench in October 2016. Probable electron density profiles in the plane-stratified ionosphere are retrieved from the numerical solution of a wave equation, which are used for the calculation of the phase velocities close to measured ones.

  1. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    NASA Astrophysics Data System (ADS)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain

  2. Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.

    2016-12-01

    The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling

  3. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping

    2008-10-15

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less

  4. Magnetic energy storage and the nightside magnetosphere-ionosphere coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, W.; Pekker, M.; Doxas, I.

    1998-05-01

    The change m in the magnetic energy stored m in the Earth`s magnetotail as a function of the solar wind, BIF conditions are investigated using an empirical magnetic field model. The results are used to calculate the two normal modes contained m in the low-dimensional global model called WINDMI for the solar wind driven magnetosphere-ionosphere system. The coupling of the magnetosphere-ionosphere (MI) through the nightside region 1 current loop transfers power to the ionosphere through two modes: a fast (period of minutes) oscillation and a slow (period of one hour) geotail cavity mode. The solar wind drives both modes mmore » in the substorm dynamics.« less

  5. HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (RAIDS)

    NASA Technical Reports Server (NTRS)

    Budzien, Scott

    2009-01-01

    The HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (HREP-RAIDS) experiment will provide atmospheric scientists with a complete description of the major constituents of the thermosphere (layer of the Earth's atmosphere) and ionosphere (uppermost layer of the Earth's atmosphere), global electron density profiles at altitudes between 100 - 350 kilometers.

  6. An improved ray theory and transfer matrix method-based model for lightning electromagnetic pulses propagating in Earth-ionosphere waveguide and its applications

    NASA Astrophysics Data System (ADS)

    Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping

    2017-01-01

    An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.

  7. Ion resonances and ELF wave production by an electron beam injected into the ionosphere - ECHO 6

    NASA Astrophysics Data System (ADS)

    Winckler, J. R.; Steffen, J. E.; Malcolm, P. R.; Erickson, K. N.; Abe, Y.; Swanson, R. L.

    1984-09-01

    Two effects observed with electron antennas ejected from a sounding rocket launched into the ionosphere in March 1983 carrying electron beam guns are discussed. The sensor packages were ejected and travelled parallel to the vehicle trajectory. Electric potentials were measured between the single probes and a plasma diagnostic package while the gun injected electrons into the ionosphere in perpendicular and parallel 1 kHz directions. Signal pulses over the dc-1250 kHz range were detected. A kHz gun frequency caused a signal that decreased by two orders of magnitude between 45-90 m from the beam field line. However, the signal was detectable at 1 mV/m at 120 m, supporting earlier data that indicated that pulsed electron beams can cause ELF waves in space. Beam injection parallel to the magnetic field produced an 840 Hz resonance that could be quenched by activation of a transverse beam.

  8. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  9. Low Latitude Ionospheric Effects on Radiowave Propagation

    DTIC Science & Technology

    1998-06-01

    was used. Active earth-based observation equipment includes coherent and non-coherent scatter radars, and vertical and oblique incidence sounders...ionospheric monitoring during this experiment consisted of an oblique sounder, apparatus to measure time-of-flight of transionospheric signals, and an...is configured to monitor the ionosphere directly overhead in the vertical incidence configuration, or with an obliquely -launched antenna elevation

  10. Effect of Ionosphere on Geostationary Communication Satellite Signals

    NASA Astrophysics Data System (ADS)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  11. Using DORIS measurements for modeling the vertical total electron content of the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Dettmering, Denise; Limberger, Marco; Schmidt, Michael

    2014-12-01

    The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth's ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than . The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12 % can be achieved. The accuracy directly beneath the DORIS satellites' ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.

  12. The Earth's Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  13. Parallel 3D-TLM algorithm for simulation of the Earth-ionosphere cavity

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, Sergio; Salinas, Alfonso; Morente-Molinera, Juan Antonio; Méndez, Antonio; Fornieles, Jesús; Portí, Jorge; Morente, Juan Antonio

    2013-03-01

    A parallel 3D algorithm for solving time-domain electromagnetic problems with arbitrary geometries is presented. The technique employed is the Transmission Line Modeling (TLM) method implemented in Shared Memory (SM) environments. The benchmarking performed reveals that the maximum speedup depends on the memory size of the problem as well as multiple hardware factors, like the disposition of CPUs, cache, or memory. A maximum speedup of 15 has been measured for the largest problem. In certain circumstances of low memory requirements, superlinear speedup is achieved using our algorithm. The model is employed to model the Earth-ionosphere cavity, thus enabling a study of the natural electromagnetic phenomena that occur in it. The algorithm allows complete 3D simulations of the cavity with a resolution of 10 km, within a reasonable timescale.

  14. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  15. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.

  16. Disturbance in the Tropical Ionosphere and Earth Magnetic Field Mensured on the Magnetic Equator Caused by Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Sobral, José; Resende, Laysa; Marcos Denardini, Clezio; Carlotto Aveiro, Henrique

    The focus of the present work is to monitor the disturbances in the equatorial F region caused by magnetic storms and comparatively to observe possible effects caused by the storms in the earth magnetics field measured on the ground, aiming to establish the events time occurrence order. The motivation for this work is due to the diversity of phenomena of scientific interest, which are observed in this region and also are capable to disturbance the transionospheric communication. The monitoring on the ionospheric plasma variation in the F region during and after the magnetics storms can generate indications of magnetosphere - ionosphere coupling effects. For this study we have used F region parameters measured by digital sounder installed at the Observatório Espacial de São Lú (2.33° S; 44.20° W; -0.5° DIP): foF2 (critical frequency o a ıs of F layer), hmF2 (real height of electronic density F layer peak) and h'F (minimum virtual height of F layer). For monitoring the disturbance in the magnetic field we have studied the H- and Z-component of the Earth magnetic field measured by magnetometers installed in the same site. The results are presented and discussed.

  17. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  18. Experimental evidence of electromagnetic pollution of ionosphere

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    The Earth’s ionosphere responds to external perturbations originated mainly in the Sun, which is the primary driver of the space weather (SW). But solar activity influences on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth), though important, is not a unique factor affecting its state - there is also a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth’s surface and propagating in opposite direction along the Earth’s surface-atmosphere-ionosphere-magnetosphere chain. Numerous experimental data confirm that the powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites and the consequences of their impact on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. Parasitic EM radiation from the power supply lines, when entering the ionosphere-magnetosphere system, might have an impact on the electron population in the radiation belt. Its interaction with trapped particles will change their energy and pitch angles; as a result particle precipitations might occur. Observations of EM emission by

  19. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  20. Ionosphere-Magnetosphere Energy Interplay in the Regions of Diffuse Aurora

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Tripathi, A. K.; Detweiler, L.G.; Avanov, L. A.; Singhal, R. P.

    2016-01-01

    Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earths plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E500600 eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E600 eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma.

  1. Ionospheric Electron Density Measurements Using COSMIC

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Bernhardt, P. A.; Rocken, C.; Syndergaard, S.

    2007-12-01

    At 0140 UTC on April 15, 2006, the joint Taiwan-U.S. COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate and Formosa Satellite mission #3; hereafter COSMIC) mission, a constellation of six micro-satellites, was launched into a 512-km orbit from Vandenberg Air Force Base in California. Using on-board propulsion these satellites have been deployed to their final orbits at 800 km with 30 degrees of separation. This process has taken about 17 months following the launch. There are three instruments aboard each COSMIC satellite: the GPS Occultation Experiment (GOX), the Tri-Band Beacon (TBB), and the Tiny Ionospheric Photometer (TIP). These three instruments constitute a unique suite of instruments for studying the Earth's ionosphere. The GOX instrument operates by inferring the slant total electron content (the integral of the electron density along the line-of-sight) between the COSMIC satellites and the GPS satellites as a function of tangent height above the Earth's limb. These data can be inverted to produce electron density profiles in the E and F regions of the ionosphere. The TBB is a three frequency radio beacon that radiates coherently at 150, 400, and 1067 MHz. When the relative phases of the signals are measured between the COSMIC satellites and ground-based or space-based receivers, the total electron content along the line-of-sight can be determined. By making the measurements from a set of receivers, the two-dimensional distribution of electrons beneath the satellite can be determined using tomographic techniques. The TIP instrument measures the optical signature of the natural decay of the ionosphere produced via ecombination of the O+ ions and electrons. The TIP measurements can be used to characterize the morphology and dynamics of the global ionosphere. Additionally, the TIP measurements can be inverted in conjunction with the GPS occultation measurements, using tomographic techniques, to produce the two

  2. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  3. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  4. Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2007-01-01

    In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.

  5. First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Vickers, H.; Ogawa, Y.; Senior, A.; Blagoveshchenskaya, N.

    2014-11-01

    We have developed an active ground-based technique to estimate the steady state field-aligned anomalous electric field (E*) in the topside ionosphere, up to ~600 km, using the European Incoherent Scatter (EISCAT) ionospheric modification facility and UHF incoherent scatter radar. When pumping the ionosphere with high-power high-frequency radio waves, the F region electron temperature is significantly raised, increasing the plasma pressure gradient in the topside ionosphere, resulting in ion upflow along the magnetic field line. We estimate E* using a modified ion momentum equation and the Mass Spectrometer Incoherent Scatter model. From an experiment on 23 October 2013, E* points downward with an average amplitude of ~1.6 μV/m, becoming weaker at higher altitudes. The mechanism for anomalous resistivity is thought to be low-frequency ion acoustic waves generated by the pump-induced flux of suprathermal electrons. These high-energy electrons are produced near the pump wave reflection altitude by plasma resonance and also result in observed artificially induced optical emissions.

  6. Magnetosphere-Regolith/Exosphere Coupling: Differences and Similarities to the Earth Magnetosphere-Ionosphere Coupling

    NASA Technical Reports Server (NTRS)

    Gjerleov, J. W.; Slavin, J. A.

    2001-01-01

    Of the three Mercury passes made by Mariner 10, the first and third went through the Mercury magnetosphere. The third encounter which occurred during northward IMF (interplanetary magnetic field) showed quiet time magnetic fields. In contrast the third encounter observed clear substorm signatures including dipolarization, field-aligned currents (FACs) and injection of energetic electrons at geosynchronous orbit. However, the determined cross-tail potential drop and the assumed height integrated conductance indicate that the FAC should be 2-50 times weaker than observed. We address this inconsistency and the fundamental problem of FAC closure whether this takes place in the regolith or in the exosphere. The current state of knowledge of the magnetosphere-exosphere/regolith coupling is addressed and similarities and differences to the Earth magnetosphere-ionosphere coupling are discussed.

  7. Use of global ionospheric maps for HF Doppler measurements interpretation

    NASA Astrophysics Data System (ADS)

    Petrova, I. R.; Bochkarev, V. V.; Latypov, R. R.

    2018-04-01

    The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.

  8. Rocket studies of the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Bowhill, Sidney A.

    1990-01-01

    The earth's ionosphere in the altitude range of 50 to 200 km was investigated by rocket-borne sensors, supplemented by ground-based measurement. The rocket payloads included mass spectrometers, energetic particle detectors, Langmuir probes and radio propagation experiments. Where possible, rocket flights were included in studies of specific phenomena, and the availability of data from other experiments greatly increased the significance of the results. The principal ionospheric phenomena studied were: winter anomaly in radiowave absorption, ozone and molecular oxygen densities, mid-latitude sporadic-E layers, energetic particle precipitation at middle and low latitudes, ionospheric instabilities and turbulence, and solar eclipse effects in the D and E regions. This document lists personnel who worked on the project, and provides a bibliography of resultant publications.

  9. On Features of the Generation of Artificial Ionospheric Irregularities with Transverse Scales of 50-200 m

    NASA Astrophysics Data System (ADS)

    Bolotin, I. A.; Frolov, V. L.; Akchurin, A. D.; Zykov, E. Yu.

    2017-05-01

    We consider the features of generation of artificial ionospheric irregularities with transverse (to the geomagnetic field) scales l⊥ ≈ 50-200 m in the ionosphere modified by high-power HF radio waves. It was found that there are at least two mechanisms for generation of these irregularities in the ionospheric F region. The first mechanism is related to the resonant interaction between radio waves and the ionospheric plasma, while the second one takes place even in the absence of the resonant interaction. Different polarization of the high-power radiation was used to separate the mechanisms in the measurements.

  10. Comparison of NAVSTAR satellite L band ionospheric calibrations with Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Royden, H. N.; Miller, R. B.; Buennagel, L. A.

    1984-01-01

    It is pointed out that interplanetary navigation at the Jet Propulsion Laboratory (JPL) is performed by analyzing measurements derived from the radio link between spacecraft and earth and, near the target, onboard optical measurements. For precise navigation, corrections for ionospheric effects must be applied, because the earth's ionosphere degrades the accuracy of the radiometric data. These corrections are based on ionospheric total electron content (TEC) determinations. The determinations are based on the measurement of the Faraday rotation of linearly polarized VHF signals from geostationary satellites. Problems arise in connection with the steadily declining number of satellites which are suitable for Faraday rotation measurements. For this reason, alternate methods of determining ionospheric electron content are being explored. One promising method involves the use of satellites of the NAVSTAR Global Positioning System (GPS). The results of a comparative study regarding this method are encouraging.

  11. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the

  12. (abstract) Using GPS Measurements to Identify Global Ionospheric Storms in Near Real-Time

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Rao, A. M.; Pi, X.; Wilson, B. D.; Yuan, D. N.; Reyes, M.

    1996-01-01

    The solar wind interacts with the Earth's magnetosphere, eventually dissipating energy into the ionosphere and atmosphere. As a terminator, the ionosphere responds to magnetic storms, which is very important in understanding the energy coupling process between the Sun and the Earth and in forecasting space weather changes.The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility. Based on these measurements, global ionospheric TEC maps are generated with time resolution of from 5 minutes to hours. Using these maps, we can analyze the global evolution of ionospheric storms on temporal and spatial scales, which have been dificult to study before. We find that for certain types of storms (such as TID-driven), it is possible to identify them near onset and issue warning signals during the early stages. Main attention has been paid on northern hemispheric winter storms. Their common features and physical mechanisms are being investigated.

  13. Global Scale Observations of Ionospheric Instabilities from GPS in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard; Goodman, John L.

    2003-01-01

    The GPS receiver used for navigation on the Space Shuttle exhibits range rate noise which appears to result from scintillation of the satellite signals by irregularities in ionospheric plasma. The noise events cluster in geographic regions previously identified as susceptible to instability and disturbed ionospheric conditions. These mechanisms are reviewed in the context of the GPS observations. Range rate data continuously monitored during the free orbiting phase of several space shuttle missions reveals global scale distribution of ionospheric irregularities. Equatorial events cluster +/- 20 degrees about the magnetic equator and polar events exhibit hemispheric asymmetry suggesting influence of off axis geomagnetic polar oval system. The diurnal, seasonal and geographic distribution is compared to previous work concerning equatorial spread F, Appleton anomaly and polar oval. The observations provide a succinct demonstration of the utility of space based ionospheric monitoring using GPS. The susceptability of GPS receivers to scintillation represents 'an unanticipated technical risk not factored into the selection of receivers for the United States space program.

  14. Numerical simulation of the plasma thermal disturbances during ionospheric modification experiments at the SURA heating facility

    NASA Astrophysics Data System (ADS)

    Belov, Alexey; Huba, J. D.

    indent=1cm We present the results of numerical simulation of the near-Earth plasma disturbances produced by resonant heating of the ionospheric F-region by high-power HF radio emission from the SURA facility. The computational model is based on the modified version of the SAMI2 code (release 1.00). The model input parameters are appropriated to the conditions of the SURA-DEMETER experiment. In this work, we study the spatial structure and temporal characteristics of stimulated large-scale disturbances of the electron number density and temperature. It is shown that the stimulated disturbances are observed throughout the ionosphere. Disturbances are recorded both in the region below the pump wave reflection level and in the outer ionosphere (up to 3000 km). At the DEMETER altitude, an increase in the ion number density is stipulated by the oxygen ions O (+) , whereas the number density of lighter H (+) ions decreases. A typical time of the formation of large-scale plasma density disturbances in the outer ionosphere is 2-3 min. After the heater is turned off, the disturbances relaxation time is approximately 30 min. The simulation results are important for planning future promising experiments on the formation of ionospheric artificial density ducts. This work was supported by the Russian Foundation for Basic Research (project No. 12-02-00747-a), and the Government of the Russian Federation (contract No. 14.B25.31.0008).

  15. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  16. Importance of Ionospheric Gradients for error Correction

    NASA Astrophysics Data System (ADS)

    Ravula, Ramprasad

    Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.

  17. Observation of the Earth liquid core resonance by extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  18. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  19. Excitation of Earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current

    NASA Astrophysics Data System (ADS)

    Field, E. C.; Bloom, R. M.

    1993-05-01

    In this report, the principal of reciprocity is used in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80 to 90 km. The highest efficiency occurs for a source altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 km.

  20. Interplanetary Radio Transmission Through Serial Ionospheric and Material Barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, David; Kennedy, Robert G; Roy, Kenneth I

    2013-01-01

    A usual first principle in planning radio astronomy observations from the earth is that monitoring must be carried out well above the ionospheric plasma cutoff frequency (~5 MHz). Before space probes existed, radio astronomy was almost entirely done above 6 MHz, and this value is considered a practical lower limit by most radio astronomers. Furthermore, daytime ionization (especially D-layer formation) places additional constraints on wave propagation, and waves of frequency below 10-20 MHz suffer significant attenuation. More careful calculations of wave propagation through the earth s ionosphere suggest that for certain conditions (primarily the presence of a magnetic field) theremore » may be a transmission window well below this assumed limit. Indeed, for receiving extraterrestrial radiation below the ionospheric plasma cutoff frequency, a choice of VLF frequency appears optimal to minimize loss. The calculation, experimental validation, and conclusions are presented here. This work demonstrates the possibility of VLF transmission through the ionosphere and various subsequent material barriers. Implications include development of a new robust communications channel, communications with submerged or subterranean receivers / instruments on or offworld, and a new approach to SETI.« less

  1. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  2. VLF remote sensing of the ambient and modified lower ionosphere

    NASA Astrophysics Data System (ADS)

    Demirkol, Mehmet Kursad

    2000-08-01

    Electron density and temperature changes in the D region are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Both localized and large scale disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth- ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. Large scale auroral disturbances, associated with intensification of the auroral electrojet, as well as ionospheric disturbances produced during relativistic electron enhancements, cause characteristic changes over relatively long time scales that allow the assessment of the `ambient' ionosphere. Localized ionospheric disturbances are also produced by powerful VLF transmitting facilities such as the High Power Auroral Stimulation (HIPAS) facility, the High frequency Active Auroral Research Program (HAARP), and also by lightning discharges. Amplitude and phase changes of VLF waveguide signals scattered from such artificially heated ionospheric patches are known to be detectable. In this study, we describe a new inversion algorithm to determine altitude profiles of electron density and collision frequency within such a localized disturbance by using the measured amplitude and phase of three different VLF signals at three separate receiving sites. For this purpose a new optimization algorithm is developed which is primarily based on the recursive usage of the three dimensional version of the Long Wave Propagation, Capability (LWPC) code used to model the subionospheric propagation and scattering of VLF signals in the earth- ionosphere waveguide in the presence of ionospheric disturbances.

  3. Global variations in Magnetosphere-Ionosphere system due to Sudden Impulses under different IMF By conditions

    NASA Astrophysics Data System (ADS)

    Ozturk, D. S.; Zou, S.; Slavin, J. A.; Ridley, A. J.

    2016-12-01

    A sudden impulse (SI) event is a rapid increase in solar wind dynamic pressure, which compresses the Earth's magnetosphere from the dayside and travels towards the Earth's tail. During the SI events, compression front reconfigures the Magnetosphere-Ionosphere (MI) current systems. This compression launches fast magnetosonic waves that carry the SI through magnetosphere and Alfven waves that enhance the field-aligned currents (FACs) at high-latitudes. FAC systems can be measured by Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE). The propagation front also creates travelling convection vortices (TCVs) in the ionosphere that map to the equatorial flank regions of the Earth's magnetosphere. The TCVs then move from dayside to the nightside ionosphere. To understand these SI-driven disturbances globally, we use the University of Michigan Space Weather Modeling Framework (SWMF) with Global Magnetosphere (GM), Inner Magnetosphere (IM) and Ionosphere (IE) modules. We study the changes in the FAC systems, which link ionospheric and magnetospheric propagating disturbances under different IMF By conditions and trace the ionospheric disturbances to magnetospheric system to better understand the connection between two systems. As shown by previous studies, IMF By can cause asymmetries in the magnetic perturbations measured by the ground magnetometers. By using model results we determine the global latitudinal and longitudinal dependencies of the SI signatures on the ground. We also use the SWMF results to drive the Global Ionosphere Thermosphere Model (GITM) to reveal how the Ionosphere-Thermosphere system is affected by the SI propagation. Comparisons are carried out between the IE model output and high latitude convection patterns from Super Dual Auroral Radar Network (SuperDARN) measurements and SuperMAG ground magnetic field perturbations. In closing we have modeled the field-aligned currents, ionospheric convection patterns, temperature and

  4. Advances in remote sensing of the daytime ionosphere with EUV airglow

    NASA Astrophysics Data System (ADS)

    Stephan, Andrew W.

    2016-09-01

    This paper summarizes recent progress in developing a method for characterizing the daytime ionosphere from limb profile measurements of the OII 83.4 nm emission. This extreme ultraviolet emission is created by solar photoionization of atomic oxygen in the lower thermosphere and is resonantly scattered by O+ in the ionosphere. The brightness and shape of the measured altitude profile thus depend on both the photoionization source in the lower thermosphere and the ionospheric densities that determine the resonant scattering contribution. This technique has greatly matured over the past decade due to measurements by the series of Naval Research Laboratory Special Sensor Ultraviolet Limb Imager (SSULI) instruments flown on Defense Meteorological Satellite Program (DMSP) missions and the Remote Atmospheric and Ionospheric Detection System (RAIDS) on the International Space Station. The volume of data from these missions has enabled a better approach to handling specific biases and uncertainties in both the measurement and retrieval process that affect the accuracy of the result. This paper identifies the key measurement and data quality factors that will enable the continued evolution of this technique into an advanced method for characterization of the daytime ionosphere.

  5. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  6. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  7. Evaluation of Inversion Methods Applied to Ionospheric ro Observations

    NASA Astrophysics Data System (ADS)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia

    The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.

  8. Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-12-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.

  9. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  10. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  11. Current to the ionosphere following a lightning stroke

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Baginski, M. E.

    1987-01-01

    A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.

  12. Peculiarities of Ionospheric Response to Solar Eruptive Events

    NASA Astrophysics Data System (ADS)

    Cadez, V. M.; Nina, A.

    2013-05-01

    Solar eruptive events such as flares and coronal mass ejections (CMEs) affect the terrestrial upper atmosphere, the magnetosphere and ionosphere in particular, through sudden impacts of additional X-ray radiation and by increased intensity of the solar wind. As a consequence, a variety perturbation features occur locally as well as globally in the plasma medium in space around the Earth. We study some of such transient phenomena taking place at low altitudes of the ionosphere (below 90 km) by monitoring and analyzing registered amplitude and phase time variations of VLF radio waves with given frequencies. The main object of this research is gaining an additional insight into the structure and physical properties of the lower ionosphere.

  13. Monitoring the ionosphere during the earthquake on GPS data

    NASA Astrophysics Data System (ADS)

    Smirnov, V. M.; Smirnova, E. V.

    The problem of stability estimation of physical state of an atmosphere attracts a rapt attention of the world community but it is still far from being solved A lot of global atmospheric processes which have direct influence upon all forms of the earth life have been detected The comprehension of cause effect relations stipulating their origin and development is possible only on the basis of long-term sequences of observations data of time-space variations of the atmosphere characteristics which should be received on a global scale and in the interval of altitudes as brand as possible Such data can be obtained only with application satellite systems The latest researches have shown that the satellite systems can be successfully used for global and continuous monitoring ionosphere of the Earth In turn the ionosphere can serve a reliable indicator of different kinds of effects on an environment both of natural and anthropogenic origin Nowadays the problem of the short-term forecast of earthquakes has achieved a new level of understanding There have been revealed indisputable factors which show that the ionosphere anomalies observed during the preparation of seismic events contain the information allowing to detect and to interpret them as earthquake precursors The partial decision of the forecast problem of earthquakes on ionospheric variations requires the processing data received simultaneously from extensive territories Such requirements can be met only on the basis of ground-space system of ionosphere monitoring The navigating systems

  14. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha

    2017-12-01

    During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.

  15. Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Lysak, R. L.; Song, Y.

    2017-12-01

    Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc

  16. Does an Intrinsic Magnetic Field Inhibit or Enhance Planetary Ionosphere Outflow and Loss?

    NASA Astrophysics Data System (ADS)

    Strangeway, R. J.; Russell, C. T.; Luhmann, J. G.; Moore, T. E.; Foster, J. C.; Barabash, S. V.; Nilsson, H.

    2017-12-01

    A characteristic feature of the planets Earth, Venus and Mars is the observation of the outflow of ionospheric ions, most notably oxygen. The oxygen ion outflow is frequently assumed to be a proxy for the loss of water from the planetary atmosphere. In terms of global outflow rates for the Earth the rate varies from 1025 to 1026 s-1, depending on geomagnetic activity. For both Venus and Mars global rates of the order 5x1024 s-1 have been reported. Venus and Mars do not have a large-scale intrinsic magnetic field, and there are several pathways for atmospheric and ionospheric loss. At Mars, because of its low gravity, neutral oxygen can escape through dissociative recombination. At Venus only processes related to the solar wind interaction with the planet such as sputtering and direct scavenging of the ionosphere by the solar wind can result in oxygen escape. At the Earth the intrinsic magnetic field forms a barrier to the solar wind, but reconnection of the Earth's magnetic field with the Interplanetary Magnetic Field allows solar wind energy and momentum to be transferred into the magnetosphere, resulting in ionospheric outflows. Observations of oxygen ions at the dayside magnetopause suggest that at least some of these ions escape. In terms of the evolution of planetary atmospheres how the solar-wind driven escape rates vary for magnetized versus umagnetized planets is also not clear. An enhanced solar wind dynamic pressure will increase escape from the unmagnetized planets, but it may also result in enhanced reconnection at the Earth, increasing outflow and loss rates for the Earth as well. Continued improvement in our understanding of the different pathways for ionospheric and atmospheric loss will allow us to determine how effective an intrinsic planetary field is in preserving a planetary atmosphere, or if we have to look for other explanations as to why the atmospheres of Venus and Mars have evolved to their desiccated state.

  17. The Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.

    2009-05-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.

  18. Evidence of low frequency waves penetration in the ionosphere observed by Chibis-M satellite

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Dudkin, Fedir; Korepanov, Valery

    2016-07-01

    Chibis-M microsatellite (MS) was launched using ISS infrastructure to the 500 km circular orbit with inclination 52° and successfully operated during the years 2012-2014. One of the main tasks of this experiment was the study of how powerful natural and technogenic processes are reflected in the ionosphere. For this study, the magnetic wave complex (MWC) was used which measured one electrical component and three components of the magnetic vector in the frequency range 0.1 Hz-40 kHz. Due to the proximity of the magnetic sensors and the satellite control system, their high sensitivity (up to 0.02 pT/sqrt(Hz)) was not used in full because the level of magnetic noise was about 10 pT/sqrt(Hz) in the low-frequency range. Nevertheless, owing to the symmetric fixation of the electric probes relative to the satellite body, the electrical sensor provided high accuracy measurements (about 0.8-0.04 (µV/m)/sqrt(Hz)) in the frequency range of 0.1-40 000 Hz, despite the very small measurement base of 0.42 m. This allowed us to collect valuable information which revealed a number of interesting physical effects, especially in ultralow frequency (ULF) range. In ULF range the ionospheric emissions with a central frequency of 50 (60) Hz - power line emissions (PLE) and the Schumann resonance harmonics (SR) were detected, though, according to the present model of the ionosphere, they have not penetrate there. A detailed study of the obtained data revealed the features of PLE and SR. The spatial distribution of PLE and their connection with the power lines location on the ground were analyzed. It was found that the intensity of PLE depends on the load characteristics of the power line and usually has a minimum in the morning. The cases of an extra long distance of PLE propagation in the Earth's ionosphere over oceans in the equatorial region have been also observed. Further, it was detected that PLE has been recorded both in the shaded and sunlit parts of the orbits and their

  19. Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Glocer, Alex; Himwich, E. W.

    2014-01-01

    The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.

  20. Effects of the Large June 1975 Meteoroid Storm on Earth's Ionosphere.

    PubMed

    Kaufmann, P; Kuntz, V L; Leme, N M; Piazza, L R; Boas, J W; Brecher, K; Crouchley, J

    1989-11-10

    The June 1975 meteoroid storm detected on the moon by the Apollo seismometers was the largest ever observed. Reexamination of radio data taken at that time showed that the storm also produced pronounced disturbances on Earth, which were recorded as unique phase anomalies on very low frequency (VLF) radio propagation paths in the low terrestrial ionosphere. Persistent effects were observed for the major storm period (20 to 30 June 1975), including reductions in the diurnal phase variation, advances in the nighttime and daytime phase levels, and reductions in the sunset phase delay rate. Large nighttime phase advances, lasting a few hours, were detected on some days at all VLF transmissions, and for the shorter propagation path they were comparable to solar Lyman alpha daytime ionization. Ion production rates attributable to the meteor storm were estimated to be about 0.6 to 3.0 ions per centimeter cubed per second at the E and D regions, respectively. The storm was a sporadic one with a radiant (that is, the point of apparent origin in the sky) located in the Southern Hemisphere, with a right ascension 1 to 2 hours larger than the sun's right ascension.

  1. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  2. IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Dudkin, D.; Fedorov, E.; Korepanov, V.; Klimov, S.

    2017-02-01

    A peculiar feature of geomagnetic variations at middle/low latitudes in the ULF band, just below the fundamental tone of the Schumann resonance, is the occurrence of a multi-band spectral resonant structure, observed by high-sensitivity induction magnetometers during nighttime. The occurrence of such spectral structure was commonly attributed to the Ionospheric Alfvén Resonator (IAR) in the upper ionosphere. Rather surprisingly, while ground observations of the IAR are ubiquitous, there are practically no reports on the IAR signatures from space missions. According to the new paradigm, the multi-band spectral structure excited by a lightning discharge is in fact produced by a regular sequence of an original pulse from a stroke and echo-pulses reflected from the IAR upper boundary. Upon the interaction of initial lightning-generated pulse with the anisotropic lower ionosphere, it partially penetrates into the ionosphere, travels up the ionosphere as an Alfvén pulse, and reflects back from the upper IAR boundary. The superposition of the initial pulse and echo-pulses produces spectra with multiple spectral peaks. Our modeling of Alfvénic pulse propagation in a system with the altitude profile of Alfven velocity modeling the realistic ionosphere has shown that IAR spectral signatures are to be evident only on the ground and above the IAR. Inside the IAR, the superposition of upward and downward propagating pulses produces a more complicated spectral pattern and the IAR spectral signatures deteriorate. We have used electric field data from the low-orbit Chibis-M microsatellite to search for IAR signatures in the ionosphere. We found evidence that the multi-band structure revealed by spectral analysis in the frequency range of interest is indeed the result of a sequence of lightning-produced pulses. According to the proposed conception it seems possible to comprehend why the IAR signatures are less evident in the ionosphere than on the ground.

  3. Jupiter's non-auroral Ionosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Stallard, T.; Melin, H.; Burrell, A. G.; Hsu, V.; Johnson, R.; Moore, L.; O'Donoghue, J.; Thayer, J. P.

    2017-12-01

    Until recently, our understanding of the non-auroral ionosphere of Jupiter was very limited. However, with the arrival of the Juno spacecraft at Jupiter, we have begun to revise past observations of this region, as well as utilizing modern telescope facilities, in order to reveal a complex array of ionospheric features that show strong coupling with both the local magnetic field and dynamics within the underlying thermosphere. The first feature that was identified was an apparent `Great Dark Spot' in the sub-auroral ionosphere, almost as large as the Great Red Spot. This was observed well away from the northern magnetic pole, mapping to only 2.4 jovian radii. Spectra of the feature showed that it was produced by a 150K cooling in the thermosphere. However, images taken between 1995-2000 showed this feature was consistently observed over two decades at similar magnetic longitudes, but appeared to vary in size, morphology and exact location on a timescale of only days. This suggests that the Great Dark Spot is a large thermospheric vortex driven by auroral heating, similar to transitory features observed at Earth, forming in sub-auroral regions during periods of active aurora. Careful analysis of the Jupiter images then allowed us to measure ionospheric emission down to the equator. This revealed the location of Jupiter's magnetic equator for the first time, appearing as a dark sinusoidal ribbon. This feature appears to be produced as photo-electrons are pushed poleward of the equator when magnetic fields are parallel with the planet's surface, a different process than the dominant plasma fountain that drives Earth's equatorial anomaly. Also revealed were a series of dark spots. Recent Juno magnetometer measurements show that two of these spots appear in regions of high radial magnetic field, suggesting that these regions of the ionosphere are shielded, an inversion of the same process that drives higher ionization in the South Atlantic Anomaly.

  4. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    NASA Astrophysics Data System (ADS)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  5. Overview of our current understanding of the Titan ionosphere

    NASA Astrophysics Data System (ADS)

    Cravens, Thomas

    An ionosphere was first detected on Titan in 1980 by the Voyager 1 radio occultation experi-ment and the first in situ measurements were made in 2004 by the Cassini spacecraft, although many theoretical studies were carried out prior to the Cassini mission. Earth and Titan are similar in that molecular nitrogen is the major neutral atmospheric species but these bodies differ in that the next most abundant species at Earth is molecular oxygen and at Titan is methane. As a consequence, the chemistry in the upper atmosphere and ionosphere is quite different for the two bodies. Titan's upper atmosphere and ionosphere strongly interact with Saturn's magnetospheric plasma. Magnetic fields were observed in Titan's ionosphere by the Cassini magnetometer and are induced as a consequence of this interaction, which affects the flow and distribution of plasma. Energetic electrons and ions from Saturn's magnetosphere precipitate into the upper atmosphere, acting as both heat and ionization sources. However, on the dayside, absorption of solar extreme ultraviolet radiation is thought to be the dominant source of ionization and energy. The electron temperatures measured in the ionosphere by the Cassini Langmuir probe (RPWS/LP) are about 1000 K, greatly exceeding the neutral temper-ature (about 150 K). The ion and neutral mass spectrometer (INMS) onboard Cassini detected a large number of ion species with mass numbers up to 100 Daltons and the energetic plasma spectrometer (CAPS) detected both negative and positive ion species at even higher mass num-bers. Primary ionization processes create N2+, N+, CH4+, CH3+, and other ion species, but a complex ion-neutral chemistry, involving methane and other hydrocarbon and nitriles species (acetylene, ethylene, ethane, hydrogen cyanide, benzene,. . . .), convert these initial species into numerous other species including CH5+, C2H5+, HCNH+, C3H5+, CH2NH2+, C6H7+. As in most ionospheres, chemistry dominates the ionospheric structure at

  6. The Ionosphere and the Latin America Very Low Frequency Network Mexico (LAVNet-Mex)

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Santiago, A.

    2013-05-01

    The radiation emitted by the most energetic transient events in the solar system, solar flares, covers a wide range of wavelengths, from radio waves to gamma rays. When the transient excess of high energy radiation produced by solar flares reach the Earth environment, the upper layers of the Earth atmosphere are affected and highly disturbed. The dynamics (particularly the conductivity) of the ionosphere, is altered during solar explosive events. In order to detect and study the ionospheric response to the transient solar radiative input, we have constructed a VLF receiver station: the `Latin American Very low frequency Network at Mexico' (LAVNet-Mex), which extends to the northern hemisphere the South American VLF Network. LAVNet-Mex detects electromagnetic waves generated by strong transmitters located around the world. These waves travel inside the Earth-Ionosphere waveguide, along the Great Circle Path formed between the emitter and the observer. By observing changes in the phase and amplitude of these waves, it is possible to study the dynamics of the lower layer of the ionosphere during solar eruptive events. In this work we present preliminary results of the analysis of the effects of solar flares (class M and X) occurred in 2012 and that were observed by LAVNet-Mex. We explore the relationship between VLF signals coming from different paths during these solar burst to infer the degree of correlation that can exist between different sectors of the ionosphere.

  7. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  8. C/NOFS Remote Sensing of Ionospheric Reflectance

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Pfaff, Robert F.; Martinis, C. R.; Gentile, L. C.

    2016-01-01

    Alfvn waves play critical roles in the electrodynamic coupling of plasmas at magnetically conjugate regions in near-Earth space. Associated electric (E*) and magnetic (dec B*) field perturbations sampled by sensors on satellites in low-Earth orbits are generally super positions of incident and reflected waves. However, lack of knowledge about ionospheric reflection coefficients (alpha) hinders understanding of generator outputs and load absorption of Alfvn wave energies. Here we demonstrate a new method for estimating using satellite measurements of ambient E* and dec B* then apply it to a case in which the Communication Navigation Outage Forecasting System (CNOFS) satellite flew conjugate to the field of view of a 630.0 nm all-sky imager at El Leoncito, Argentina, while medium-scale traveling ionosphere disturbances were detected in its field of view. In regions of relatively large amplitudes of E* and B*,calculated values ranged between 0.67 and 0.88. This implies that due to impedance mismatches, the generator ionosphere puts out significantly more electromagnetic energy than the load can absorb. Our analysis also uncovered caveats concerning the methods range of applicability in regions of low E* and B*. The method can be validated in future satellite-based auroral studies where energetic particle precipitation fluxes can be used to make independent estimates of alpha.

  9. ELF/VLF Perturbations Above the Haarp Transmitter Recorded by the Demeter Satellite in the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.

    2015-08-01

    In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime

  10. Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.

    2009-02-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.

  11. VLF phase and amplitude: daytime ionospheric parameters

    NASA Astrophysics Data System (ADS)

    McRae, W. M.; Thomson, N. R.

    2000-05-01

    Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth-ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H' and /β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H' and /β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10-25 kHz.

  12. First demonstration of HF-driven ionospheric currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  13. High Resolution Reconstruction of the Ionosphere for SAR Applications

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  14. The Detectability of Exo-Earths and Super-Earths via Resonant Signatures in Exozodiacal Clouds

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Kuchner, Marc

    2008-01-01

    Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.

  15. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.

  16. Martian Ionospheric Observation and Modeling

    NASA Astrophysics Data System (ADS)

    González-Galindo, Francisco

    2018-02-01

    measurements by different space missions. Numerical simulations by computational models able to simulate the processes that shape the ionosphere have also been commonly employed to obtain information about this region, to provide an interpretation of the observations and to fill their gaps. As a result, the Martian ionosphere is today the best known one after that of the Earth. However, there are still areas for which our knowledge is far from being complete. Examples are the details and balance of the mechanisms populating the nightside ionosphere, or a good understanding of the meteoric ionospheric layer and its variability.

  17. (abstract) Application of the GPS Worldwide Network in the Study of Global Ionospheric Storms

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Pi, X.; Sparks, L. C.; Rao, A. M.; Wilsion, B. D.; Yuan, D. N.; Reyes, M.

    1997-01-01

    Ionospheric storm dynamics as a response to the geomagnetic storms is a very complicated global process involving many different mechanisms. Studying ionospheric storms will help us to understand the energy coupling process between the Sun and Earth and possibly also to effectively forecast space weather changes. Such a study requires a worldwide monitoring system. The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility.

  18. Study of interaction of ELF-ULF range (0.1-200 Hz) electromagnetic waves with the earth's crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment)

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.

    2015-12-01

    This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.

  19. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  20. Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.

    2009-12-01

    The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et

  1. Toward seismic source imaging using seismo-ionospheric data

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  2. Computerized ionospheric tomography based on geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  3. Very low frequency (VLF) waves as diagnostic tool in remote sensing of D-region Ionosphere

    NASA Astrophysics Data System (ADS)

    Singh, Ashok; Verma, Uday Prakash

    Large currents along the magnetic field transmit stresses between ionosphere and magnetosphere. If the electrons carrying such currents have high enough drift velocity, waves are generated. A wave is a disturbance that propagates through space and time, usually with transference of energy. Waves play major part in the Earth’s ionospheric dynamics. Since both the Earth and the ionosphere are good reflectors at very low frequencies (3 kHz 30 kHz), the lightning radiated impulses commonly known as radio atmospheric or sferics or tweeks travel thousands of kilometers in the Earth Ionosphere Wave Guide (EIWG) with low attenuation of ~ 2-3 dB/1000km. Since vlf waves are reflected by ionosphere, they can be used as potential tool to study the D-region ionosphere which plays a key role in the radio wave propagation. Since the year 2010, vlf waves are continuously being recorded at low latitude ground based Indian station Lucknow (Geomag. Lat. 17.60 N; Geomag. Long. 154.50 E) using Automatic Whistler Detector (AWD). More than 100 tweeks of multimode harmonics (n ≥ 3) observed during the year 2010-2011 are analyzed. Using these multimode tweeks as remote sensing tool to explore D-region ionosphere we have estimated various medium parameters such as electron density, ionospheric reflection height and the propagation distance etc. Electron density in the D-region ionosphere varies from 40-160 cm-3 for various modes, ionospheric reflection height varies in the range 70 - 85 km, and the propagation distance was found to vary from 2 km - 6 km in the waveguide to the receiving site.

  4. Assessing D-Region Ionospheric Electron Densities with Transionospheric VLF Signals

    NASA Astrophysics Data System (ADS)

    Worthington, E. R.; Cohen, M.

    2016-12-01

    Very Low Frequency (VLF, 3-30 kHz) electromagnetic radiation emitted from ground-based sources, such as VLF transmitters or lightning strokes, is generally confined between the Earth's surface and the base of the ionosphere. These boundaries result in waveguide-like propagation modes that travel away from the source, often over great distances. In the vicinity of the source, a unique interference pattern exists that is largely determined by the D-region of the ionosphere which forms the upper boundary. A small portion of this VLF radiation escapes the ionosphere allowing the waveguide interference pattern to be observable to satellites in low-earth orbit (LEO). Techniques for estimating D-region electron densities using VLF satellite measurements are presented. These techniques are then validated using measurements taken by the satellite DEMETER. During its six-year mission, DEMETER completed hundreds of passes above well-characterized VLF transmitters while taking measurements of electric and magnetic field strengths. The waveguide interference pattern described above is clearly visible in these measurements, and features from the interference pattern are used to derive D-region electron density profiles.

  5. The ionospheric contribution to the plasma environment in near-earth space

    NASA Technical Reports Server (NTRS)

    Sharp, R. D.; Lennartsson, W.; Strangeway, R. J.

    1985-01-01

    SCATHA and ISEE 1 satellite ion mass spectrometer data on ion composition near GEO are reviewed. The data were gathered during and close to magnetic storm activity to assess the characteristics of ion composition variations in order to predict the effects of hot GEO plasma on spacecraft instruments. Attention is given to both substorms and storms, the former being associated, at high latitudes, with auroral activity, the latter with ring currents. The ionosphere was found to supply hot H(+), O(+) and He(+) ions to the GEO magnetosphere, while the solar wind carried H(+) and He(+) ions. The ionosphere was the dominant source in both quiet and storm conditions in the inner magnetosphere.

  6. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  7. The Ionospheric Connection Explorer (ICON) : Mission Design and Planning

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Taylor, E.; Craig, W.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gerard, J. C. M. C.; Harlander, J.; Huba, J.; Hubert, B. A.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. J.; Raftery, C. L.; Hauck, K.; Rochus, P.; Siegmund, O.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.

    2016-12-01

    The Ionospheric Connection Explorer is NASA's next Explorer mission, with a primary scientific goal of understanding the source of the extreme variability in Earth's ionosphere. The observatory is scheduled to be delivered to the Pegasus launch vehicle in early 2017 for a June launch. ICON carries unprecedented capability to orbit in a broader national and international effort to understand changes in our space environment occurring on a wide range of spatial and temporal scales. Here, we will discuss plans for the observatory checkout and early operations, and discuss the observing conditions expected in the atmosphere and ionosphere at that time. The status of the science data pipeline and the predicted performance of the observatory for scientific measurements will be discussed.

  8. Field-aligned currents in the undisturbed polar ionosphere

    NASA Astrophysics Data System (ADS)

    Kroehl, H. W.

    1989-09-01

    Field-aligned currents, FAC's, which couple ionospheric currents at high latitudes with magnetospheric currents have become an essential cornerstone to our understanding of plasma dynamics in the polar region and in the earth's magnetosphere. Initial investigators of polar electrodynamics including the aurora were unable to distinguish between the ground magnetic signatures of a purely two-dimensional current and those from a three-dimensional current system, ergo many scientists ignored the possible existence of these vertical currents. However, data from magnetometers and electrostatic analyzers flown on low-altitude, polar-orbiting satellites proved beyond any reasonable doubt that field-aligned currents existed, and that different ionospheric regions were coupled to different magnetospheric regions which were dominated by different electrodynamic processes, e.g., magnetospheric convection electric fields, magnetospheric substorms and parallel electric fields. Therefore, to define the “undisturbed” polar ionosphere and its structure and dynamics, one needs to consider these electrodynamic processes, to select times for analysis when they are not strongly active and to remember that the polar ionosphere may be disturbed when the equatorial, mid-latitude and sub-auroral ionospheres are not. In this paper we will define the principle high-latitude current systems, describe the effects of FAC's associated with these systems, review techniques which would minimize these effects and present our description of the “undisturbed” polar ionosphere.

  9. Ionospheric Caustics in Solar Radio Observations

    NASA Astrophysics Data System (ADS)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  10. C/NOFS remote sensing of ionospheric reflectance

    NASA Astrophysics Data System (ADS)

    Burke, W. J.; Pfaff, R. F.; Martinis, C. R.; Gentile, L. C.

    2016-05-01

    Alfvén waves play critical roles in the electrodynamic coupling of plasmas at magnetically conjugate regions in near-Earth space. Associated electric (E*) and magnetic (δB*) field perturbations sampled by sensors on satellites in low-Earth orbits are generally superpositions of incident and reflected waves. However, lack of knowledge about ionospheric reflection coefficients (α) hinders understanding of generator outputs and load absorption of Alfvén wave energies. Here we demonstrate a new method for estimating α using satellite measurements of ambient E* and δB* then apply it to a case in which the Communication/Navigation Outage Forecasting System (C/NOFS) satellite flew conjugate to the field of view of a 630.0 nm all-sky imager at El Leoncito, Argentina, while medium-scale traveling ionosphere disturbances were detected in its field of view. In regions of relatively large amplitudes of E* and δB*, calculated α values ranged between 0.67 and 0.88. This implies that due to impedance mismatches, the generator ionosphere puts out significantly more electromagnetic energy than the load can absorb. Our analysis also uncovered caveats concerning the method's range of applicability in regions of low E* and δB*. The method can be validated in future satellite-based auroral studies where energetic particle precipitation fluxes can be used to make independent estimates of α.

  11. Simulation and mitigation of higher-order ionospheric errors in PPP

    NASA Astrophysics Data System (ADS)

    Zus, Florian; Deng, Zhiguo; Wickert, Jens

    2017-04-01

    We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812

  12. Lunar ionosphere exploration method using auroral kilometric radiation

    NASA Astrophysics Data System (ADS)

    Goto, Yoshitaka; Fujimoto, Takamasa; Kasahara, Yoshiya; Kumamoto, Atsushi; Ono, Takayuki

    2011-01-01

    The evidence of a lunar ionosphere provided by radio occultation experiments performed by the Soviet spacecraft Luna 19 and 22 has been controversial for the past three decades because the observed large density is difficult to explain theoretically without magnetic shielding from the solar wind. The KAGUYA mission provided an opportunity to investigate the lunar ionosphere with another method. The natural plasma wave receiver (NPW) and waveform capture (WFC) instruments, which are subsystems of the lunar radar sounder (LRS) on board the lunar orbiter KAGUYA, frequently observe auroral kilometric radiation (AKR) propagating from the Earth. The dynamic spectra of the AKR sometimes exhibit a clear interference pattern that is caused by phase differences between direct waves and waves reflected on a lunar surface or a lunar ionosphere if it exists. It was hypothesized that the electron density profiles above the lunar surface could be evaluated by comparing the observed interference pattern with the theoretical interference patterns constructed from the profiles with ray tracing. This method provides a new approach to examining the lunar ionosphere that does not involve the conventional radio occultation technique.

  13. Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.

    1986-01-01

    The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.

  14. Generation of real-time global ionospheric map based on the global GNSS stations with only a sparse distribution

    NASA Astrophysics Data System (ADS)

    Li, Zishen; Wang, Ningbo; Li, Min; Zhou, Kai; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    The Earth's ionosphere is part of the atmosphere stretching from an altitude of about 50 km to more than 1000 km. When the Global Navigation Satellite System (GNSS) signal emitted from a satellite travels through the ionosphere before reaches a receiver on or near the Earth surface, the GNSS signal is significantly delayed by the ionosphere and this delay bas been considered as one of the major errors in the GNSS measurement. The real-time global ionospheric map calculated from the real-time data obtained by global stations is an essential method for mitigating the ionospheric delay for real-time positioning. The generation of an accurate global ionospheric map generally depends on the global stations with dense distribution; however, the number of global stations that can produce the real-time data is very limited at present, which results that the generation of global ionospheric map with a high accuracy is very different when only using the current stations with real-time data. In view of this, a new approach is proposed for calculating the real-time global ionospheric map only based on the current stations with real-time data. This new approach is developed on the basis of the post-processing and the one-day predicted global ionospheric map from our research group. The performance of the proposed approach is tested by the current global stations with the real-time data and the test results are also compared with the IGS-released final global ionospheric map products.

  15. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  16. Production of Ionospheric Perturbations by Cloud-to-Ground Lightning and the Recovery of the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid

    2013-04-01

    The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain

  17. Ion transport and loss in the Earth's quiet ring current. 2: Diffusion and magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.

    1994-01-01

    We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.

  18. LIFDAR: A Diagnostic Tool for the Ionosphere

    NASA Astrophysics Data System (ADS)

    Kia, O. E.; Rodgers, C. T.; Batholomew, J. L.

    2011-12-01

    ITT Corporation proposes a novel system to measure and monitor the ion species within the Earth's ionosphere called Laser Induced Fluorescence Detection and Ranging (LIFDAR). Unlike current ionosphere measurements that detect electrons and magnetic field, LIFDAR remotely measures the major contributing ion species to the electron plasma. The LIFDAR dataset has the added capability to demonstrate stratification and classification of the layers of the ionosphere to ultimately give a true tomographic view. We propose a proof of concept study using existing atmospheric LIDAR sensors combined with a mountaintop observatory for a single ion species that is prevalent in all layers of the atmosphere. We envision the LIFDAR concept will enable verification, validation, and exploration of the physics of the magneto-hydrodynamic models used in ionosphere forecasting community. The LIFDAR dataset will provide the necessary ion and electron density data for the system wide data gap. To begin a proof of concept, we present the science justification of the LIFDAR system based on the model photon budget. This analysis is based on the fluorescence of ionized oxygen within the ionosphere versus altitude. We use existing model abundance data of the ionosphere during normal and perturbed states. We propagate the photon uncertainties from the laser source through the atmosphere to the plasma and back to the collecting optics and detector. We calculate the expected photon budget to determine signal to noise estimates based on the targeted altitude and detection efficiency. Finally, we use these results to derive a LIFDAR observation strategy compatible with operational parameters.

  19. A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-07-01

    Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earth's co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. These objects are not primordial and may have originated within the Venus-Earth-Mars region or in the main-belt, then transition to Amor-class asteroid before entering Earth's co-orbital region. Objects in this group could be responsible for the production of Earth's transient irregular natural satellites.

  20. Geospace Imaging from the Ionospheric Connection Explorer

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Mende, S. B.; Englert, C. R.; Heelis, R. A.; Edelstein, J.; Taylor, E.; Bester, M.; Harlander, J.; Frey, H. U.; Korpela, E.

    2017-12-01

    The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. We describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected and the overall performance of the science payload will be presented and discussed. The first evaluation of on-orbit instrument performance, if available, and the expectation for future scientific research, will also be discussed.

  1. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2017-03-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  2. Solar radiation pressure resonances in Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.

    2018-01-01

    The aim of this work is to highlight the crucial role that orbital resonances associated with solar radiation pressure can have in Low Earth Orbit. We review the corresponding literature, and provide an analytical tool to estimate the maximum eccentricity which can be achieved for well-defined initial conditions. We then compare the results obtained with the simplified model with the results obtained with a more comprehensive dynamical model. The analysis has important implications both from a theoretical point of view, because it shows that the role of some resonances was underestimated in the past, and also from a practical point of view in the perspective of passive deorbiting solutions for satellites at the end-of-life.

  3. Frequency domain and full waveform time domain inversion of ground based magnetometer, electrometer and incoherent scattering radar arrays to image strongly heterogenous 3-D Earth structure, ionospheric structure, and to predict the intensity of GICs in the power grid

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.

    2016-12-01

    Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce

  4. Bayesian ionospheric multi-instrument 3D tomography

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Vierinen, Juha; Roininen, Lassi

    2017-04-01

    The tomographic reconstruction of ionospheric electron densities is an inverse problem that cannot be solved without relatively strong regularising additional information. % Especially the vertical electron density profile is determined predominantly by the regularisation. % %Often utilised regularisations in ionospheric tomography include smoothness constraints and iterative methods with initial ionospheric models. % Despite its crucial role, the regularisation is often hidden in the algorithm as a numerical procedure without physical understanding. % % The Bayesian methodology provides an interpretative approach for the problem, as the regularisation can be given in a physically meaningful and quantifiable prior probability distribution. % The prior distribution can be based on ionospheric physics, other available ionospheric measurements and their statistics. % Updating the prior with measurements results as the posterior distribution that carries all the available information combined. % From the posterior distribution, the most probable state of the ionosphere can then be solved with the corresponding probability intervals. % Altogether, the Bayesian methodology provides understanding on how strong the given regularisation is, what is the information gained with the measurements and how reliable the final result is. % In addition, the combination of different measurements and temporal development can be taken into account in a very intuitive way. However, a direct implementation of the Bayesian approach requires inversion of large covariance matrices resulting in computational infeasibility. % In the presented method, Gaussian Markov random fields are used to form a sparse matrix approximations for the covariances. % The approach makes the problem computationally feasible while retaining the probabilistic and physical interpretation. Here, the Bayesian method with Gaussian Markov random fields is applied for ionospheric 3D tomography over Northern Europe

  5. Characteristics of absorption and frequency filtration of ULF electromagnetic waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    A statistical method for interpreting data from experimental investigations of vertically-propagating electromagnetic ULF waves in the inhomogeneous magnetoactive ionosphere is considered theoretically. Values are obtained for the transmission, reflection and absorption characteristics of ULF waves in a limited ionospheric layer, in order to describe the relation between the frequency of a wave generated at the earth surface and that of a total wave propagating above the ionospheric layer. This relation is used to express the frequency-selective amplitude filtration of ULF waves in the layer. The method is applied to a model of the night ionosphere of mid-geomagnetic latitudes in the form of a plate 1000 km thick. It is found that the relative characteristics of transmission and amplitude loss in the wave adequately describe the frequency selectiveness and wave filtration capacity of the ionosphere. The method is recommended for studies of the structural changes of wave parameters in ionospheric models.

  6. A Robust Automatic Ionospheric O/X Mode Separation Technique for Vertical Incidence Sounders

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Pederick, L. H.

    2017-12-01

    The sounding of the ionosphere by a vertical incidence sounder (VIS) is the oldest and most common technique for determining the state of the ionosphere. The automatic extraction of relevant ionospheric parameters from the ionogram image, referred to as scaling, is important for the effective utilization of data from large ionospheric sounder networks. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies, so a VIS will typically see two distinct returns for each frequency. For the automatic scaling of ionograms, it is highly desirable to be able to separate the two modes. Defence Science and Technology Group has developed a new VIS solution which is based on direct digital receiver technology and includes an algorithm to separate the O and X modes. This algorithm can provide high-quality separation even in difficult ionospheric conditions. In this paper we describe the algorithm and demonstrate its consistency and reliability in successfully separating 99.4% of the ionograms during a 27 day experimental campaign under sometimes demanding ionospheric conditions.

  7. Electric currents in F-like planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1990-01-01

    In this paper, electrical transport coefficients are found for charged particles in such lightly ionized gases as exist in planetary and stellar atmospheres, like the F-region of the earth's ionosphere. Electric fields and gradients of pressure in the ions and the electrons are taken as the drivers of electric current. Collisions of electrons with ions, and of ions and electrons with neutral particles, are taken into account, and new expressions are generated for electrical conductivity, heating rates, and diffusion of magnetic field. The paper extends and complements the results of an earlier paper by Cole (1990) which dealt with 'E-like' ionospheric regions. A comparison of the results with those of kinetic theory is made.

  8. Data Assimilation Techniques for Ionospheric Reference Scenarios - project overview and first results

    NASA Astrophysics Data System (ADS)

    Gerzen, Tatjana; Mainul Hoque, M.; Wilken, Volker; Minkwitz, David; Schlüter, Stefan

    2015-04-01

    The European Geostationary Navigation Overlay Service (EGNOS) is the European Satellite Based Augmentation Service (SBAS) that provides value added services, in particular to Safety of Live (SoL) users of the Global Navigation Satellite Systems (GNSS). In the frame of the European GNSS Evolution Programme (EGEP), ESA has launched several activities, which are aiming to support the design, development and qualification of the future operational EGNOS infrastructure and associated services. The ionosphere is the part of the upper Earth's atmosphere between about 50 km and 1000 km above the Earth's surface, which contains sufficient free electrons to cause strong impact on radio signal propagation. Therefore, treatment of the ionosphere is a critical issue to guarantee the EGNOS system performance. In order to conduct the EGNOS end-to-end performance simulations and to assure the capability for maintaining integrity of the EGNOS system especially during ionospheric storm conditions, Ionospheric Reference Scenarios (IRSs) are introduced by ESA. The project Data Assimilation Techniques for Ionospheric Reference Scenarios (DAIS) - aims to generate improved EGNOS IRSs by combining space borne and ground based GNSS observations. The main focus of this project is to demonstrate that ionospheric radio occultation (IRO) measurements can significantly contribute to fill data gaps in GNSS ground networks (particularly in Africa and over the oceans) when generating the IRSs. The primary tasks are the calculation and validation of time series of IRSs (i.e. TEC maps) by a 3D assimilation approach that combines IRO and ground based GNSS measurements with an ionospheric background model in an optimal way. In the first phase of the project we selected appropriate test periods, one presenting perturbed and the other one - nominal ionospheric conditions, collected and filtered the corresponding data. We defined and developed an applicable technique for the 3D assimilation and applied

  9. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  10. A gridded global description of the ionosphere and thermosphere for 1996 - 2000

    NASA Astrophysics Data System (ADS)

    Ridley, A.; Kihn, E.; Kroehl, H.

    The modeling and simulation community has asked for a realistic representation of the near-Earth space environment covering a significant number of years to be used in scientific and engineering applications. The data, data management systems, assimilation techniques, physical models, and computer resources are now available to construct a realistic description of the ionosphere and thermosphere over a 5 year period. DMSP and NOAA POES satellite data and solar emissions were used to compute Hall and Pederson conductances in the ionosphere. Interplanetary magnetic field measurements on the ACE satellite define average electrostatic potential patterns over the northern and southern Polar Regions. These conductances, electric field patterns, and ground-based magnetometer data were input to the Assimilative Mapping of Ionospheric Electrodynamics model to compute the distribution of electric fields and currents in the ionosphere. The Global Thermosphere Ionosphere Model (GITM) used the ionospheric electrodynamic parameters to compute the distribution of particles and fields in the ionosphere and thermosphere. GITM uses a general circulation approach to solve the fundamental equations. Model results offer a unique opportunity to assess the relative importance of different forcing terms under a variety of conditions as well as the accuracies of different estimates of ionospheric electrodynamic parameters.

  11. Generation of Artificial Ionospheric Irregularities by the Modification of the Earth's Middle-Latitude Ionosphere by X-Mode Powerful HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Padokhin, Artem; Kunitsyn, Viacheslav; Akchurin, Adel; Bolotin, Ilya; Zykov, Evgeniy; Vertogradov, Gennadiy

    Basing on experimental data obtained at the SURA heating facility by modification of the Earth’s middle-latitude ionosphere, we consider in the report some peculiarities of the generation of artificial plasma density irregularities when X-mode powerful waves (PW) are used for ionosphere pumping [1]. Experiments were carried out during 2008 - 2012 under quite ionospheric conditions (Sigma K_p = 10 - 30). Analysis of obtained experimental data has shown that: 1) In our measurements the generation of small-scale irregularities with l{_⊥} {≃} 10 - 20 m is not observed in contrast to analogous measurements conducted at the EISCAT-heater [2,3]. 2) The generation of irregularities with l{_⊥} {≃} 50 m - 3 km is mainly observed in evening and night hours. In these conditions their intensity is by 3 to 4 times below in comparison with the O-mode pumping. During day hours these irregularities are not detected due to both strong PW energy absorption in the lower ionosphere and forming a defocusing lens at altitudes of 130 - 150 km [4]. 3) The generation of irregularities with l{_⊥} {≥} 5 - 10 km is only observed in evening and night hours. In these conditions their intensity is by 10 times below in comparison with the O-mode pumping. 4) The generation of the irregularities with l{_⊥} {≥} 50 m is observed only when the PW reflects in the ionospheric F _{2} region. 5) Under day-time conditions the defocusing lens is forming at altitudes of about of 130 - 150 km when the ionosphere is pumping both X- and O- mode powerful waves [4]. Its horizontal size is determined by the HF beam. In our experiments [1] it was revealed that the stronger generation of irregularities with scale-lengths l{_⊥} {≃} 5 - 10 km is observed at the HF beam edge where the effective radiated power is of about 0.1 P _{max}. Such a “beam-edge” effect is also observed when the ionosphere is modified by O-mode PW. The enhancement of irregularity generation at the HF beam edge was

  12. MAVEN-Measured Meteoritic Ions on Mars - Tracers of Lower Ionosphere Processes With and Without Analogues On Earth

    NASA Astrophysics Data System (ADS)

    Benna, M.; Grebowsky, J. M.; Collinson, G.; Plane, J. M. C.; Mitchell, D.; Srivastava, N.

    2017-12-01

    MAVEN observations of meteoritic metal ion populations during "deep dip" campaigns at Mars have revealed unique non-Earth like behavior that are not yet understood. These deep dip campaigns (6 so far) consisted each of more than a score of repeated orbits through the Martian molecular-ion-dominated lower ionosphere, whose terrestrial parallel (Earth's E-region) has been rather sparcely surveyed in situ by sounding rockets. In regions of weak Mars magnetic fields, MAVEN found ordered exponentially decreasing metal ion concentrations above the altitude of peak meteor ablation. Such an ordered trend has never been observed on Earth. Isolated anomalous high-altitude layers in the metal ion are also encountered, typically on deep dip campaigns in the southern hemisphere where large localized surface remanent magnetic fields prevail. The source of these anomalous layers is not yet evident, although the occurrences of some high-altitude metal ion enhancements were in regions with measured perturbed magnetic fields, indicative of localized electrical currents. Further investigation shows that those currents are also sometimes associated with superthermal/energetic electron bursts offering evidence that that impact ionization of neutral metal populations persisting at high altitudes are the source of metal ion enhancement - a rather difficult assumption to accept far above the ablation region where the metal neutrals are deposited. The relationship of the anomalous layers to the coincident electron populations as well as to the orientation of the magnetic fields which can play a role in the neutral wind generated ion convergences as on Earth is investigated.

  13. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  14. Topside Equatorial Ionospheric Density and Composition During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R.; Rowland, D.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth s ionosphere-thermosphere system when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the Communication/Navigation Outage Forecast System (C/NOFS) satellite to characterize the shape of the topside ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. (2009), here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  15. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  16. Local and Global Studies of Ion Outflow From the High Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Petersen, W. K.

    1997-01-01

    Ion outflow from the ionosphere plays a fundamental but poorly defined role in magnetospheric processes. The purpose of the research is to better understand the mass coupling between the Earth's ionosphere and Magnetosphere. The work performed under this grant falls in three areas: (1) event studies using archived data from the DE-1/2 satellites; (2) investigations using Data from the ISTP satellites; and (3) work supporting a Space Physics Educational Outreach (SPEO) grant supplement.

  17. Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.

    2016-12-01

    It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the

  18. BOLAS: A Canadian-US Ionospheric Tether Mission

    NASA Technical Reports Server (NTRS)

    Tyc, George; Vigneron, Frank; Jablonski, Alexander; James, H. Gordon; Carrington, Connie; Rupp, Charles

    1997-01-01

    Everyday, international broadcasters, ships, and aircraft use a naturally conducting atmospheric layer, the ionosphere, to reflect communications signals over the Earth's horizon. A better understanding of this layer, with its irregularities, instabilities, and dynamics, would improve communications transmission and reception. This atmospheric layer is also a lens that can distort signal transmissions from communications, navigation, and surveillance satellites. The ionosphere over Canada and other high latitude countries can carry large currents and is particularly dynamic, so that a scientific understanding of this layer is critical. The BOLAS (Bistatic Observations using Low Altitude Satellites) mission would characterize reflective and transmissive properties of the ionosphere by flying two satellites, each with identical HF receivers, dipole antennas, particle probes, and GPS receivers. The satellites would be connected by a non-conducting tether to maintain a 100 m separation, and would cartwheel in the orbit plane to spatially survey the ionosphere. The six-month mission would fly in a high inclination, 350 x 600 km orbit, and would be active during passes over the auroral region of Canada. This paper discusses the system requirements and architecture, spacecraft and operations concepts, and mission design, as well as team organization, international cooperation and the scientific and technological benefits that are expected.

  19. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  20. Effects of Energetic Solar Emissions on the Lower Ionosphere as seen in Ionosonde Observations

    NASA Astrophysics Data System (ADS)

    Barta, V.; Satori, G.; Williams, E.

    2016-12-01

    The sudden increase of X-radiation and EUV emission following solar flares causes extra ionization in the sunlit hemisphere in the D- and E-regions of the Earth's ionosphere. In addition, solar flares are also accompanied by energetic particles (protons and electrons) with energies from tens of keV to hundreds of MeV result additional ionization. The impact of two exceptional solar events - the Bastille Day event (July 14, 2000) and the Halloween event (Oct/Nov2003) on the lowest region of the ionosphere (<100 km) have recently been analyzed with global Schumann resonance measurements (Sátori et al., 2015). The present study is aimed at somewhat higher levels of the ionosphere (90-150 km) accessible with ionosonde observations. The variation of two ionospheric parameters, namely the minimum frequency of echoes (fmin) and the critical frequency of the E-layer (foE) were studied to disclose the effect of the solar flares on the lower ionosphere. The time series of the fmin and foE parameters recorded at meridionally-distributed stations in Europe were analyzed during these two intense solar events. Extreme increases of the fmin values (2-6 MHz) were observed at several European stations (Juliusruh, 53.6°N, 13.4°E; Chilton, 51.5°N, 359.4°E; Rome, 41.9°N, 12.5°E; SanVito 40.6°N, 17.8°E) during the Halloween event. This ionosonde response increases with increasing latitude. Simultaneously the absence of the foE parameter was observed. The sharply increased values (2-4 MHz) of the fmin parameters and the co-occurring absence of the foE parameters were detected in the case of the Bastille Day event as well, but only at high latitude stations (Loparskaya, 68°N, 33°E; St. Petersburg, 59.9°N, 30.3°E; Juliusruh, 53.6°N, 13.4°E). These results suggest that the latitude-dependent change of the fmin and foE parameters is related to energetic solar particles penetrating to the lower ionosphere.

  1. The Near-Earth Plasma Environment

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  2. Generation of cyclotron harmonic waves in the ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janabi, A.H.A.; Kumar, A.; Sharma, R.P.

    1994-02-01

    In the present paper, the parametric decay instability of the pump X-mode into electron Bernstein wave (EBW) near second harmonics of electron cyclotron frequency and IBW at different harmonics ([omega] < n[omega][sub ci];n = 2, 3, 4) is examined. Expressions are derived for homogeneous threshold, growth rate and convective threshold for this instability. Applications and relevances of the present investigation to ionospheric modification experiment in the F-layer of the ionosphere as well as during intense electron cyclotron resonance heating in the upcoming MTX tokamak have been given.

  3. Ionosphere-Magnetosphere Coupling from Dynamics Explorer to Swarm and Beyond

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Clemmons, J. H.; Collinson, G.; Gershman, D. J.; Khazanov, G. V.; Kistler, L. M.; Knudsen, D. J.; Pfaff, R. F., Jr.; Pollock, C. J.; Rowland, D. E.

    2014-12-01

    Ionospheric plasmas have thermal speeds much smaller than orbital (escape) velocities, so they appear to orbiting spacecraft as a relatively narrow beam from the ram direction. But one of the very interesting things about ionospheric plasmas is that they are heated strongly in the auroral zones, and accelerated such that their thermal or directed speeds exceed orbital or escape velocity. Then they do just that: orbit or escape the Earth into the magnetosphere and beyond at velocities spread over a large range of angles and magnitudes. This has created a dichotomy between the observation of cold, rammed plasmas in the ionosphere proper and the observation of hot plasmas with a large range of velocities in both direction and magnitude, well above the ionosphere proper. The former are usually observed from attitude-stabilized, ram-pointed spacecraft, while the latter are usually observed from spinning spacecraft. We review measurements that illuminate the way forward, particularly from the Swarm mission, and propose a new sciencecraft configuration that overcomes the divergent requirements to facilitate direct observations of processes that heat and accelerate ionospheric plasmas across this transition from gravitationally bound to unbound and escaping into space.

  4. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGES

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; ...

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  5. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang; Rankin, Robert; Zhou, Xuzhi

    2017-12-01

    One of the most important issues in space physics is to identify the dominant processes that transfer energy from the solar wind to energetic particle populations in Earth's inner magnetosphere. Ultra-low-frequency (ULF) waves are an important consideration as they propagate electromagnetic energy over vast distances with little dissipation and interact with charged particles via drift resonance and drift-bounce resonance. ULF waves also take part in magnetosphere-ionosphere coupling and thus play an essential role in regulating energy flow throughout the entire system. This review summarizes recent advances in the characterization of ULF Pc3-5 waves in different regions of the magnetosphere, including ion and electron acceleration associated with these waves.

  6. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean

    NASA Astrophysics Data System (ADS)

    Hartkorn, Oliver; Saur, Joachim

    2017-11-01

    We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.

  7. The ionosphere of Uranus - A myriad of possibilities

    NASA Astrophysics Data System (ADS)

    Chandler, M. O.; Waite, J. H.

    1986-01-01

    A one-dimensional model has been used to study the effects of exospheric temperature, methane and water influx, ionospheric outflow, and electron precipitation on the composition and structure of the ionosphere of Uranus. Peak ion concentrations range from 1000 to 1 million per cu cm with a wide variation in peak altitude, which depends strongly on the exospheric temperature. In all the cases considered, H(+) is the major ion in the topside ionosphere. At altitudes near or below the peak, H3(+) and CH5(+) can dominate, depending on the magnitude of CH4 and H2O influx. Atomic hydrogen column depths above the methane absorbing layer exceed 10 to the 17th per sq cm and can produce large (400 R) emissions of resonantly scattered Lyman-alpha. In the sunlit polar cap, electron precipitation with energy fluxes of 0.6 to 1.0 erg/sq cm s results in direct production of Lyman-alpha emissions that exceed 1 kR.

  8. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  9. Aerosols and seismo-ionosphere coupling: A review

    NASA Astrophysics Data System (ADS)

    Namgaladze, Aleksandr; Karpov, Mikhail; Knyazeva, Maria

    2018-06-01

    The role of atmosphere aerosols in the global electric circuit, particularly during earthquakes preparation periods, is discussed in this review paper. Aerosols participate in production and transport of electric charges as well as in clouds formation. Satellite imagery shows increased aerosol optical depth over the tectonic faults and formation of the anomalous clouds aligned with the faults shortly before the earthquake shocks. At the same time variations of the ionospheric electric field and total electron content (TEC) are observed. We assume that the vertical electric current is generated over the fault due to the separation and vertical transport of charges with different masses and polarities. This charges the ionosphere positively relative to the Earth in the same way as the thunderstorm currents do. The resulting electric field in the ionosphere drives F2-layer plasma via the electromagnetic [E→ ×B→ ] drift and decreases or increases electron density depending on the configuration of the electric field, thus, creating observed negative or positive TEC disturbances. The important role of the electric dynamo effect in these processes is underlined.

  10. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  11. Ionospheric scintillation detection based on GPS observations, a case study over Iran

    NASA Astrophysics Data System (ADS)

    Sobhkhiz Miandehi, Sahar; Alizadeh Elizei, M. Mahdi; Schuh, Harald

    2017-04-01

    Global Positioning System (GPS) which is used extensively for various purposes such as navigation, surveying, remote sensing and telecommunication, is strongly affected by the earth's upper atmosphere, the ionosphere. Ionosphere is a highly variable region with complex physical characteristics in which the density of free electrons are large enough to have considerable effects on signals' propagation travelling through this dispersive medium. As GPS signals travel through the ionosphere, they may experience rapid amplitude fluctuations or unexpected phase changes. This is referred to as ionospheric scintillation. Ionospheric scintillation which is caused by small scale irregularities in the electron density, is one of the dominant propagation disturbances at radio frequency signals. These irregularities severely affect the accuracy and reliability of GPS measurements. Therefore it is necessary to investigate ionospheric scintillation and its effects on GPS observations. The focus of this paper is to detect ionospheric scintillations over Iran's region, during different periods of solar activity and to investigate these effects on GPS observations in more detail. Furthermore the effects of these irregularities on regional modeling of ionosphere over Iran is also investigated. The results show that effectiveness of this phenomenon depends on geographic location, local time and global geomagnetic storm index (kp index). The required data for this investigation are ground based measurements of permanent GPS stations over Iran, established by the National Cartographic Center of Iran (NCC).

  12. ICON: The Ionospheric Connection Explorer - NASA's Next Space Physics and Aeronomy Mission

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; England, S.; Maute, A. I.; Makela, J. J.; Kamalabadi, F.; Crowley, G.; Stephan, A. W.; Huba, J. D.; Harlander, J.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Gerard, J. M.; Hubert, B. A.; Rowland, D. E.; Hysell, D. L.; Saito, A.; Frey, S.; Bester, M.; Valladares, C. E.

    2013-12-01

    Earth's ionosphere is a highly variable layer of plasma surrounding earth that is influenced from below by internal atmospheric waves of various scales and from above by solar and geomagnetic activity. Recent observational findings and modeling studies have raised many questions about the effects and interaction of these drivers in our geospace environment, and how these vary between extremes in solar activity. ICON will address the most compelling science issues that deal with the coupling of the ionosphere to the neutral atmosphere below and space above: 1) The highly variable nature of the electric field in the ionosphere and its potential link to thermospheric wind, 2) the effect of forcing from below: how large-scale atmospheric waves penetrate into the thermosphere and ionosphere, and 3) the effect of forcing from above: how ion-neutral coupling changes during solar and geomagnetically active periods. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. Selected for development by NASA, ICON will launch in early 2017 into a low-inclination orbit that is particularly well suited to address the above-noted scientific problems and to make a number of coordinated measurements with other ground- and space-based facilities at low and middle latitudes. The ICON Observatory carries a compliment of 4 instruments on the nadir facing payload integration plate.

  13. Convective cell generation by kinetic Alfven wave turbulence in the auroral ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Wu, D. J.; Yu, M. Y.

    2012-06-15

    Modulation of convective cells by kinetic Alfven wave (KAW) turbulence is investigated. The interaction is governed by a nonlinear dispersion relation for the convective cells. It is shown that KAW turbulence is disrupted by excitation of the large-scale convective motion through a resonant instability. Application of the results to the auroral ionosphere shows that cross-scale coupling of the KAW turbulence and convective cells plays an important role in the evolution of ionospheric plasma turbulence.

  14. Microbiological studies on the radiation environment of the ionosphere and stratosphere.

    PubMed

    Petras, E; Bisa, K

    1968-01-01

    Rocket, balloon and laboratory experiments have been performed in order to study the survival chances of microorganisms, which exist under the environmental conditions of ionosphere and stratosphere. The main results are: 1. Not only near the earth, but also in the stratosphere and even in the ionosphere, microorganisms are endangered primarily by UV- and EUV-light irradiation. 2. The observed effect of more penetrating kinds of radiation was relatively unimportant. High-vacuum and temperature effects have not been observed at all. Even membrane filters and thin protein layers protected the exposed spores of Bacillus subtilis var. niger (= Bac. globigii) in a clear-cut manner. 3. UV-light with a wavelength between 200 and 300 nm reduces the number of cells able to divide much quicker, than EUV-light of the same energy level does, but damages caused by EUV-light can not be reversed by photoreactivation. 4. Microbes which have been damaged by solar radiation, can be photoreactivated to a degree. Photoreactivation is high after exposure near the Earth and significant after exposure within the stratosphere. 5. After exposure to ionospheric irradiations no changes in the antigenic behavior of E. coli cells could be detected.

  15. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  16. Effects of Earth's curvature in full-wave modeling of VLF propagation

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Lehtinen, N. G.; Inan, U. S.; Stanford VLF Group

    2011-12-01

    We show how to include curvature in the full-wave finite element approach to calculate ELF/VLF wave propagation in horizontally stratified earth-ionosphere waveguide. A general curvilinear stratified system is considered, and the numerical solutions of full-wave method in curvilinear system are compared with the analytic solutions in the cylindrical and spherical waveguides filled with an isotropic medium. We calculate the attenuation and height gain for modes in the Earth-ionosphere waveguide, taking into account the anisotropicity of ionospheric plasma, for different assumptions about the Earth's curvature, and quantify the corrections due to the curvature. The results are compared with the results of previous models, such as LWPC, as well as with ground and satellite observations, and show improved accuracy compared with full-wave method without including the curvature effect.

  17. Solitons and ionospheric modification

    NASA Technical Reports Server (NTRS)

    Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.

    1982-01-01

    The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.

  18. Comparison of global and regional ionospheric models

    NASA Astrophysics Data System (ADS)

    Ranner, H.-P.; Krauss, S.; Stangl, G.

    2012-04-01

    Modelling of the Earth's ionosphere means the description of the variability of the vertical TEC (Total Electron Content) in dependence of geographic latitude and longitude, height, diurnal and seasonal variation as well as solar activity. Within the project GIOMO (next Generation near real-time IOnospheric MOdels) the objectives are the identification and consolidation of improved ionospheric modelling technologies. The global models Klobuchar (GPS) and NeQuick (currently in use by EGNOS, in future used by Galileo) are compared to the IGS (International GNSS Service) Final GIM (Global Ionospheric Map). Additionally a RIM (Regional Ionospheric Map) for Europe provided by CODE (Center for Orbit Determination in Europe) is investigated. Furthermore the OLG (Observatorium Lustbühel Graz) regional models are calculated for two test beds with different latitudes and extensions (Western Austria and the Aegean region). There are three different approaches, two RIMs are based on spherical harmonics calculated either from code or phase measurements and one RIM is based on a Taylor series expansion around a central point estimated from zero-difference observations. The benefits of regional models are the local flexibility using a dense network of GNSS stations. Near real-time parameters are provided within ten minutes after every clock hour. All models have been compared according to their general behavior, the ability to react upon extreme solar events and the robustness of estimation. A ranking of the different models showed a preference for the RIMs while the global models should be used within a fall-back strategy.

  19. Faraday Rotation of Automatic Dependent Surveillance-Broadcast (ADS-B) Signals as a Method of Ionospheric Characterization

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Kabin, K.; Noël, J.-M.

    2017-10-01

    Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices that are installed on most commercial aircraft. These radio waves can be detected by satellites in low Earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this manuscript we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick ionospheric model.

  20. Role of hot oxygen in Venusian ionospheric ion energetics and supersonic antisunward flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, W.C.

    1990-02-01

    The column heating rate of the dayside Venus ionospheric ion gas resulting from transfer of energy from the hot oxygen component of the neutral atmosphere is estimated and found equal to that which, when inserted into ionospheric models at the ionopause, raises the calculated temperature to measured values. The transfer of energy is effected through resonant charge exchange between the relatively cold ionospheric O{sup +} ions and the hot oxygen neutrals. The hot oxygen density in the nightside hemisphere does not appear to play a significant role in the nightside ion energetics. The hot oxygen neutral gas flowing across themore » terminator from its dayside source to its nightside sink will exchange momentum with the antisunward flowing ionospheric gas. Although the flow rate of hot oxygen can be estimated only crudely, the estimated rate of deposition and absorption is comparable to that produced by the plasma pressure gradient and should be included in numerical studies of the terminator ionospheric wind.« less

  1. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O.

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radiomore » transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.« less

  2. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  3. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Chen, Curtis

    2010-01-01

    Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.

  4. Asteroid impacts on terrestrial planets: the effects of super-Earths and the role of the ν6 resonance

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy L.; Martin, Rebecca G.; Lepp, Stephen; Livio, Mario

    2018-01-01

    With N-body simulations of a planetary system with an asteroid belt, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the ν6 secular resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the Solar system is somewhat special in its lack of a super-Earth mass planet in the inner Solar system. We therefore first consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M⊕ and a separation greater than about 0.7 au. For a super-Earth which is interior to the Earth's orbit, the number of asteroids colliding with Earth increases the closer the super-Earth is to the Earth's orbit. This is the result of multiple secular resonance locations causing more asteroids to be perturbed on to Earth-crossing orbits. When the super-Earth is placed exterior to Earth's orbit, the collision rate decreases substantially because the ν6 resonance no longer exists in the asteroid belt region. We also find that changing the semimajor axis of Saturn leads to a significant decrease in the asteroid collision rate, though increasing its mass increases the collision rate. These results may have implications for the habitability of exoplanetary systems.

  5. Development and Implementation of an Empirical Ionosphere Variability Model

    NASA Technical Reports Server (NTRS)

    Minow, Joesph I.; Almond, Deborah (Technical Monitor)

    2002-01-01

    Spacecraft designers and operations support personnel involved in space environment analysis for low Earth orbit missions require ionospheric specification and forecast models that provide not only average ionospheric plasma parameters for a given set of geophysical conditions but the statistical variations about the mean as well. This presentation describes the development of a prototype empirical model intended for use with the International Reference Ionosphere (IRI) to provide ionospheric Ne and Te variability. We first describe the database of on-orbit observations from a variety of spacecraft and ground based radars over a wide range of latitudes and altitudes used to obtain estimates of the environment variability. Next, comparison of the observations with the IRI model provide estimates of the deviations from the average model as well as the range of possible values that may correspond to a given IRI output. Options for implementation of the statistical variations in software that can be run with the IRI model are described. Finally, we provide example applications including thrust estimates for tethered satellites and specification of sunrise Ne, Te conditions required to support spacecraft charging issues for satellites with high voltage solar arrays.

  6. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Ionospheric Profiling Through Nonlinear Dielectric Response to Electron Density*

    NASA Astrophysics Data System (ADS)

    Moses, R. W.; Jacobson, A. R.

    2002-12-01

    It is well known that the total electron content (TEC) along a line of sight in the ionosphere can be extracted from the frequency-dependent time lag measured in transionospheric RF signals [1]. For five years the FORTE satellite has been used to develop a substantial data base of transionospheric signals originating in both lightning and man-made sources. Here, we use signals generated by the Los Alamos Portable Pulser (LAPP) [2] and recorded by FORTE as input to a multi-layer computer model of RF wave propagation in the ionosphere, including Faraday rotation in the Earth's magnetic field. Nonlinearities in both the frequency dependence of the group velocity and the optical pathlength are modeled and matched to FORTE data to infer details of the vertical profile of electron density. Using the International Reference Ionosphere [3] as a profile model, we show how the vertical TEC, peak electron density, and ionospheric thickness can be extracted even at large transmitter-to-satellite separations. [1] Roussel-Dupre, R. A., A. R. Jacobson, and L. A. Triplett, Radio Sci., 36, 1615 (2001). [2] Massey, R.S., S.O. Knox, R.C. Franz, D.N. Holden, and C.T. Rhodes, Radio Sci., 33, 1739 (1998). [3] Bilitza, D., "International Reference Ionosphere 1990," NSSDC/WDC-A-R&S 90-92. *Work supported by USDOE

  8. Survey of localized solar flare signatures in the ionosphere with GNSS, VLF, and GOES observations

    NASA Astrophysics Data System (ADS)

    Blevins, S. M.; Hayes, L.; Collado-Vega, Y. M.; Michael, B. P.; Noll, C. E.

    2017-12-01

    Global navigation satellite system (GNSS) phase measurements of the total electron content (TEC) and ionospheric delay are sensitive to sudden increases in electron density in the layers of the Earth's ionosphere. These sudden ionospheric disruptions, or SIDs, are due to enhanced X-ray and extreme ultraviolet radiation from a solar flare that drastically increases the electron density in localized regions. SIDs are solar flare signatures in the Earth's ionosphere and can be observed with very low frequency (VLF 3-30 kHz) monitors and dual-frequency GNSS (L1 = 1575.42 MHz, L2 = 1227.60 MHz) receivers that probe lower (D-region) to upper (F-region) ionospheric layers, respectively. Data from over 500 solar flare events, spanning April 2010 to July 2017, including GOES C-, M-, and X-class solar flares at various intensities, were collected from the Space Weather Database Of Notifications, Knowledge, Information (DONKI) developed at the NASA Goddard Space Flight Center (GSFC) Community Coordinated Modeling Center (CCMC). Historical GOES satellite (NOAA) X-ray flux (NASA GSFC CCMC integrated Space Weather Analysis system (iSWA)), and VLF SID (Stanford University Solar SID Space Weather Monitor program) time series data are available for all solar flare events of the sample set. We use GNSS data archived at the NASA GSFC Crustal Dynamics Data Information System (CDDIS) to characterize the F-region reactions to the increased ionization, complementing the ground-based D-region (VLF), and space-based X-ray observations (GOES). CDDIS provides GNSS data with 24-hour coverage at a temporal resolution of 30 seconds from over 500 stations. In our study we choose 63 stations, spanning 23 countries at a variety of geographic locations to provide continuous coverage for all solar flare events in the sample. This geographic distribution enables us to explore the effects of different solar flare intensities at localized regions in the Earths ionosphere around the globe. The GNSS

  9. A future Chinese mission proposed to investigate the coupling of the Earth's magnetoshpere, ionosphere and thermoshpere

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, C.; Xu, J.

    2013-12-01

    Under the support of Chinese Strategy Pioneer Program for space science, we are developing a mission to investigate a key question for space weather. The Earth's magnetosphere, ionosphere and thermosphere (MIT) are crucial regions for the space and they are coupling together through exchange of energy, momentum and mass. The mission, named as MIT, focuses on the polar upflow ions which are vital for the understanding of the physical processes relating to the MIT coupling. The mission plans a constellation composed of four spacecrafts, each spacecraft has its own orbit and crosses the polar region at the nearly the same time but at different altitude. With particles detectors, field detectors and imagers onboard each spacecraft, we will be able to track the polar upflow ions and study the acceleration mechanism at different altitude. Currently we have determined the orbits, the payloads for each the spacecraft and the expected lunch time is 2019 to 2020.

  10. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.

    2014-05-01

    Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  11. Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila

    2015-04-01

    Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss

  12. Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Williams, D. J.; Mukai, T.; Mcentire, R. W.; Jacquey, C.; Angelopoulos, V.; Lui, A. T. Y.; Kokubun, S.; Fairfield, D. H.

    1994-01-01

    Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.

  13. Implementation of an Electronic Ionosonde to Monitor the Earth's Ionosphere via a Projected Column through USRP.

    PubMed

    Barona Mendoza, Jhon Jairo; Quiroga Ruiz, Carlos Fernando; Pinedo Jaramillo, Carlos Rafael

    2017-04-25

    This document illustrates the processes carried out for the construction of an ionospheric sensor or ionosonde, from a universal software radio peripheral (USRP), and its programming using GNU-Radio and MATLAB. The development involved the in-depth study of the characteristics of the ionosphere, to apply the corresponding mathematical models used in the radar-like pulse compression technique and matched filters, among others. The sensor operates by firing electromagnetic waves in a frequency sweep, which are reflected against the ionosphere and are received on its return by the receiver of the instrument, which calculates the reflection height through the signal offset. From this information and a series of calculations, the electron density of the terrestrial ionosphere could be obtained. Improving the SNR of received echoes reduces the transmission power to a maximum of 400 W. The resolution associated with the bandwidth of the signal used is approximately 5 km, but this can be improved, taking advantage of the fact that the daughterboards used in the USRP allow a higher sampling frequency than the one used in the design of this experiment.

  14. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  15. Co-located ionospheric and geomagnetic disturbances caused by great earthquakes

    NASA Astrophysics Data System (ADS)

    Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-07-01

    Despite primary energy disturbances from the Sun, oscillations of the Earth surface due to a large earthquake will couple with the atmosphere and therefore the ionosphere, to generate so-called coseismic ionospheric disturbances (CIDs). In the cases of 2008 Wenchuan and 2011 Tohoku earthquakes, infrasonic waves accompanying the propagation of seismic Rayleigh waves were observed in the ionosphere by a combination of techniques, total electron content, HF Doppler, and ground magnetometer. This is the very first report to present CIDs recorded by different techniques at co-located sites and profiled with regard to changes of both ionospheric plasma and current (geomagnetic field) simultaneously. Comparison between the oceanic (2011 Tohoku) and inland (2008 Wenchuan) earthquakes revealed that the main directional lobe of latter case is more distinct which is perpendicular to the direction of the fault rupture. We argue that the different fault slip (inland or submarine) may affect the way of couplings of lithosphere with atmosphere. Zhao, B., and Y. Hao (2015), Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res., doi:10.1002/2015JA021035. Hao, Y. Q., et al. (2013), Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res., doi:10.1002/jgra.50326. Hao, Y. Q., et al. (2012), Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., doi:10.1029/2011JA017036.

  16. Ionospheric Outflow in the Magnetosphere: Circulation and Consequences

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.

    2017-12-01

    Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step towards understanding the role of this plasma source in the magnetosphere. Such simulations have revealed the importance of outflow in populating the plasma sheet and inner magnetosphere as a function of outflow source characteristics. More importantly, these experiments have shown how outflow can control global dynamics, including tail dynamics and dayside reconnection rate. The broad impact of light and heavy ion outflow can create non-linear feedback loops between outflow and the magnetosphere. This paper reviews some of the most important revelations from global magnetospheric modeling that includes ionospheric outflow of light and heavy ions. It also introduces new advances in outflow modeling and coupling outflow to the magnetosphere.

  17. Resonance electronic Raman scattering in rare earth crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  18. Observation of the nearly diurnal resonance of the earth using a laser strainmeter

    NASA Technical Reports Server (NTRS)

    Levine, J.

    1978-01-01

    The response of the Earth to the diurnal and semidiurnal tidal excitations was studied. Results show that there is significant structure in the response of the earth to tidal excitations near one cycle/sidereal day. This structure agrees with the resonance behavior predicted from the calculations of the forced elasticgravitational response of an elliptical, rotating earth with a liquid outer core. The data is used to test for possible preferred frames and spatial anisotropies. Upper bounds on the parameterized post-Newtonian (PPN) parameters were examined.

  19. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.

    2016-09-01

    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.

  20. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites

    PubMed Central

    Yang, Haiyan; Yang, Xuhai; Zhang, Zhe; Zhao, Kunjuan

    2018-01-01

    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13 and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly. PMID:29495506

  1. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Zhang, Zhe; Zhao, Kunjuan

    2018-02-27

    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC 12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC 13 and much higher than VTEC 23 . Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly.

  2. Imaging of near-Earth space plasma.

    PubMed

    Mitchell, Cathryn N

    2002-12-15

    This paper describes the technique of imaging the ionosphere using tomographic principles. It reports on current developments and speculates on the future of this research area. Recent developments in computing and ionospheric measurement, together with the sharing of data via the internet, now allow us to envisage a time when high-resolution, real-time images and 'movies' of the ionosphere will be possible for radio communications planning. There is great potential to use such images for improving our understanding of the physical processes controlling the behaviour of the ionosphere. While real-time images and movies of the electron concentration are now almost possible, forecasting of ionospheric morphology is still in its early stages. It has become clear that the ionosphere cannot be considered as a system in isolation, and consequently new research projects to link together models of the solar-terrestrial system, including the Sun, solar wind, magnetosphere, ionosphere and thermosphere, are now being proposed. The prospect is now on the horizon of assimilating data from the entire solar-terrestrial system to produce a real-time computer model and 'space weather' forecast. The role of tomography in imaging beyond the ionosphere to include the whole near-Earth space-plasma realm is yet to be realized, and provides a challenging prospect for the future. Finally, exciting possibilities exist in applying such methods to image the atmospheres and ionospheres of other planets.

  3. On the determination and investigation of the terrestrial ionospheric refractive indices using GEOS-3/ATS-6 satellite-to-satellite tracking data

    NASA Technical Reports Server (NTRS)

    Liu, A. S.

    1978-01-01

    When the radio link between two satellites (GEOS-3/ATS-6) is intercepted by the earth's ionosphere and neutral atmosphere, a change in the Doppler frequency results. Travel through the atmosphere causes the Doppler phase to be advanced in the ionosphere's portion and retarded in the neutral portion of the atmosphere. Analysis of the shortening and lengthening of the phase of the Satellite-to-Satellite Tracking (SST) data that passed within 40-700 km above the earth's surface during its ATS-6 to GEOS-3 to ATS-6 path, caused by the atmosphere, results in refractivity versus height profiles. The SST Doppler data were used directly to adjust the GEOS-3 orbit. Perturbation from the Moon, Sun and a 15th order/degree earth gravity field were included in the orbit solution. This orbit was continued through the occultation period and a model ionosphere was estimated by a least-square adjustment of the Chapman ionosphere parameters from the SST data residuals. The refractivity profile obtained by this model ionosphere was compared to a refractivity profile obtained by a direct integral inversion of the SST data residuals. Systematic differences between the 2 methods were caused by orbital errors, which propagated into the solution. The SST data yielded refractive index profiles in a novel economical manner because no additional or special on-board equipment were required.

  4. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  5. A Comprehensive Model of the Near-Earth Magnetic Field. Phase 3

    NASA Technical Reports Server (NTRS)

    Sabaka, Terence J.; Olsen, Nils; Langel, Robert A.

    2000-01-01

    The near-Earth magnetic field is due to sources in Earth's core, ionosphere, magnetosphere, lithosphere, and from coupling currents between ionosphere and magnetosphere and between hemispheres. Traditionally, the main field (low degree internal field) and magnetospheric field have been modeled simultaneously, and fields from other sources modeled separately. Such a scheme, however, can introduce spurious features. A new model, designated CMP3 (Comprehensive Model: Phase 3), has been derived from quiet-time Magsat and POGO satellite measurements and observatory hourly and annual means measurements as part of an effort to coestimate fields from all of these sources. This model represents a significant advancement in the treatment of the aforementioned field sources over previous attempts, and includes an accounting for main field influences on the magnetosphere, main field and solar activity influences on the ionosphere, seasonal influences on the coupling currents, a priori characterization of ionospheric and magnetospheric influence on Earth-induced fields, and an explicit parameterization and estimation of the lithospheric field. The result of this effort is a model whose fits to the data are generally superior to previous models and whose parameter states for the various constituent sources are very reasonable.

  6. Simulation and Observation of Acoustic-Gravity Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Viacheslav; Andreeva, Elena; Krysanov, Boris; Nesterov, Ivan

    Atmospheric and ionospheric perturbations associated with the acoustic-gravity waves (AGW) with typical frequencies of a few hertz -millihertz are considered. These events may be caused by the influence from space and atmosphere as well as by oscillations of the Earth surface and other near-surface phenomena. The surface sources include long-period oscillations of the Earth's surface, earthquakes, explosions, thermal heating, seisches and tsunami waves. The wavelike phenomena manifest themself as travelling disturbances of air (in the atmosphere) and of electron density (in the ionosphere). Travelling ionospheric disturbances (TIDs) are well detected by radio physical methods. AGW generation by near-surface sources is modeled by the numerical solution of the equation of geophysical fluid dynamics for different sources in two-dimensional non-linear dissipative compressible atmosphere. The numerical calculations are based on the FCT (Flux Corrected Transport) technique of the second order accuracy in time and space. Different scenarios of AGW generation are analyzed. The AGW caused by the surface sources within a few hertz-millihertz frequency band appear at the altitudes of middle atmosphere and ionosphere as the disturbances with typical scales from a few kilometers to several hundreds kilometers. Such structures can be successfully monitored by the methods of satellite radio tomography (RT). For the purposes of RT diagnostics of such disturbances, low-orbiting navigational satellites like Transit and Tsikada and high-orbiting navigation systems GPS/GLONASS are used. The results of numerical modeling of AGW generation by the surface sources are compared with the data of RT sounding. Also, generation of AGW by volumetric sources such as particle precipitation, rocket launching, heating by high-frequency radiation and other are considered. The obtained results proved the capability of RT methods of detecting and distinguishing between TIDs caused by AGW generated by

  7. Reconstruction of the ionospheric electron density by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana

    2015-04-01

    The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be

  8. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations.

    PubMed

    Nykiel, Grzegorz; Zanimonskiy, Yevgen M; Yampolski, Yuri M; Figurski, Mariusz

    2017-10-10

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick's Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.

  9. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations

    PubMed Central

    Zanimonskiy, Yevgen M.; Yampolski, Yuri M.; Figurski, Mariusz

    2017-01-01

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too. PMID:28994718

  10. Studying the influence of strong meteorological disturbances in the Earth's lower atmosphere on variations of ionospheric parameters in the Asian region of Russia

    NASA Astrophysics Data System (ADS)

    Chernigovskaya, Marina; Kurkin, Vladimir; Orlov, Igor; Oinats, Alexey; Sharkov, Eugenii

    2010-05-01

    Short-period temporal variations of ionospheric parameters were analyzed to study probabilities of manifestation of strong meteorological disturbances in the Earth's lower atmosphere in variations of upper atmosphere parameters in a zone far removed from a disturbance source. In the analysis, we used data on maximum observed frequencies (MOF) of oblique sounding (OS) signals along Norilsk-Irkutsk, Magadan-Irkutsk, and Khabarovsk-Irkutsk paths in East Siberia and the Far East. These data were obtained during solar minimum at equinoxes (March, September) in 2008-2009. Analyzing effects of wave disturbances in ionospheric parameters, we take into account helio-geomagnetic and meteorological conditions in regions under study to do an effective separation between disturbances associated with magnetospheric-ionospheric coupling and those induced by the influence of the lower atmosphere on the upper one. The frequency analysis we conducted revealed time intervals with higher intensity of short-period oscillations which may have been interpreted as manifestation of large-scale traveling ionospheric disturbances (TIDs) whose sources were internal gravity waves (IGWs) with periods of 1-5 hours. The complex analysis of helio-geomagnetic, ionospheric, and atmospheric data as well as data on tropical cyclones established that the detected TIDs were unrelated to helio-geomagnetic disturbances (2008-2009 exhibited solar minimum and quiet geomagnetic conditions). The analysis of other potential sources of the observed short-period wave disturbances shows that observed TIDs do not always coincide in time with passage of local meteorological fronts through the region of subionospheric points of OS paths and are not associated with passage of solar terminator. An attempt was made to connect a number of detected TIDs with ionospheric responses to tropical cyclones (TC) which were in active phase in the north-west of the Pacific Ocean during the periods considered. A considerable

  11. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  12. Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.

    PubMed

    Pérez-De-Tejada

    1999-11-01

    A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics.

  13. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Bilitza, Dieter

    2017-07-01

    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  14. Study pre-earthquake features in the Earth atmosphere-ionosphere environment associated with 2016 Amatrice-Norcia (Central Italy) seismic sequence

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Giuliani, Gioacchino; Hernández-Pajares, Manuel; García-Rigo, Alberto

    2017-04-01

    The 2016 Amatrice-Norcia (Central Italy) seismic sequence (M6.3, M6.1 and M6.5), became one of the unusual and important modern earthquake events. Recent studies indicate (including April 6th 2009 Abruzzo earthquake) an enhanced coupling between the atmospheric boundary layer and the ionosphere, which have been proposed to be related with large (>M6) earthquakes. This relationship has been studied for the 2016 Central Italy sequence using an integrated set of observations of five physical and environmental parameters. We present observational data from January to November 2016 of five physical parameters- radon, seismicity, temperature of the atmosphere boundary layer, outgoing earth infrared radiation and GPS/TEC and their temporal and spatial variations several days before the onset of the Amatrice-Norcia earthquake sequence. The Aug 24 M6.2 foreshock was situated about 70 kilometers from the 2 stations of radon near L'Aquila. These data show an increase prior to the main earthquake beginning in July-August this enhancement of radon coincides (with some delay) with an increase in the atmospheric chemical potential (Aug 11) measured near the epicentral area from satellite. And subsequently from Aug12 there was an association with the acceleration of outgoing infrared radiation observed on the top of the atmosphere from EOS satellite (Aug 16). The GPS/Total Electron Content data indicate an increase of electron concentration in ionosphere on August 22 and October 26, 1-2 days before the M6.2 foreshock and the M6.5 main shock on Oct 30, 2016. Both ground and satellite data have in common that they were evident in about the last ten days before the M6.2 foreshock of Aug 24 and continuously up to the main shock of Oct 30, although the radon variations started 2 months earlier. We examined the possible correlation between different pre-earthquake signals in the frame of a multidisciplinary investigation of Lithosphere -Atmosphere -Ionosphere coupling concept.

  15. Performance of ionospheric maps in support of long baseline GNSS kinematic positioning at low latitudes

    NASA Astrophysics Data System (ADS)

    Park, J.; Sreeja, V.; Aquino, M.; Cesaroni, C.; Spogli, L.; Dodson, A.; De Franceschi, G.

    2016-05-01

    Ionospheric scintillation occurs mainly at high and low latitude regions of the Earth and may impose serious degradation on GNSS (Global Navigation Satellite System) functionality. The Brazilian territory sits on one of the most affected areas of the globe, where the ionosphere behaves very unpredictably, with strong scintillation frequently occurring in the local postsunset hours. The correlation between scintillation occurrence and sharp variations in the ionospheric total electron content (TEC) in Brazil is demonstrated in Spogli et al. (2013). The compounded effect of these associated ionospheric disturbances on long baseline GNSS kinematic positioning is studied in this paper, in particular when ionospheric maps are used to aid the positioning solution. The experiments have been conducted using data from GNSS reference stations in Brazil. The use of a regional TEC map generated under the CALIBRA (Countering GNSS high-Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) project, referred to as CALIBRA TEC map (CTM), was compared to the use of the Global Ionosphere Map (GIM), provided by the International GNSS Service (IGS). Results show that the use of the CTM greatly improves the kinematic positioning solution as compared with that using the GIM, especially under disturbed ionospheric conditions. Additionally, different hypotheses were tested regarding the precision of the TEC values obtained from ionospheric maps, and its effect on the long baseline kinematic solution evaluated. Finally, this study compares two interpolation methods for ionospheric maps, namely, the Inverse Distance Weight and the Natural Neighbor.

  16. Observations of weak ionosphere disturbances on the Kharkov incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Lysenko, Valery; Cherniak, Iurii

    The ionosphere plasma characteristics are responding on variations of solar and magnetic activity, high-power processes in the Earth atmosphere and lithosphere. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and radiophysical problems solution. The method of incoherent scatter (IS) of radiowaves allows determining experimentally as regular variations of electronic concentration Ne and concomitant ionosphere parameters, and their behaviour during natural and antropogeneous origin disturbances. The equipment and measurement technique, developed by authors, are allows obtaining reliable data about an ionosphere behaviour during various origin and intensity perturbations. Oservations results of main parameters IS signal and ionosphere plasma during weak magnetic storm, solar eclipse, ionosphere disturbances caused by start of the high-power rocket are presented. Experimentally obtained on the Kharkov IS radar altitude-temporary dependences of disturbed ionosphere plasma parameters during weak intensity magnetic storm 04-06 April 2006 (Kp = 5, Dst = -100 nTl) were adduced. During a main storm phase the positive perturbation was observed (Ne is increased in 1.3 times), April 5, at maximum Dst - negative perturbation (Ne is decreased in 1.6 times), April 6 - positive perturbation (the second positive storm phase - Ne was increased at 1.33 times). During negative ionosphere storm the height of a F2 layer maximum was increased on 30-40 km, ionic temperature in the day is increased on 150K, electronic temperature is increased on 600K. For date 29.03.2006, when take place partial Sun eclipse (disk shadow factor 73 During launch heavy class rocket "Proton-K" december 25, 2006 from Baikonur cosmodrome (distance up to a view point of 2500 km) the perturbations in close space were observed. By measurements results of ionosphere plasma cross-section two disturbed areas were registered. First was observed through 8 mines

  17. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  18. Solar Cycle and Geomagnetic Activity Variation of Topside Ionospheric Upflow as Measured by DMSP

    NASA Astrophysics Data System (ADS)

    Coley, W. R.; Hairston, M. R.

    2016-12-01

    Under the proper conditions a considerable amount of plasma can escape the Earth's ionosphere into the magnetosphere. Indeed, there are indications that at least part of the time the ionosphere may be the dominant source of ions for the plasma sheet and near-Earth portion of the magnetosphere. The upward flux of thermal O+ from the lower part of the topside ionosphere actively provides plasma into intermediate altitudes where they may be given escape energy by various mechanisms. Previous work has indicated that there is considerable time variation of upwelling low energy ionospheric plasma to these intermediate altitudes during moderate to high solar activity. Here we use the SSIES thermal plasma instruments on board the Defense Meteorological Satellite Program (DMSP) F13-F19 series of spacecraft to examine the vertical flux of thermal O+ from the deep solar minimum of 2008-2009 to the moderately active period of 2012-2015. Separately integrating the upward and downward fluxes over the high-latitude region (auroral zone and polar cap) allows the observation of the total upflow/downflow as a function of the current geomagnetic conditions, solar cycle, and solar wind conditions. In particular we investigate the incidence of high upward flux events as a function of solar wind velocity and density during the deepest solar minimum since the space age began.

  19. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  20. Electrodynamics of ionospheric weather over low latitudes

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil Ali

    2016-12-01

    The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the

  1. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yu; Cao Jinxiang; Wang Jian

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ionmore » (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.« less

  2. TRIO (Triplet Ionospheric Observatory) Mission

    NASA Astrophysics Data System (ADS)

    Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.

    2009-12-01

    Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  3. The Role of the Upper Atmosphere for Dawn-Dusk and Interhemispheric Differences in the Coupled Magnetosphere-Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Doornbos, E.; Haaland, S.

    2016-12-01

    Solar wind and IMF interaction with the geomagnetic field sets up a large-scale plasma circulation in the Earth's magnetosphere and the magnetically tightly connected ionosphere. The ionospheric ExB ion drift at polar latitudes accelerates the neutral gas as a nondivergent momentum source primarily in force balance with pressure gradients, while the neutral upper thermosphere circulation is essentially modified by apparent forces due to Earth's rotation (Coriolis and centrifugal forces) as well as advection and viscous forces. The apparent forces affect the dawn and dusk side asymmetrically, favouring a large dusk-side neutral wind vortex, while the non-dipolar portions of the Earth's magnetic field constitute significant hemispheric differences in magnetic flux and field configurations that lead to essential interhemispheric differences of the ion-neutral interaction. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns based on measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP, GOCE, and Swarm spacecraft, respectively.

  4. From the Ionosphere to the Classroom: Exploring the Earth's Upper Atmosphere with CINDI

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Hairston, M. R.

    2004-12-01

    CINDI (Coupled Ion Neutral Dynamic Investigation) is a NASA funded instrument scheduled for an early 2005 launch by the Air Force on board the C/NOFS (Communications/Navigations Outage Forecast System) satellite. In preparation for this launch, our education and public outreach program is well under way, and focuses on making the difficult-to-visualize science of the ionosphere understandable to students in middle school and above. Our formal education strategy is to create engaging and usable materials that meet teachers' needs and integrate well into existing curriculum in today's era of high stakes testing. We will present our middle school educator guide, a preview of our new CINDI comic book, highlights from our 2004 educator workshops, and future plans to bring the ionosphere into classrooms around the country.

  5. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  6. Influence of interplanetary solar wind sector polarity on the ionosphere

    NASA Astrophysics Data System (ADS)

    liu, jing

    2014-05-01

    Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability. A solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbance and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of 15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southward Bz components in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at solar minimum relative to it during other parts of solar cycle, which might be associated with the difference in longevity of major interplanetary solar wind drivers perturbing the Earth's environment in different phases of solar cycle.

  7. Case study of inclined sporadic E layers in the Earth's ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.

    2018-04-01

    We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.

  8. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar.

    PubMed

    Occhipinti, Giovanni; Aden-Antoniow, Florent; Bablet, Aurélien; Molinie, Jean-Philippe; Farges, Thomas

    2018-01-24

    Surface waves emitted after large earthquakes are known to induce atmospheric infrasonic waves detectable at ionospheric heights using a variety of techniques, such as high frequency (HF) Doppler, global positioning system (GPS), and recently over-the-horizon (OTH) radar. The HF Doppler and OTH radar are particularly sensitive to the ionospheric signature of Rayleigh waves and are used here to show ionospheric perturbations consistent with the propagation of Rayleigh waves related to 28 and 10 events, with a magnitude larger than 6.2, detected by HF Doppler and OTH radar respectively. A transfer function is introduced to convert the ionospheric measurement into the correspondent ground displacement in order to compare it with classic seismometers. The ground vertical displacement, measured at the ground by seismometers, and measured at the ionospheric altitude by HF Doppler and OTH radar, is used here to compute surface wave magnitude. The ionospheric surface wave magnitude (M s iono ) proposed here introduces a new way to characterize earthquakes observing the signature of surface Rayleigh waves in the ionosphere. This work proves that ionospheric observations are useful seismological data to better cover the Earth and to explore the seismology of the Solar system bodies observing the ionosphere of other planets.

  9. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  10. The Ionospheric Connection Explorer Mission: Mission Goals and Design

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S. L.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Korpela, E. J.; Taylor, E. R.; Craig, W. W.; Harris, S. E.; Bester, M.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gérard, J.-C.; Harlander, J. M.; Huba, J. D.; Hubert, B.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. R.; Raftery, C.; Rochus, P.; Siegmund, O. H. W.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.; Rider, K. A.; Sirk, M. M.

    2018-02-01

    The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

  11. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.; Triplett, Laurie A.

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: “simple” where the time delay goes as the inverse of the frequency-squared, “full Appleton-Hartree”, the “BobRD integrals” and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the causemore » of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.« less

  12. Measurements of ionospheric effects on wideband signals at VHF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.

    1998-08-17

    Radars operating at very high frequency (VHF) have enhanced foliage and ground penetration compared to radars operated at higher frequencies. For example, VHF systems operated from airplanes have been used as synthetic aperture radars (SAR); a satellite-borne VHF SAR would have considerable utility. In order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. A satellite-borne radar would likely have to operate at altitudes above the maximum density of the ionosphere; the presence of the ionosphere in the propagation path of the radar will cause a deterioration of the performancemore » because of dispersion over the bandwidth. The author presents measurements of the effects of the ionosphere on radar signals propagated from a source on the surface of the Earth and received by instruments on the FORTE satellite at altitudes of 800 km. The author employs signals with a 90 MHz bandwidth centered at 240 MHz with a continuous digital recording period of 0.6 s.« less

  13. Satellite probes plasma processes in earth orbit

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.; Reasoner, David L.

    1992-01-01

    The mission of the DOD/NASA Combined Release and Radiation Effects Satellite (CRRES) is to deepen understanding of the earth's near-space environment, including the radiation belts and the ionosphere; this will help spacecraft designers protect against radiation-belt particles that affect onboard electronics, solar panel arrays, and crewmembers. Attention is presently given to CRRES's study of ionospheric plasma processes through releases of Ba, Ca, Sr, and Li at altitudes of 400-36,000 km.

  14. Earth Science

    NASA Image and Video Library

    1992-07-18

    Workers at Launch Complex 17 Pad A, Kennedy Space Center (KSC) encapsulate the Geomagnetic Tail (GEOTAIL) spacecraft (upper) and attached payload Assist Module-D upper stage (lower) in the protective payload fairing. GEOTAIL project was designed to study the effects of Earth's magnetic field. The solar wind draws the Earth's magnetic field into a long tail on the night side of the Earth and stores energy in the stretched field lines of the magnetotail. During active periods, the tail couples with the near-Earth magnetosphere, sometimes releasing energy stored in the tail and activating auroras in the polar ionosphere. GEOTAIL measures the flow of energy and its transformation in the magnetotail and will help clarify the mechanisms that control the imput, transport, storage, release, and conversion of mass, momentum, and energy in the magnetotail.

  15. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  16. Self-consistent modelling of the polar thermosphere and ionosphere to magnetospheric convection and precipitation (invited review)

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T.; Quegan, S.; Moffett, R.

    1986-01-01

    It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap.

  17. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  18. First CLUSTER plasma and magnetic field measurements of flux transfer events in conjunction with their ionospheric flow signatures

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Taylor, M. G.; Lavraud, B.; Cowley, S. W.; Lester, M.; Fenrich, F. R.; Fazakerley, A.; Räme, H.; Sofko, G.; Balogh, A.

    2001-12-01

    The launch of the Cluster satellite constellation allows, amongst other things, the study of the small-scale spatio-temporal structures in the near-Earth geospace. We present a case study of the high-altitude northern hemispheric cusp by the Cluster-II spacecraft constellation under southward IMF conditions. During this interval Cluster traversed the northern hemispheric dayside region and crossed the magnetopause close to the noon-midnight meridian, and observed both the plasma and magnetic field observations of transient reconnection for a number of hours. Throughout this interval, the ionospheric footprint of the spacecraft maps into the Canadian sector of the Earth's ionosphere into the Saskatoon and Kapuskasing HF radars fields-of-view. This SuperDARN HF radar pair observe the ionospheric flows generated by this transient reconnection during this interval at approximately the same magnetic latitude and local time. The calculated orientation of the reconnected flux tubes is found to be in accordance with the prevailing IMF conditions and the direction of motion of the excited ionospheric flows. We discuss these observations in terms of transient magnetic flux transfer and in terms of the size and location of the active reconnection X-line at the low-latitude magnetopause.

  19. ELF/VLF Wave Generation and Scattering from Modulated Heating of the Ionosphere at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.

    2017-12-01

    The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.

  20. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    NASA Astrophysics Data System (ADS)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  1. Numerical Simulation of Electromagnetic Field Variation in the Lithosphere-Atmosphere-Ionosphere Associated with Seismogenic Process in a Curvature Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhao, Z.; Wang, Y.; Huang, Q.

    2013-12-01

    The lithosphere-atmosphere- ionosphere (LAI) system formed an electromagnetic (EM) cavity that hosts the EM field excited by electric currents generated by lightning and other natural sources. There have also been numerous reports on variations of the EM field existing in LAI system prior to some significance earthquakes. We simulated the EM field in the lithosphere-ionosphere waveguide with a whole-earth model using a curvature coordinate by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and the EM wave in this 2D model. In the model we have observed the excitation of the Schumann Resonance (SR) as the background EM field generated by randomly placed electric-current impulses within the lowest 10 kilometers of the atmosphere. The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR reaching a steady state, an electric impulse is introduced in the shallow lithosphere to mimic the seismogenic process (pre-, co- and post-seismic) to assess the possible precursory effects on SR strength and frequency. The modeling results can explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events. The fundamental reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric signals from oceanic earthquake events into the LAI waveguide.

  2. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  3. Correlating Solar Wind Modulation with Ionospheric Variability at Mars from MEX and MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Kopf, A. J.; Morgan, D. D.; Halekas, J. S.; Ruhunusiri, S.; Gurnett, D. A.; Connerney, J. E. P.

    2017-12-01

    The synthesis of observations by the Mars Express and Mars Atmosphere and Volatiles Evolution (MAVEN) spacecraft allows for a unique opportunity to study variability in the Martian ionosphere from multiple perspectives. One major source for this variability is the solar wind. Due to its elliptical orbit which precesses over time, MAVEN periodically spends part of its orbit outside the Martian bow shock, allowing for direct measurements of the solar wind impacting the Martian plasma environment. When the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument aboard Mars Express is simultaneously sounding the ionosphere, the influence from changes in the solar wind can be observed. Previous studies have suggested a positive correlation, connecting ionospheric density to the solar wind proton flux, but depended on Earth-based measurements for solar wind conditions. More recently, research has indicated that observations of ionospheric variability from these two spacecraft can be connected in special cases, such as shock wave impacts or specific solar wind magnetic field orientations. Here we extend this to more general solar wind conditions and examine how changes in the solar wind properties measured by MAVEN instruments correlate with ionospheric structure and dynamics observed simultaneously in MARSIS remote and local measurements.

  4. On the Role of Ionospheric Ions in Sawtooth Events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2016-12-01

    Global multifluid simulations have suggested that ions of ionospheric origin play a key role in driving sawtooth events, particularly events driven by coronal mass ejections (CMEs), through a feedback mechanism.1,2 The energy input from the first substorm causes ion outflow, which is claimed to drive the next substorm. We show that in situ data from Cluster in the tail during sawtooth events do not support this hypothesis. We show two detailed event studies, one driven by a CME and one driven by a streaming interaction region (SIR), as well as a statistical survey of all sawtooth events for which Cluster tail data are available. While examples exist of nightside outflow reaching the mid-tail ( 19 RE) region during CME-driven events, the overwhelming majority of both CME-driven and SIR-driven sawtooth injections have ionospheric ions in this region originating from the cusp, where the outflow is predominantly directly driven by the solar wind. The 19 RE region is critical because that is the region where near-Earth neutral line reconnection occurs. We conclude that while ionospheric outflow may contribute to sawtooth events, the injections are not the result of a feedback between the tail and the ionosphere. 1O. J. Brambles et al. (2011), Science 332, 1183, doi:10.1126/science.1202869.2O. J. Brambles et al. (2013), JGR 118, 6026, doi:10.1002/jgra.50522.

  5. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    NASA Astrophysics Data System (ADS)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  6. How does the predicted geomagnetic main field variation alter the thermosphere-ionosphere storm-time response?

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Lu, G.; Richmond, A. D.

    2017-12-01

    Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with

  7. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of

  8. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solarmore » radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.« less

  9. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  10. Ionosphere Waves Service - A demonstration

    NASA Astrophysics Data System (ADS)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  11. The Ptolemaic Approach to Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliunas, V. M.

    2010-12-01

    The conventional treatment of ionospheric electrodynamics (as expounded in standard textbooks and tutorial publications) consists of a set of equations, plus verbal descriptions of the physical processes supposedly represented by the equations. Key assumptions underlying the equations are: electric field equal to the gradient of a potential, electric current driven by an Ohm's law (with both electric-field and neutral-wind terms), continuity of current then giving a second-order elliptic differential equation for calculating the potential; as a separate assumption, ion and electron bulk flows are determined by ExB drifts plus collision effects. The verbal descriptions are in several respects inconsistent with the equations; furthermore, both the descriptions and the equations are not compatible with the more rigorous physical understanding derived from the complete plasma and Maxwell's equations. The conventional ionospheric equations are applicable under restricted conditions, corresponding to a quasi-steady-state equilibrium limit, and are thus intrinsically incapable of answering questions about causal relations or dynamic developments. Within their limited range of applicability, however, the equations are in most cases adequate to explain the observations, despite the deficient treatment of plasma physics. (A historical precedent that comes to mind is that of astronomical theory at the time of Copernicus and for some decades afterwards, when the Ptolemaic scheme could explain the observations at least as well if not better than the Copernican. Some of the verbal descriptions in conventional ionospheric electrodynamics might be considered Ptolemaic also in the more literal sense of being formulated exclusively in terms of a fixed Earth.) I review the principal differences between the two approaches, point out some questions where the conventional ionospheric theory does not provide unambiguous answers even within its range of validity (e.g., topside and

  12. Global, real-time ionosphere specification for end-user communication and navigation products

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2010-12-01

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those

  13. Modeling of Mutiscale Electromagnetic Magnetosphere-Ionosphere Interactions near Discrete Auroral Arcs Observed by the MICA Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.

  14. HF-enhanced 4278-Å airglow: evidence of accelerated ionosphere electrons?

    NASA Astrophysics Data System (ADS)

    Fallen, C. T.; Watkins, B. J.

    2013-12-01

    We report calculations from a one-dimensional physics-based self-consistent ionosphere model (SCIM) demonstrating that HF-heating of F-region electrons can produce 4278-Å airglow enhancements comparable in magnitude to those reported during ionosphere HF modification experiments at the High-frequency Active Auroral Research Program (HAARP) observatory in Alaska. These artificial 'blue-line' emissions, also observed at the EISCAT ionosphere heating facility in Norway, have been attributed to arise solely from additional production of N2+ ions through impact ionization of N2 molecules by HF-accelerated electrons. Each N2+ ion produced by impact ionization or photoionization has a probability of being created in the N2+(1N) excited state, resulting in a blue-line emission from the allowed transition to its ground state. The ionization potential of N2 exceeds 18 eV, so enhanced impact ionization of N2 implies that significant electron acceleration processes occur in the HF-modified ionosphere. Further, because of the fast N2+ emission time, measurements of 4278-Å intensity during ionosphere HF modification experiments at HAARP have also been used to estimate artificial ionization rates. To the best of our knowledge, all observations of HF-enhanced blue-line emissions have been made during twilight conditions when resonant scattering of sunlight by N2+ ions is a significant source of 4278-Å airglow. Our model calculations show that F-region electron heating by powerful O-mode HF waves transmitted from HAARP is sufficient to increase N2+ ion densities above the shadow height through temperature-enhanced ambipolar diffusion and temperature-suppressed ion recombination. Resonant scattering from the modified sunlit region can cause a 10-20 R increase in 4278-Å airglow intensity, comparable in magnitude to artificial emissions measured during ionosphere HF-modification experiments. This thermally-induced artificial 4278-Å aurora occurs independently of any artificial

  15. Multi-instrumental Analysis of the Ionospheric Density Response to Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Astafyeva, E.

    2014-12-01

    Measurements provided by Low Earth Orbit (LEO) satellite missions have already proved to be very efficient in investigations of global redistribution of ionospheric plasma and thermosphere mass density during such phenomena as geomagnetic storms. LEO satellites have various instruments for research of the ionosphere response to the space weather events like GPS receiver for precise orbit determination (POD), total electron content estimation and radio occultation, altimeter, planar Langmuir probe, topside sounder, special detectors for particle fluxes, magnetometer etc. In this paper, we present results of joint analysis of LEO satellite data, in particular CHAMP, DMSP, JASON, as well as data provided by ground-based networks of GPS receivers and ionosonde stations for global ionospheric response to the geomagnetic disturbances. We use in-situ plasma density data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP-satellite and ground-based GPS-receivers to study occurrence and global distribution of ionospheric irregularities during the main phase of the storm. Using CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities - first is the region of the auroral oval at high latitudes of both hemispheres, the second one is the low-latitudes/equatorial region between Africa and South America. The interhemispheric asymmetry of the ionospheric irregularities intensity and occurrence in polar region is discussed. Analysis of the topside TEC, derived from CHAMP onboard GPS POD antenna, indicate the significant redistribution of the topside ionospheric plasma density in the equatorial, middle and high-latitude ionosphere during main and recovery phases of geomagnetic storm. Multi-instrumental data allow to analyze in detail the complex modification and dynamics of the upper atmosphere in different altitudinal, spatial and temporal scales.

  16. Influence of heating experiments on parameters of Schumann resonances

    NASA Astrophysics Data System (ADS)

    Agranat, Irina; Sivokon, Vladimir

    2017-10-01

    Recently the significant increase in intensity of researches in the field of the fissile impact on geophysical processes in various environments is noted. Special attention is paid to a research of impact on an ionosphere of a potent short-wave radio emission of heating stands. Today experiments on change of an ionosphere are made generally at stands HAARP, EISCAT in Tromse (Norway). Within the Russian campaign (Tomsk) EISCAT/heating (AARI_HFOX) made from October 19 to October 30, 2016 experiments on impact on an ionosphere F-layer by the radiation potent HF. For assessment of impact of these experiments on geophysical processes mathematical methods carried out the analysis of change of the parameters of the Schumann resonances received on the basis of data from the station of constant observation of the Schumann resonances in the city of Tomsk, the Tomsk State University (Russia).

  17. Effects of Ionospheric Hall Polarization on Magnetospheric Configurations and Dynamics in Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Yoshikawa, A.; Tanaka, T.

    2017-12-01

    We investigate how the M-I coupling and boundary conditions affects the results of global simulations of the magnetosphere. More specifically, we examine the effects of ionospheric Hall polarization on magnetospheric convection and dynamics by using an MHD code developed by Tanaka et al. [2010]. This study is motivated by the recently proposed idea that the ionospheric convection is modified by the ionospheric polarization [Yoshikawa et al., 2013]. We perform simulations for the following pairs of Hall conductance and IMF-By; Hall conductance set by αH = 2, 3.5, 5, and uniform distribution (1.0 [S] everywhere), where RH is the ratio of Hall to Pedersen conductance, and IMF-By of positive, negative, and zero. The results are summarized as follows. (a) Large-scale structure: In the cases of uniform Hall conductance, the magnetosphere is completely symmetric under the zero IMF-By. In the cases of non-uniform Hall conductance, the magnetosphere shows asymmetries globally even under the zero IMF-By. Asymmetries become severe for larger αH. The results indicate that ionospheric Hall polarization is one of the important factors to determine the global structure. (b) Formation of NENL: The location becomes closer to the earth and timing becomes earlier for larger RH. The difference is considered to be related to the combined effects of field lines twisting due to ionospheric Hall polarization and M-I energy/current closures. (c) Near-earth convection: In the cases of non-uniform Hall conductance, an inflection structure is formed around premidnight sector on equatorial plane inside 10 RE. Considering that the region 2 FAC is not sufficiently generated in MHD models, the structure corresponds to a convection reversal often shown in the RCM. Previous studies regard the structure as the Harang Reversal in the magnetosphere. In the cases of uniform Hall conductance, by contrast, such structure is not formed, indicating that the Harang Reversal may not be formed without the

  18. Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2017-12-01

    We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of

  19. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2017-04-01

    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  20. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-07-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

  1. A Dynamic Coupled Magnetosphere-Ionosphere-Ring Current Model

    NASA Astrophysics Data System (ADS)

    Pembroke, Asher

    In this thesis we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM). We report some results of the coupled model using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-beta ¡=1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging. Finally, we introduce several new methods for magnetospheric visualization and analysis, including a fluid-spatial volume for RCM and a field-aligned analysis mesh for the LFM. The latter allows us to construct novel visualizations of flux tubes, drift surfaces, topological boundaries, and bursty-bulk flows.

  2. The effect of a gamma ray flare on Schumann resonances

    NASA Astrophysics Data System (ADS)

    Nickolaenko, A. P.; Kudintseva, I. G.; Pechony, O.; Hayakawa, M.; Hobara, Y.; Tanaka, Y. T.

    2012-09-01

    We describe the ionospheric modification by the SGR 1806-20 gamma flare (27 December 2004) seen in the global electromagnetic (Schumann) resonance. The gamma rays lowered the ionosphere over the dayside of the globe and modified the Schumann resonance spectra. We present the extremely low frequency (ELF) data monitored at the Moshiri observatory, Japan (44.365° N, 142.24° E). Records are compared with the expected modifications, which facilitate detection of the simultaneous abrupt change in the dynamic resonance pattern of the experimental record. The gamma flare modified the current of the global electric circuit and thus caused the "parametric" ELF transient. Model results are compared with observations enabling evaluation of changes in the global electric circuit.

  3. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  4. The role of GPS in precise earth observation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Lindal, Gunnar F.; Liu, Chao-Han

    1988-01-01

    The potential of the Global Positioning System (GPS) for precise earth observation is evaluated. It is projected that soon GPS will be utilized to track remote-sensing satellites with subdecimeter accuracy. The first will be Topex/Poseidon, a US/French ocean altimetry mission to be launched in 1991. In addition, it is suggested that developments planned for future platforms may push orbit accuracy near 1 cm within a decade. GPS receivers on some platforms will track the signals down to the earth limb to observe occultation by intervening media. This will provide comprehensive information on global temperature and climate and help detect the possible onset of a greenhouse effect. It is also projected that dual-frequency observations will be used to trace the flow of energy across earth systems through detection of ionospheric gravity waves, and to map the structure of the ionosphere by computer tomography.

  5. Ionospheric Scintillation Induced by Solar Wind Dynamic Pressure Enhancements in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Coppeans, T.; Zou, S.; Weatherwax, A. T.; Coster, A. J.

    2017-12-01

    Ionospheric scintillation is the random fluctuation in GPS signal radio waves passing through the ionosphere, a phenomenon that can result in the loss of GPS tracking, but can also reveal information about plasma structures in the ionosphere. Sudden compression of the Earth's magnetosphere by a solar wind dynamic pressure enhancement can cause dramatic changes in the E and F region ionospheric plasma. In this study, we investigate the possible ionospheric scintillation induced by solar wind pressure enhancements using ground-based scintillation receivers located at the McMurdo station and the South Pole station in Antarctica. Various studies of scintillation effects have been carried out, mainly in the northern hemisphere, while the southern hemisphere remains less studied. A pool of storm sudden commencements occurring between Jan. 2011 and Dec. 2014 were sorted based on solar wind dynamic pressure enhancement, background conditions, availability of data, and magnitude of scintillation response. Among the 89 events examined, 14 of them exhibited enhanced scintillation and were selected for detailed examination. Besides the scintillation receivers, other datasets have also been used to carry out the above study, including field-aligned currents from AMPERE, and global GPS TEC. Effects of FACs and TEC/TEC gradients on the generation of these scintillations are studied.

  6. An ionospheric index suitable for estimating the degree of ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.

  7. A Concept for Ionospheric Tomography from a CubeSat Platform at Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Cook, T.; Finn, S. C.; Mendillo, C.; Martel, J.; Geddes, G.

    2015-12-01

    Remote sensing of the neutral atmosphere and ionosphere using extreme and far ultraviolet airglow has now been well established. It has been shown that the OI 135.6 nm nightglow can be used to infer the density of singly ionized atomic oxygen ions, the dominant ion in the F2 region. It has also been shown that zenith angle profiles of OII 83.4 nm emissions in the dayglow are sensitive to the electron density profiles as measured by incoherent scatter radar. Finally, simultaneous measurements of OII 61.7 nm and OII 83.4 nm emissions have been shown to yield daytime electron densities. We describe several key technological advances that have made it possible to consider self-consistent characterization of the thermosphere and ionosphere from a CubeSat platform.

  8. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    sferics at least in some seasons providing a noise free environment for observing rare and new phenomena requiring better SNR to detect such changes, The VLF signals from the active seismic zones or other electro-geological sources would require high sensitivities of the system and suitable network of transmitting and receiv-ing stations designed for targeted data and applications. Some new results over Indian and other regions show evidences of earthquake related seismo-geological VLF emissions with the potential of being used as a prognostic tool, change in ozone and ion production in the night time middle atmosphere due to transit of stellar x-ray/γ ray sources. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 N will be mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of atomic oxygen O (3 P) and ionisation in the mesosphere due to solar/stellar UV/X/γrays. Use of future VLF techniques in terms of improving ground based observations, critical analysis of available satellite data in the context and real time moni-toring/modelling of earth's geosphere and space weather conditions will be considered for a possible programme of a developing country.

  9. Mesoscale Ionospheric Prediction

    DTIC Science & Technology

    2006-09-30

    Mesoscale Ionospheric Prediction Gary S. Bust 10000 Burnet Austin Texas, 78758 phone: (512) 835-3623 fax: (512) 835-3808 email: gbust...time-evolving non-linear numerical model of the mesoscale ionosphere , second to couple the mesoscale model to a mesoscale data assimilative analysis...third to use the new data-assimilative mesoscale model to investigate ionospheric structure and plasma instabilities, and fourth to apply the data

  10. Some aspects of large-scale travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Bowman, G. G.

    1992-06-01

    On two occasions the speeds and directions of travel of large-scale traveling ionospheric disturbances (LS-TIDs) following geomagnetic substorm onsets, have been calculated for the propagation of these disturbances in both hemispheres of the earth. N(h) analyses have been used to produce height change profiles at a fixed frequency from which time shifts between stations (used for the speed and direction-of-travel values) have been calculated. Fixed-frequency phase path measurements at Bribie Island for two events reveal wavetrains with periodicities around 17 min associated with these disturbances. Another event recorded a periodicity of 19 min. Also, for two of the events additional periodicities around 30 min were found. These wavetrains along with the macroscale height changes and electron density depletions associated with these LS-TIDs are essentially the same as the ionospheric structure changes observed during the passage of night-time medium-scale traveling ionospheric disturbances (MS-TIDs). However, unlike these MS-TIDs, the LS-TIDs are generally not associated with the recording of spread-F on ionograms. Possible reasons for this difference are discussed as well as the special conditions which probably prevail on the few occasions when spread-F is associated with LS-TIDs.

  11. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    NASA Astrophysics Data System (ADS)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  12. Low and Mid-Latitude Ionospheric Irregularities Studies Using TEC and Radio Scintillation Data from the CITRIS Radio Beacon Receiver in Low-Earth-Orbit

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.

    2009-12-01

    Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35° inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.

  13. Ionospheric Effects Prior to the Napa Earthquake of August 24, 2014

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Swartz, W. E.; Komjathy, A.; Mannucci, A. J.; Shume, E. B.; Heki, K.; Fraser-Smith, A. C.; McCready, M. A.

    2014-12-01

    and ground stations to measure disturbances in the earth's ionosphere would be of great value. Such a system would be a major boon for vulnerable sites such as nuclear power plants and natural gas lines in populated areas as well as an early warning to evacuate vulnerable buildings, much like today's early warning system for tornados.

  14. HF ground scatter from the polar cap: Ionospheric propagation and ground surface effects

    NASA Astrophysics Data System (ADS)

    Ponomarenko, P. V.; St. Maurice, J.-P.; Hussey, G. C.; Koustov, A. V.

    2010-10-01

    In addition to being scattered by the ionospheric field-aligned irregularities, HF radar signals can be reflected by the ionosphere toward the Earth and then scattered back to the radar by the rugged ground surface. These ground scatter (GS) echoes are responsible for a substantial part of the returns observed by HF radars making up the Super Dual Auroral Radar Network (SuperDARN). While a GS component is conventionally used in studying ionosphere dynamics (e.g., traveling ionospheric disturbances, ULF waves), its potential in monitoring the state of the scattering surface remains largely unexploited. To fill this gap, we investigated diurnal and seasonal variation of the ground echo occurrence and location from a poleward-looking SuperDARN radar at Rankin Inlet, Canada. Using colocated ionosonde information, we have shown that seasonal and diurnal changes in the high-latitude ionosphere periodically modulate the overall echo occurrence rate and spatial coverage. In addition, characteristics of GS from a particular geographic location are strongly affected by the state of the underlying ground surface. We have shown that (1) ice sheets rarely produce detectable backscatter, (2) mountain ranges are the major source of GS as they can produce echoes at all seasons of the year, and (3) sea surface becomes a significant source of GS once the Arctic sea ice has melted away. Finally, we discuss how the obtained results can expand SuperDARN abilities in monitoring both the ionosphere and ground surface.

  15. Faraday rotation of Automatic Dependent Surveillance Broadcast (ADS-B) signals as a method of ionospheric characterization

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Kabin, K.; Noel, J. M. A.

    2017-12-01

    Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices which are installed on most commercial aircraft. These radio waves can be detected by satellites in low earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this work we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick model.

  16. Estimating the D-Region Ionospheric Electron Density Profile Using VLF Narrowband Transmitters

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M.

    2016-12-01

    The D-region ionospheric electron density profile plays an important role in many applications, including long-range and transionospheric communications, and coupling between the lower atmosphere and the upper ionosphere occurs, and estimation of very low frequency (VLF) wave propagation within the earth-ionosphere waveguide. However, measuring the D-region ionospheric density profile has been a challenge. The D-region is about 60 to 90 [km] in altitude, which is higher than planes and balloons can fly but lower than satellites can orbit. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a single propagation path.We report on an effort to construct estimates of the D-region ionospheric electron density profile over multiple narrowband transmission paths for long periods of time. Measurements from multiple transmitters at multiple receivers are analyzed concurrently to minimize false solutions and improve accuracy. Likewise, time averaging is used to remove short transient noise at the receivers. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received amplitude and phase for the narrowband transmitters and the outputs are the commonly known h' and beta two parameter exponential electron density profile. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Results show the algorithm performs well under smooth ionospheric conditions and when proper geometries for the transmitters and receivers are used.

  17. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    PubMed

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  18. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko

    PubMed Central

    Saroka, Kevin S.; Vares, David E.; Persinger, Michael A.

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6–16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7–8 Hz), second (13–14 Hz) and third (19–20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the ‘best-of-fitness’ of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity. PMID:26785376

  19. Visual exploration and analysis of ionospheric scintillation monitoring data: The ISMR Query Tool

    NASA Astrophysics Data System (ADS)

    Vani, Bruno César; Shimabukuro, Milton Hirokazu; Galera Monico, João Francisco

    2017-07-01

    Ionospheric Scintillations are rapid variations on the phase and/or amplitude of a radio signal as it passes through ionospheric plasma irregularities. The ionosphere is a specific layer of the Earth's atmosphere located approximately between 50 km and 1000 km above the Earth's surface. As Global Navigation Satellite Systems (GNSS) - such as GPS, Galileo, BDS and GLONASS - use radio signals, these variations degrade their positioning service quality. Due to its location, Brazil is one of the places most affected by scintillation in the world. For that reason, ionosphere monitoring stations have been deployed over Brazilian territory since 2011 through cooperative projects between several institutions in Europe and Brazil. Such monitoring stations compose a network that generates a large amount of monitoring data everyday. GNSS receivers deployed at these stations - named Ionospheric Scintillation Monitor Receivers (ISMR) - provide scintillation indices and related signal metrics for available satellites dedicated to satellite-based navigation and positioning services. With this monitoring infrastructure, more than ten million observation values are generated and stored every day. Extracting the relevant information from this huge amount of data was a hard process and required the expertise of computer and geoscience scientists. This paper describes the concepts, design and aspects related to the implementation of the software that has been supporting research on ISMR data - the so-called ISMR Query Tool. Usability and other aspects are also presented via examples of application. This web based software has been designed and developed aiming to ensure insights over the huge amount of ISMR data that is fetched every day on an integrated platform. The software applies and adapts time series mining and information visualization techniques to extend the possibilities of exploring and analyzing ISMR data. The software is available to the scientific community through the

  20. Ionospheric data assimilation applied to HF geolocation in the presence of traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Mitchell, C. N.; Rankov, N. R.; Bust, G. S.; Miller, E.; Gaussiran, T.; Calfas, R.; Doyle, J. D.; Teig, L. J.; Werth, J. L.; Dekine, I.

    2017-07-01

    Ionospheric data assimilation is a technique to evaluate the 3-D time varying distribution of electron density using a combination of a physics-based model and observations. A new ionospheric data assimilation method is introduced that has the capability to resolve traveling ionospheric disturbances (TIDs). TIDs are important because they cause strong delay and refraction to radio signals that are detrimental to the accuracy of high-frequency (HF) geolocation systems. The capability to accurately specify the ionosphere through data assimilation can correct systems for the error caused by the unknown ionospheric refraction. The new data assimilation method introduced here uses ionospheric models in combination with observations of HF signals from known transmitters. The assimilation methodology was tested by the ability to predict the incoming angles of HF signals from transmitters at a set of nonassimilated test locations. The technique is demonstrated and validated using observations collected during 2 days of a dedicated campaign of ionospheric measurements at White Sands Missile Range in New Mexico in January 2014. This is the first time that full HF ionospheric data assimilation using an ensemble run of a physics-based model of ionospheric TIDs has been demonstrated. The results show a significant improvement over HF angle-of-arrival prediction using an empirical model and also over the classic method of single-site location using an ionosonde close to the midpoint of the path. The assimilative approach is extendable to include other types of ionospheric measurements.

  1. Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific Region

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; NaitAmor, Samir; Chanrion, Olivier; Neubert, Torsten

    2017-08-01

    Very low frequency (VLF) electromagnetic signals from navigational transmitters propagate worldwide in the Earth-ionosphere waveguide formed by the Earth and the electrically conducting lower ionosphere. Changes in the signal properties are signatures of variations in the conductivity of the reflecting boundary of the lower ionosphere which is located in the mesosphere and lower thermosphere, and their analysis is, therefore, a way to study processes in these remote regions. Here we present a study on amplitude perturbations of local origin on the VLF transmitter signals (NPM, NLK, NAA, and JJI) observed during tropical cyclone (TC) Evan, 9-16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7 dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we estimate a maximum decrease in the nighttime D region reference height (H') by 5.2 km (13 December, NPM) and maximum increase in the daytime D region H' by 6.1 km and 7.5 km (14 and 16 December, JJI). The results suggest that the TC caused the neutral densities of the mesosphere and lower thermosphere to lift and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms, in general, perturb the mesosphere and the stratosphere through which the perturbations propagate.

  2. Earth Science

    NASA Image and Video Library

    1991-01-01

    In July 1990, the Marshall Space Flight Center, in a joint project with the Department of Defense/Air Force Space Test Program, launched the Combined Release and Radiation Effects Satellite (CRRES) using an Atlas I launch vehicle. The mission was designed to study the effects of artificial ion clouds produced by chemical releases on the Earth's ionosphere and magnetosphere, and to monitor the effects of space radiation environment on sophisticated electronics.

  3. A Campaign to Study Equatorial Ionospheric Phenomena over Guam

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Balthazor, R.; Dearborn, M.; Enloe, L.; Lawrence, T.; McHarg, M.; Petrash, D.; Reinisch, B. W.; Stuart, T.

    2007-05-01

    With the development of a series of ground-based and space-based experiments, the United States Air Force Academy (USAFA) is in the process of planning a campaign to investigate the relationship between equatorial ionospheric plasma dynamics and a variety of space weather effects, including: 1) ionospheric plasma turbulence in the F region, and 2) scintillation of radio signals at low latitudes. A Digisonde Portable Sounder DPS-4 will operate from the island of Guam (with a magnetic latitude of 5.6° N) and will provide measurements of ionospheric total electron content (TEC), vertical drifts of the bulk ionospheric plasma, and electron density profiles. Additionally, a dual-frequency GPS TEC/scintillation monitor will be located along the Guam magnetic meridian at a magnetic latitude of approximately 15° N. In campaign mode, we will combine these ground-based observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low-earth orbit satellite missions, the first of which is scheduled to be active over a period of several months beginning in the 2007 calendar year. The satellite experiments are designed to characterize in situ irregularities in plasma density, and include measurements of bulk ion density and temperature, minority-to- majority ion mixing ratios, small scale (10 cm to 1 m) plasma turbulence, and ion distribution spectra in energy with sufficient resolution for observations of non-thermalized distributions that may be associated with velocity- space instabilities. Specific targets of investigation include: a) a comparison of plasma turbulence observed on- orbit with spread F on ionograms as measured with the Digisonde, b) a correlation between the vertical lifting of the ionospheric layer over Guam and the onset of radio scintillation activity along the Guam meridian at 15° N magnetic latitude, and c) a correlation between on-orbit turbulence and ionospheric scintillation at 15° N magnetic latitude. These relationships

  4. Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Alpert, Ya. L.; Green, J. L.

    1994-01-01

    The frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.

  5. Error Assessment of Global Ionosphere Models for the Vertical Electron Content

    NASA Astrophysics Data System (ADS)

    Dettmering, D.; Schmidt, M.

    2012-04-01

    The Total Electron Content (TEC) is a key parameter in ionosphere modeling. It has the major impact on the propagation of radio waves in the ionized atmosphere, which is crucial for terrestrial and Earth-space communications including navigation satellite systems such as GNSS. Most existing TEC models assume all free electrons condensed in one thin layer and neglect the vertical distribution (single-layer approach); those called Global Ionosphere Models (GIM) describe the Vertical Electron Content (VTEC) in dependency of latitude, longitude and time. The most common GIMs are computed by the International GNSS Service (IGS) and are based on GNSS measurements mapped from slant TEC to the vertical by simple mapping functions. Five analysis centers compute solutions which are combined to one final IGS product. In addition, global VTEC values from climatology ionosphere models such as IRI2007 and NIC09 are available. All these models have no (ore only sparse) input data over the oceans and show poorer accuracy in these regions. To overcome these disadvantages, the use of measurement data sets distributed uniformly over continents and open oceans is conducive. At DGFI, an approach has been developed using B-spline functions to model the VTEC in three dimensions. In addition to terrestrial GNSS measurements, data from satellite altimetry and radio occultation from Low Earth Orbiters (LEO) are used as input to ensure a more uniform data distribution. The accuracy of the different GIMs depends on the quality and quantity of the input data as well as the quality of the model approach and the actual ionosphere conditions. Most models provide RMS values together with the VTEC; however most of these values are only precisions and not meaningful for realistic error assessment. In order to get an impression on the absolute accuracy of the models in different regions, this contribution compares different GIMs (IGS, CODE, JPL, DGFI, IRI2007, and NIC09) to each other and to actual

  6. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach

    NASA Astrophysics Data System (ADS)

    Farzaneh, Saeed; Forootan, Ehsan

    2018-03-01

    The computerized ionospheric tomography is a method for imaging the Earth's ionosphere using a sounding technique and computing the slant total electron content (STEC) values from data of the global positioning system (GPS). The most common approach for ionospheric tomography is the voxel-based model, in which (1) the ionosphere is divided into voxels, (2) the STEC is then measured along (many) satellite signal paths, and finally (3) an inversion procedure is applied to reconstruct the electron density distribution of the ionosphere. In this study, a computationally efficient approach is introduced, which improves the inversion procedure of step 3. Our proposed method combines the empirical orthogonal function and the spherical Slepian base functions to describe the vertical and horizontal distribution of electron density, respectively. Thus, it can be applied on regional and global case studies. Numerical application is demonstrated using the ground-based GPS data over South America. Our results are validated against ionospheric tomography obtained from the constellation observing system for meteorology, ionosphere, and climate (COSMIC) observations and the global ionosphere map estimated by international centers, as well as by comparison with STEC derived from independent GPS stations. Using the proposed approach, we find that while using 30 GPS measurements in South America, one can achieve comparable accuracy with those from COSMIC data within the reported accuracy (1 × 1011 el/cm3) of the product. Comparisons with real observations of two GPS stations indicate an absolute difference is less than 2 TECU (where 1 total electron content unit, TECU, is 1016 electrons/m2).

  7. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  8. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC

    NASA Astrophysics Data System (ADS)

    Pinto Jayawardena, Talini S.; Chartier, Alex T.; Spencer, Paul; Mitchell, Cathryn N.

    2016-01-01

    GPS-based ionospheric tomography is a well-known technique for imaging the total electron content (TEC) between GPS satellites and receivers. However, as an integral measurement of electron concentration, TEC typically encompasses both the ionosphere and plasmasphere, masking signatures from the topside ionosphere-plasmasphere due to the dominant ionosphere. Imaging these regions requires a technique that isolates TEC in the topside ionosphere-plasmasphere. Multi-Instrument Data Analysis System (MIDAS) employs tomography to image the electron distribution in the ionosphere. Its implementation for regions beyond is yet to be seen due to the different dynamics present above the ionosphere. This paper discusses the extension of MIDAS to image these altitudes using GPS phase-based TEC measurements and follows the work by Spencer and Mitchell (2011). Plasma is constrained to dipole field lines described by Euler potentials, resulting in a distribution symmetrical about the geomagnetic equator. A simulation of an empirical plasmaspheric model by Gallagher et al. (1988) is used to verify the technique by comparing reconstructions of the simulation with the empirical model. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is used as GPS receiver locations. The verification is followed by a validation of the modified MIDAS algorithm, where the regions' TEC is reconstructed from COSMIC GPS phase measurements and qualitatively compared with previous studies using Jason-1 and COSMIC data. Results show that MIDAS can successfully image features/trends of the topside ionosphere-plasmasphere observed in other studies, with deviations in absolute TEC attributed to differences in data set properties and the resolution of the images.

  9. An automatic method for detection and classification of Ionospheric Alfvén Resonances using signal and image processing techniques

    NASA Astrophysics Data System (ADS)

    Beggan, Ciaran

    2014-05-01

    Induction coils permit us to measure the very rapid changes of the magnetic field. In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory (55.3° N, 3.2° W, L~3), in the Scottish Borders of the United Kingdom. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1908) and is located in a rural valley with a quiet magnetic environment. The coils record magnetic field changes over an effective frequency range of about 0.1-40Hz, and encompass phenomena such as the Schumann resonances, magnetospheric pulsations and Ionospheric Alfvén Resonances (IAR). In this study we focus on the IAR, which are related to the vibration of magnetic field lines passing through the ionosphere, believed to be mainly excited by lower atmospheric electrical discharges. The IAR typically manifest as a series of spectral resonances structures (SRS) within the 1-6Hz frequency range, usually appearing a fine bands or fringes in spectrogram plots. The SRS tend to occur daily between 18.00-06.00UT at the Eskdalemuir site, disappearing during the daylight hours. They usually start as a single low frequency before bifurcating into 5-10 separate fringes, increasing in frequency until around midnight. The fringes also widen in frequency before fading around 06.00UT. Occasionally, the fringes decrease in frequency slightly around 03.00UT before fading. In order to quantify the daily, seasonal and annual changes of the SRS, we developed a new method to identify the fringes and to quantify their occurrence in frequency (f) and the change in frequency (Δf). The method uses short time-series of 100 seconds to produce an FFT spectral plot from which the non-stationary peaks are identified using the residuals from a best-fit six order spline. This is repeated for an entire day of data. The peaks from each time-slice are placed into a matrix

  10. Comparative Analysis of Methods of Evaluating the Lower Ionosphere Parameters by Tweek Atmospherics

    NASA Astrophysics Data System (ADS)

    Krivonos, A. P.; Shvets, A. V.

    2016-12-01

    Purpose: A comparative analysis of the phase and frequency methods for determining the Earth-ionosphere effective waveguide heights for the basic and higher types of normal waves (modes) and distance to the source of radiation - lightning - has been made by analyzing pulse signals in the ELF-VLF range - tweek-atmospherics (tweeks). Design/methodology/approach: To test the methods in computer simulations, the tweeks waveforms were synthesized for the Earth-ionosphere waveguide model with the exponential conductivity profile of the lower ionosphere. The calculations were made for a 20-40 dB signal/noise ratio. Findings: The error of the frequency method of determining the effective height of the waveguide for different waveguide modes was less than 0.5 %. The error of the phase method for determining the effective height of the waveguide was less than 0.8 %. Errors in determining the distance to the lightning was less than 1 % for the phase method, and less than 5 % for the frequency method for the source ranges 1000-3000 km. Conclusions: The analysis results have showed the accuracy of the frequency and phase methods being practically the same within distances of 1000-3000 km. For distances less than 1000 km, the phase method shows a more accurate evaluation of the range, so the combination of the two methods can be used to improve estimating the tweek’s propagation path parameters.

  11. Improving the Nightside Mid-latitude Ionospheric Density in the Global Ionosphere-Thermosphere Model

    NASA Astrophysics Data System (ADS)

    Wu, C.; Ridley, A. J.

    2017-12-01

    The ionosphere and plasmasphere interact with each other through upwelling of plasma into the plasmasphere during the day and downwelling of the plasma into the ionosphere during the night. The storage of ion density in the plasmasphere and subsequent downwelling maintains the ion density in the nighttime mid-latitude ionosphere. Global models of the upper atmosphere that do not contain a plasmasphere, but are limited in altitude, such as the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM) and the Global Ionosphere-Thermosphere Model(GITM) need a boundary condition that allows for some sort of downwelling to occur. In the TIEGCM, this has been set to a constant downward flux, while GITM has had no downwelling specification at all, which has caused the nighttime mid-latitude densities to be much too low. We present a new boundary condition in GITM, where there is downward ion flux from the upper boundary, allowing the ionosphere to be maintained during the night. This new boundary condition is dependent on the the Disturbance Storm Time (Dst), since, as the activity level increases (i.e., Dst decreases), the plasmasphere is eroded and will not serve to supply the ionosphere at night. Various quiet time and active time comparisons to ionosonde electron density and total electron content data will be presented that show that the ionospheric density in GITM is improved due to this new boundary condition.

  12. D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography

    NASA Astrophysics Data System (ADS)

    McCormick, J.; Cohen, M.

    2017-12-01

    The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is

  13. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  14. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  15. Experimental Verification of Ocean Bounced GPS Signals and Analysis of their Application to Ionospheric Corrections for Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Axelrad, P.; Cox, A. E.; Crumpton, K. S.

    1997-01-01

    An algorithm is presented which uses observations of Global Positioning System (GPS) signals reflected from the ocean surface and acquired by a GPS receiver onboard an altimetric satellite to compute the ionospheric delay present in the altimeter measurement. This eliminates the requirement for a dual frequency altimeter for many Earth observing missions. A ground-based experiment is described which confirms the presence of these ocean-bounced signals and demonstrates the potential for altimeter ionospheric correction at the centimeter level.

  16. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.

    PubMed

    Ćuk, Matija; Stewart, Sarah T

    2012-11-23

    A common origin for the Moon and Earth is required by their identical isotopic composition. However, simulations of the current giant impact hypothesis for Moon formation find that most lunar material originated from the impactor, which should have had a different isotopic signature. Previous Moon-formation studies assumed that the angular momentum after the impact was similar to that of the present day; however, Earth-mass planets are expected to have higher spin rates at the end of accretion. Here, we show that typical last giant impacts onto a fast-spinning proto-Earth can produce a Moon-forming disk derived primarily from Earth's mantle. Furthermore, we find that a faster-spinning early Earth-Moon system can lose angular momentum and reach the present state through an orbital resonance between the Sun and Moon.

  17. Ionospheric response over Europe during the solar eclipse of March 20, 2015

    NASA Astrophysics Data System (ADS)

    Hoque, Mohammed Mainul; Wenzel, Daniela; Jakowski, Norbert; Gerzen, Tatjana; Berdermann, Jens; Wilken, Volker; Kriegel, Martin; Sato, Hiroatsu; Borries, Claudia; Minkwitz, David

    2016-10-01

    The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth's upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC) maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS) and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF) signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the Sun's obscuration

  18. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  19. Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model

    NASA Astrophysics Data System (ADS)

    Pembroke, Asher; Toffoletto, Frank; Sazykin, Stanislav; Wiltberger, Michael; Lyon, John; Merkin, Viacheslav; Schmitt, Peter

    2012-02-01

    In this paper we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM) and report some results using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-β ≤ 1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging.

  20. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  1. Ionospheric disturbance excited by the 2015 Kuchinoerabu-jima, southwest Japan, eruption

    NASA Astrophysics Data System (ADS)

    Aoki, Y.; Nishida, K.; Nakashima, Y.; Heki, K.

    2015-12-01

    Vertical displacements excited by volcanic eruptions, earthquakes, or tsunamis excites pressure waves in the atmosphere. The excited oscillation propagates to ionosphere where solar radiation ionize a part of atmosphere, resulting in a disturbance of the total electron content (TEC). Where numerous studies have reported ionospheric disturbance excited by earthquakes or tsunamis, much smaller number of studies have investigated that excited by volcanic eruptions. This study reports on the ionospheric disturbance excited by the 2015 Kuchinoerabu-jima eruption observed by continuous GPS observations. The 2015 Kuchinoerabu-jima eruption is a phreatomagmatic eruption occurred on 29 May 2015. The eruption is explosive with a column height up to 10,000 meters above the vent. The disturbance of TEC started from about 10 minutes after the eruption at approximately 100 km from the volcano. The disturbance then propagates outward for about 10 minutes. The velocity of pressure wave is estimated to be about 500 m/s, consistent with the average acoustic velocity in the ionosphere. The dominant frequency of the observed disturbance is about 11 mHz, much higher than the eigenfrequencies of Earth's atmosphere, 3.7 mHz and 4.4 mHz. The dominant frequency observed here might be related to the dominant frequency of the acoustic wave excited by the eruption and the dissipation of the medium. While the ionospheric disturbance associated with the 2003 Soufrière Hills lasted more than an hour, that in this study lasted only up to a few minutes. This difference might correspond to the difference in time scale of the excitation. The pressure wave excited by the eruption is also recorded by broadband seismometers in the Japanese islands. Our goal is thus to gain more insights into the mechanics of lithosphere-atmosphere-ionosphere coupling as well that of the 2015 Kuchinoerabu-jima eruption consisent with both seismic and GPS observations.

  2. Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Alberti, Tommaso; Bemporad, Alessandro; Berrilli, Francesco; Bruno, Roberto; Capparelli, Vincenzo; Carbone, Vincenzo; Cesaroni, Claudio; Consolini, Giuseppe; Cristaldi, Alice; Del Corpo, Alfredo; Del Moro, Dario; Di Matteo, Simone; Ermolli, Ilaria; Fineschi, Silvano; Giannattasio, Fabio; Giorgi, Fabrizio; Giovannelli, Luca; Guglielmino, Salvatore Luigi; Laurenza, Monica; Lepreti, Fabio; Marcucci, Maria Federica; Martucci, Matteo; Mergè, Matteo; Pezzopane, Michael; Pietropaolo, Ermanno; Romano, Paolo; Sparvoli, Roberta; Spogli, Luca; Stangalini, Marco; Vecchio, Antonio; Vellante, Massimo; Villante, Umberto; Zuccarello, Francesca; Heilig, Balázs; Reda, Jan; Lichtenberger, János

    2017-11-01

    , to investigate the influence of the disturbed electric field on the low-latitude ionosphere induced by geomagnetic storms, we focused on the morphology of the crests of the equatorial ionospheric anomaly by the simultaneous use of the Global Navigation Satellite System (GNSS) receivers, ionosondes, and Langmuir probes onboard the Swarm constellation satellites. Moreover, we investigated the dynamics of the plasmasphere during the different phases of the geomagnetic storm by examining the time evolution of the radial profiles of the equatorial plasma mass density derived from field line resonances detected at the EMMA network (1.5 < L < 6.5). Finally, we present the general features of the geomagnetic response to the CME by applying innovative data analysis tools that allow us to investigate the time variation of ground-based observations of the Earth's magnetic field during the associated geomagnetic storm.

  3. Nighttime ionospheric D region parameters from VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; McRae, Wayne M.

    2007-07-01

    Nighttime ionospheric D region heights and electron densities are determined from an extensive set of VLF radio phase and amplitude observations. The D region parameters are characterized by the traditional H' (height in kilometers) and β (sharpness in km-1) as used by Wait and by the U. S. Navy in their Earth-ionosphere waveguide programs. The VLF measurements were made with several frequencies in the range 10 kHz to 41 kHz on long, mainly all-sea paths, including Omega La Reunion and Omega Argentina to Dunedin, New Zealand, NAU (Puerto Rico) and NAA (Maine, USA) to Cambridge, UK, and NPM (Hawaii) to San Francisco. Because daytime VLF propagation on such paths is readily measured and predicted, the differences between night and day amplitudes and phases were measured and compared with calculations for a range of nighttime ionospheric parameters. This avoided the problem of uncertainties in the transmitter powers. In this way the height, H', and the sharpness, β, when averaged over periods of several days, at least for the midlatitude D region near solar minimum, were found to be 85.1 ± 0.4 km and 0.63 ± 0.04 km-1, respectively.

  4. Probing ionospheric structures using the LOFAR radio telescope

    NASA Astrophysics Data System (ADS)

    Mevius, M.; van der Tol, S.; Pandey, V. N.; Vedantham, H. K.; Brentjens, M. A.; de Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; van Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-07-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m-2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.

  5. Modeling the variations of reflection coefficient of Earth's lower ionosphere using very low frequency radio wave data by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh

    2016-08-01

    The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.

  6. Higher-Order Corrections to Earthʼs Ionosphere Shocks

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.

    2017-01-01

    Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive (negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturbation technique applied to derive Burgers equation for lowest-order potential. As the shock amplitude decreasing or enlarging, its steepness and velocity deviate from Burger equation. Burgers type equation with higher order dissipation must be obtained to avoid this deviation. Solution for the compined two equations has been derived using renormalization analysis. Effects of higher-order, positive- negative mass ratio Q, electron nonthermal parameter δ and kinematic viscosities coefficient of positive (negative) ions {η }1 and {η }2 on the electrostatic shocks in Earth’s ionosphere are also argued. Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the Research Project No. 2015/01/4787

  7. Sub-Ionospheric Measurements of the Ocean, Atmosphere, and Ionosphere from the CARINA Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Montgomery, J. A., Jr.; Siefring, C. L.; Gatling, G.

    2016-12-01

    New satellites designed to fly between 150 and 250 km has been constructed to study a wide range of geophysical topics extending from the ocean to the topside ionosphere. The key features of the CARINA satellites are (1) the ability of sustain long duration (60 day) orbits below the F-Layer ionosphere, (2) download large quantities of data (10 GBytes) per pass over a ground station, and (3) a heritage instrument payload comprised of an Electric Field Instrument (EFI) with full range measurements from 3 to 13 MHz, a Ram Langmuir Probe (RLP) the measures ion density from 102 to 106 cm-3 with 10 kHz sample rate, an Orbiting GPS Receiver (OGR) providing overhead total electron content and satellite position and the Wake Retro Reflectors (WRR) that use laser ranging for precise orbit determination. Each letter in "CARINA" represents one of the science objectives. "Coastal" ocean wave remote sensing of the sea surface wave height spectrum derived from HF surface wave scatter to the satellite. Assimilation ionospheric models are supported by Global measurements of GPS total electron count (TEC) and in situ plasma density for updating data driven ionospheric models (GAIM, IDA3D, etc.). Radio wave propagation and interactions determine the impact of the bottomside ionosphere on HF ray trajectories, the effects of ionospheric irregularities that yield UHF/L-band scintillations and ionospheric modifications by high power HF waves. Ionospheric structures such are sporadic-E and intermediate layers, traveling ionospheric disturbances (TID's) and large scale bottomside fluctuations in the F-layer are directly measured by CARINA sensors. Neutral drag is studied along the orbit through reentry modeling of drag coefficients and neutral density model updates. Finally, Atmospherics and lightning knowledge is acquired through studies of lightning EM pulses and their impact on ionosphere. Two CARINA satellites separated by 2000 km flying above 50 degree inclination represents the

  8. Tsunami in the Ionosphere ? a pinch of gravity with a good plasma sauce !

    NASA Astrophysics Data System (ADS)

    Occhipinti, Giovanni; Rolland, Ms Lucie; Kherani, Alam; Lognonné, Philippe; Komjathy, Attila; Mannucci, Anthony

    A series of ionospheric anomalies following the Sumatra tsunami has been reported in the scientific literature (e.g., Liu et al. 2006; DasGupta et al. 2006; Occhipinti et al. 2006). Similar anomalies were also observed after the tsunamigenic earthquake in Peru in 2001 (Artru et al., 2005) and after the recent earthquakes in Sumatra and Chile in 2007. All these anomalies show the signature in the ionosphere of tsunami-generated internal gravity waves (IGW) propagating in the neutral atmosphere over oceanic regions. Most of these ionospheric anomalies are deterministic and reproducible by numerical modeling (Occhipinti et al., 2006) via the ocean/neutral atmosphere/ionosphere coupling mechanism. In addition, the numerical modeling supplies useful helps in the estimation of expected anomalies in the global scale to explore the effect of geomagnetic field in the neutral/plasma coupling (Occhipinti et al., 2008). Here we present an overview of the physical coupling mechanism highlighting the strong ampli- fication mechanism of atmospheric IGW; it allows to detect these anomalies when the tsunami is offshore where the see level displacement is still small. This property adds to the increasing coverage of ionospheric sounding measurements, suggests the implication of ionospheric sounding in the future oceanic monitoring and tsunami warning system. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., in press.

  9. Application of IRI-Plas in Ionospheric Tomography and HF Communication Studies with Assimilation of GPS-TEC

    NASA Astrophysics Data System (ADS)

    Arikan, Feza; Gulyaeva, Tamara; Sezen, Umut; Arikan, Orhan; Toker, Cenk; Hakan Tuna, MR.; Erdem, Esra

    2016-07-01

    International Reference Ionosphere is the most acknowledged climatic model of ionosphere that provides electron density profile and hourly, monthly median values of critical layer parameters of the ionosphere for a desired location, date and time between 60 to 2,000 km altitude. IRI is also accepted as the International Standard Ionosphere model. Recently, the IRI model is extended to the Global Positioning System (GPS) satellite orbital range of 20,000 km. The new version is called IRI-Plas and it can be obtained from http://ftp.izmiran.ru/pub/izmiran /SPIM/. A user-friendly online version is also provided at www.ionolab.org as a space weather service. Total Electron Content (TEC), which is defined as the line integral of electron density on a given ray path, is an observable parameter that can be estimated from earth based GPS receivers in a cost-effective manner as GPS-TEC. One of the most important advantages of IRI-Plas is the possible input of GPS-TEC to update the background deterministic ionospheric model to the current ionospheric state. This option is highly useful in regional and global tomography studies and HF link assessments. IONOLAB group currently implements IRI-Plas as a background model and updates the ionospheric state using GPS-TEC in IONOLAB-CIT and IONOLAB-RAY algorithms. The improved state of ionosphere allows the most reliable 4-D imaging of electron density profiles and HF and satellite communication link simulations.This study is supported by TUBITAK 115E915 and joint TUBITAK 114E092 and AS CR 14/001.

  10. Data Assimilation Techniques for Ionospheric Reference Scenarios - project overview and achieved outcomes

    NASA Astrophysics Data System (ADS)

    Gerzen, Tatjana; Wilken, Volker; Hoque, Mainul; Minkwitz, David; Schlueter, Stefan

    2016-04-01

    The ionosphere is the upper part of the Earth's atmosphere, where sufficient free electrons exist to affect the propagation of radio waves. Therefore, the treatment of the ionosphere is a critical issue for many applications dealing with trans-ionospheric signals such as GNSS positioning, GNSS related augmentation systems (e.g. EGNOS and WAAS) and remote sensing. The European Geostationary Navigation Overlay Service (EGNOS) is the European Satellite Based Augmentation Service (SBAS) that provides value added services, in particular to safety critical GNSS applications, e.g. aviation and maritime traffic. In the frame of the European GNSS Evolution Programme (EGEP), ESA has launched several activities, supporting the design, development and qualification of the operational EGNOS infrastructure and associated services. Ionospheric Reference Scenarios (IRSs) are used by ESA in order to conduct the EGNOS performance simulations and to assure the capability for maintaining accuracy, integrity and availability of the EGNOS system, especially during ionospheric storm conditions. The project Data Assimilation Techniques for Ionospheric Reference Scenarios (DAIS) - aims the provision of improved EGNOS IRSs. The main tasks are the calculation and validation of time series of IRSs by a 3D assimilation approach that combines space borne and ground based GNSS observations as well as ionosonde measurements with an ionospheric background model. The special focus thereby is to demonstrate that space-based measurements can significantly contribute to fill data gaps in GNSS ground networks (particularly in Africa and over the oceans) when generating the IRSs. In this project we selected test periods of perturbed and nominal ionospheric conditions and filtered the collected data for outliers. We defined and developed an applicable technique for the 3D assimilation and applied this technique for the generation of IRSs covering the EGNOS V3 extended service area. Afterwards the

  11. Using the ionospheric response to the solar eclipse on 20 March 2015 to detect spatial structure in the solar corona.

    PubMed

    Scott, C J; Bradford, J; Bell, S A; Wilkinson, J; Barnard, L; Smith, D; Tudor, S

    2016-09-28

    The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth's ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth's atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).

  12. Ionosphere-magnetosphere coupling and convection

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Spiro, R. W.

    1984-01-01

    The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.

  13. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    NASA Astrophysics Data System (ADS)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  14. The International Reference Ionosphere 2012 - a model of international collaboration

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Zhang, Yongliang; Mertens, Chris; Truhlik, Vladimir; Richards, Phil; McKinnell, Lee-Anne; Reinisch, Bodo

    2014-02-01

    The International Reference Ionosphere (IRI) project was established jointly by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth's ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.

  15. Longitudinal Differences in the Low-latitude Ionosphere and in the Ionospheric Variability

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.; Zhang, S.; Liu, H.; Tsugawa, T.; Batista, I. S.; Reinisch, B. W.

    2017-12-01

    Analysis of longitudinal differences in ionospheric parameters can illuminate variety of mechanisms responsible for ionospheric variability. In this study, we aim to 1) quantitatively describe major features of longitudinal differences in peak electron density in the low-latitude ionosphere; 2) examine differences in ionospheric variability at different longitude sectors, and 3) illustrate longitudinal differences in ionospheric response to a large disturbance event, sudden stratospheric warming of 2016. We examine NmF2 observations by a network of ionosondes in the American (30-80W) and Asian (110-170E) longitudinal sectors. Selected instruments are located in the vicinity of EIA troughs (Jicamarca, Sao Luis, Guam, Kwajalein), northern and southern crests of EIA (Boa Vista, Tucuman, Cachoeira Paulista, Okinawa), and beyond EIA crests (Ramey, Yamagawa, Kokubunji). To examine main ionospheric features at each location, we use long-term datasets collected at each site to construct empirical models that describe variations in NmF2 as a function of local time, season, solar flux, and geomagnetic activity. This set of empirical models can be used to accurately describe background ionospheric behavior and serve as a set of observational benchmarks for global circulation models. It reveals, for example, higher NmF2 in the EIA trough in the Asian sector as compared to the American sector. Further, we quantitatively describe variability in NmF2 as a difference between local observations and local empirical model, and find that American sector's EIA trough has overall higher variability that maximizes for all local times during wintertime, while Asian sector trough variability does not change significantly with season. Additionally, local empirical models are used to isolate ionospheric features resulting from dynamical disturbances of different origin (e.g. geomagnetic storms, convective activity, sudden stratospheric warming events, etc.). We illustrate this approach with

  16. Online, automatic, ionospheric maps: IRI-PLAS-MAP

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.

    2015-04-01

    Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org

  17. The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential

    NASA Astrophysics Data System (ADS)

    Zhou, Limin; Tinsley, Brian; Wang, Lin; Burns, Gary

    2018-06-01

    Global reanalysis data reveal daily surface pressure responses to changes in the global ionospheric potential in both polar and sub-polar regions. We use 21 years of data to show that the pressure response to externally-induced ionospheric potential changes, that are due to the interplanetary magnetic field east-west (IMF By) component, are present in two separate decadal intervals, and follow the opposite ionospheric potential changes in the Arctic and Antarctic for a given By. We use the 4 years of available data to show that the pressure responses to changes in internally generated ionospheric potential, that are caused by low-latitude thunderstorms and highly electrified clouds, agree in sign and sensitivity with those externally generated. We have determined that the daily varying pressure responses are stronger in local winter and spring. The pressure responses at polar latitudes are predominantly over the Antarctic and Greenland ice caps, and those at sub-polar latitudes are of opposite sign, mainly over oceans. A lead-lag analysis confirms that the responses maximize within two days of the ionospheric potential input. Regions of surface pressure fluctuating by about 4 hPa in winter are found with ionospheric potential changes of about 40 kV. The consistent pressure response to the independent external and internal inputs strongly supports the reality of a cloud microphysical mechanism affected by the global electric circuit. A speculative mechanism involves the ionosphere-earth current density Jz, which produces space charge at cloud boundaries and electrically charged droplets and aerosol particles. Ultrafine aerosol particles, under the action of electro-anti-scavenging, are enabled to grow to condensation nuclei size, affecting cloud microphysics and cloud opacity and surface pressure on time scales of hours.

  18. The Ionosphere Real-Time Assimilative Model, IRTAM - A Status Report

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Galkin, Ivan; Huang, Xueqin; Vesnin, Artem; Bilitza, Dieter

    2014-05-01

    data, Radio Sci., doi:10.1029/2012RS004989. Reinisch, B. W. and I. A. Galkin (2011), Global Ionospheric Radio Observatory (GIRO), Earth, Planets and Space, 63(4), 377-381.

  19. Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band

    NASA Technical Reports Server (NTRS)

    Abraham, Saji; LeVine, David M.

    2004-01-01

    Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.

  20. Sporadic radio emission connected with a definite manifestation of solar activity in the near Earth space

    NASA Technical Reports Server (NTRS)

    Dudnic, A. V.; Zaljubovski, I. I.; Kartashev, V. M.; Shmatko, E. S.

    1985-01-01

    Sporadic radio emission of near Earth space at the frequency of 38 MHz is shown to appear in the event of a rapid development of instabilities in the ionospheric plasma. The instabilities are generated due to primary ionospheric disturbances occurring under the influence of solar chromospheric flares.

  1. Numerical Simulations Of The Effect Of Localised Ionospheric Perturbations On Subionospheric VLF Propagation

    NASA Astrophysics Data System (ADS)

    Šulic, D.; Nina, A.; Sreckovic, V.

    2010-07-01

    Electron density and temperature changes in the D-region of the ionosphere are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth-ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. We analyze Lightning-induced electron precipitation (LEP) events during period 2008 - 2009 at Belgrade station on subionospheric VLF signals from four transmitters (DHO/23.4 kHz, Germany; GQD/22.1 kHz, UK; NAA/24.0 kHz USA and ICV/20.9 kHz Italy).

  2. Effects of UGTs on the ionosphere

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.

    The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  3. Diagnosing the Role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Nonstationary Magnetic Perturbations During an Interval of Northward IMF

    NASA Astrophysics Data System (ADS)

    Pakhotin, I. P.; Mann, I. R.; Lysak, R. L.; Knudsen, D. J.; Gjerloev, J. W.; Rae, I. J.; Forsyth, C.; Murphy, K. R.; Miles, D. M.; Ozeke, L. G.; Balasis, G.

    2018-01-01

    High-resolution multispacecraft Swarm data are used to examine magnetosphere-ionosphere coupling during a period of northward interplanetary magnetic field (IMF) on 31 May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 s apart along track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω → 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements.

  4. Modeling the Ionosphere-Thermosphere Response to a Geomagnetic Storm Using Physics-based Magnetospheric Energy Input: OpenGGCM-CTIM Results

    NASA Technical Reports Server (NTRS)

    Connor, Hyunju K.; Zesta, Eftyhia; Fedrizzi, Mariangel; Shi, Yong; Raeder, Joachim; Codrescu, Mihail V.; Fuller-Rowell, Tim J.

    2016-01-01

    The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCMCTIM reproduces localized neutral density peaks at approx. 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn

  5. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    NASA Astrophysics Data System (ADS)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  6. Study of the Total Electron Content in Mars ionosphere from MARSIS data set

    NASA Astrophysics Data System (ADS)

    Bergeot, Nicolas; Witasse, Olivier; Kofman, Wlodek; Grima, Cyril; Mouginot, Jeremie; Peter, Kerstin; Pätzold, Martin; Dehant, Véronique

    2016-04-01

    Centimeter level accuracy on the signal delay will be required on X-band radio link for future Mars landers such as InSIGHT, aiming at better determining the interior structure of Mars. One of the main error sources in the estimated signal delay is directly linked to the Total Electron Content (TEC) values at Earth and Mars ionosphere level. While the Earth ionosphere is now well modeled and monitored at regional and global scales, this is not the case concerning the Mars' upper atmosphere. The present paper aims at establishing the basis to model the climatological behavior of the TEC on a global scale in the Mars' ionosphere. For that we analyzed ˜8.5 years of data (mid-2005 to 2014) of the vertical Total Electron Content (vTEC) expressed in TEC units (1 TECu = 1016e-.m-2) from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar. Our study takes advantage of the double data set of EUV solar index and Mars vTEC data to develop an empirical Model of Mars Ionosphere (MoMo). The finality of this model is to predict the vTEC at a given latitude, solar zenith angle and season taking only F10.7P solar index as input. To minimize the differences during the least-square adjustment between the modeled and observed vTEC, we considered (1) a 4th-order polynomial function to describe the vTEC diurnal behavior (2) a discretization with respect to Mars seasons (depending on Ls) and (3) two latitudinal sectors (North and South hemispheres). The mean of the differences between the model and the observations is 0.00±0.07 TECu with an error of the model around 0.1 TECu depending on the Solar Zenith Angle (SZA), season and hemisphere of interest (e.g. rms 0.12 TECu for SZA equal to 50°±5° in the Northern hemisphere during the spring season). Additionally, comparison with 250 Mars Express radio occultation data shows differences with MoMo predictions of 0.02±0.06 TECu for solar zenith angles below 50 degrees. Using the model we (1) highlighted

  7. Magnetic Earth Ionosphere Resonant Frequencies (NASA-MEIRF Project)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During this current reporting period, the project has focused on completing Phase 1 of the field monitoring work and documenting research results. Highlights of these efforts include presentations of papers at the annual joint meeting of the American Physical Society/American Association of Physics Teachers, April 18-22, 1994, in Crystal City, Virginia, and at the International Space, Time, and Gravitation Conference and Etoiles de L'Ecole Polytechnique Symposium, May 23-28, 1994, in St. Petersburg, Russia. Field measurements of the background ultra low frequency (ULF) electromagnetic spectrum in the New Mexico and Texas regions show interesting differences. Included are papers entitled 'Triplet Solution of the Twin Paradox' and 'Classical Electron Mass and Fields, Part 3.'

  8. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges

    NASA Astrophysics Data System (ADS)

    Inan, U. S.; Cummer, S. A.; Marshall, R. A.

    2010-06-01

    Extremely low frequency (ELF) and very low frequency (VLF) observations have formed the cornerstone of measurement and interpretation of effects of lightning discharges on the overlying upper atmospheric regions, as well as near-Earth space. ELF (0.3-3 kHz) and VLF (3-30 kHz) wave energy released by lightning discharges is often the agent of modification of the lower ionospheric medium that results in the conductivity changes and the excitation of optical emissions that constitute transient luminous events (TLEs). In addition, the resultant ionospheric changes are best (and often uniquely) observable as perturbations of subionospherically propagating VLF signals. In fact, some of the earliest evidence for direct disturbances of the lower ionosphere in association with lightning discharges was obtained in the course of the study of such VLF perturbations. Measurements of the detailed ELF and VLF waveforms of parent lightning discharges that produce TLEs and terrestrial gamma ray flashes (TGFs) have also been very fruitful, often revealing properties of such discharges that maximize ionospheric effects, such as generation of intense electromagnetic pulses (EMPs) or removal of large quantities of charge. In this paper, we provide a review of the development of ELF and VLF measurements, both from a historical point of view and from the point of view of their relationship to optical and other observations of ionospheric effects of lightning discharges.

  9. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  10. LF/MF Propagation Modeling for D-Region Ionospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Higginson-Rollins, M. A.; Cohen, M.

    2017-12-01

    The D-region of the ionosphere is highly inaccessible because it is too high for continuous in-situ measurement techniques and too low for satellite measurements. Very-Low Frequency (VLF) signals have been developed and used as a diagnostic tool for this region of the ionosphere and are favorable because of the low ionospheric attenuation rates, allowing global propagation - but this also creates an ill-posed multi-mode propagation problem. As an alternative, Low-Frequency (LF) and Medium-Frequency (MF) signals could be used as a diagnostic tool of the D-region. These higher frequencies have a higher attenuation rate, and thus only a few modes propagate in the Earth-ionosphere waveguide, creating a much simpler problem to analyze. The United States Coast Guard (USCG) operates a national network of radio transmitters that serve as an enhancement to the Global Positioning System (GPS). This network is termed Differential Global Positioning System (DGPS) and uses fixed reference stations as a method of determining the error in received GPS satellite signals and transmits the correction value using low frequency and medium frequency radio signals between 285 kHz and 385 kHz. Using sensitive receivers, we can detect this signal many hundreds of km away. We present modeling of the propagation of these transmitters' signals for use as a diagnostic tool for characterizing the D-region. The Finite-Difference Time-Domain (FDTD) method is implemented to model the groundwave radiated by the DGPS beacons and account for environmental effects, such as changing soil conductivities and terrain. A full wave numerical solver is used to model the skywave component of the propagating signal and specifically to ascertain the reflection coefficients for various ionospheric conditions. Preliminary results are shown and discussed, and comparisons with collected data are presented.

  11. Comparative statistical and spectral studies of seismic and non-seismic sub-ionospheric VLF anomalies

    NASA Astrophysics Data System (ADS)

    Wolbang, Daniel; Biernat, Helfried; Schwingenschuh, Konrad; Eichelberger, Hans; Prattes, Gustav; Besser, Bruno; Boudjada, Mohammed Y.; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Friedrich, Martin

    2013-04-01

    measured and derived VLF parameters are compared with VLF observations several weeks before an earthquake (e.g. L'Aquila, Italy, April 6, 2009) and with co- and post-seismic phenomena. It is shown that this comparative study will improve the one parameter seismo-electromagnetic VLF methods. References: [1] A. Molchanov, M. Hayakawa: Seismo-Electromagnetics and related Phenomena: History and latest results, Terrapub, 2008. [2] S. Pulinets, K. Boyarchuk: Ionospheric Precursors of Earthquakes, Springer, 2004 [3] A. Rozhnoi et al.: Observation evidences of atmospheric Gravity Waves induced by seismic activity from analysis of subionospheric LF signal spectra, National Hazards and Earth System Sciences, 7, 625-628, 2007.

  12. The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.; De Zeeuw, D. L.; Manchester, W. B.; Hansen, K. C.

    2006-01-01

    We present results from a coupled magnetospheric and ionospheric simulation of a very strong solar wind shock and coronal mass ejection (CME). The solar wind drivers that are used for this simulation were output from the Sun-to-Earth MHD simulation of the Carrington-like CME reported in Manchester et al. [Manchester IV, W., Ridley, A., Gombosi, T., De Zeeuw, D. Modeling the Sun-Earth propagation of a very fast cme. Adv. Space Res. 38 (this issue), 2006]. We use the University of Michigan's BATS-R-US MHD code to model the global magnetosphere and coupled height integrated ionosphere. As the interplanetary shock swept over the magnetosphere, a wave is observed to propagate through the system. This is evident both in the magnetosphere and ionosphere. On the dayside, the magnetospheric bowshock is shown to bifurcate. The inner shock is pushed close to the inner boundary, where it "bounces" and propagates back outwards to meet the outer bowshock, which is propagating inwards. The inward and outward motion of the bowshocks can be observed propagating down the flanks of the magnetosphere. In the ionosphere, the wave is manifested as two pairs of field-aligned currents moving antisunward. The first pair is opposite of the normal region-1 current system, while the second pair is in the same sense as the normal region-1 system. The ionospheric potential shows a behavior consistent with the field-aligned current pattern, given the strong gradient in the conductance from the dayside to the nightside. As the magnetic cloud flows over the system, the entire magnetopause boundary is observed to move inside of geosynchronous orbit (6.6 Re). At the time of the most extreme solar wind conditions, the magnetopause boundary encounters the inner edge of the magnetospheric simulation domain. During the magnetic cloud, the ionospheric cross-polar cap potential is shown to match the Siscoe et al. [Siscoe, G.L., Erickson, G., Sonnerup, B., Maynard, N., Schoendorf, J., Siebert, K., Weimer

  13. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Kumari, Shweta; Kuanr, Bijoy K.

    2018-05-01

    M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR) response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd) and samarium (Sm), with cobalt (Co) as base, doped hexaferrite nanoparticles (NPs). X-ray diffractometry, vibrating sample magnetometer (VSM), and ferromagnetic resonance (FMR) techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.

  14. Energy conversion through mass loading of escaping ionospheric ions for different Kp values

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Slapak, Rikard

    2018-01-01

    By conserving momentum during the mixing of fast solar wind flow and slow planetary ion flow in an inelastic way, mass loading converts kinetic energy to other forms - e.g. first to electrical energy through charge separation and then to thermal energy (randomness) through gyromotion of the newly born cold ions for the comet and Mars cases. Here, we consider the Earth's exterior cusp and plasma mantle, where the ionospheric origin escaping ions with finite temperatures are loaded into the decelerated solar wind flow. Due to direct connectivity to the ionosphere through the geomagnetic field, a large part of this electrical energy is consumed to maintain field-aligned currents (FACs) toward the ionosphere, in a similar manner as the solar wind-driven ionospheric convection in the open geomagnetic field region. We show that the energy extraction rate by the mass loading of escaping ions (ΔK) is sufficient to explain the cusp FACs, and that ΔK depends only on the solar wind velocity accessing the mass-loading region (usw) and the total mass flux of the escaping ions into this region (mloadFload), as ΔK ˜ -mloadFloadu2sw/4. The expected distribution of the separated charges by this process also predicts the observed flowing directions of the cusp FACs for different interplanetary magnetic field (IMF) orientations if we include the deflection of the solar wind flow directions in the exterior cusp. Using empirical relations of u0 ∝ Kp + 1.2 and Fload ∝ exp(0.45Kp) for Kp = 1-7, where u0 is the solar wind velocity upstream of the bow shock, ΔK becomes a simple function of Kp as log10(ΔK) = 0.2 ṡ Kp + 2 ṡ log10(Kp + 1.2) + constant. The major contribution of this nearly linear increase is the Fload term, i.e. positive feedback between the increase of ion escaping rate Fload through the increased energy consumption in the ionosphere for high Kp, and subsequent extraction of more kinetic energy ΔK from the solar wind to the current system by the increased

  15. Vortices at the magnetic equator generated by hybrid Alfvén resonant waves

    NASA Astrophysics Data System (ADS)

    Hiraki, Yasutaka

    2015-01-01

    We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.

  16. Ionospheric modification using relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.

    1990-01-01

    The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.

  17. High-resolution station-based diurnal ionospheric total electron content (TEC) from dual-frequency GPS observations

    NASA Astrophysics Data System (ADS)

    ćepni, Murat S.; Potts, Laramie V.; Miima, John B.

    2013-09-01

    electron content (TEC) estimates derived from Global Navigation Satellite System (GNSS) signal delays provide a rich source of information about the Earth's ionosphere. Networks of Global Positioning System (GPS) receivers data can be used to represent the ionosphere by a Global Ionospheric Map (GIM). Data input for GIMs is dual-frequency GNSS-only or a mixture of GNSS and altimetry observations. Parameterization of GNSS-only GIMs approaches the ionosphere as a single-layer model (SLM) to determine GPS TEC models over a region. Limitations in GNSS-only GIM TEC are due largely to the nonhomogenous global distribution of GPS tracking stations with large data gaps over the oceans. The utility of slant GPS ionospheric-induced path delays for high temporal resolution from a single-station data rate offers better representation of TEC over a small region. A station-based vertical TEC (TECV) approach modifies the traditional single-layer model (SLM) GPS TEC method by introducing a zenith angle weighting (ZAW) filter to capture signal delays from mostly near-zenith satellite passes. Comparison with GIMs shows the station-dependent TEC (SD-TEC) model exhibits robust performance under variable space weather conditions. The SD-TEC model was applied to investigate ionospheric TEC variability during the geomagnetic storm event of 9 March 2012 at midlatitude station NJJJ located in New Jersey, USA. The high temporal resolution TEC results suggest TEC production and loss rate differences before, during, and after the storm.

  18. The use of subionospheric VLF/LF propagation for the study of lower ionospheric perturbations associated with earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, M.

    It is recently recognized that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs), attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we propose a possible use of VLF/LF (very low frequency (3-30 kHz)/low frequency (30-300 kHz)) radio sounding of seismo-ionospheric perturbations. We first present the first convincing evidence on the presence of ionospheric perturbations for the disastrous Kobe EQ in 1995. The significant shift in terminator times in the VLF/LF diurnal variation, is successfully interpreted in terms of lowering of themore » lower ionosphere prior to the EQ, which is the confirmation of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews [1, 2], we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), a case study on the Indonesia Sumatra EQ (wavelike structures in the VLF/LF data), medium-distance (6{approx}8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (atmospheric gravity waves effect, the effect of Earth's tides etc.), and the mechanism of lithosphere - atmosphere - ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetics study.« less

  19. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  20. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  1. Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Jin, Rui; Kutoglu, H.

    2017-06-01

    The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI [O]/[N2] ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.

  2. New concepts in ionospheric modification. Final report, 15 April 1986-30 September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, P.M.; Fraser-Smith, A.C.; Gilchrist, B.E.

    1987-04-01

    This report considers the ionospheric modification that can be produced by energetic charged-particle and photon beams, which are emitted from a platform or vehicle (spacecraft or rockets) located in the ionosphere. The various beams considered include (1) charged-particle beams composed of low-, moderate-, and high-energy electrons, (2) beams of ions and plasma, and (3) photon beams of soft x rays and extreme-ultraviolet radiation. Briefly considered, in addition to the beam topics, is the ionospheric modification produced by the release of neutral gas of high molecular weight from a rapidly moving vehicle such as the Space Shuttle Orbiter. When a rankingmore » is made in terms of the new information that may be obtained, the scale of the modification that may be produced, and the availability of beam sources, ionospheric modification by means of relativistic electron beams appears particularly promising. However, all the methods have their own distinctive features that could make their use desirable under particular circumstances. The modification produced by means of beams of soft x rays, for example, is not strongly dependent on the beam's direction relative to the earth's magnetic field, and thus modification can be produced in regions inaccessible to a charged-particle beam from the same vehicle.« less

  3. Clouds and troughs of total electron content detected with the ionospheric weather index

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara

    2016-07-01

    The ionospheric weather W index has been developed with the different thresholds of change in the F2 layer peak electron density NmF2 (proportional to foF2 critical frequency) or total electron content TEC relative their quiet reference for quantifying the ionosphere variability. The thresholds of DTEC=log(TEC/TECq) are selected for the positive and negative logarithm of TEC ratio to the quiet reference median, TECq, at any given location on the Earth. The global W-index maps are produced from Global Ionospheric Maps of Total Electron Content, GIM-TEC, and provided online at http://www.izmiran.ru/services/iweather/ and http://www.iololab.org/. Based on W-index maps, Catalogues of the ionospheric storms and sub-storms are produced available for the users. The second generation of the ionospheric weather indices, designated V index, is recently introduced and applied for the retrospective study of GIM-TEC variability during 1999-2015. Using sliding-window statistical analysis, moving daily-hourly TEC median TECq for 15 preceding days with estimated variance bounds are obtained at cells of GIM-TEC. The ionosphere variability index, V, is expressed in terms of ΔTEC deviation from the median normalized by the standard deviation STD. V index segmentation is introduced from Vn=-4 in step of 1 to Vp=4 specifying TEC storm if an instant TEC is outside of TECq+-1STD. The global maps of V index allow distinguish the clouds of enhanced TEC (positive storm signatures) and troughs of TEC depletion (negative storm signatures) as compared to the background quiet reference TECq map. It is found that the large-scale TEC clouds and troughs are observed in space all over the world constituting up to 20-50 percent of cells of GIM-TEC. The time variation of these plasma patches is partly following to geomagnetic SSC storm onset. As concerns the interplanetary and the solar wind, SW, sources of the ionospheric storms the TEC storms are observed both with IMF and SW precursors and

  4. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

    DTIC Science & Technology

    2014-09-23

    conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere

  5. The nighttime ionosphere of Mars from Mars-4 and Mars-5 radio occultation dual-frequency measurements

    NASA Technical Reports Server (NTRS)

    Savich, N. A.; Samovol, V. A.; Vasilyev, M. B.; Vyshlov, A. S.; Samoznaev, L. N.; Sidorenko, A. I.; Shtern, D. Y.

    1976-01-01

    Dual frequency radio sounding of the Martian nighttime ionosphere was carried out during the exits from behind the planet of the Mars-4 spacecraft on February 2, 1974 and the Mars-5 spacecraft on February 18, 1974. In these experiments, the spacecraft transmitter emitted two coherent monochromatic signals in decimeter and centimeter wavelength ranges. At the Earth receiving station, the reduced phase difference (or frequencies) of these signals was measured. The nighttime ionosphere of Mars measured in both cases had a peak electron density of approximately 5 X 1,000/cu cm at an altitude of 110 to 130 km. At the times of spacecraft exit, the solar zenith angles at the point of occultation were 127 deg and 106 deg, respectively. The height profiles of electron concentration were obtained assuming spherical symmetry of the Martian ionosphere.

  6. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  7. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Alfred Y.

    1999-09-20

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from themore » self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.« less

  8. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  9. Possible tidal resonance of the early Earth's ocean due to the lunar orbit evolution

    NASA Astrophysics Data System (ADS)

    Motoyama, M.; Tsunakawa, H.; Takahashi, F.

    2016-12-01

    The ocean tide is one of the most important factors affecting the Earth's surface environment and the evolution of the Earth-Moon system (e.g. Goldreich, 1966). According to the Giant Impact hypothesis, the Moon was formed very near the Earth 4.6 billion years ago (Hartmann and Davis, 1979). At that time, the tidal force would be about several thousand times as strong as the present. However previous studies pointed out that significant attenuation of tidal waves might have occurred due to mechanical response of water motion (e.g. Hansen, 1982; Abe and Ooe, 2001), resulting in relatively calm state like the present ocean.In the present study, we analyze tidal response of the ocean on the early Earth using a model of constant-depth ocean covering all the surface of the rigid Earth. The examined modes of response are not only M2 corresponding to spherical harmonics Y22 but also others such as Y21, since the lunar orbital plane would be inclined.First, estimated is an ocean depth for possible resonance of the individual mode. Eigen frequencies of the fluid on a rotating sphere with no friction are calculated on the basis of previous study (Longuet-Higgins, 1968). These frequencies depend on the Earth's rotation rate and the ocean depth. The Earth's rotation period is assumed to have changed from 5 hours to 24 hours for the past 4.6 billion years (e.g. Mignard, 1980; Stacey and Davis, 2008). It is found that resonance could occur for diurnal modes of Y21 and Y31 with reasonable depths of the ancient ocean (1300 - 5200 m).Then we obtain a 2D response function on a sphere with friction in order to estimate the tidal amplitude of the ocean for main modes . The response function in the present study shows good agreement with the numerical simulation result of the tidal torque response of M2 (Abe et al., 1997). The calculation results suggest that diurnal modes of Y21 and Y31 would grown on the early Earth, while the other modes would fairly be attenuated. In particular

  10. Studies of the ionospheric turbulence excited by the fourth gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Najmi, A.; Milikh, G.; Yampolski, Y. M.; Koloskov, A. V.; Sopin, A. A.; Zalizovski, A.; Bernhardt, P.; Briczinski, S.; Siefring, C.; Chiang, K.; Morton, Y.; Taylor, S.; Mahmoudian, A.; Bristow, W.; Ruohoniemi, M.; Papadopoulos, K.

    2015-08-01

    A study is presented of artificial ionospheric turbulence (AIT) induced by HF heating at High Frequency Active Auroral Research Program (HAARP) using frequencies close to the fourth electron gyroharmonic, in a broad range of radiated powers and using a number of different diagnostics. The diagnostics include GPS scintillations, ground-based stimulated electromagnetic emission (SEE), the HAARP ionosonde, Kodiak radar, and signals received at the Ukrainian Antarctic Station (UAS). The latter allowed analysis of waves scattered by the AIT into the ionospheric waveguide along Earth's terminator, 15.6 mm from the HAARP facility. For the first time, the amplitudes of two prominent SEE features, the downshifted maximum and broad upshifted maximum, were observed to saturate at ~50% of the maximum HAARP effective radiated power. Nonlinear effects in slant total electron content, SEE, and signals received at UAS at different transmitted frequencies and intensities of the pump wave were observed. The correlations between the data from different detectors demonstrate that the scattered waves reach UAS by the waveguide along the Earth's terminator, and that they were injected into the waveguide by scattering off of artificial striations produced by AIT above HAARP, rather than via direct injection from sidelobe radiation.

  11. Using the USU ionospheric model to predict radio propagation through a simulated ionosphere

    NASA Astrophysics Data System (ADS)

    Huffines, Gary R.

    1990-12-01

    To evaluate the capabilities of communication, navigation, and defense systems utilizing electromagnetic waves which interact with the ionosphere, a three-dimensional ray tracing program was used. A simple empirical model (Chapman function) and a complex physical model (Schunk and Sojka model) were used to compare the representation of ionospheric conditions. Four positions were chosen to test four different features of the Northern Hemispheric ionosphere. It seems that decreasing electron density has little or no effect on the horizontal components of the ray path while increasing electron density causes deviations in the ray path. It was also noted that rays in the physical model's mid-latitude trough region escaped the ionosphere for all frequencies used in this study.

  12. Complex network description of the ionosphere

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  13. Detection of the plasma density irregularities in the topside ionosphere with GPS measurements onboard Swarm satellites

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Cherniak, Iurii

    2016-07-01

    We present new results on the detection of the topside ionospheric irregularities/plasma bubbles using GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites. For this purpose we analyze the GPS measurements onboard the ESA's constellation mission Swarm, consisted of three identical satellites with orbit altitude of 450-550 km. We demonstrate that LEO GPS can be an effective tool for monitoring the occurrence of the topside ionospheric irregularities and may essentially contribute to the multi-instrumental analysis of the ground-based and in situ data. In the present study we analyze the occurrence and global distribution of the equatorial ionospheric irregularities during post-sunset period. To support our observations and conclusions, we involve into our analysis in situ plasma density provided by Swarm constellation. Joint analysis of the Swarm GPS and in situ measurements allows us to estimate the occurrence rate of the topside ionospheric irregularities during 2014-2015. The obtained results demonstrate a high degree of similarities in the occurrence pattern of the seasonal and longitudinal distribution of the topside ionospheric irregularities derived on both types of the satellite observations. This work was partially funded by RFBR according to the research project No.16-05-01077 a.

  14. A Review of Ionospheric Scintillation Models.

    PubMed

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  15. Contribution of the International Reference Ionosphere to the progress of the ionospheric representation

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter

    2017-04-01

    The International Reference Ionosphere (IRI), a joint project of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI), is a data-based reference model for the ionosphere and since 2014 it is also recognized as the ISO (International Standardization Organization) standard for the ionosphere. The model is a synthesis of most of the available and reliable observations of ionospheric parameters combining ground and space measurements. This presentation reviews the steady progress in achieving a more and more accurate representation of the ionospheric plasma parameters accomplished during the last decade of IRI model improvements. Understandably, a data-based model is only as good as the data foundation on which it is built. We will discuss areas where we are in need of more data to obtain a more solid and continuous data foundation in space and time. We will also take a look at still existing discrepancies between simultaneous measurements of the same parameter with different measurement techniques and discuss the approach taken in the IRI model to deal with these conflicts. In conclusion we will provide an outlook at development activities that may result in significant future improvements of the accurate representation of the ionosphere in the IRI model.

  16. Radio Tomography of Ionospheric Structures (probably) due to Underground-Surface-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Rekenthaler, D. A.

    2012-12-01

    Ionospheric radio-tomography (RT) utilizes radio signals transmitted from the global navigational satellite systems (GNSS), including low-orbiting (LO) navigational systems such as Transit, Tsikada, etc., and high-orbiting (HO) navigational systems such as GPS, GLONASS, Galileo, Beidou, etc. The signals that are transmitted from the LO navigational satellites and recorded by ground receiving chains can be inverted for almost instantaneous (5-8 min) 2D snapshots of electron density. The data from the networks of ground receivers that record the signals of the HO satellites are suitable for implementing high-orbital RT (HORT), i.e. reconstructing the 4D distributions of the ionospheric electron density (one 3D image every 20-30 min). In the regions densely covered by the GNSS receivers, it is currently possible to get a time step of 2-4 min. The LORT and HORT approaches have a common methodical basis: in both these techniques, the integrals of electron density along the ray between the satellite and the receiver are measured, and then the tomographic procedures are applied to reconstruct the distributions of electron density. We present several examples of the experiments on the ionospheric RT, which are related to the Underground-Surface-Atmosphere-Ionosphere (USAI) coupling. In particular, we demonstrate examples of RT images of the ionosphere after industrial explosions, rocket launches, and modification of the ionosphere by high-power radio waves. We also show RT cross sections reflecting ionospheric disturbances caused by the earthquakes (EQ) and tsunami waves. In these cases, there is an evident cause-and-effect relationship. The perturbations are transferred between the geospheres predominantly by acoustic gravity waves (AGW), whose amplitudes increase with increasing height. As far as EQ are concerned, the cause of the USAI coupling mechanism is not obvious. It is clear, however, that the regular RT studies can promote the solution of this challenging problem

  17. The Ionosphere and Ocean Altimetry

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.

    1999-01-01

    The accuracy of satellite-based single-frequency radar ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from the global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. We have created a daily automated process called Daily Global Ionospheric Map (Daily-GIM) whose primary purpose is to use global GPS data to provide ionospheric calibration data for the Geosat Follow-On (GFO) ocean altimeter. This process also produces an hourly time-series of global maps of the electron content of the ionosphere. This system is designed to deliver "quick-look" ionospheric calibrations within 24 hours with 90+% reliability and with a root-mean-square accuracy of 2 cm at 13.6 GHz. In addition we produce a second product within 72 hours which takes advantage of additional GPS data which were not available in time for the first process. The diagram shows an example of a comparison between TEC data from the Topographic Experiment (TOPEX) ocean altimeter and Daily-GIM. TEC are displayed in TEC units, TECU, where 5 TECU is 1 cm at 13.6 GHz. Data from a single TOPEX track is shown. Also shown is the Bent climatological model TEC for the track. Although the GFO satellite is not yet in its operational mode, we have been running Daily-GIM reliably (much better than 90%) with better than 2-cm accuracy (based on comparisons against TOPEX) for several months. When timely ephemeris files for the European Remote Sensing Satellite 2 (ERS-2) are available, daily ERS-2 altimeter ionospheric calibration files are produced. When GFO ephemeris files are made available to us, we produce GFO ionosphere calibration files. Users of these GFO ionosphere calibration files find they are a great improvement over the alternative International Reference Ionosphere 1995 (IRI-95) climatological model. In addition, the TOPEX orbit

  18. Nighttime lower ionosphere height estimation from the VLF modal interference distance

    NASA Astrophysics Data System (ADS)

    Samanes, Jorge; Raulin, Jean-Pierre; Cao, Jinbin; Magalhães, Antonio

    2018-01-01

    We have studied the dynamics of the nighttime lower ionosphere height through continuous monitoring of the VLF modal interference distance (so-called distance D). Since the distance D is related to the nighttime propagation modes within the Earth-Ionosphere waveguide, it provides information of the nighttime reflection height (hN). We have used a long-term VLF narrowband database of almost 8 years (2006-2014) from a long transequatorial VLF propagation path between the transmitter NPM (Hawaii, 21.4 kHz) and the receiver ATI (Atibaia, Brazil). Our results show that hN assumes lower values during northern hemisphere wintertime as compared with summertime. By using the Lomb-Scargle periodogram, periodicities around 180 (SAO), 365 (AO) and 800 (QBO) days have been found, being the periodicity around 180 days stronger than all other oscillations. Since these large-scale oscillations are commonly observed in several measurable parameters of the mesosphere-lower thermosphere (MLT) region, our results suggest that the nighttime lower ionosphere can be strongly influenced by the dynamics of the MLT region. The effect of the long-term solar activity on hN is also studied, resulting in high negative correlation (R = -0.91). This effect makes hN decrease around 1.2 km from low to high solar activity. This result suggests a control of the solar radiation on the nighttime lower ionosphere, and hence, on the electron density at night.

  19. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  20. Coupling of the Magnetosphere-Ionosphere/Thermosphere and Oxygen Outflow-- MIT Mission

    NASA Astrophysics Data System (ADS)

    Fu, S.

    2017-12-01

    The goal of the MIT mission is to understand the coupling of the magnetosphere and ionosphere from the prospective of particles. It will focus on the outflow of the ionosphere particles (mainly oxygen ions) from the Earth, including the acceleration mechanisms of oxygen ions and their relative importance in different regions, the importance of these ions while transferred into the magnetosphere and the roles they played in magnetosphere activities. A constellation of four satellites orbiting at three elliptical orbits will provide the unique opportunities to observed there ions at three different altitude with temporal changes of the flux of these particles and the magnetic field environments. The conceptual design of the spacecraft and a summary of the payload will be presented. The MIT mission was selected as one of the five candidates for the upcoming mission plan in China.

  1. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2014-05-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 Martian radii the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  2. The Sun, Its Extended Corona, the Interplanetary Space, the Earth's Magnetosphere, Ionosphere, Middle and Low Atmosphere, are All Parts of a Complex System - the Heliosphere

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Various manifestations of solar activity cause disturbances known as space weather effects in the interplanetary space, near-Earth environment, and all the Earth's "spheres. Longterm variations in the frequency, intensity and relative importance of the manifestations of solar activity are due to the slow changes in the output of the solar dynamo, and they define space climate. Space climate governs long-term variations in geomagnetic activity and is the primary natural driver of terrestrial climate. To understand how the variable solar activity affects the Earth's environment, geomagnetic activity and climate on both short and long time scales, we need to understand the origins of solar activity itself and its different manifestations, as well as the sequence of coupling processes linking various parts of the system. This session provides a forum to discuss the chain of processes and relations from the Sun to the Earth's surface: the origin and long-term and short-term evolution of solar activity, initiation and temporal variations in solar flares, CMEs, coronal holes, the solar wind and its interaction with the terrestrial magnetosphere, the ionosphere and its connection to the neutral dominated regions below and the plasma dominated regions above, the stratosphere, its variations due to the changing solar activity and its interactions with the underlying troposphere, and the mechanisms of solar influences on the lower atmosphere on different time-scales. Particularly welcome are papers highlighting the coupling processes between the different domains in this complex system.

  3. New insights into the structure and energetics of the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, Christopher M.

    Understanding the formation and evolution of planetary bodies is of great interest and importance to humankind. Mars, being the closest analogue to Earth in our solar system, has been of particular importance. Having studied the red planet for many decades using landers and orbiting spacecraft, we are now laying the groundwork to venture there ourselves. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission recently went into Mars orbit to study the physical processes active within the Martian atmosphere, and to understand how the atmosphere itself has evolved throughout the planet's history. This thesis is based upon unraveling data from the MAVEN mission, with a focus on the structure and energetics of the Martian ionosphere. Data from many of the instruments carried by MAVEN have been analyzed in this work, in particular, analysis and fitting of current-voltage sweeps measured by the Langmuir Probe and Waves instrument. New insights have been gained about the operation of Langmuir probes in planetary ionospheres, and through first author papers, about the Martian ionosphere itself. The four papers presented in this thesis focus on the structure and energetics of the Martian ionosphere. The first in-situ observations of the Martian nightside electron density and temperature showed that an ionization source is needed to sustain the observed densities. Precipitating electrons were shown as a feasible source, agreeing with suggestions from previous modeling efforts. The transfer of energy from the solar wind to the atmosphere is an important energy source for the Martian atmosphere. An investigation of the electromagnetic environment at Mars shows how the distribution of wave power, and various plasma boundaries within the Martian magnetosphere, respond to upstream solar wind conditions, highlighting regions important for energy dissipation. The combination of magnetic field and ion data allows for the first time at Mars, ion conics to be observed. These show

  4. The CuSPED Mission: CubeSat for GNSS Sounding of the Ionosphere-Plasmasphere Electron Density

    NASA Technical Reports Server (NTRS)

    Gross, Jason N.; Keesee, Amy M.; Christian, John A.; Gu, Yu; Scime, Earl; Komjathy, Attila; Lightsey, E. Glenn; Pollock, Craig J.

    2016-01-01

    The CubeSat for GNSS Sounding of Ionosphere-Plasmasphere Electron Density (CuSPED) is a 3U CubeSat mission concept that has been developed in response to the NASA Heliophysics program's decadal science goal of the determining of the dynamics and coupling of the Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs. The mission was formulated through a collaboration between West Virginia University, Georgia Tech, NASA GSFC and NASA JPL, and features a 3U CubeSat that hosts both a miniaturized space capable Global Navigation Satellite System (GNSS) receiver for topside atmospheric sounding, along with a Thermal Electron Capped Hemispherical Spectrometer (TECHS) for the purpose of in situ electron precipitation measurements. These two complimentary measurement techniques will provide data for the purpose of constraining ionosphere-magnetosphere coupling models and will also enable studies of the local plasma environment and spacecraft charging; a phenomenon which is known to lead to significant errors in the measurement of low-energy, charged species from instruments aboard spacecraft traversing the ionosphere. This paper will provide an overview of the concept including its science motivation and implementation.

  5. Atmospheric Drag, Occultation `N' Ionospheric Scintillation (ADONIS) mission proposal. Alpbach Summer School 2013 Team Orange

    NASA Astrophysics Data System (ADS)

    Hettrich, Sebastian; Kempf, Yann; Perakis, Nikolaos; Górski, Jędrzej; Edl, Martina; Urbář, Jaroslav; Dósa, Melinda; Gini, Francesco; Roberts, Owen W.; Schindler, Stefan; Schemmer, Maximilian; Steenari, David; Joldžić, Nina; Glesnes Ødegaard, Linn-Kristine; Sarria, David; Volwerk, Martin; Praks, Jaan

    2015-02-01

    The Atmospheric Drag, Occultation `N' Ionospheric Scintillation mission (ADONIS) studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO). The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT) about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG), the European Space Agency (ESA), the International Space Science Institute (ISSI) and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of "Space Weather: Science, Missions and Systems", supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams' efforts.

  6. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    NASA Astrophysics Data System (ADS)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  7. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  8. Improving Discoverability Between the Magnetosphere and Ionosphere/Thermosphere Domains

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2016-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow "near misses" to be found. The magnetic field

  9. Ionospheric plasma cloud dynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.

  10. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  11. Investigations of Relatively Easy To Construct Antennas With Efficiency in Receiving Schumann Resonances: Preparations for a Miniaturized Reconfigurable ELF Receiver

    NASA Technical Reports Server (NTRS)

    Farmer, Brian W.; Hannan, Robert C.

    2003-01-01

    Relatively little is known about the cavity between the Earth and the ionosphere, which opens opportunities for technological advances and unique ideas. One effective means to study this cavity is with extremely low frequency (ELF) antennas. Possible applications of these antennas are global weather prediction, earthquake prediction, planetary exploration, communication, wireless transmission of power, or even a free energy source. The superconducting quantum interference device SQUID) and the coil antenna are the two most acceptable receivers discovered for picking up ELF magnetic fields. Both antennas have the potential for size reduction, allowing them to be portable enough for access to space and even for personal ware. With improvements of these antennas and signal processing, insightful analysis of Schumann resonance (SR) can give the science community a band of radio frequency (RF) signals for improving life here on Earth and exploring beyond.

  12. An Ionospheric Response to the 2013 Moore EF5 Tornad, Detected By High-Resolution GPS-TEC Observations

    NASA Astrophysics Data System (ADS)

    Kubota, M.; Nishioka, M.; Tsugawa, T.; Ishii, M.

    2014-12-01

    We observed clear concentric waves and short-period oscillations in the ionosphere after the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013 using a dense wide-coverage ionospheric total electron content (TEC) observation in North America. These concentric waves were non-dispersive waves with a horizontal wavelength of ~120 km and a period of ~13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of ~4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the TEC observation and the infrared cloud image from the GOES satellite indicates that the concentric waves were caused by supercells rather than the tornados themselves. Backward ray-tracing analysis suggests that the leaking of atmospheric waves in a thermal duct excited AGWs in the ionosphere. The short-period TEC oscillation could be explained by the acoustic resonance triggered by strong long-lasting supercells. This observational result provides the first clear evidence of a severe meteorological event causing atmospheric waves propagating upward in the upper atmosphere and reaching the ionosphere.

  13. Chemistry in the Thermosphere and Ionosphere.

    ERIC Educational Resources Information Center

    Roble, Raymond G.

    1986-01-01

    An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…

  14. The Ionospheric Connection Explorer - A pioneering research mission for space physics and aeronomy.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; England, S.; Maute, A. I.; Makela, J. J.; Crowley, G.; Stephan, A. W.; Huba, J. D.; Harlander, J. M.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Hysell, D. L.; Saito, A.; Yigit, E.

    2012-12-01

    Earth's ionosphere, the 'inner edge of space,' is a highly variable boundary that is influenced from below by internal atmospheric waves of various scales and from above by solar and geomagnetic activity. Recent observational findings and modeling studies have raised many questions about the effects and interaction of these drivers in our geospace environment, and how these vary between extremes in solar activity. ICON will address the most compelling science issues that deal with the coupling of the ionosphere to the neutral atmosphere below and space above: 1) The highly variable nature of the electric field in the ionosphere and its potential link to thermospheric wind, 2) the effect of forcing from below: how large-scale atmospheric waves penetrate into the thermosphere and ionosphere, and 3) the effect of forcing from above: how ion-neutral coupling changes during solar and geomagnetically active periods. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. If selected for development by NASA, ICON will launch in late 2016 into a low-inclination orbit that is particularly well suited to address the above-noted scientific problems and to make a number of coordinated measurements with ground based facilities at low and middle latitudes.The ICON observatory is depicted with solar arrays deployed. The scientific payload is on the nadir facing portion of the spacecraft.

  15. On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations

    NASA Astrophysics Data System (ADS)

    Stankov, S.; Verhulst, T. G. W.

    2017-12-01

    A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.

  16. Modeling of the spatial state of the ionosphere using regular definitions of the VTEC identifier at the network of continuously operating GNSS stations of Ukraine

    NASA Astrophysics Data System (ADS)

    Yankiv-Vitkovska, Liubov; Dzhuman, Bogdan

    2017-04-01

    Due to the wide application of global navigation satellite systems (GNSS), the development of the modern GNSS infrastructure moved the monitoring of the Earth's ionosphere to a new methodological and technological level. The peculiarity of such monitoring is that it allows conducting different experimental studies including the study of the ionosphere directly while using the existing networks of reference GNSS stations intended for solving other problems. The application of the modern GNSS infrastructure is another innovative step in the ionospheric studies as such networks allow to conduct measurements continuously over time in any place. This is used during the monitoring of the ionosphere and allows studying the global and regional phenomena in the ionosphere in real time. Application of a network of continuously operating reference stations to determine numerical characteristics of the Earth's ionosphere allows creating an effective technology to monitor the ionosphere regionally. This technology is intended to solve both scientific problems concerning the space weather, and practical tasks such as providing coordinates of the geodetic level accuracy. For continuously operating reference GNSS stations, the results of the determined ionization identifier TEC (Total Electron Content). On the one hand, this data reflects the state of the ionosphere during the observation; on the other hand, it is a substantial tool for accuracy improvement and reliable determination of coordinates of the observation place. Thus, it was decided to solve a problem of restoring the spatial position of the ionospheric state or its ionization field according to the regular definitions of the TEC identifier, i.e. VTEC (Vertical TEC). The description below shows one of the possible solutions that is based on the spherical cap harmonic analysis method for modeling VTEC parameter. This method involves transformation of the initial data to a spherical cap and construction of model using

  17. First report of resonant interactions between whistler mode waves in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Wang, Shui

    2017-06-01

    Nonlinear physics related to whistler mode waves in the Earth's magnetosphere are now becoming a hot topic. In this letter, based on Time History of Events and Macroscale Interactions during Substorms waveform data, we report several interesting whistler mode wave events, where the upper band whistler mode waves are believed to be generated through the nonlinear wave-wave coupling between two lower band waves. This is the first report on resonant interactions between whistler mode waves in the Earth's magnetosphere. In these events, the two lower band whistler mode waves are observed to have oppositely propagating directions, while the generated upper band wave has the same propagating direction as the lower band wave with the relatively higher frequency. Moreover, the wave normal angle of the excited upper band wave is usually larger than those of two lower band whistler mode waves. Our results reveal the large diversity of the evolution of whistler mode waves in the Earth's magnetosphere.

  18. Cosmic Influence on the Sun-Earth Environment

    PubMed Central

    Mukherjee, Saumitra

    2008-01-01

    SOHO satellite data reveals geophysical changes before sudden changes in the Earth's Sun-Earth environment. The influence of extragalactic changes on the Sun as well as the Sun-Earth environment seems to be both periodic and episodic. The periodic changes in terms of solar maxima and minima occur every 11 years, whereas the episodic changes can happen at any time. Episodic changes can be monitored by cosmic ray detectors as a sudden increase or decrease of activity. During these solar and cosmic anomaly periods the environment of the Earth is affected. The Star-Sun-Earth connection has the potential to influence the thermosphere, atmosphere, ionosphere and lithosphere. Initial correlation of the cosmic and Sun-Earth connection has shown the possibility of predicting earthquakes, sudden changes in atmospheric temperatures and erratic rainfall/snowfall patterns. PMID:27873955

  19. Detection of Traveling Ionospheric Disturbances Induced by 2010 Mindanao Earthquakes

    NASA Astrophysics Data System (ADS)

    Shahbazi, A.; Park, J.; Huang, C.

    2017-12-01

    Earthquakes precipitate anomalous variations in the concentration of free electrons/ions in the ionosphere being known as the Traveling Ionospheric Disturbance (TID). The TIDs can be detected from the Total Electron Content (TEC), which can be extracted from the ionospheric delay along the ray path of the GNSS signal between a satellite and a receiver. In this study, we utilized the GNSS-derived TEC observed by Communication/Navigation Outage Forecasting System (C/NOFS), which is a Low Earth Orbit (LEO) satellite. As a case study, we detected the ionospheric perturbations triggered by 2010 Mindanao earthquakes in the Moro Gulf, southern Philippines. Since this sequence of the earthquakes was occurred in depths of about 600 km, the low detectability of TID signature was expected while the magnitude of the foreshock, primary shock and aftershock were of 7.3, 7.6, and 7.5 Mb, respectively. Hence, we introduced a novel filtering scheme to assess the performance of space-based TEC observations in identification of earthquake-induced TIDs as well as to cope with the challenge of investigating deep subsequent earthquakes. The proposed approach suppresses the dominant trend of TEC by Hodrick-Prescott (H-P) Filter, which identifies the extremums of the remained signal as the potential TIDs and associates them to the seismic waves. Considering the propagation mechanism of the seismic waves given in the literatures that the wave propagates upward from the earthquake epicenter to the upper atmosphere, and then, moves horizontally through the ionosphere, we applied the first order linear regression model to estimate the propagation velocity of TIDs. Our experimental result demonstrated the vertical propagation velocity of 0.980 km/s and the horizontal propagation velocity through the ionosphere of 1.066 km/s with the std. of 0.364 km/s. The correlation coefficient of the detected TIDs in this model is 0.78 that illustrates the detected TIDs are well correlated with the event

  20. Tether-Based Investigation of the Ionosphere and Lower Thermosphere Concept Definition Study Report

    NASA Technical Reports Server (NTRS)

    Johnson, L. (Editor); Herrmann, M. (Editor)

    1997-01-01

    Understanding the plasma and atmosphere around the Earth in the lower altitude regions of the mesosphere, lower thermosphere, and ionosphere is important in the global electric system. An upper atmosphere tether has been proposed to NASA that would collect much-needed data to further our knowledge of the regions. The mission is proposed as a shuttle experiment that would lower a tethered probe into certain regions of Earth's atmosphere, collecting data over a 6-day period. This report is a summary of the results of a concept definition study to design engineering system that will achieve the scientific objectives of this mission.

  1. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  2. Ionospheric behaviour during storm recovery phase

    NASA Astrophysics Data System (ADS)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  3. The dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.

    1988-01-01

    Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.

  4. Observational investigation of ionospheric turbulent spectral content in relation to geomagnetic field variations and local seismicity

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arambelos, D.; Asteriadis, G.; Pikridas, Ch.; Spatalas, S.; Chatzinikos, M.

    2006-04-01

    Atmospheric and underground explosions as well as shallow earthquakes producing strong vertical ground displacement, are known to produce pressure waves that propagates at infrasonic speeds in the atmosphere. At ionospheric altitudes these waves are coupled to ionospheric gravity waves and induce variations in the ionospheric electron density. On the other hand local lithospheric density, ion inhalation, temperature or electromagnetic field variations, produced by the local tectonic activity during the earthquake preparation period, induces near surface atmospheric variations and affect the ionospheric density through the Lithospher-Atmosphere- Ionosphere Coupling. That is the lithospheric near surface tectonic activity results to local pre- co- and post seismic disturbances on the ionospheric Total Electron Content (TEC). Nevertheless these disturbances are mixed with disturbances induced to the ionospher by a number of agents such as tropospheric jets, magnetic storms and sub-storms, solar activity, ionosphere-magnetosphere coupling etc, and a major problem is to discriminate the influence of those agents from the influence of the local tectonic activity. In this paper we present the results of the wavelet analysis of TVEC variations over a network of 4 GPS stations, depicted from EUREF-EPN network, covering the whole area of Greece. Our results indicate that 1) Disturbances with period higher than 3 hours have a Universal origin i.e. earth-tides, Aurora or Equatorial anomaly. 2) Disturbances with periods equal or smaller than 3 hours are of local origin. 3) Strong Variations of geomagnetic field affect the disturbances of all periods. 4) Disturbances with period 3 hours present a good coherency in the measurements of more than one GPS stations. In concluding disturbances with period equal or less than 3 hours are suitable for de

  5. Anomalous phenomena in Schumann resonance band observed in China before the 2011 magnitude 9.0 Tohoku-Oki earthquake in Japan

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjuan; Zhou, Zhiquan; Qiao, Xiaolin; Yu, Haiyan

    2013-12-01

    anomalous phenomena in the Schumann resonance (SR) band, possibly associated with the Tohoku-Oki earthquake (EQ), are studied based on the ELF observations at two stations in China. The anomaly appeared on 8 March, 3 days prior to the main shock, and was characterized by an increase in the intensity at frequencies from the first mode to the fourth mode in both magnetic field components, different from the observations in Japan before large EQs in Taiwan. The abnormal behaviors of the north-south and east-west magnetic field components primarily appeared at 0000-0900 UT and 0200-0900 UT on 8 March, respectively. The finite difference time domain numerical method is applied to model the impact of seismic process on the ELF radio propagation. A partially uniform knee model of the vertical conductivity profile suggested by V. C. Mushtak is used to model the day-night asymmetric Earth-ionosphere cavity, and a locally EQ-induced disturbance model of the atmospheric conductivity is introduced. The atmospheric conductivity is assumed to increase around the epicenter according to the localized enhancement of total electron content in the ionosphere. It is concluded that the SR anomalous phenomena before the Tohoku-Oki EQ have much to do with the excited sources located at South America and Asia and also with the localized distribution of the disturbed conductivity. This work is a further confirmation of the relationship of SR anomalies with large EQs and has further concluded that the distortions in the SR band before large EQs may be caused by the irregularities located over the shock epicenter in the Earth-ionosphere cavity by numerical method.

  6. Effects of solar flares on the ionosphere of Mars.

    PubMed

    Mendillo, Michael; Withers, Paul; Hinson, David; Rishbeth, Henry; Reinisch, Bodo

    2006-02-24

    All planetary atmospheres respond to the enhanced x-rays and ultraviolet (UV) light emitted from the Sun during a flare. Yet only on Earth are observations so continuous that the consequences of these essentially unpredictable events can be measured reliably. Here, we report observations of solar flares, causing up to 200% enhancements to the ionosphere of Mars, as recorded by the Mars Global Surveyor in April 2001. Modeling the altitude dependence of these effects requires that relative enhancements in the soft x-ray fluxes far exceed those in the UV.

  7. Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment

    NASA Technical Reports Server (NTRS)

    Conrad, Patrick R.; Naasz, Bo J.

    2007-01-01

    The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.

  8. Numerical simulation of Ganymede's ionosphere

    NASA Astrophysics Data System (ADS)

    Carnielli, Gianluca; Galand, Marina; Leblanc, François; Leclercq, Ludivine; Modolo, Ronan

    2017-04-01

    Ganymede is one of the four Galilean moons that orbit around Jupiter and the key moon targeted by the JUpiter and ICy moons Explorer (JUICE) mission. Other than being the largest moon in the solar system, it is also the only one known to generate internally a magnetic field which is strong enough to overcome the background jovian field; thus, the moon carves out its own magnetosphere inside that of Jupiter. In addition, at Ganymede's orbit the jovian plasma is sub-Alfvénic and subsonic. The interaction of Ganymede's magnetosphere with its surroundings therefore differs from that of planetary magnetospheres resulting from the interaction with the super-Alfvénic and supersonic solar wind. All this makes Ganymede a peculiar celestial body to study. One of the main goals of the JUICE mission is to characterize Ganymede's exosphere, ionosphere, and magnetosphere as well as its interaction with the jovian surrounding in great details. Ahead of the arrival of JUICE at Jupiter, models have been developed to predict Ganymede's environment. Observational constraints are primarily given from Galileo and from Earth-based telescopes. They remain limited, especially in terms of the ionospheric number density and temperature. To address the currently poorly constrained ionospheric environment, we have developed a test particle model of Ganymede's plasma environment. The model is driven by the densities of neutral species from the exospheric model of Leblanc et al. (Icarus, 2016) and the electromagnetic field taken from the hybrid model of Leclercq et al. (PSS, 2016). The simulation follows the motion of millions of test particles in the environment of the moon and allows to generate maps of ion densities, bulk velocities, and temperatures. We will present simulation outcomes for different ions, including H+, O+, and O2+. We will also discuss how the results from the simulations are relevant to MHD and exospheric models and in interpreting plasma and particle data obtained by

  9. Ionospheric effects of thunderstorms and lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin H.

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less

  10. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  11. First-Principles Propagation of Geoelectric Fields from Ionosphere to Ground using LANLGeoRad

    NASA Astrophysics Data System (ADS)

    Jeffery, C. A.; Woodroffe, J. R.; Henderson, M. G.

    2017-12-01

    A notable deficiency in the current SW forecasting chain is the propagation of geoelectric fields from ionosphere to ground using Biot-Savart integrals, which ignore the localized complexity of lithospheric electrical conductivity and the relatively high conductivity of ocean water compared to the lithosphere. Three-dimensional models of Earth conductivity with mesoscale spatial resolution are being developed, but a new approach is needed to incorporate this information into the SW forecast chain. We present initial results from a first-principles geoelectric propagation model call LANLGeoRad, which solves Maxwell's equations on an unstructured geodesic grid. Challenges associated with the disparate response times of millisecond electromagnetic propagation and 10-second geomagnetic fluctuations are highlighted, and a novel rescaling of the ionosphere/ground system is presented that renders this geoelectric system computationally tractable.

  12. Using network technology for studying the ionosphere

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Zhivetiev, Ilya

    2015-09-01

    One of the key problems of ionosphere physics is the coupling between different ionospheric regions. We apply networks technology for studying the coupling of changing ionospheric dynamics in different regions. We used data from global ionosphere maps (GIM) of total electron content (TEC) produced by CODE for 2005-2010. Distribution of cross-correlation function maxima of TEC variations is not simple. This distribution allows us to reveal two levels of ionosphere coupling: "strong" (r>0.9) and "weak" (r>0.72). The ionosphere of the Arctic region upper 50° magnetic latitude is characterized by a "strong" coupling. In the Southern hemisphere, a similar region is bigger. "Weak" coupling is typical for the whole Southern hemisphere. In North America there is an area where TEC dynamics is "strongly" correlated inside and is not correlated with other ionospheric regions.

  13. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1997-09-30

    The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime

  14. The spatial distribution of VLF transmitters at topside ionosphere and the VLF-induced heating phenomena

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, S.; Zhou, C.

    2016-12-01

    Based on the electric field observation at VLF frequency band onboard DEMETER satellite, the spatial distribution was studied about some VLF transmitters at different latitudes on ground, as while the maximal intensity, the attenuation rate and affected areas, including NWC and GBZ with high power, and some transmitters with low radiated power. As while the full wave propagation model is used to simulate the theoretical results at topside ionosphere. The results show that, (1) the intensity of electromagnetic waves at topside ionosphere with 1000kW radiated power is higher as one or two orders of magnitude than those with 500 kW power; (2) at same station, the amplitudes in electric field are larger with high frequency signals than those lower ones at the same station; (3) at same frequency points, the ionospheric background affected strongly the waves penetrating into the ionosphere, for the intensity of same frequency signals differed apparently at different transmitters. Due to the high energy of VLF transmitters, the heating phenomena were also observed extensively at DEMETER satellite. Here the VLF-induced ionospheric heating perturbations were selected and analyzed during the solar minimum years of 2008-2009. There are three main features in VLF heating, (1) the temperature of electron and ion increased, while the electron density and O+ density at topside ionosphere decreased; (2) the low hybrid waves were excited at 10-20kHz; (3) the plasma frequency was emitted at some points around 1.92MHz; (4) the VLF induced heating phenomena were associated closely with the radiated power of transmitters, while the transmitters with power <500kW are hard to cause the ionospheric disturbances directly. Considering the propagation and heating process of VLF electromagnetic wave, these features above were discussed and compared with HF heating processes. By learning for the man-made signals propagating from ground into ionosphere, it is helpful to further understand the

  15. Transmission of the Magnetospheric Electric Fields to the Low Latitude Ionosphere during Storm and Substorms

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tanaka, T.; Tomizawa, I.; Nagatsuma, T.

    2016-12-01

    -sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.

  16. Linking Plasma Conditions in the Magnetosphere with Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kozyra, Janet; Kuznetsova, Maria M.; Berrios, David H.

    2012-01-01

    Modeling of the full magnetosphere, ring current and ionosphere system has become an indispensable tool in analyzing the series of events that occur during geomagnetic storms. The CCMC has a full model suite available for the magnetosphere, together with visualization tools that allow a user to perform a large variety of analyses. The January, 21, 2005 storm was a moderate-size storm that has been found to feature a large penetration electric field and unusually large polar caps (low-latitude precipitation patterns) that are otherwise found in super storms. Based on simulations runs at CCMC we can outline the likely causes of this behavior. Using visualization tools available to the online user we compare results from different magnetosphere models and present connections found between features in the magnetosphere and the ionosphere that are connected magnetically. The range of magnetic mappings found with different models can be compared with statistical models (Tsyganenko) and the model's fidelity can be verified with observations from low earth orbiting satellites such as DMSP and TIMED.

  17. Ionospheric Irregularities Characterization by Ground and Space-based GPS Observations

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Cherniak, I.; Krankowski, A.

    2017-12-01

    We present new results on detection and investigation of the topside ionospheric irregularities using GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit satellites. Our investigation is based on the recent ESA's Swarm mission launched on 22 November 2013 and consisted of three identical satellites, two of them fly in a tandem at an orbit altitude of 460 km while the third satellite - at an orbit altitude of 510 km. Each satellite is equipped with a zenith-looking antenna and 8-channel dual-frequency GPS receiver that delivered 1 Hz data for POD purposes, as well as Langmuir Probe instrument for in situ electron density. Additionally, we have analyzed GPS measurements onboard GRACE and TerraSAR-X satellite, which have rather similar to Swarm orbit altitude of 500 km. GPS measurements onboard MetOP-A and MetOP-B satellites (altitude of 840 km) can complement these observations in order to estimate an altitudinal extent of the ionospheric irregularities penetrating to higher altitudes. We demonstrate that space-based GPS observations can be effectively used for monitoring of the topside ionospheric irregularities occurrence in both high-latitude and equatorial regions and may essentially contribute to the multi-instrumental analysis of the ground-based and in situ data. Climatological characteristics of the equatorial ionospheric irregularities occurrence probability are derived from POD GPS measurements for all longitudinal sectors for the years 2013-2016. Several examples of strong geomagnetic storms, including the 2015 St. Patrick's Day storm, were analyzed to demonstrate differences between the climatlogical characteristics in space-based GPS data and storm-induced equatorial irregularities observations (postsunset suppression, night/morning-time occurrence). To support our observations and conclusions, we involve into our analysis in situ plasma density provided by Swarm constellation, GRACE KBR, DMSP satellites, as well

  18. Topside ionospheric irregularities as seen from multisatellite observations

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Astafyeva, Elvira

    2015-01-01

    use in situ data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP satellite and ground-based GPS receivers to study the occurrence and global distribution of ionospheric irregularities during the main phase of the geomagnetic storm of 29-31 August 2004 (minimum Dst excursion of -128 nT). Using the CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities: (1) the region of the auroral oval at high latitudes of both hemispheres and (2) the low latitudes/equatorial region between Africa and South America. At high latitudes, the topside ionospheric irregularities appeared to be more intensive in the southern hemisphere, which is, most likely, due to seasonal variations in the interhemispheric field-aligned currents system. An analysis of multi-instrumental observations reveals reinforcement of the equatorial ionization anomaly after sunset in Atlantic sector on 30 August and formation of the significant plasma depletions and irregularities over a large longitudinal range. Equatorial irregularities were also found in the morning sector at the recovery phase of the storm. In addition to low Earth orbit (LEO) GPS measurements, we analyze the LEO in situ measurements, and we show that these two techniques cannot be interchangeable in all cases because of the altitudinal extent of plasma irregularities. Overall, we demonstrate that the LEO GPS technique can serve a useful tool for detection of the topside ionospheric irregularities during space weather events and may essentially contribute to other methods based on various instruments.

  19. Separation of O/X Polarization Modes on Oblique Ionospheric Soundings

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Cervera, M. A.; Pederick, L. H.; Quinn, A. D.

    2017-12-01

    The oblique-incidence sounder (OIS) is a well-established instrument for determining the state of the ionosphere, with several advantages over vertical-incidence sounders (VIS). However, the processing and interpretation of OIS ionograms is more complicated than that of VIS ionograms. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies and a VIS or OIS will typically see two distinct ionospheric returns, known as the O and X modes. The separation of these two modes on a VIS, using a polarimetric receive antenna, is a well-established technique. However, this process is more complicated on an OIS due to a variable separation in the phase difference between the two modes, as measured between the two arms of a polarimetric antenna. Using a polarimetric antenna that can be rotated and tilted, we show that this variation in phase separation within an ionogram is caused by the variation in incidence angle, with some configurations leading to greater variation in phase separation. We then develop an algorithm for separating O and X modes in oblique ionograms that can account for the variation in phase separation, and we demonstrate successful separation even in relatively difficult cases. The variation in phase separation can also be exploited to estimate the incident elevation, a technique which may be useful for other applications of HF radio.

  20. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  1. Spatial Characteristics of the 630-nm Artificial Ionospheric Airglow Generation Region During the Sura Facility Pumping

    NASA Astrophysics Data System (ADS)

    Shindin, A. V.; Klimenko, V. V.; Kogogin, D. A.; Beletsky, A. B.; Grach, S. M.; Nasyrov, I. A.; Sergeev, E. N.

    2018-05-01

    We describe the method and the results of modeling and retrieval of the spatial distribution of excited oxygen atoms in the HF-pumped ionospheric region based on two-station records of artificial airglow in the red line (λ = 630 nm). The HF ionospheric pumping was provided by the Sura facility. The red-line records of the night-sky portraits were obtained at two reception points—directly at the heating facility and 170 km east of it. The results were compared with the vertical ionospheric sounding data. It was found that in the course of the experiments the airglow region was about 250 km high and did not depend on the altitude of the pump-wave resonance. The characteristic size of the region was 35 km, and the shape of the distribution isosurfaces was well described by oblique spheroids or a drop-shaped form. The average value of the maximum concentration of excited atoms during the experiment was about 1000 cm-3.

  2. Non-stationary Alfvén resonator: new results on Pc1 pearls and IPDP events

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Prikner, K.; Feygin, F. Z.; Bräysy, T.; Kangas, J.; Kerttula, R.; Pollari, P.; Pikkarainen, T.; Pokhotelov, O. A.

    2000-03-01

    We analyse a Pc1 pearl event observed by the Finnish search-coil magnetometer network on 15 December 1984, which subsequently developed into a structured IPDP after a substorm onset. The EISCAT radar was simultaneously monitoring the mid- to high-latitude ionosphere. We have calculated the ionospheric resonator properties during the different phases of the event using EISCAT observations. Contrary to the earlier results, we find that the Pc1/IPDP (Interval of Pulsations of Diminishing Period) frequency observed on the ground corresponds to the maximum of the transmission coefficient rather than that of the reflection coefficient. This casts strong doubts on the bouncing wave packet model of Pc1 pearls. Instead, we present evidence for an alternative model of pearl formation in which long-period ULF waves modulate the Pc1 growth rate. Moreover, we propose a new model for IPDP formation, whereby the ionosphere acts as an active agent in forming the IPDP signal on the ground. The model calculations show that the ionospheric resonator properties can be modified during the event so that the resonator eigenfrequency increases according to the observed frequency increase during the IPDP phase. We suggest that the IPDP signal on the ground is a combined effect of the frequency increase in the magnetospheric wave source and the simultaneous increase of the resonator eigenfrequency. The need for such a complicated matching of the two factors explains the rarity of IPDPs on the ground despite the ubiquitous occurrence of EMIC waves in the magnetosphere and the continuous substorm cycle.

  3. Sodankylä ionospheric tomography dataset 2003-2014

    NASA Astrophysics Data System (ADS)

    Norberg, J.; Roininen, L.; Kero, A.; Raita, T.; Ulich, T.; Markkanen, M.; Juusola, L.; Kauristie, K.

    2015-12-01

    Sodankylä Geophysical Observatory has been operating a tomographic receiver network and collecting the produced data since 2003. The collected dataset consists of phase difference curves measured from Russian COSMOS dual-frequency (150/400 MHz) low-Earth-orbit satellite signals, and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three-to-five operational stations at the Fenno-Scandinavian sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this dataset, one solar cycle of ionospheric vertical total electron content estimates is constructed. The measurements are compared against International Reference Ionosphere IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.

  4. Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-08-01

    We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

  5. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.

    2016-04-01

    Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.

  6. On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Safargaleev, V. V.; Safargaleeva, N. N.

    2018-03-01

    The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 R E from the Earth's surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.

  7. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  8. Radar soundings of the ionosphere of Mars.

    PubMed

    Gurnett, D A; Kirchner, D L; Huff, R L; Morgan, D D; Persoon, A M; Averkamp, T F; Duru, F; Nielsen, E; Safaeinili, A; Plaut, J J; Picardi, G

    2005-12-23

    We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength.

  9. Forecasting Ionospheric Real-time Scintillation Tool (FIRST)

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Redmon, R.; Bullett, T.; Caton, R. G.; Retterer, J. M.

    2009-05-01

    It is well-known that the generation of equatorial, F-region plasma density irregularities, via the Generalized Rayleigh-Taylor instability mechanism is critically dependent on the magnitude of the pre-reversal enhancement (PRE) in upward ExB drift velocity after sunset. These plasma density bubbles that are generated after sunset lead to the scintillation of trans-ionospheric radio wave signals that pass through these bubbles and is commonly referred to as scintillation activity. Communication and Navigation systems can be severely disrupted by these plasma density irregularities. A measure of scintillation activity is given by the S4 Index and a network of Air Force, ground-based UHF and L-band receivers measuring the S4 Index is called the SCIntillation Network Decision Aid (SCINDA) network. After sunset, the height-rise with time of the bottom- side of the F-layer reflects the magnitude of the upward ExB drift velocity. The value of the ionospheric parameter, h'F (the virtual height of the bottom-side F-layer) at 1930 LT reflects the integrated ExB drift effect on lifting the F-layer to an altitude where the Rayleigh-Taylor (R-T) instability mechanism becomes important. It is found that there exists a threshold in the h'F value at 1930 LT and the onset of scintillation activity as measured by the S4 Index value in the Peruvian longitude sector. This h'F threshold value is found to decrease with decreasing F10.7 cm fluxes in a linear manner (R = 0.99). T o examine this relationship, theoretically, we incorporate a suite of first-principle models of the ambient ionosphere (PBMOD) developed at the Air Force Research Lab (AFRL) to investigate R-T growth rates and threshold h'F (1930 LT) values as a function of solar cycle activity. In addition, this paper describes a technique for automatically forecasting, in real-time, the occurrence or non-occurrence of scintillation activity that relies on real-time data from a ground-based ionospheric sounder at or near the

  10. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  11. International reference ionosphere 1990

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, K.; Bossy, L.; Kutiev, I.; Oyama, K.-I.; Leitinger, R.; Kazimirovsky, E.

    1990-01-01

    The International Reference Ionosphere 1990 (IRI-90) is described. IRI described monthly averages of the electron density, electron temperature, ion temperature, and ion composition in the altitude range from 50 to 1000 km for magnetically quiet conditions in the non-auroral ionosphere. The most important improvements and new developments are summarized.

  12. Modifications of the ionosphere prior to large earthquakes: report from the Ionosphere Precursor Study Group

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Devi, M.; Ryu, K.; Chen, C. H.; Liu, J. Y.; Liu, H.; Bankov, L.; Kodama, T.

    2016-12-01

    The current status of ionospheric precursor studies associated with large earthquakes (EQ) is summarized in this report. It is a joint endeavor of the "Ionosphere Precursor Study Task Group," which was formed with the support of the Mitsubishi Foundation in 2014-2015. The group promotes the study of ionosphere precursors (IP) to EQs and aims to prepare for a future EQ dedicated satellite constellation, which is essential to obtain the global morphology of IPs and hence demonstrate whether the ionosphere can be used for short-term EQ predictions. Following a review of the recent IP studies, the problems and specific research areas that emerged from the one-year project are described. Planned or launched satellite missions dedicated (or suitable) for EQ studies are also mentioned.

  13. Organic chemistry in a CO2 rich early Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  14. Magnetosphere-ionosphere coupling during active aurora

    NASA Astrophysics Data System (ADS)

    Grubbs, Guy, II

    In this work, processes which couple the Earth's magnetosphere and ionosphere are examined using observations of aurora from ground-based imaging, in situ electron measurements, and electron transport modeling. The coupling of these regions relies heavily on the energy transport between the two and the ionospheric conductances, which regulate the location and magnitude of the transport. The combination of the datasets described are used to derive the conductances and electron energy populations at the upper boundary of the ionosphere. These values are constrained using error analysis of the observation and measurement techniques and made available to the global magnetosphere modeling community for inclusion as boundary conditions at the magnetosphere and ionosphere coupling region. A comparative study of the active aurora and incident electron distributions was conducted using ground-based measurements and in-situ sounding rocket data. Three narrow-field (47 degree field-of-view) electron-multiplying charge-coupled device (EMCCD) imagers were located at Venetie, AK which took high spatio-temporal resolution measurements of the aurora using different wavelength filters (427.8 nm, 557.7 nm, and 844.6 nm). The measured emission line ratios were combined with atmospheric modeling in order to predict the total electron energy flux and characteristic electron energy incident on the atmosphere. These predictions were compared with in-situ measurements made by the Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) sounding rocket launched in early 2014. The GREECE particle instruments were modeled using a ray-tracing program, SIMION, in order to predict the instrument responses for different incident particles. Each instrument model was compared with data taken in the lab in order to compare and update the models appropriately. A rocket emulation system was constructed for lab testing prior to and during instrument integration into the rocket and

  15. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    PubMed

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  16. The Polar Ionosphere and Interplanetary Field.

    DTIC Science & Technology

    1987-08-01

    model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field

  17. Ionosphere-related products for communication and navigation

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  18. Strong ionospheric field-aligned currents for radial interplanetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Lühr, Hermann; Shue, Jih-Hong; Frey, Harald. U.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron J.

    2014-05-01

    The present work has investigated the configuration of field-aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high-resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF By and Bz are weakly positive and Bx keeps pointing to the Earth for almost 10 h. The geomagnetic indices Dst is about -40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10-20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m2, the plasma convection maintains two-cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low-level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region.

  19. Preface of the special issue: "Vertical coupling in the atmosphere-ionosphere system: Recent progress"

    NASA Astrophysics Data System (ADS)

    2018-06-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises papers dealing with investigation of the coupling phenomena in the neutral Atmosphere-Ionosphere System of the Earth. The core of the special issue is formed by the recent results presented during the 6th IAGA/ICMA/SCOSTEP Workshop on the Vertical Coupling in the Neutral Atmosphere-Ionosphere System held in Taipei, Taiwan, July 2016. Workshops are organized with a substantial support of the scientific international bodies, such as the International Association of Geomagnetism and Aeronomy (IAGA), International Commission for the Middle Atmosphere (ICMA) and Committee on Solar-Terrestrial Physics (SCOSTEP). The special issue includes also recent results of other members of the aeronomic research community. Hence it represents the state-of-art knowledge in the associated research fields.

  20. Convection vortex at dayside of high latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Alexeev, I. I.; Feldstein, Y. I.; Greenwald, R. A.

    Investigation of mesoscale convection in the dayside sector by SuperDARN radars has revealed the existence in afternoon sector a convection vortex whose location, intensity and convection direction coincide with the polar cap geomagnetic disturbances (DPC), which is reviewed thoroughly. Possible mechanism of the DPC generation are also described. Importance of the Earth's co-rotation potential is discussed. The existence of DPC vortex is interpreted in the framework of three dimensional current system with the field-aligned currents of coaxial cable type. In the vortex focus, the current outflowing from the ionosphere is concentrated whereas the inflowing current is distributed along the current system periphery.

  1. Impact of the quasi-two-day traveling planetary wave on the ionosphere

    NASA Astrophysics Data System (ADS)

    Yue, J.; Wang, W.; Richmond, A. D.; Liu, H.; Chang, L. C.

    2012-12-01

    The Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to simulate the quasi-two-day wave (QTDW) modulation of the ionospheric dynamo and electron density. The QTDW can directly penetrate into the lower thermosphere and modulate the neutral winds at a period of two days. On the other hand, the QTDW can change the tidal amplitudes. The QTDW in zonal and meridional winds results in a quasi-two-day oscillation (QTDO) of the dynamo electric fields. The QTDO of the electric fields in the E-region is transmitted along the magnetic field lines to the F-region and leads to the QTDOs of the vertical ion drift and total electron content (TEC) at low and mid latitudes, leading to the 2-day oscillation of the fountain effect. Since the Earth's magnetic field has zonal wavenumber 1 and higher structures in geographic coordinates, the neutral wind dynamo and its associated vertical ion drift can be influenced by the wavenumber interaction between the QTDW and the magnetic field. Thus, longitudinal structures with other wavenumbers in the ionospheric fields, such as electric field, vertical ion drifts, electron densities and TEC, emerge from this interaction. Additionally, because the tides are damped/enhanced during a strong QTDW event, the overall fountain effect and the ionospheric morphology are changed.Amplitude (TECU) and phase (UT hour) of the QTDO of TEC as a function of day and latitude. The contour interval is 0.02 TECU and 4 hr, respectively. The color scale for the amplitude and phase is 0-0.3 TECU and 0 to 48 hr.

  2. Towards Low-Cost Permanent Space-Borne Observation of the Geomagnetic Field and Ionospheric Environment

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Jager, T.; Bertrand, F.; Coisson, P.; Astafyeva, E.; Tomasini, L.

    2016-12-01

    Space-borne observation of the Earth's magnetic field and of the ionospheric environment started early on in the history of space exploration. But only since 1999 has continuous low Earth orbiting observation successfully been achieved, thanks, in particular, to the Oersted, CHAMP and Swarm missions. These missions have demonstrated the usefulness of long-term continuous observation from space for a wealth of applications, ranging from understanding the fast and small scales of the Earth's core dynamo, to investigations of still poorly understood ionospheric phenomena. In this presentation, we will show that such observations could now possibly be achieved by much cheaper free-orbiting gradient stabilized 12U nanosatellites, such as the "NanoMagSat" nanosatellite concept currently under phase 0 within CNES. Such satellites would not require sophisticated orbit or attitude control, and would take advantage of a miniaturized version of the absolute magnetometer designed by CEA-LETI, which currently operates on the Swarm mission. This instrument is capable of simultaneously providing absolute scalar and vector measurements of the magnetic field at 1 Hz sampling rate, together with higher frequency (250 Hz sampling rate) absolute scalar data. It would be coupled with star imagers for attitude restitution, together with other instruments providing additional measurement capabilities for ionospheric science and monitoring purposes (vector field measurements beyond 1Hz, plasma density, electron temperature, TEC, in particular). Because Swarm will very likely ensure data acquisition on polar orbits for at least another 10 years, a first "NanoMagSat" satellite could be launched on an inclined orbit (within the 60° range) to provide a much-needed fast local time coverage of all sub-auroral latitudes (the so-called "Swarm Delta" mission concept). Beyond this maiden mission, "NanoMagSat" satellites could then next be used as a baseline for the progressive establishment and

  3. Detection of the Equatorial Ionospheric Irregularities Using the POD GPS Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Astafyeva, E.; Cherniak, I.

    2015-12-01

    By making use of GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites we present results of the equatorial irregularities/plasma bubbles detection. For a given research we use data from a multi-satellite constellation consisting of the three Swarm satellites and the TerraSAR-X satellite. The major advantage of such LEO constellation is rather similar orbit altitude of ~500 km. The GPS-based indices, characterizing the occurrence and the strength of the ionospheric irregularities, were derived from the LEO GPS observations of a zenith-looking onboard GPS antenna. To study GPS fluctuation activity at the topside equatorial ionosphere we used TEC-based indices ROT (rate of TEC change) and ROTI (rate of TEC Index), proposed by Pi et al. (1997). We demonstrate a successful implementation of this technique for several case studies of the equatorial plasma bubbles occurrence in the post-midnight and morning LT hours during the year 2014. The ionospheric irregularities detected with GPS technique in Swarm/TerrasSAR-X data are consistent with the in situ plasma density variations registered by the three Swarm satellites (PLP measurements), as well as by three DMSP satellites at ~840 km orbital height, which indicate a large altitudinal extent of the observed phenomenon. Also we analyzed the global/seasonal distribution of the ionospheric irregularities at the topside equatorial region caused the phase fluctuations in GPS measurements onboard LEO satellite. We demonstrate that ROT/ROTI technique can be applied to LEO GPS data for geomagnetically quiet and disturbed conditions, as well as detection of the storm-induced equatorial irregularities in the morning local time.

  4. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    NASA Technical Reports Server (NTRS)

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  5. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyser, T.B.

    1994-06-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less

  6. Propagation of beam-driven VLF waves from the ionosphere toward the ground

    NASA Technical Reports Server (NTRS)

    Schriver, David; Sotnikov, Vladimir I.; Ashour-Abdalla, Maha; Ernstmeyer, James

    1995-01-01

    As part of the Cooperative High Altitude Rocket Gun Experiment (CHARGE-2B) rocket mission, an electron beam was injected into the ionosphere with a modulated beam current in an effort to generate very low frequency (VLF) waves. The propagation of the beam-driven VLF waves through the ionosphere is examined here to determine whether it is possible to detect these wave emissions with ground receivers. The paths of the VLF waves from where they were generated near the rocket were followed to the bottom of the ionosphere and the decrease in wave amplitude due to wave-particle resonance and collisional damping was calculated. It was found that due to collisional damping, which for these VLF waves becomes large at altitudes below about 150 km, wave amplitudes were decreased below the background atmospheric noise level. A number of different beam injection events have been examined and in all of these cases studied the waves were sufficiently damped such that detection on the ground would not be possible. This is in agreement with observations on the ground in which no wave emissions were observed during the CHARGE-2B mission. Control parameters that would be more favorable for beam-generated VLF propagation to the ground are discussed for future experiments of this type.

  7. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  8. Assessing ionospheric activity by long time series of GNSS signals: the search of possible connection with seismicity

    NASA Astrophysics Data System (ADS)

    Galeandro, Angelo; Mancini, Francesco; De Giglio, Michaela; Barbarella, Maurizio

    2014-05-01

    The modifications of some atmospheric physical properties prior to a high magnitude earthquake were recently debated in the frame of the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena, the ionization of air at the ionospheric levels due to leaking of gases from earth crust through the analysis of long time series of GNSS (Global Navigation Satellite System) signals was investigated in this work. Several authors used the dispersive properties of the ionospheric strata towards the GNSS signals to detect possible ionospheric anomalies over areas affected by earthquakes and some evidences were encountered. However, the spatial scale and temporal domains over which such disturbances come into evidence is still a controversial item. Furthermore, the correspondence by chance between ionospheric disturbances and relevant seismic activity is even more difficult to model whenever the reference time period and spatial extent of investigation are confined. Problems could also arise from phenomena due to solar activity (now at culmination within the 11 years-long solar cycle) because such global effects could reduce the ability to detect disturbances at regional or local spatial scale. In this work, two case studies were investigated. The first one focuses on the M = 6.3 earthquake occurred on April 6, 2009, close to the city of L'Aquila (Abruzzo, Italy). The second concerns the M = 5.9 earthquake occurred on May 20, 2012, between the cities of Ferrara and Modena (Emilia Romagna, Italy). To investigate possible connections between the ionospheric activity and seismicity for such events, a five-year (2008-2012) long series of high resolution ionospheric maps was used. These maps were produced by authors from GNSS data collected by permanent stations uniformly distributed around the epicenters and allowed to assess the ionospheric activity through the analysis of the TEC (Total Electron Content). To avoid the influence of solar activity

  9. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  10. New Model for Ionospheric Irregularities at Mars

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  11. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado

    NASA Astrophysics Data System (ADS)

    Nishioka, Michi; Tsugawa, Takuya; Kubota, Minoru; Ishii, Mamoru

    2013-11-01

    We detected clear concentric waves and short-period oscillations in the ionosphere after an Enhanced Fujita scale (EF)5 tornado hit Moore, Oklahoma, U.S., on 20 May 2013 using dense wide-coverage ionospheric total electron content (TEC) observations in North America. These concentric waves were nondispersive, with a horizontal wavelength of ~120 km and a period of ~13 min. They were observed for more than 7 h throughout North America. TEC oscillations with a period of ~4 min were also observed to the south of Moore for more than 8 h. A comparison between the TEC observations and infrared cloud image from the GOES satellite indicates that the concentric waves and short-period oscillations are caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. This observational result provides the first clear evidence of a severe meteorological event causing atmospheric waves propagating upward in the upper atmosphere and reaching the ionosphere.

  12. Longitudinal dependence of the seasonal variations of the topside ionospheric and plasmaspheric electron content: observations and model results

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Lian; Liu, Libo; Ning, Baiqi; Wan, Weixing

    2016-07-01

    Radio signals transmitted from GPS satellite going through the ionization zone above the Earth will be refracted by the ionized components in the ionosphere and the plasmasphere, which would produce additional transfer delay and generate extra errors in satellite navigation and positioning, etc. These errors have strong relation with the total electron content (TEC) along the signal's travelling path. Therefore TEC is one of the most important parameters required by many users for different modern usage purposes. The topside ionospheric and plasmaspheric electron content makes a large contribution to TEC. In the present study, data for the year 2008 of the topside ionospheric and plasmaspheric electron content (PEC) between the height of 800-20200km above the Earth derived from the upward-looking TEC measurements of the precise orbit determination antenna on board the COSMIC low Earth orbit (LEO) satellites to the GPS signals are used to study the longitudinal dependence of the seasonal variations of PEC. A comparison study of the observed PEC with the IZMIRAN_Plas model results is also made. Our study showed that PEC shows different seasonal variations at different longitudinal sectors: for the 240°E-60°E longitudinal sector, PEC shows a strong annual variation with lowest value in the June solstice and highest value in the December solstice months; In contrast, very weak seasonal variations are observed for PEC at 60°E-240°E longitudinal sector; Comparison study showed that this longitudinal dependence feature of the observed PEC's seasonal variation is not well captured by the IZMIRAN_Plas model result. Acknowledgments This research was supported by the National Natural Science Foundation of China (NSFC No. 41274163)

  13. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere.

    PubMed

    Marklund, G T; Ivchenko, N; Karlsson, T; Fazakerley, A; Dunlop, M; Lindqvist, P A; Buchert, S; Owen, C; Taylor, M; Vaivalds, A; Carter, P; André, M; Balogh, A

    2001-12-13

    The bright night-time aurorae that are visible to the unaided eye are caused by electrons accelerated towards Earth by an upward-pointing electric field. On adjacent geomagnetic field lines the reverse process occurs: a downward-pointing electric field accelerates electrons away from Earth. Such magnetic-field-aligned electric fields in the collisionless plasma above the auroral ionosphere have been predicted, but how they could be maintained is still a matter for debate. The spatial and temporal behaviour of the electric fields-a knowledge of which is crucial to an understanding of their nature-cannot be resolved uniquely by single satellite measurements. Here we report on the first observations by a formation of identically instrumented satellites crossing a beam of upward-accelerated electrons. The structure of the electric potential accelerating the beam grew in magnitude and width for about 200 s, accompanied by a widening of the downward-current sheet, with the total current remaining constant. The 200-s timescale suggests that the evacuation of the electrons from the ionosphere contributes to the formation of the downward-pointing magnetic-field-aligned electric fields. This evolution implies a growing load in the downward leg of the current circuit, which may affect the visible discrete aurorae.

  14. Monitoring of ionospheric irregularities with multi-GNSS observations: a new ionosphere activity index and product services

    NASA Astrophysics Data System (ADS)

    Wang, Ningbo; Li, Zishen; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    Key words: Ionospheric irregularity, Rate of TEC (ROT), Rate of ROT index (RROT), GPS and GLONASS The ionospheric irregularities have a strong impact on many applications of Global Navigation Satellite Systems (GNSS) and other space-based radio systems. The rate of ionospheric total electron content (TEC) change index (ROTI, TECu/min), defined as the standard deviation of rate of TEC change (ROT) within a short time (e.g. 5 minutes), has been developed to describe the ionospheric irregularities and associated scintillations. However, ROT parameter may still contain the trend term of ionospheric TEC in spite of small-scale fluctuations. On the basis of single-differenced ROT (dROT) values, we develop a new ionosphere activity index, rate of ROT change index (RROT, TECu/min), to characterize the irregularity degree of the ionosphere. To illustrate the use of the index, we investigated the consistency between ROTI and RROT indexes, through the analysis of GPS data and S4 observations collected at two high-latitude stations of the northern hemisphere. It is confirmed that the correlation coefficients between RROT and S4 are higher than those between ROTI and S4 for the test period, meaning that the proposed RROT index is applicable to monitor the ionospheric irregularities and associated scintillations. RROT index can be easily calculated from dual-frequency GNSS signals (like GPS L1 and L2 carrier phase measurements). On the basis of GPS and GLONASS data provided by the IGS, ARGN, EPN and USCORS tracking networks (more than 1500 stations per day), absolute ROT (AROT), gradient of TEC index (GOTI), ROTI and RROT maps are generated to reflect the ionospheric irregularity activities. These maps are provided in an IONEX-like format on a global scale with a temporal resolution of 15 minutes and a spatial resolution of 5 and 2.5 degrees in longitude and latitude, respectively, and the maps with high spatial resolution (2x2 degrees) are also generated for European, Australia

  15. Ionospheric Effects of X-Ray Solar Bursts in the Brazilian Sector

    NASA Astrophysics Data System (ADS)

    Becker-Guedes, F.; Takahashi, H.; Costa, J. E.; Otsuka, Y.

    2011-12-01

    When the solar X-ray flux in the interplanetary medium reaches values above a certain threshold, some undesired effects affecting radio communications are expected. Basically, the magnitudes of these effects depend on the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth atmosphere. An important aspect defining the severity of damages to HF radio communications and LF navigation signals in a certain area is the local time when each event takes place. In order to create more accurate warnings referred to possible radio signal loss or degradation in the Brazilian sector, we analyze TEC maps obtained by a GPS network, formed by dual-frequency receivers spread all over the country, to observe ionospheric local changes during several X-ray events in the 0.1-0.8 nm range measured by GOES satellite. Considering the duration, peak brightness, and local time of the events, the final purpose of this study is to understand and predict the degree of changes suffered by the ionosphere during these X-ray bursts. We intend using these results to create a radio blackout warning product to be offered by the Brazilian space weather program named EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial): Brazilian Monitoring and Study of Space Weather.

  16. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  17. Main Ionospheric Trough and Equatorial Ionization Anomaly During Substorms With the Different UT Onset Moments

    NASA Astrophysics Data System (ADS)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    2007-05-01

    In the given work the numerical calculation results of ionospheric effects of four modeling substorms which have begun in 00, 06, 12 and 18 UT are presented. Calculations are executed on the basis of Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN, added by the new block of calculation of electric fields in the ionosphere of the Earth for vernal equinox conditions in the minimum of solar activity. In calculations we considered superposition of magnetospheric convection electric field (at set potential differences through polar caps and field aligned currents of the second zone with taking into account of particle precipitation) and dynamo field generated by thermospheric winds without taking into account the tides. It is shown, that in the given statement of problem the substorms cause strong positive disturbances in F-region of ionosphere in night sector. Negative disturbances are much less and arise, mainly, at night in the middle and low latitudes. During substorms longitudinal extent of main ionospheric trough increases. The substorm beginning in 18 UT, causes negative disturbances in high latitudes except for a southern polar cap. Besides there is "stratification" of the main ionospheric trough. As a result in southern hemisphere the additional high-latitude trough which is absent in quiet conditions is formed. "Stratification" of the main ionospheric trough occurs in northern hemisphere at 6 hours after the beginning of the substorm. These "stratifications" are consequence non-stationary magnetospheric convection. Distinction between these events consists that "stratification" in a southern hemisphere occurs in active phase of substorm, and in northern hemisphere in recovery phase. During a substorm beginning in 00 UT, foF2 increases in all northern polar cap. Positive disturbances of foF2 in the equatorial anomaly region cause all presented substorms, except for a substorm beginning in 18 UT

  18. The International Reference Ionosphere Today and in the Future

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; McKinnell, Lee-Ane; Reinisch, Bodo; Fuller-Rowell,Tim

    2010-01-01

    The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth's ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov

  19. Elve Doublets: The Ionospheric Fingerprints of Compact Intracloud Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Marshall, R. A.; Pasko, V. P.

    2015-12-01

    Compact intracloud discharges (CIDs) persist to date as one of the most mysterious lightning manifestations. CIDs are known to be the strongest natural sources of radio-frequency radiation on Earth. At VHF frequencies, approximately above 30 MHz, their emitted power is ten times stronger than that of other lightning processes. The well-known strength of CIDs in VHF contrasts with the lack of substantial optical measurements. CID's VLF/LF electric field change waveforms resemble one full cycle of a distorted sine function, with the first half-cycle being (a few times) larger-amplitude and shorter-duration than the second. For this reason CIDs have been dubbed narrow bipolar events (NBEs). NBE waveshapes are strikingly similar to the largest initial breakdown pulses (IBPs) that occur during the earlier stages of a conventional lightning flash, called classic IBPs. The similarity between classic IBP and NBE far-field waveforms, combined with the fact that positive-polarity NBEs frequently appear as the first event in an otherwise regular positive intracloud discharge, may be indicative that the source of these two E-field pulse types share the same physical mechanism inside thunderclouds [da Silva and Pasko, JGR, 120, 4989-5009, 2015]. In this presentation, we introduce a novel way to investigate CIDs. We show evidence that CIDs can produce an unique ionospheric signature, named "elve doublets". These signatures are characterized by a pair of elves separated in time by 80-160 microseconds. Our analysis combines fast photometric elve data, equivalent-transmission-line models to describe the dynamics of CID source currents, and FDTD modeling of electromagnetic wave propagation in the Earth-ionosphere waveguide accounting for its nonlinear interaction with the lower ionosphere [Marshall et al., GRL, 42, 2015, doi:10.1002/2015GL064862]. We show that typical (negative-polarity) CID altitudes, between 14-22 km, explain the time delay observed in elve doublets, where the

  20. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  1. Adding Spatially Correlated Noise to a Median Ionosphere

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Egert, A. R.; Dao, E. V.; Colman, J. J.; Parris, R. T.

    2017-12-01

    We describe a process for adding spatially correlated noise to a background ionospheric model, in this case the International Reference Ionosphere (IRI). Monthly median models do a good job describing bulk features of the ionosphere in a median sense. It is well known that the ionosphere almost never actually looks like its median. For the purposes of constructing an Operational System Simulation Experiment, it may be desirable to construct an ionosphere more similar to a particular instant, hour, or day than to the monthly median. We will examine selected data from the Global Ionosphere Radio Observatory (GIRO) database and estimate the amount of variance captured by the IRI model. We will then examine spatial and temporal correlations within the residuals. This analysis will be used to construct a temporal-spatial gridded ionosphere that represents a particular instantiation of those statistics.

  2. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Tsybulya, Konstantin; Davidenko, Dimitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    The recent M9 Tohoku Japan earthquake of March 11, 2011 was the largest recorded earthquake ever to hit this nation. We retrospectively analyzed the temporal and spatial variations of four different physical parameters - outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit tomography and critical frequency foF2. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which return to normal after the main earthquake. We found a positive correlation between the atmospheric and ionospheric anomalies and the Tohoku earthquake. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  3. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  4. Earth observations taken from Space Shuttle Columbia during STS-80 mission

    NASA Image and Video Library

    1996-11-24

    STS080-759-038 (19 Nov.-7 Dec. 1996) --- As photographed by the crewmembers aboard the space shuttle Columbia, a full moon is about to set beyond the limb of Earth. A full moon should be round but when it is near the limb, or edge of Earth, the atmosphere tends to distort the shape. The atmosphere, stratosphere, ionosphere is in reality acting as a lens, thus the distorted shape of the Moon. As the Moon reaches the Earth's horizon it will become "eggshaped".

  5. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications.

  6. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  7. Dynamical Sequestration of the Moon-Forming Impactor in Co-Orbital Resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William J.

    2015-11-01

    Recent concerns about the giant impact hypothesis for the origin of the moon, and an associated “isotope crisis” are assuaged if the impactor was a local object that formed near Earth and the impact occurred relatively late. We investigated a scenario that may meet these criteria, with the moon-forming impactor originating in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth having 90% of its current mass. We modeled configurations that include the four terrestrial planets as well as configurations that also include the four giant planets. In both the 4- and 8-planet models we found that a single additional Mars-mass companion typically remains a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (33 of 34 simulations). In an effort to destabilize such a system we carried out an additional 45 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth’s orbit most of these models (28) also remained stable for the entire 250 Myr duration of the simulations. Of the 17 two-companion models that eventually became unstable 12 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 101 Myr, and the longest delay was 221 Myr. Several of the stable simulations involved unusual 3-planet co-orbital configurations that could exhibit interesting observational signatures in plantetary transit surveys.

  8. Observation of Sudden Ionospheric Disturbances over Istanbul in Response to X-Ray Flare Events

    NASA Astrophysics Data System (ADS)

    Ceren Kalafatoglu Eyiguler, Emine; Kaymaz, Zerefsan; Ceren Moral, Aysegul

    2016-07-01

    Sudden ionospheric disturbances (SID) are the enhanced electron density structures in the D region ionosphere which occur in response to the increase in X-ray flares and EUV flux. SIDs can be monitored using Very Low Frequency (VLF) radio signals (3-30 kHz) which travel between the D-region and the surface of the Earth. In this study, we use SID monitors obtained from the Stanford University Solar Center and two antennas which were built at the Istanbul Technical University to track the ionospheric disturbances in the VLF range. Our antennas are capable of capturing signals from several VLF transmitting stations. In this work, we focus on the variations in the signal strength of the closest VLF transmitting station 'TBB' which is operating at 26.7 kHz frequency at BAFA, Turkey (37.43N, 27.15E). We present ITU SID observations from both antennas; show the daily variation, general structure and the typical patterns we observe as well as case studies of significant events. Our initial analysis shows close relationship between observed X-ray flares from geosynchronous GOES 13 and GOES 15 satellites and VLF station signal strength received by the monitors.

  9. Ion Internal Excitation and Co++ 2 Reactivity: Effect On The Titan, Mars and Venus Ionospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Nicolas, C.; Zabka, J.; Thissen, R.; Dutuit, O.; Alcaraz, C.

    In planetary ionospheres, primary molecular and atomic photoions can be produced with substantial electronic and vibrational internal energy. In some cases, this is known to strongly affect both the rate constants and the branching ratio between the reac- tion products. A previous experimental study (Nicolas et al.) made at the Orsay syn- chrotron radiation facility has shown that many endothermic charge transfer reactions which were not considered in the ionospheric chemistry models of Mars, Venus and Earth have to be included because they are driven by electronic excitation of the parent ions. New measurements on two important reactions for Titan and Mars ionospheres, N+ + CH4 and O+ + CO2, will be presented. Branching ratios between products are very different when the parent atomic ions are prepared in their ground states, N+(3P) and O+(4S), or in their first electronic metastable states N+(1D) and O+(2D or P). 2 As the lifetime of these states are long enough, they survive during the mean time be- tween two collisions in the ionospheric conditions. So, the reactions of these excited states must be included in the ionospheric models. Absolute cross section measurements of the reactivity of stable doubly charged molec- ular ions CO++ and their implications for the Martian ionosphere will also be pre- 2 sented. The molecular dication CO++ production by VUV photoionisation and elec- 2 tron impact in the upper ionosphere of Mars is far from being negligible. However, to determine its concentration, it was necessary to evaluate the major loss channels of these ions. For this purpose, we measured the absolute reaction cross section of the sta- ble dications with CO2, the major neutral species of the Mars ionosphere. CO++ ions 2 were produced either by photoionisation or by electron impact, and a reaction cross section of 45 Å2 with 13CO2 was measured. The reaction leads to charge transfer or to collision induced dissociation. These results were integrated in a model

  10. ULTIMA: Array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.

    2012-12-01

    ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.

  11. Imaging Magnetospheric Perturbations of the Ionosphere/Plasmasphere System from the Ground and Space

    NASA Astrophysics Data System (ADS)

    Foster, J. C.

    2004-05-01

    The thermal plasmas of the inner magnetosphere and ionosphere move across the magnetic field under the influence of electric fields. Irrespective of their source, these electric fields extend along magnetic field lines coupling the motion of thermal plasmas in the various altitude regimes. Modern remote-sensing techniques based both on the ground and in space are providing a new view of the large and meso-scale characteristics and dynamics of the plasmas of the extended ionosphere and their importance in understanding processes and effects observed throughout the coupled spheres of Earth's upper atmosphere. During strong geomagnetic storms, disturbance electric fields uplift and redistribute the thermal plasma of the low-latitude ionosphere and inner magnetosphere, producing a pronounced poleward shift of the equatorial anomalies (EA) and enhancements of plasma concentration (total electric content, TEC) in the post-noon plasmasphere. Strong SAPS (subauroral polarization stream) electric fields erode the plasmasphere boundary layer in the region of the dusk-sector bulge, producing plasmaspheric drainage plumes which carry the high-altitude material towards the dayside magnetopause. The near-Earth footprint of these flux tubes constitutes the mid-latitude streams of storm-enhanced density (SED) which produce considerable space weather effects across the North American continent. We use ground-based GPS propagation data to produce two-dimensional maps and movies of the evolution of these TEC features as they progress from equatorial regions to the polar caps. DMSP satellite overflights provide in-situ density and plasma flow/electric field observations, while the array of incoherent scatter radars probe the altitude distribution and characteristics of these dynamic thermal plasma features. IMAGE EUV and FUV observations reveal the space-based view of spatial extent and temporal evolution of these phenomena.

  12. What can we learn from simulating Stratospheric Sudden Warming periods with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics GCM?

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Hagan, M. E.; Roble, R. G.; Richmond, A. D.; Yudin, V. A.; Liu, H.; Goncharenko, L. P.; Burns, A. G.; Maruyama, N.

    2013-12-01

    The ionosphere-thermosphere system is not only influenced from geospace but also by meteorological variability. Ionospheric observations of GPS TEC during the current solar cycle have shown that the meteorological variability is important during solar minimum, but also can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to help understand the mechanisms that couple the lower and upper atmosphere over the solar cycle. Numerical modelers invoke different methods to simulate realistic, specified events of meteorological variability, e.g. specify the lower boundary forcing, nudge the middle atmosphere, data assimilation. To study the vertical coupling, we first need to assess the numerical models and the various methods used to simulate realistic events with respect to the dynamics of the mesosphere-lower thermosphere (MLT) region, the electrodynamics, and the ionosphere. This study focuses on Stratospheric Sudden Warming (SSW) periods since these are associated with a strongly disturbed middle atmosphere which can have effects up to the ionosphere. We will use the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation model (TIME-GCM) to examine several recent SSW periods, e.g. 2009, 2012, and 2013. The SSW period in TIME-GCM will be specified in three different ways: 1. using reanalysis data to specify the lower boundary; 2. nudging the neutral atmosphere (temperature and winds) with the Whole Atmosphere Community Climate Model (WACCM)/Goddard Earth Observing System Model, Version 5 (GEOS-5) results; 3. nudging the background atmosphere (temperature and winds) with WACCM/GEOS5 results. The different forcing methods will be evaluated for the SSW periods with respect to the dynamics of the MLT region, the low latitude vertical drift changes, and the ionospheric effects for the different SSW periods. With the help of ionospheric data at different longitudinal sectors it will be possible to

  13. Detection and modelling of the ionospheric perturbation caused by a Space Shuttle launch using a network of ground-based Global Positioning System stations

    NASA Astrophysics Data System (ADS)

    Bowling, Timothy; Calais, Eric; Haase, Jennifer S.

    2013-03-01

    The exhaust plume of the Space Shuttle during its ascent triggers acoustic waves which propagate through the atmosphere and induce electron density changes at ionospheric heights which changes can be measured using ground-based Global Positioning System (GPS) phase data. Here, we use a network of GPS stations to study the acoustic wave generated by the STS-125 Space Shuttle launch on May 11, 2009. We detect the resulting changes in ionospheric electron density, with characteristics that are typical of acoustic waves triggered by explosions at or near the Earth's surface or in the atmosphere. We successfully reproduce the amplitude and timing of the observed signal using a ray-tracing model with a moving source whose amplitude is directly scaled by a physical model of the shuttle exhaust energy, acoustic propagation in a dispersive atmosphere and a simplified two-fluid model of collisions between neutral gas and free electrons in the ionosphere. The close match between observed and model waveforms validates the modelling approach. This raises the possibility of using ground-based GPS networks to estimate the acoustic energy release of explosive sources near the Earth's surface or in atmosphere, and to constrain some atmospheric acoustic parameters.

  14. Cold Ion Escape from the Martian Ionosphere - 2005-2014

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2015-04-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 RM the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. To derive the mean escape flux we include all combined observations of ASPERA-3 and MARSIS from 2005 to 2014. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  15. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Multi-Instrument Space-Borne and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Romanov, Alexander; Tsbulya, Konstantin; Davidenko, Dmitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku Japan earthquake of March 11, 2011. Data include outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which returned to normal after the main earthquake The joined preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  16. Earth's external magnetic fields at low orbital altitudes

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.

    1990-01-01

    Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.

  17. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  18. Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Popović, Luka Č.; Srećković, Vladimir A.

    2017-07-01

    Here we discuss our recent investigations of the ionospheric plasma by using very low and low frequency (VLF/LF) radio waves. We give a review of how to detect different low ionospheric reactions (sudden ionospheric disturbances) to various terrestrial and extra-terrestrial events, show their classification according to intensity and time duration, and present some methods for their detections in time and frequency domains. Investigations of detection in time domain are carried out for intensive long-lasting perturbations induced by solar X-ray flares and for short-lasting perturbations caused by gamma ray bursts. We also analyze time variations of signals used in the low ionospheric monitoring after earthquake events. In addition, we describe a procedure for the detection of acoustic and gravity waves from the VLF/LF signal analysis in frequency domain. The research of the low ionospheric plasma is based on data collected by the VLF/LF receivers located in Belgrade, Serbia. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  19. Estimation of ionospheric sporadic E intensities from GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Arras, C.; Wickert, J.

    2018-06-01

    The radio occultation experiment aboard the FORMOSAT-3/COSMIC satellites enables the observation of phenomena in Earth's ionosphere on a global scale. Numerous radio occultation profiles are used to analyse the occurrence of sporadic E layers as well as its properties. We will present a new method to approach additionally to the presence of sporadic E also its intensity which is closely related to the blanketing frequency (fbEs) provided by ionosondes. We observed that the sporadic E occurrence and its intensity show a highly developed annual cycle with high occurrence rates and intensities in the actual summer hemisphere. The global latitude/longitude distribution of both parameters is strongly related to Earth's magnetic field which is reflected by the missing of sporadic E observations along the magnetic equator.

  20. Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)

    NASA Astrophysics Data System (ADS)

    Veenadhari, B.; Alex, S.

    2006-11-01

    veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.