Sample records for earth knight shift

  1. Knight-shift anomalies in heavy-electron materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.; Cox, D.L.

    1998-08-01

    We have studied the Knight shift K({rvec r},T) and magnetic susceptibility {chi}(T) of heavy-electron materials, modeled by the infinite-U Anderson model with the noncrossing approximation method. A systematic study of K({rvec r},T) and {chi}(T) for different Kondo temperatures T{sub 0} (which depends on the hybridization width {Gamma}) shows a low-temperature anomaly (nonlinear relation between K and {chi}) which increases as the Kondo temperature T{sub 0} and distance r increase. We carried out an incoherent lattice sum by adding the K({rvec r}) of a few hundred shells of rare-earth atoms around a nucleus and compare the numerically calculated results with themore » experimental results. For CeSn{sub 3}, which is a concentrated heavy-electron material, both the {sup 119}Sn NMR Knight shift and positive muon Knight shift are studied. Also, lattice coherence effects by conduction-electron scattering at every rare-earth site are included using the average-T-matrix approximation. The calculated magnetic susceptibility and {sup 119}Sn NMR Knight shift show excellent agreement with experimental results for both incoherent and coherent calculations. The positive muon Knight shifts are calculated for both possible positions of muon (center of the cubic unit cell and middle of Ce-Ce bond axis). Our numerical results show a low-temperature anomaly for the muons of the correct magnitude but we can only find agreement with experiment if we take a weighted average of the two sites in a calculation with lattice coherence present. For YbCuAl, the measured {sup 27}Al NMR Knight shift shows an anomaly with opposite sign to the CeSn{sub 3} compound. Our calculations agree very well with the experiments. For the proposed quadrupolar Kondo alloy Y{sub 0.8}U{sub 0.2}Pd{sub 3}, our {sup 89}Y NMR Knight-shift calculation do not show the observed Knight-shift anomaly. {copyright} {ital 1998} {ital The American Physical Society}« less

  2. Universal Knight shift anomaly in the periodic Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Curro, N. J.; Scalettar, R. T.

    Here, we report a Determinant Quantum Monte Carlo investigation which quantifies the behavior of the susceptibility and the entropy in the framework of the periodic Anderson model (PAM), focussing on the evolution with different degree of conduction electron (c) -local moment (f) hybridization. These results capture the behavior observed in several experiments, including the universal behavior of the NMR Knight shift anomaly below the crossover temperature, T*. We find that T* is a measure of the onset of c-f correlations and grows with increasing hybridization. Our results suggest that the NMR Knight shift and spin-lattice relaxation rate measurements in non-Fermimore » liquid materials are strongly influenced by temperature-dependent hybridization processes. Furthermore, our results provide a microscopic basis for the phenomenological two-fluid model of Kondo lattice behavior, and its evolution with pressure and temperature.« less

  3. Specific heat and Knight shift of cuprates within the van Hove scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, S.; Das, A.N.

    1996-12-01

    The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  4. Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids

    NASA Astrophysics Data System (ADS)

    Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.

    In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.

  5. Theory of the Knight Shift and Flux Quantization in Superconductors

    DOE R&D Accomplishments Database

    Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.

    1962-05-01

    Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)

  6. Sub-millisecond 125Te NMR spin-lattice relaxation times and large Knight shifts in complex tellurides: Validation of a quadratic relation across the spectrum

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Cui, J. -F.; ...

    2016-07-16

    125Te NMR spectra and spin-lattice relaxation times, T 1, have been measured for several GeTe-based materials with Te excess. In this paper, the spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T 1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T 1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T 1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excessmore » of Te, about 15% of the material exhibits a Knight shift of ≥4500 ppm and a T 1 of only 0.3 ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Lastly, our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.« less

  7. Correlation between the Knight shift of chemisorbed CO and the Fermi level local density of states at clean platinum catalyst surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Y.Y.; Rice, C.; Godbout, N.

    1999-04-07

    Due to its fundamental importance in heterogeneous catalysis, as well as in electrocatalysis, the chemisorption and reaction of CO on transition metal surfaces has been an important focus of modern surface science. Here, the NMR spectroscopy of {sup 13}CO adsorbed onto transition metal surfaces has been shown to be a very powerful probe of molecular structure and dynamics of CO itself, as well as a probe of the electronic properties of the transition metal surfaces onto which it is adsorbed. The authors have investigated the {sup 195}Pt and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy of clean-surface platinum catalysts andmore » of CO chemisorbed onto Pt catalysts surfaces. They use Knight shift, relaxation, and J-coupling data to deduce information about the Fermi level local density of states (E{sub f}-LDOS) at catalyst surfaces. There is a linear correlation between the Knight shifts of chemisorbed CO and the clean surface E{sub f}-LDOS of platinum onto which the CO is bound, as determined by {sup 13}C and {sup 195}Pt NMR. The correlation amounts to {approximately} 12 ppm/Ry{sup {minus}1} {center_dot} atom{sup {minus}1}, the same as that which can be deduced for CO on palladium, as well as from the electrode potential dependence of {sup 13}C Knight shifts and infrared vibrational frequencies, {nu}{sub CO}, and the relationship between {nu}{sub CO} and the E{sub f}-LDOS at clean platinum surfaces. The ability to now directly relate meal and adsorbate electronic properties opens up new avenues for investigating metal-ligand interactions in heterogeneous catalysis and electrocatalysis.« less

  8. NMR Knight shifts and the electronic properties of Rb{sub 8}Na{sub 16}Si{sub 136} clathrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latturner, Susan; Iversen, Bo B.; Sepa, Jelena

    2001-03-15

    A silicon framework clathrate type-II compound was synthesized with rubidium and sodium atoms in cages. A single crystal of this material was characterized by both conventional and synchrotron x-ray diffraction; the structure belongs to the cubic space group Fd-3m, with a cell edge of 14.738(1) Aa. The alkali metals are ordered in the structure, with the small cages containing sodium, and the large cages containing rubidium. Variable temperature magic-angle-spinning NMR of all three nuclei show large Knight shifts with a strong temperature dependence, unlike conventional metals. The low conductivity (200 S/cm) and high paramagnetic susceptibility (5x10{sup -6}emu/g) indicate that asmore » the temperature is lowered, the electrons become more localized on the alkali atoms, resulting in properties consistent with a correlated narrow band metal system.« less

  9. {sup 17}O Knight shift study of the superconducting state of Sr{sub 2}RuO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukuda, H.; Ishida, K.; Kitaoka, Y.

    1999-12-01

    {sup 17}O Knight shift measurements in Sr{sub 2}RuO{sub 4} were performed over the wide range of magnetic field 3.2--11.4kOe parallel to the basal RuO{sub 2} planes. The spin susceptibility is totally unchanged through its T{prime}{sub c}, evidencing that the spin-triplet superconducting state is realized in Sr{sub 2}RuO{sub 4}. The results indicates that the Cooper pairs consist of the parallel spin pairs {vert{underscore}bar}{up{underscore}arrow}{up{underscore}arrow}> and {vert{underscore}bar}{down{underscore}arrow}{down{underscore}arrow}> with their quantization axis perpendicular to the c-axis direction. The in-plane 2D nearly ferromagnetic spin fluctuations may play a role for the stabilization of this state among various representations of spin-triplet order parameter.

  10. Derivatives of Black Knight Technology

    NASA Astrophysics Data System (ADS)

    Hill, N.; Wright, D.

    This paper traces the line of descent from Black Knight to Black Arrow, and at the same time looks at various proposed projects, both civil and military, which were to be Black Knight derivatives, but which for one reason or another never saw the light of day. Research in this area is rather akin to anthropological work, tracing fossils from Homo erectus (Black Knight) to Homo sapiens (Black Arrow), knowing that a lot of the fossils found will not be on the direct line of descent, but represent branches that became extinct. This article attempts to cover designs, which, although they never made it to hardware, are none the less interesting technically, or shine light on the evolution of design philosophy.

  11. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  12. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  13. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  14. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  15. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  16. Counting Knights and Knaves

    ERIC Educational Resources Information Center

    Levin,Oscar; Roberts, Gerri M.

    2013-01-01

    To understand better some of the classic knights and knaves puzzles, we count them. Doing so reveals a surprising connection between puzzles and solutions, and highlights some beautiful combinatorial identities.

  17. Knight shift and spin-echo decay time of YBa{sub 2}Cu{sub 4}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 7} in the superconducting state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pines, D.; Wrobel, P.

    1996-03-01

    We report on calculations of the Knight shift and spin-echo decay time, {ital T}{sub 2{ital G}}, in the superconducting state which are based on a nearly antiferromagnetic Fermi-liquid description of the spin-fluctuation spectrum, in which a single spin component is responsible for the dynamic spin behavior and the magnetic interaction between the planar quasiparticles brings the system close to antiferromagnetic behavior. The dynamic spin susceptibility is described by a random-phase-approximation-like expression, with a restoring force which is unchanged from the normal state, and an irreducible particle-hole susceptibility which reflects the {ital d}{sub {ital x}{sup 2}{minus}{ital y}{sup 2}} symmetry of themore » gap parameter and a quasiparticle Fermi surface consistent with photoemission experiments. We obtain a quantitative fit to the Knight shift results for YBa{sub 2}Cu{sub 4}O{sub 8} with a {ital d}{sub {ital x}{sup 2}{minus}{ital y}{sup 2}} strong coupling gap of maximum magnitude 2.8{ital k}{sub {ital BT}}{sub {ital c}}, and show that quantitative agreement with the recent measurements of {ital T}{sub 2{ital G}} by Corey {ital et al}. may be obtained with this {ital d}{sub {ital x}{sup 2}-{ital y}{sup 2}} pairing state and a quite substantial antiferromagnetic enhancement ({approximately}140) of the static {open_quote}{open_quote}band structure{close_quote}{close_quote} spin susceptibility at wave vectors in the vicinity of {bold Q}=({pi},{pi}). We demonstrate that the experimental results of Corey {ital et al}. rule out an anisotropic {ital s}-wave state. Analogous calculations for the Knight shift of YBa{sub 2}Cu{sub 3}O{sub 7} suggest that the {ital d}{sub {ital x}{sup 2}-{ital y}{sup 2}} strong coupling gap possesses a maximum magnitude, 2.6{ital k}{sub {ital BT}}{sub {ital c}}, and on this basis, we predict a reduction in {ital T}{sup -1}{sub 2{ital G}} of some 5% for the smaller antiferromagnetic enhancement ({approximately}38) expected for this

  18. Phil Knight and the Public Purposes of Higher Education

    ERIC Educational Resources Information Center

    Taylor, Barrett; Morphew, Christopher

    2017-01-01

    Philip H. Knight, co-founder of Nike, Inc., pledged $400 million to Stanford University last year (Gioia, 2016; Stanford University, 2016a). The gift will partially endow a $750 million fund intended to support 100 graduate students per year, with awards typically lasting for three years. The resulting Knight-Hennessy Scholars program will be the…

  19. Remote operation of the Black Knight unmanned ground combat vehicle

    NASA Astrophysics Data System (ADS)

    Valois, Jean-Sebastien; Herman, Herman; Bares, John; Rice, David P.

    2008-04-01

    The Black Knight is a 12-ton, C-130 deployable Unmanned Ground Combat Vehicle (UGCV). It was developed to demonstrate how unmanned vehicles can be integrated into a mechanized military force to increase combat capability while protecting Soldiers in a full spectrum of battlefield scenarios. The Black Knight is used in military operational tests that allow Soldiers to develop the necessary techniques, tactics, and procedures to operate a large unmanned vehicle within a mechanized military force. It can be safely controlled by Soldiers from inside a manned fighting vehicle, such as the Bradley Fighting Vehicle. Black Knight control modes include path tracking, guarded teleoperation, and fully autonomous movement. Its state-of-the-art Autonomous Navigation Module (ANM) includes terrain-mapping sensors for route planning, terrain classification, and obstacle avoidance. In guarded teleoperation mode, the ANM data, together with automotive dials and gages, are used to generate video overlays that assist the operator for both day and night driving performance. Remote operation of various sensors also allows Soldiers to perform effective target location and tracking. This document covers Black Knight's system architecture and includes implementation overviews of the various operation modes. We conclude with lessons learned and development goals for the Black Knight UGCV.

  20. 44. KNIGHT WATER IMPULSE TURBINES 12'. THESE TWO TURBINES ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. KNIGHT WATER IMPULSE TURBINES 12'. THESE TWO TURBINES ARE SIMILAR TO THOSE THAT POWER THE FOUNDRY AND ENABLE PRODUCTION OF CAST MACHINERY PARTS SUCH AS THOSE IN THE BACKGROUND, RECENTLY MADE FOR RESTORING RAILROAD TURNTABLES IN CAMINO, FOLSOM, PLACERVILLE, AND PARIS, CALIFORNIA. - Knight Foundry, 13 Eureka Street, Sutter Creek, Amador County, CA

  1. Knights of the Round-Table.

    ERIC Educational Resources Information Center

    Teagarden, Jim; Koppes, Peggy

    This document describes a classroom learning activity that brings together role playing, learning about the Middle Ages, and working for rewards. In the course of the activity, entitled "Knights of the Round Table," students advance by completing assignments and amassing points. Players move upwards through the beginning or…

  2. 75 FR 11913 - Chrysler, LLC, Sterling Stamping Plant, Including On-Site Leased Workers from Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Stamping Plant, Including On-Site Leased Workers from Caravan Knight Facilities Management LLC, Sterling... stampings. New information shows that workers leased from Caravan Knight Facilities Management LLC were... workers leased from Caravan Knight Facilities [[Page 11914

  3. 75 FR 11913 - Chrysler, LLC; Warren Stamping Plant, Including On-Site Leased Workers From Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Stamping Plant, Including On-Site Leased Workers From Caravan Knight Facilities Management LLC; Warren, MI... from Caravan Knight Facilities Management LLC were employed on-site at the Warren, Michigan location of... Department is amending this certification to include workers leased from Caravan Knight Facilities Management...

  4. The knight stick trap and knight stick sticky wraps: new tools for stable fly (Diptera: Muscidae) management

    USDA-ARS?s Scientific Manuscript database

    The stable fly is a noxious hematophagous pest of livestock, feral animals and humans. In the US, traps have been used for many years to survey stable flies and affect some degree of population reduction. A new stable fly trap, the Knight Stick (KS), has recently appeared on the market and studies w...

  5. Can Sunlight Shift the Earth onto a Different Orbit?

    ERIC Educational Resources Information Center

    Esposito, S.

    2011-01-01

    This article comes from a question asked by a student of mine: if the Sun radiates energy in the form of electromagnetic waves, could they shift the Earth from its current orbit on a suitable timescale? The answer to such a question is apparently obvious and trivial. Nevertheless, it requires an instructive reasoning and interesting estimates of…

  6. High-performance marketing: an interview with Nike's Phil Knight. Interview by Geraldine E. Willigan.

    PubMed

    Knight, P

    1992-01-01

    Nike's advertising slogans--"Bo Knows," "Just Do It," and "There Is No Finish Line"--have moved beyond advertising into popular expression. Its athletic footwear and clothing have become a piece of Americana. Its brand name is as well known around the world as IBM and Coke. Behind the slogans and the flashy TV commercials is the vision of its founder, chairman, and CEO, Phil Knight. Since forming the company in 1962, Knight has taken Nike from a small-time distributor of Japanese track shoes to the top of the athletic shoe and apparel market. But not without a stumble. Along the way, Knight discovered that technological innovation alone could not continue to drive growth. When sales stagnated in the mid-1980s, Knight and Nike learned several hard lessons on how to build brands and understand consumers, and they transformed their technology company into a marketing company whose product is its most important marketing tool. "Ultimately," says Knight, "we wanted Nike to be the world's best sports and fitness company. Once you say that, you have a focus. You don't end up making wing tips or sponsoring the next Rolling Stones world tour." To keep the company growing, Nike began splitting its brands into sub-brands. In tennis, Nike divided its shoes into Challenge Court--for younger, more active players--and Supreme Court--for older, more mature players. That approach brought the company to a broader range of consumers while preserving the customer base. And to create an emotional tie with the consumer, Nike started advertising on TV. "Sports is at the heart of American culture," Knight says. "You can't explain much in 60 seconds, but when you show Michael Jordan, you don't have to. It's that simple."

  7. From Wage Slaves to Wage Workers: Cultural Opportunity Structures and the Evolution of the Wage Demands of the Knights of Labor and the American Federation of Labor, 1880-1900

    ERIC Educational Resources Information Center

    Hallgrimsdottir, Helga Kristin; Benoit, Cecilia

    2007-01-01

    This paper examines the reasons behind a historic shift in the language couching the wage demands of two North American labor movements during the last twenty years of the 19th century--the Knights of Labor and the American Federation of Labor. We trace how the once dominant imagery of "wage slavery" lost its connection to producerist labor…

  8. Knight Commission to Fight High Salaries and Recruiting Pressures

    ERIC Educational Resources Information Center

    Wolverton, Brad; Lipka, Sara

    2007-01-01

    Last week, commissioners of the Knight Foundation Commission on Intercollegiate Athletics organized a meeting to tackle recruiting problems and gender inequalities in college sports, but another topic--the high pay of football and men's basketball coaches--came up repeatedly. This article reports on what the commission intends to do in order to…

  9. The Hospital for the Ruptured and Crippled: Knight to Gibney, 1870-1887.

    PubMed

    Levine, David B

    2006-02-01

    In 1870, R&C moved to its second site on the corner of Lexington Avenue and 42nd Street. A newly constructed building designed by a specialist in ecclesiastical architecture became the home of a 200-bed children's hospital planned entirely by Dr. James Knight, founder of the hospital and its first Surgeon-in-Chief. Expansion of the facilities and of the professional staff, although needed and welcomed, brought new challenges, changes, and conflicts. The root of these was to lie in the complex character of James Knight with his dogmatic approach to patient care vs the open nature of his newly appointed assistant, Virgil Gibney, who was to become his successor and eventually the second Surgeon-in-Chief. How these two personalities worked together for 13 years, abruptly parted, and then after Knight's death, the reappearance of Gibney, is a fascinating story of the early development of the first orthopedic hospital in this country. It was a period after the Civil War described as the "Gilded Age," where not only the country, but the city, was going through its own challenges, changes and conflicts. Emerging was a new era for R&C introducing surgery, postgraduate medical education, and eventually, clinical and basic research.

  10. 5. PILOTS KNIGHT, RUSHWORTH, ENGLE, THOMPSON, DANA, AND McKAY STANDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PILOTS KNIGHT, RUSHWORTH, ENGLE, THOMPSON, DANA, AND McKAY STANDING AT THE NOSE OF X-15 NO. 66671. - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  11. The Hospital for the Ruptured and Crippled: Knight to Gibney, 1870–1887

    PubMed Central

    2006-01-01

    In 1870, R&C moved to its second site on the corner of Lexington Avenue and 42nd Street. A newly constructed building designed by a specialist in ecclesiastical architecture became the home of a 200-bed children's hospital planned entirely by Dr. James Knight, founder of the hospital and its first Surgeon-in-Chief. Expansion of the facilities and of the professional staff, although needed and welcomed, brought new challenges, changes, and conflicts. The root of these was to lie in the complex character of James Knight with his dogmatic approach to patient care vs the open nature of his newly appointed assistant, Virgil Gibney, who was to become his successor and eventually the second Surgeon-in-Chief. How these two personalities worked together for 13 years, abruptly parted, and then after Knight's death, the reappearance of Gibney, is a fascinating story of the early development of the first orthopedic hospital in this country. It was a period after the Civil War described as the “Gilded Age,” where not only the country, but the city, was going through its own challenges, changes and conflicts. Emerging was a new era for R&C introducing surgery, postgraduate medical education, and eventually, clinical and basic research. PMID:18751838

  12. Knight Hawk adapts highwall mining for Southern Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, L.

    2007-10-15

    A few years ago while planning their first underground operation and trying to decide how to mine shallow seams, Knight Hawk purchased a 'Superior Highwall Miner' (SHM). Since then this small innovative company has been pioneering the use of highwall mining in a trenching application in for example the Illinois Basin. Highwall mining is very suitable for contour mining in Appalachia. The article discusses the recent improvements and the advantages of SHM mining systems. 3 photos.

  13. Ruptures of vulnerability: Linda Stein's Knight Series.

    PubMed

    Bible, Ann Vollmann

    2010-01-01

    Drawing on the work of Monique Wittig, this article understands Linda Stein's Knight Series as a lacunary writing communicating both her challenges to come to representation and her creative registration of subjectivity. The argument is grounded in an exploration of the rich interplay of power and vulnerability across the series as against the discourse of escapist fashion. Specifically, Stein's critical contradictions of inside and outside, conflated temporality, disjunctions between decoration and abstraction, and fluidity of sex and gender are examined. The discussion is elaborated through consideration of the work of Julia Kristeva, Elizabeth Grosz, and Hayao Miyazaki.

  14. X-15A-2 with test pilot Pete Knight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air Force pilot William J. 'Pete' Knight is seen here in front of the X-15A-2 aircraft (56-6671). Pete Knight made 16 flights in the X-15, and set the world unofficial speed record for fixed wing aircraft, 4,520 mph (mach 6.7), in the X-15A-2. He also made one flight above 50 miles, qualifying him for astronaut wings. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120

  15. Accuracy of Lygus hesperus Knight (Hemiptera: Miridae) egg counts improves with egg development

    USDA-ARS?s Scientific Manuscript database

    The western tarnished plant bug, Lygus hesperus Knight, is a key cotton (Gossypium spp.) pest managed primarily by application of insecticides according to nominal thresholds. Efforts to reduce reliance on insecticide-based tactics will require a more astute understanding of the physiological ecolog...

  16. Tidal Amplitude Delta Factors and Phase Shifts for an Oceanic Earth

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. A.

    2017-12-01

    M.S. Molodenskiy's problem, which describes the state of an elastic self-gravitating compressible sphere, is generalized to the case of a biaxial hydrostatically equilibrium rotating elliptical inelastic shell. The system of sixth-order equations is supplemented with corrections due to the relative and Coriolis accelerations. The ordinary and load Love numbers of degree 2 are calculated with allowance for their latitude dependence and dissipation for different models of the Earth's structure (the AK135, IASP91, and PREM models). The problem is solved by Love's method. The theoretical amplitude delta factors and phase shifts of second-order tidal waves for an oceanic Earth are compared with their most recent empirical counterparts obtained by the GGP network superconducting gravimeters. In particular, it is shown that a good matching (up to the fourth decimal place) of the theoretical and observed amplitude factors of semidiurnal tides does not require the application of the nonhydrostatic theory.

  17. Evaluating and optimizing the NERSC workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T; Cook, B; Deslippe, J

    2017-01-30

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  18. Evaluating and Optimizing the NERSC Workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Taylor; Cook, Brandon; Doerfler, Douglas

    2016-01-01

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  19. Deployment of the OSIRIS EM-PIC code on the Intel Knights Landing architecture

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2017-10-01

    Electromagnetic particle-in-cell (EM-PIC) codes such as OSIRIS have found widespread use in modelling the highly nonlinear and kinetic processes that occur in several relevant plasma physics scenarios, ranging from astrophysical settings to high-intensity laser plasma interaction. Being computationally intensive, these codes require large scale HPC systems, and a continuous effort in adapting the algorithm to new hardware and computing paradigms. In this work, we report on our efforts on deploying the OSIRIS code on the new Intel Knights Landing (KNL) architecture. Unlike the previous generation (Knights Corner), these boards are standalone systems, and introduce several new features, include the new AVX-512 instructions and on-package MCDRAM. We will focus on the parallelization and vectorization strategies followed, as well as memory management, and present a detailed performance evaluation of code performance in comparison with the CPU code. This work was partially supported by Fundaçã para a Ciência e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014.

  20. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    NASA Astrophysics Data System (ADS)

    Caraveo-Frescas, J. A.; Hedhili, M. N.; Wang, H.; Schwingenschlögl, U.; Alshareef, H. N.

    2012-03-01

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ˜350 mV negative shift with the Si overlayer present and a ˜110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  1. 78 FR 56977 - Axcess International, Inc., Gamma Pharmaceuticals, Inc., Innovex, Inc, Knight Energy Corp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Axcess International, Inc., Gamma Pharmaceuticals, Inc., Innovex, Inc, Knight Energy Corp., Komodo, Inc., Uphonia, Inc., and Wilson Brothers USA, Inc., Order of Suspension of Trading September 12, 2013. It appears to the Securities and Exchange...

  2. Knights, knaves, pawns and queens: attitudes to behaviour in postwar Britain

    PubMed Central

    Welshman, John

    2007-01-01

    The choice agenda is currently one of the most prominent in public policy. One of its main architects, Julian Le Grand, has used the metaphors of knights, knaves, pawns and queens to characterise changing attitudes to questions of motivation and behaviour among public servants and service users. He has said, for example, that, in the immediate postwar period, public servants were perceived as public‐spirited altruists (or knights), whereas service users were seen as passive (or pawns). It was only in the mid‐1980s that public servants came to be seen as essentially self‐interested (knaves) and service users came to be regarded as consumers (queens). However, this highly influential model has undergone remarkably little critical scrutiny to date. This article explores the debate over transmitted deprivation in the 1970s to provide a historically grounded piece of analysis to explore the accuracy and utility of these metaphors. It challenges Le Grand's arguments in three respects. Firstly, a concern with behaviour and agency went much broader than social security fraud. Secondly, the metaphor of pawns is inadequate for characterising attitudes towards the poor and service users. Finally, Le Grand's periodisation of the postwar era also has serious flaws. PMID:17234865

  3. Listening and Learning: Community Indicator Profiles of Knight Foundation Communities and the Nation.

    ERIC Educational Resources Information Center

    John S. and James L. Knight Foundation, Miami, FL.

    This volume presents information from a social indicators project designed to shed light on factors affecting civic health in twenty-six communities where John S. and James L. Knight published newspapers and provided grants to improve quality of life. Seven chapters discuss research results: (1) "Listening and Learning" (e.g., growth of…

  4. Nonlinear Wave Simulation on the Xeon Phi Knights Landing Processor

    NASA Astrophysics Data System (ADS)

    Hristov, Ivan; Goranov, Goran; Hristova, Radoslava

    2018-02-01

    We consider an interesting from computational point of view standing wave simulation by solving coupled 2D perturbed Sine-Gordon equations. We make an OpenMP realization which explores both thread and SIMD levels of parallelism. We test the OpenMP program on two different energy equivalent Intel architectures: 2× Xeon E5-2695 v2 processors, (code-named "Ivy Bridge-EP") in the Hybrilit cluster, and Xeon Phi 7250 processor (code-named "Knights Landing" (KNL). The results show 2 times better performance on KNL processor.

  5. A Doppler-Cancellation Technique for Determining the Altitude Dependence of Gravitational Red Shift in an Earth Satellite

    NASA Technical Reports Server (NTRS)

    Badessa, R. S.; Kent, R. L.; Nowell, J. C.; Searle, C. L.

    1960-01-01

    A cancellation technique permits measurement of the frequency of a source moving relative to an observer without the obscuring effect of first-order Doppler shifts. The application of this method to a gravitational red shift experiment involving the use of an earth satellite containing a highly stable oscillator is described. The rapidity with which a measurement can be made permits the taking of data at various altitudes in a given elliptical orbit. Tropospheric and ionospheric effects upon the accuracy of results are estimated.

  6. Resurrection Peninsula and Knight Island ophiolites and recent faulting on Montague Island, southern Alaska

    USGS Publications Warehouse

    Nelson, Steven W.; Miller, Marti L.; Dumoulin, Julie A.

    1987-01-01

    The Resurrection Peninsula forms the east side of Resurrection Bay (Fig. 1). The city of Seward is located at the head of the bay and can be reached from Anchorage by highway (127 mi;204 km). Relief ranges from 1,434 ft (437 m) at the southern end of the peninsula to more than 4,800 ft (1,463 m) 17 mi (28 km) to the north. All rock units composing the informally named Resurrection Peninsula ophiolite are visible and (or) accessible by boat.The eastern half of the peninsula is located within the Chugach National Forest; the western half is mainly state land, but there is some private land with recreational cabins. The Seward A6 and A7 and Blying Sound D6 and D7 maps at 1:63,360 scale (mile-to-the-inch) cover the entire Resurrection Peninsula.Knight Island is located 53 mi (85 km) east of Seward (Fig. 1). Numerous fiords indent the 31-mi-long (50 km) by 7.4-mi-wide (12 km) island and offer excellent bedrock exposures. The island is rugged and has a maximum elevation of 3,000 ft (914 m). It has numerous mineral prospects (Tysdal, 1978; Nelson and others, 1984; Jansons and others, 1984; Koski and others, 1985), and several abandoned canneries are located on the island. Knight Island lies entirely within the Chugach National Forest—state and private inholdings constitute less than five percent of its total land area. The Seward A2, A3, B2, B3, and C2, 1:63,360-scale U.S. Geological Survey topographic maps cover the entire island.Montague Island, 50 mi (80 km) long and up to 11 mi (18 km) wide, lies 10.6 mi (17 km) southeast of Knight Island. It belongs to an island group that forms the southern margin of Prince William Sound (Fig. 1). Montague Island is less rugged and less heavily vegetated than either the Resurrection Peninsula or Knight Island. Rock exposures are excellent along the beaches, and ground disruption due to recent fault movements is clearly visible. The Seward Al and A2 and Blying Sound Dl, D2, and D3 maps cover the areas of interest on Montague Island

  7. Hydrologic impacts of past shifts of Earth's thermal equator offer insight into those to be produced by fossil fuel CO2.

    PubMed

    Broecker, Wallace S; Putnam, Aaron E

    2013-10-15

    Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.

  8. NMR study on anomalous superconducting phase diagram in UBe13

    NASA Astrophysics Data System (ADS)

    Matsuno, Haruki; Morita, Kyohei; Kotegawa, Hisashi; Tou, Hideki; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2018-05-01

    In order to clarify unusual superconducting properties in a heavy fermion superconductor UBe13, we have carried out 9Be NMR measurements using a single crystal with Tc ≅ 0.85 K . The NMR spectra under the magnetic field H = 3 T parallel to [111] crystal axis show no change between Tc (H = 3 T) = 0.64 K and Ta (H = 3 T) = 0.55 K . Below Ta, however, the Knight shift for Be(II) decreased. The reduction of the Knight shift of Be(II) is amount to ∼ 0.01 % , which is much smaller than spin part of the Knight shift, Ks ∼ 0.1 % estimated from Clogston Jaccarino plot. The origin of reduction of the Knight shift cannot be explained by spin singlet superconductivity.

  9. X-15 test pilots - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force pilot William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. of their 125 X-15 flights, 8 were above the 50 miles that constituted the Air Force's definition of the beginning of space (Engle 3, Dana 2, Rushworth, Knight, and McKay one each). NASA used the international definition of space as beginning at 62 miles above the earth. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large

  10. How to Assess Children's Virtue Literacy: Methodological Lessons Learnt from the Knightly Virtues Programme

    ERIC Educational Resources Information Center

    Davison, Ian; Harrison, Tom; Hayes, Dan; Higgins, Jenny

    2016-01-01

    Character education is of growing importance in educational discourse. The Knightly Virtues programme draws on selected classic stories to teach eight moral virtues to nine- to 11-year-olds; it has proved to be hugely popular with UK schools. A finding of the trial was the different levels of "virtue literacy" in faith and non-faith…

  11. CARL Corporation to Market Knight Ridder DIALOG Databases to the Academic and Public Library Market.

    ERIC Educational Resources Information Center

    Machovec, George S.

    1996-01-01

    With the advent of CD-ROMs, libraries began to limit online searching via DIALOG. To increase DIALOG's market share, Colorado Alliance of Research Libraries (CARL) Corporation is developing graphical user interfaces using World Wide Web and Windows technology and has reached agreements with Knight Ridder Information and with most of their database…

  12. STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-21

    JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.

  13. Ab Initio Theory of Nuclear Magnetic Resonance Shifts in Metals

    NASA Astrophysics Data System (ADS)

    D'Avezac, Mayeul; Marzari, Nicola; Mauri, Francesco

    2005-03-01

    A comprehensive approach for the first-principles determination of all-electron NMR shifts in metallic systems is presented. Our formulation is based on a combination of density-functional perturbation theory and all-electron wavefunction reconstruction, starting from periodic-boundary calculations in the pseudopotential approximation. The orbital contribution to the NMR shift (the chemical shift) is obtained by combining the gauge-including projector augmented-wave approach (GIPAW), originally developed for the case of insulatorsootnotetextC. J. Pickard, Francesco Mauri, Phys. Rev. B, 63, 245101(2001), with the extension of linear-response theory to the case of metallic systemsootnotetextS. de Gironcoli, Phys. Rev. B, 51, 6773(1995). The spin contribution (the Knight shift) is obtained as a response to a finite uniform magnetic field, and through reconstructing the hyperfine interaction between the electron-spin density and the nuclear spins with the projector augmented-wave method (PAWootnotetextC. G. Van de Walle, P. E. Blöchl, Phys. Rev. B, 47, 4244(1993)). Our method is validated with applications to the case of the homogeneous electron gas and of simple metals. (Work supported by MURI grant DAAD 19-03-1-0169 and MIT-France)

  14. 75 FR 11914 - Chrysler, LLC, Detroit Axle Plant, Including On-Site Leased Workers From Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... shipped to an affiliated plant where they are used in the assembly of automotive vehicles. New information... Detroit, Michigan location of Chrysler, LLC, Detroit Axle Plant. The Department has determined that these... Knight Facilities Management LLC working on-site at the Detroit, Michigan location of Chrysler, LLC...

  15. 75 FR 26791 - Chrysler, LLC, Trenton Engine Plant, Including On-Site Leased Workers from Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-64,550] Chrysler, LLC, Trenton Engine Plant, Including On-Site Leased Workers from Caravan Knight Facilities Management LLC and Devon Facility Management, Trenton, MI, Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade...

  16. Knight Commission Tells Presidents to Use Their Power to Reform the "Fundamental Premises" of College Sports.

    ERIC Educational Resources Information Center

    Lederman, Douglas

    1991-01-01

    This article describes the report of the Knight Foundation Commission on Intercollegiate Athletics, which enunciates principles of a new model of college sports governance. Ten recommendations include total authority given to college presidents, who should ensure program compliance with federal statutes barring sex discrimination; and review of…

  17. NMR spectrum analysis for CrAs at ambient pressure

    NASA Astrophysics Data System (ADS)

    Kotegawa, H.; Nakahara, S.; Matsushima, K.; Tou, H.; Matsuoka, E.; Sugawara, H.; Harima, H.

    2018-05-01

    We report NMR spectrum analysis for CrAs, which was recently reported to be superconducting under pressure. The NMR spectrum obtained by the powdered single crystals shows a typical powder pattern reproduced by the electric field gradient (EFG) parameters and isotropic Knight shift, indicating anisotropy of Knight shift is not remarkable in CrAs. For the oriented sample, the spectrum can be understood by considering that the crystals are aligned for H ∥ b . The temperature dependence of Knight shift was successfully obtained from NMR spectrum with large nuclear quadrupole interaction.

  18. Knaves, Knights or Networks: Which Assumption of Lecturer and Manager Motivation Should Underlie Further Education Policy?

    ERIC Educational Resources Information Center

    Boocock, Andrew

    2015-01-01

    Julian Le Grand, a well-known economist, identifies two types of public sector employee: knights (with altruistic motives) and knaves (with self-interested motives). He argues that the quasi-market, predicated on the assumption of knavish behaviour (or agent self-interest), is the most effective way of directing school managers and teachers…

  19. The Pennsylvania Anatomy Act of 1883: Weighing the Roles of Professor William Smith Forbes and Senator William James McKnight.

    PubMed

    Wright, James R

    2016-10-01

    Effective Anatomical Acts transformed medical education and curtailed grave-robbing. William S. Forbes, Demonstrator of Anatomy at Jefferson Medical College in Philadelphia, authored the Pennsylvania Anatomy Act of 1867, but it was ineffective. In December of 1882, Forbes and accomplices were charged with grave-robbing. Forbes was acquitted in early 1883, but his accomplices were all convicted; nevertheless, these events precipitated a strengthened Anatomy Act in 1883. Forbes was crowned the Father of the Pennsylvania Anatomy Act and was revered by the Philadelphia medical community for his personal sacrifices for medical education; they even paid his legal fees. Over the remainder of his life, Forbes received many honors. However, there was a second major player, rural doctor William J. McKnight, a convicted grave-robber and State Senator. The evidence shows that Forbes precipitated the crisis, which was a racial powder keg, and then primarily focused on his trial, while McKnight, creatively working behind the scenes in collaboration with Jefferson, Anatomy Professor William H. Pancoast, used the crisis to draft and pass transformative legislation enabling anatomical dissection at Pennsylvania medical schools. While not minimizing Forbes suffering throughout these events, McKnight should be appropriately recognized for his initiative and contributions, which far exceeded those of Forbes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  1. X-15 flight crew - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force Major William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. These six pilots made 125 of the 199 total flights in the X-15. Rushworth made 34 flights (the most of any X-15 pilot); McKay flew 29 times; Engle, Knight, and Dana each flew 16 times; Thompson's total was 14. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52

  2. Effect of diapause status and gender on activity, metabolism and starvation resistance in the plant bug Lygus hesperus Knight

    USDA-ARS?s Scientific Manuscript database

    Lygus hesperus Knight, a key pest species distributed throughout the western United States, survives winter in a state of diapause. A laboratory population was examined to elucidate the changes in behavior and physiology linked to this period of relative dormancy and to determine how these changes a...

  3. Earth field NMR with chemical shift spectral resolution: theory and proof of concept.

    PubMed

    Katz, Itai; Shtirberg, Lazar; Shakour, Gubrail; Blank, Aharon

    2012-06-01

    A new method for obtaining an NMR signal in the Earth's magnetic field (EF) is presented. The method makes use of a simple pulse sequence with only DC fields which is much less demanding than previous approaches in terms of the pulses' rise and fall times. Furthermore, it offers the possibility of obtaining NMR data with enough spectral resolution to allow retrieving high resolution molecular chemical shift (CS) information - a capability that was not considered possible in EF NMR until now. Details of the pulse sequence, the experimental system, and our specially tailored EF NMR probe are provided. The experimental results demonstrate the capability to differentiate between three types of samples made of common fluorine compounds, based on their CS data. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Scaling deep learning on GPU and knights landing clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Buluc, Aydin; Demmel, James

    Training neural networks has become a big bottleneck. For example, training ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. We use both self-host Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From the algorithm aspect, we focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. We redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD,more » and Hogwild EASGD are faster than existing counter-part methods (Async SGD, Async MSGD, and Hogwild SGD) in all comparisons. Sync EASGD achieves 5.3X speedup over original EASGD on the same platform. We achieve 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  5. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm.

    PubMed

    Zhong, Yeteng; Ma, Zhuoran; Zhu, Shoujun; Yue, Jingying; Zhang, Mingxi; Antaris, Alexander L; Yuan, Jie; Cui, Ran; Wan, Hao; Zhou, Ying; Wang, Weizhi; Huang, Ngan F; Luo, Jian; Hu, Zhiyuan; Dai, Hongjie

    2017-09-29

    In vivo fluorescence imaging in the near-infrared region between 1500-1700 nm (NIR-IIb window) affords high spatial resolution, deep-tissue penetration, and diminished auto-fluorescence due to the suppressed scattering of long-wavelength photons and large fluorophore Stokes shifts. However, very few NIR-IIb fluorescent probes exist currently. Here, we report the synthesis of a down-conversion luminescent rare-earth nanocrystal with cerium doping (Er/Ce co-doped NaYbF 4 nanocrystal core with an inert NaYF 4 shell). Ce doping is found to suppress the up-conversion pathway while boosting down-conversion by ~9-fold to produce bright 1550 nm luminescence under 980 nm excitation. Optimization of the inert shell coating surrounding the core and hydrophilic surface functionalization minimize the luminescence quenching effect by water. The resulting biocompatible, bright 1550 nm emitting nanoparticles enable fast in vivo imaging of blood vasculature in the mouse brain and hindlimb in the NIR-IIb window with short exposure time of 20 ms for rare-earth based probes.Fluorescence imaging in the near-infrared window between 1500-1700 nm (NIR-IIb window) offers superior spatial resolution and tissue penetration depth, but few NIR-IIb probes exist. Here, the authors synthesize rare earth down-converting nanocrystals as promising fluorescent probes for in vivo imaging in this spectral region.

  6. Towards Highly Scalable Ab Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Landing Manycore Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquelin, Mathias; De Jong, Wibe A.; Bylaska, Eric J.

    2017-07-03

    The Ab Initio Molecular Dynamics (AIMD) method allows scientists to treat the dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. This extremely important method has tremendous computational requirements, because the electronic Schr¨odinger equation, approximated using Kohn-Sham Density Functional Theory (DFT), is solved at every time step. With the advent of manycore architectures, application developers have a significant amount of processing power within each compute node that can only be exploited through massive parallelism. A compute intensive application such as AIMD forms a good candidate to leverage this processing power. In this paper, wemore » focus on adding thread level parallelism to the plane wave DFT methodology implemented in NWChem. Through a careful optimization of tall-skinny matrix products, which are at the heart of the Lagrange multiplier and nonlocal pseudopotential kernels, as well as 3D FFTs, our OpenMP implementation delivers excellent strong scaling on the latest Intel Knights Landing (KNL) processor. We assess the efficiency of our Lagrange multiplier kernels by building a Roofline model of the platform, and verify that our implementation is close to the roofline for various problem sizes. Finally, we present strong scaling results on the complete AIMD simulation for a 64 water molecules test case, that scales up to all 68 cores of the Knights Landing processor.« less

  7. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  8. From Georgia to Jerusalem: some Medical Aspects of "The Knight in the Panther's Skin" by Shota Rustaveli.

    PubMed

    Ohry, Avi; Ohry, Karin; Shemesh, Frida; Shemesh, Gabi

    2015-06-01

    The Georgian poet Rustaveli wrote his epic poem The Knight in the Panther's Skin around 1200. He knew the works of Hippocrates and Galen, and believed in the unity of body and soul.Thereare many references to health and medicine in the poem, and we shall highlight some of them. In 1185 Rustaveli left Georgia and settled in Jerusalem. There he lived and died at the Monastery of the Cross, where he was buried.

  9. Mechanical and statistical evidence of the causality of human-made mass shifts on the Earth's upper crust and the occurrence of earthquakes

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.

    2013-01-01

    A global catalog of small- to large-sized earthquakes was systematically analyzed to identify causality and correlatives between human-made mass shifts in the upper Earth's crust and the occurrence of earthquakes. The mass shifts, ranging between 1 kt and 1 Tt, result from large-scale geoengineering operations, including mining, water reservoirs, hydrocarbon production, fluid injection/extractions, deep geothermal energy production and coastal management. This article shows evidence that geomechanical relationships exist with statistical significance between (a) seismic moment magnitudes M of observed earthquakes, (b) lateral distances of the earthquake hypocenters to the geoengineering "operation points" and (c) mass removals or accumulations on the Earth's crust. Statistical findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. Statistical observations, however, indicate that every second, seismic event tends to occur after a decade. The chance of an earthquake to nucleate after 2 or 20 years near an area with a significant mass shift is 25 or 75 %, respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in which the operations take place (i.e., extensive, transverse or compressive). Results are summarized as follows: First, seismic moment magnitudes increase the more mass is locally shifted on the Earth's crust. Second, seismic moment magnitudes increase the larger the area in the crust is geomechanically polluted. Third, reverse faults tend to be more trigger-sensitive than normal faults due to a stronger alteration of the minimum vertical principal stress component. Pure strike-slip faults seem to rupture randomly and independently from the magnitude of the mass changes. Finally, mainly due to high estimation uncertainties of source parameters and, in particular, of shallow seismic events (<10 km), it remains still very difficult to

  10. von Willebrand factor, Jedi knight of the bloodstream.

    PubMed

    Springer, Timothy A

    2014-08-28

    When blood vessels are cut, the forces in the bloodstream increase and change character. The dark side of these forces causes hemorrhage and death. However, von Willebrand factor (VWF), with help from our circulatory system and platelets, harnesses the same forces to form a hemostatic plug. Force and VWF function are so closely intertwined that, like members of the Jedi Order in the movie Star Wars who learn to use "the Force" to do good, VWF may be considered the Jedi knight of the bloodstream. The long length of VWF enables responsiveness to flow. The shape of VWF is predicted to alter from irregularly coiled to extended thread-like in the transition from shear to elongational flow at sites of hemostasis and thrombosis. Elongational force propagated through the length of VWF in its thread-like shape exposes its monomers for multimeric binding to platelets and subendothelium and likely also increases affinity of the A1 domain for platelets. Specialized domains concatenate and compact VWF during biosynthesis. A2 domain unfolding by hydrodynamic force enables postsecretion regulation of VWF length. Mutations in VWF in von Willebrand disease contribute to and are illuminated by VWF biology. I attempt to integrate classic studies on the physiology of hemostatic plug formation into modern molecular understanding, and point out what remains to be learned. © 2014 by The American Society of Hematology.

  11. Raman analysis of complex pigment mixtures in 20th century metal knight shields of the Order of the Elephant.

    PubMed

    Lauridsen, Clara Bratt; Sanyova, Jana; Simonsen, Kim Pilkjær

    2015-11-05

    The pigment composition of six painted metal knight shields of the Order of the Elephant dating from the second half of the 20th century belonging to the Danish royal collection were studied using Raman microscopy. By focusing a 785 nm laser with a 50× objective on particles in paint cross sections, it was possible to identify the following 20 compounds: hematite, goethite, chrome red/orange, chrome yellow, zinc chrome yellow, carbon black, toluidine red PR3, chlorinated para red PR4, dinitroaniline orange PO5, phthalocyanine blue PB15, indanthrone blue PB60, ultramarine, Prussian blue, lead white, anatase, rutile, calcium carbonate, barium sulphate, gypsum and dolomite. The components were frequently present in complex pigment mixtures. Additional information was obtained by elemental analysis with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) to identify cobalt blue, zinc white and cadmium red, as well as to indicate the presence of zinc white in some pigment mixtures. The study allowed a comparison between the industrially applied preparation layers and the artistic paint layers applied by the heraldic painter. Differences in the choice of paint and pigment types were observed on the earliest knight shields, demonstrating a general delay of industrial materials into artist paints. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb 1-xGe xTe and Pb 1-xSn xTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pbmore » neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.« less

  13. Using Intel's Knight Landing Processor to Accelerate Global Nested Air Quality Prediction Modeling System (GNAQPMS) Model

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, H.; Chen, X.; Wu, Q.; Wang, Z.

    2016-12-01

    The Global Nested Air Quality Prediction Modeling System for Hg (GNAQPMS-Hg) is a global chemical transport model coupled Hg transport module to investigate the mercury pollution. In this study, we present our work of transplanting the GNAQPMS model on Intel Xeon Phi processor, Knights Landing (KNL) to accelerate the model. KNL is the second-generation product adopting Many Integrated Core Architecture (MIC) architecture. Compared with the first generation Knight Corner (KNC), KNL has more new hardware features, that it can be used as unique processor as well as coprocessor with other CPU. According to the Vtune tool, the high overhead modules in GNAQPMS model have been addressed, including CBMZ gas chemistry, advection and convection module, and wet deposition module. These high overhead modules were accelerated by optimizing code and using new techniques of KNL. The following optimized measures was done: 1) Changing the pure MPI parallel mode to hybrid parallel mode with MPI and OpenMP; 2.Vectorizing the code to using the 512-bit wide vector computation unit. 3. Reducing unnecessary memory access and calculation. 4. Reducing Thread Local Storage (TLS) for common variables with each OpenMP thread in CBMZ. 5. Changing the way of global communication from files writing and reading to MPI functions. After optimization, the performance of GNAQPMS is greatly increased both on CPU and KNL platform, the single-node test showed that optimized version has 2.6x speedup on two sockets CPU platform and 3.3x speedup on one socket KNL platform compared with the baseline version code, which means the KNL has 1.29x speedup when compared with 2 sockets CPU platform.

  14. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration

    2017-10-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.

  15. Scaling Deep Learning Workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawande, Nitin A.; Landwehr, Joshua B.; Daily, Jeffrey A.

    Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors --- including NVIDIA, Intel, AMD and IBM --- have architectural road-maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. This paper provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path. Our evaluation consists of amore » cross section of convolutional neural net workloads: CifarNet, CaffeNet, AlexNet and GoogleNet topologies using the Cifar10 and ImageNet datasets. The workloads are vendor optimized for each architecture. GPUs provide the highest overall raw performance. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and KNL can be competitive when considering performance/watt. Furthermore, NVLink is critical to GPU scaling.« less

  16. Recent Developments in Young-Earth Creationist Geology

    ERIC Educational Resources Information Center

    Heaton, Timothy H.

    2009-01-01

    Young-earth creationism has undergone a shift in emphasis toward building of historical models that incorporate Biblical and scientific evidence and the acceptance of scientific conclusions that were formerly rejected. The RATE Group admitted that massive amounts of radioactive decay occurred during earth history but proposed a period of…

  17. Galileo's Earth-Moon portrait

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.

  18. Knight Commission on Intercollegiate Athletics: Quantitative and Qualitative Research with Football Bowl Subdivision University Presidents on the Costs and Financing of Intercollegiate Athletics. Report of Findings and Implications

    ERIC Educational Resources Information Center

    Knight Commission on Intercollegiate Athletics, 2009

    2009-01-01

    The Knight Commission's landmark 1991 report, "Keeping Faith with the Student-Athlete: A New Model for Intercollegiate Athletics," proposed a new "one-plus-three" model for intercollegiate athletics--presidential control directed toward academic integrity, fiscal integrity, and an independent certification process to verify that integrity. Indeed,…

  19. Performance optimization of Qbox and WEST on Intel Knights Landing

    NASA Astrophysics Data System (ADS)

    Zheng, Huihuo; Knight, Christopher; Galli, Giulia; Govoni, Marco; Gygi, Francois

    We present the optimization of electronic structure codes Qbox and WEST targeting the Intel®Xeon Phi™processor, codenamed Knights Landing (KNL). Qbox is an ab-initio molecular dynamics code based on plane wave density functional theory (DFT) and WEST is a post-DFT code for excited state calculations within many-body perturbation theory. Both Qbox and WEST employ highly scalable algorithms which enable accurate large-scale electronic structure calculations on leadership class supercomputer platforms beyond 100,000 cores, such as Mira and Theta at the Argonne Leadership Computing Facility. In this work, features of the KNL architecture (e.g. hierarchical memory) are explored to achieve higher performance in key algorithms of the Qbox and WEST codes and to develop a road-map for further development targeting next-generation computing architectures. In particular, the optimizations of the Qbox and WEST codes on the KNL platform will target efficient large-scale electronic structure calculations of nanostructured materials exhibiting complex structures and prediction of their electronic and thermal properties for use in solar and thermal energy conversion device. This work was supported by MICCoM, as part of Comp. Mats. Sci. Program funded by the U.S. DOE, Office of Sci., BES, MSE Division. This research used resources of the ALCF, which is a DOE Office of Sci. User Facility under Contract DE-AC02-06CH11357.

  20. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  1. Shifting Plasma

    NASA Image and Video Library

    2017-12-08

    Strands of solar material at the sun's edge shifted and twisted back and forth over a 22-hour period in this footage captured May 2-3, 2017, by NASA’s Solar Dynamics Observatory. In this close-up, the strands are being manipulated by strong magnetic forces associated with active regions. To give a sense of scale, the strands that hover above the sun are more than several times the size of Earth. These images were taken in a wavelength of extreme ultraviolet light, which is typically invisible to our eyes, but was colorized here in red. go.nasa.gov/2qJzPD2 Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Shifting Plasma

    NASA Image and Video Library

    2017-05-09

    Strands of plasma at the sun edge shifted and twisted back and forth over a 22-hour period, May 2-3, 2017. In this close-up from NASA Solar Dynamics Observatory, the strands are being manipulated by strong magnetic forces associated with active region. This kind of activity is not at all uncommon, but best viewed in profile. The images were taken in a wavelength of extreme ultraviolet light. To give a sense of scale, the strands hover above the sun more than several times the size of Earth. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21632

  3. Multiscale regime shifts and planetary boundaries.

    PubMed

    Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian

    2013-07-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Relativistic effects in earth-orbiting Doppler lidar return signals.

    PubMed

    Ashby, Neil

    2007-11-01

    Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.

  5. Global impacts of the 1980s regime shift.

    PubMed

    Reid, Philip C; Hari, Renata E; Beaugrand, Grégory; Livingstone, David M; Marty, Christoph; Straile, Dietmar; Barichivich, Jonathan; Goberville, Eric; Adrian, Rita; Aono, Yasuyuki; Brown, Ross; Foster, James; Groisman, Pavel; Hélaouët, Pierre; Hsu, Huang-Hsiung; Kirby, Richard; Knight, Jeff; Kraberg, Alexandra; Li, Jianping; Lo, Tzu-Ting; Myneni, Ranga B; North, Ryan P; Pounds, J Alan; Sparks, Tim; Stübi, René; Tian, Yongjun; Wiltshire, Karen H; Xiao, Dong; Zhu, Zaichun

    2016-02-01

    Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  6. Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    NASA Astrophysics Data System (ADS)

    Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.

    2018-03-01

    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this

  7. Earth as Seen from Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On its 449th martian day, or sol (April 29, 2005), NASA's Mars rover Opportunity woke up approximately an hour after sunset and took this picture of the fading twilight as the stars began to come out. Set against the fading red glow of the sky, the pale dot near the center of the picture is not a star, but a planet -- Earth.

    Earth appears elongated because it moved slightly during the 15-second exposures. The faintly blue light from the Earth combines with the reddish sky glow to give the pale white appearance.

    The images were taken with Opportunity's panoramic camera, using 440-nanometer, 530-nanometer, and 750-nanometer color filters. In processing on the ground, the images were shifted slightly to compensate for Earth's motion between one image and the next.

  8. Scaling deep learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawande, Nitin A.; Landwehr, Joshua B.; Daily, Jeffrey A.

    Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors --- including NVIDIA, Intel, AMD, and IBM --- have architectural road-maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. This paper provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Ourmore » evaluation consists of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling --- sometimes encouraged by restricted GPU memory --- NVLink is less important.« less

  9. Plate motion and the secular shift of the mean pole

    NASA Technical Reports Server (NTRS)

    Liu, H.; Carpenter, L.; Agreen, R. W.

    1973-01-01

    The global plate motion indicates that changes in the products of inertia of the earth due to tectonic plate movement may provide a secular shift of the mean pole. A mathematical procedure for calculating this shift based on the plate theory is presented. Explicit expressions were obtained for the dependence of the secular polar shift on the dimensions and locations of the plate boundaries. Numerical results show that the secular motion of the mean pole is 0.0002 sec/year in the direction of 67 W. Hence, it is deduced that the influence of the plate motion on the secular polar shift may account for 10% of the observed value.

  10. Improved capture of stable flies (Diptera: Muscidae) by placement of Knight Stick sticky fly traps protected by electric fence inside animal exhibit yards at the Smithsonian’s National Zoological Park

    USDA-ARS?s Scientific Manuscript database

    The stable fly is a blood-feeding pest of livestock and other animals. Traps have been used to survey stable flies and reduce populations. The Knight Stick trap is highly effective for catching stable flies and may catch more if limits on trap placement were relaxed. When working on stable fly contr...

  11. 47,49Ti NMR: hyperfine interactions in oxides and metals.

    PubMed

    Bastow, T J; Gibson, M A; Forwood, C T

    1998-10-01

    A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.

  12. Evidence for Spin Singlet Pairing with Strong Uniaxial Anisotropy in URu2Si2 Using Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Hattori, T.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Matsuda, T. D.; Haga, Y.

    2018-01-01

    In order to identify the spin contribution to superconducting pairing compatible with the so-called "hidden order", Si 29 nuclear magnetic resonance measurements have been performed using a high-quality single crystal of URu2 Si2 . A clear reduction of the Si 29 Knight shift in the superconducting state has been observed under a magnetic field applied along the crystalline c axis, corresponding to the magnetic easy axis. These results provide direct evidence for the formation of spin-singlet Cooper pairs. Consequently, results indicating a very tiny change of the in-plane Knight shift reported previously demonstrate extreme uniaxial anisotropy for the spin susceptibility in the hidden order state.

  13. Scaling Deep Learning on GPU and Knights Landing clusters

    DOE PAGES

    You, Yang; Buluc, Aydin; Demmel, James

    2017-09-26

    The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  14. Scaling Deep Learning on GPU and Knights Landing clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Buluc, Aydin; Demmel, James

    The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.; Iowa State Univ., Ames, IA; Cui, J. -F.

    125Te NMR spectra and spin-lattice relaxation times, T 1, have been measured for several GeTe-based materials with Te excess. In this paper, the spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T 1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T 1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T 1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excessmore » of Te, about 15% of the material exhibits a Knight shift of ≥4500 ppm and a T 1 of only 0.3 ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Lastly, our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.« less

  16. Virgin's Knight tackles climate change

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2008-11-01

    "There is no greater or more immediate challenge than that posed by climate change," said Sir Richard Branson, chairman of the Virgin group, via video-link at the 59th International Astronautical Congress (IAC) held in Glasgow in the UK at the end of September. That grand statement may seem like a lot of hot air for the entrepreneur best known for his attempt to circumnavigate the globe by balloon. But Branson went on to reveal that Virgin Galactic, which aims to fly passengers 100 km into space for 200 000 per trip, will also provide room on its craft for a series of scientific experiments to study the Earth's atmosphere.

  17. a Study of Dilute Aluminum and Vanadium NMR in Alpha-Titanium and in Hydrogen Doped Alpha-Titanium

    NASA Astrophysics Data System (ADS)

    Chou, Lih-Hsin

    Nuclear magnetic resonance was used to investigate Ti-1 at.% V, Ti-2 at.% V, Ti-1 at.% Al, Ti-2 at.% Al and in addition samples of these alloys containing 1 and 2 at.% H. Computer simulation of the absorption curves incorporates the effects of nuclear quadrupole and anisotropic shift interactions, dipolar broadening, and inhomogeneous Knight shift distribution. From the simulation work, experimental parameters such as electric field gradient (EFG), axial anisotropic Knight shift K(,ax), and isotropic Knight shift are obtained. In addition to shedding light on certain features of bonding of V and Al in Ti, this information is used to discuss the trapping of hydrogen in these systems. The resonance of a simple metal (Al) and transition metal (V) at low concentration in a transition metal (Ti) matrix are compared. The localized states of an Al impurity appear to differ radically from the host Ti atomic structure; V present as a dilute solute appears to join the Ti lattice smoothly. Very small isotropic and anisotropic Knight shifts were observed for ('27)Al in Ti. This implies an absence of an orbital contribution and a small value for the s conduction electron density at the local Fermi surface in the vicinity of Al in Ti. A sizeable isotropic and anisotropic Knight shift was observed for ('51)V in Ti. This is thought to be the result of a large orbital contribution. The substitutional vanadium retains much of the character of V, but experiences the symmetry of the Ti lattice. Four outer electrons of V may form nearest neighbor bonds similarly to those between Ti atoms in pure titanium. The one extra electron on the V may be more s-like in character. Measurement of the temperature dependence of K(,ax) and EFG values at V solute atoms in a Ti matrix show that both K(,ax) and EFG increase as temperature decreases. The local electric field gradient contribution from non-s-electrons q(,non -s-el) is about 2 to 5 times larger than the q(,ion) values in magnitude. Because

  18. Decadal Seasonal Shifts of Precipitation and Temperature in TRMM and AIRS Data

    NASA Technical Reports Server (NTRS)

    Savtchenko, Andrey; Huffman, George; Meyer, David; Vollmer, Bruce

    2018-01-01

    We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple “phase learning†from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.

  19. Scaling Deep Learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing

    DOE PAGES

    Gawande, Nitin A.; Daily, Jeff A.; Siegel, Charles; ...

    2018-05-05

    Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors—including NVIDIA, Intel, AMD, and IBM—have architectural road maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. Here, this article provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Our evaluation consistsmore » of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. We use sequentially equivalent implementations to maintain iso-accuracy between parallel and sequential DL models. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling—sometimes encouraged by restricted GPU memory—NVLink is less important.« less

  20. Scaling Deep Learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawande, Nitin A.; Daily, Jeff A.; Siegel, Charles

    Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors—including NVIDIA, Intel, AMD, and IBM—have architectural road maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. Here, this article provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Our evaluation consistsmore » of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. We use sequentially equivalent implementations to maintain iso-accuracy between parallel and sequential DL models. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling—sometimes encouraged by restricted GPU memory—NVLink is less important.« less

  1. Ecosystem shifts under climate change - a multi-model analysis from ISI-MIP

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Beerling, David; Clark, Douglas; Friend, Andrew; Ito, Akihito; Kahana, Ron; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Lucht, Wolfgang; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Tito Rademacher, Tim; Schaphoff, Sibyll

    2013-04-01

    Dramatic ecosystem shifts, relating to vegetation composition and water and carbon stocks and fluxes, are potential consequences of climate change in the twenty-first century. Shifting climatic conditions, resulting in changes in biogeochemical properties of the ecosystem, will render it difficult for endemic plant and animal species to continue to survive in their current habitat. The potential for major shifts in biomes globally will also have severe consequences for the humans who rely on vital ecosystem services. Here we employ a novel metric of ecosystem shift to quantify the magnitude and uncertainty in these shifts at different levels of global warming, based on the response of seven biogeochemical Earth models to different future climate scenarios, in the context of the Intersectoral Impact Model Intercomparison Project (ISI-MIP). Based on this ensemble, 15% of the Earth's land surface will experience severe ecosystem shifts at 2°C degrees of global warming above 1980-2010 levels. This figure rises monotonically with global mean temperature for all models included in this study, reaching a median value of 60% of the land surface in a 4°C warmer world. At both 2°C and 4°C of warming, the most pronounced shifts occur in south-eastern India and south-western China, large swathes of the northern lattitudes above 60°N, the Amazon region and sub-Saharan Africa. Where dynamic vegetation composition is modelled, these shifts correspond to significant reductions in the land surface of vunerable vegetation types. We show that global mean temperature is a robust predictor of ecosystem shifts, whilst the spread across impact models is the greatest contributor to uncertainty.

  2. Interplay between solid Earth and biological evolution

    NASA Astrophysics Data System (ADS)

    Höning, Dennis; Spohn, Tilman

    2017-04-01

    Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.

  3. Recent Earth oblateness variations: unraveling climate and postglacial rebound effects.

    PubMed

    Dickey, Jean O; Marcus, Steven L; de Viron, Olivier; Fukumori, Ichiro

    2002-12-06

    Earth's dynamic oblateness (J2) has been decreasing due to postglacial rebound (PGR). However, J2 began to increase in 1997, indicating a pronounced global-scale mass redistribution within Earth's system. We have determined that the observed increases in J2 are caused primarily by a recent surge in subpolar glacial melting and by mass shifts in the Southern, Pacific, and Indian oceans. When these effects are removed, the residual trend in J2 (-2.9 x 10(-11) year-1) becomes consistent with previous estimates of PGR from satellite and eclipse data. The climatic significance of these rapid shifts in glacial and oceanic mass, however, remains to be investigated.

  4. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    ERIC Educational Resources Information Center

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  5. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  6. Searching for the light-element candidate of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, Y.; Vocadlo, L.; Brodholt, J. P.; Wood, I. G.

    2016-12-01

    The mismatch between the seismic observations of the Earth's inner core and observations from mineral physics (Vočadlo, 2007; Vočadlo et al., 2009; Belonoshko et al., 2007; Martorell et al., 2013) questions the basic structure of the core and also makes it more difficult to understand its other complex characteristics. The premelting elastic softening predicted in hcp Fe under inner core conditions gives a match with seismic wave velocities, but clearly the density is too high (Martorell et al., 2013); in addition, the origin of such premelting softening is not clear. Using ab-initio based simulation techniques, we have studied the structures and elastic properties of Fe alloys and compounds with C and Si that are strongly relevant to the inner core. The densities and elastic constants were obtained up to melting under inner core pressures. The premelting elastic softening observed in hcp Fe was also observed in materials like Fe7C3, and was found to be correlated with the partial weakening of the bonding network, but the density of Fe7C3 is too low to match that of the inner core. However, the density and elastic properties from calculations on the Fe-Si-C ternary alloy were found to be very close to the seismic observations of the core, suggesting that it may, finally, be possible to report a core composition which is fully matched with seismology. Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., Johansson, B., (2007). Science 316 (5831), 1603-1605. Vočadlo, L., (2007). Earth. Planet. Sci. Lett., 254 (1), 227-232. Vočadlo, L., Brodholt, J., Dobson, D.P., Knight, K., Marshall, W., Price, G.D., Wood, I.G. (2002). Earth. Planet. Sci. Lett., 203 (1) 567-575. Vočadlo, L., Dobson, D. P., Wood, I. G., (2009). Earth. Planet. Sci. Lett., 288 (3), 534-538. Martorell, B., Vočadlo, L., Brodholt, J., Wood, I. G., (2013b). Science 342 (6157), 466-468.

  7. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less

  8. The Rare Earth Magnet Industry and Rare Earth Price in China

    NASA Astrophysics Data System (ADS)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  9. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  10. NMR parameters in alkali, alkaline earth and rare earth fluorides from first principle calculations.

    PubMed

    Sadoc, Aymeric; Body, Monique; Legein, Christophe; Biswal, Mamata; Fayon, Franck; Rocquefelte, Xavier; Boucher, Florent

    2011-11-07

    (19)F isotropic chemical shifts for alkali, alkaline earth and rare earth of column 3 basic fluorides are measured and the corresponding isotropic chemical shieldings are calculated using the GIPAW method. When using the PBE exchange-correlation functional for the treatment of the cationic localized empty orbitals of Ca(2+), Sc(3+) (3d) and La(3+) (4f), a correction is needed to accurately calculate (19)F chemical shieldings. We show that the correlation between experimental isotropic chemical shifts and calculated isotropic chemical shieldings established for the studied compounds allows us to predict (19)F NMR spectra of crystalline compounds with a relatively good accuracy. In addition, we experimentally determine the quadrupolar parameters of (25)Mg in MgF(2) and calculate the electric field gradients of (25)Mg in MgF(2) and (139)La in LaF(3) using both PAW and LAPW methods. The orientation of the EFG components in the crystallographic frame, provided by DFT calculations, is analysed in terms of electron densities. It is shown that consideration of the quadrupolar charge deformation is essential for the analysis of slightly distorted environments or highly irregular polyhedra. This journal is © the Owner Societies 2011

  11. Evaluating the networking characteristics of the Cray XC-40 Intel Knights Landing-based Cori supercomputer at NERSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerfler, Douglas; Austin, Brian; Cook, Brandon

    There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL,more » such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.« less

  12. Recent Developments in Young-Earth Creationist Geology

    NASA Astrophysics Data System (ADS)

    Heaton, Timothy H.

    2009-10-01

    Young-earth creationism has undergone a shift in emphasis toward building of historical models that incorporate Biblical and scientific evidence and the acceptance of scientific conclusions that were formerly rejected. The RATE Group admitted that massive amounts of radioactive decay occurred during earth history but proposed a period of accelerated decay during Noah’s Flood to fit the resulting history into a young-earth timeframe. Finding a mechanism for the acceleration and dealing with the excessive heat and radiation it would generate posed major problems for the project. Catastrophic plate tectonics was proposed to explain continental movements in a short timeframe and serve as a trigger for Noah’s Flood, but other creationists rejected the idea citing hopeless chronological problems. Creationists have also sought to explain the order of the fossil record and the Ice Age in a young-earth timeframe. An examination of these efforts demonstrates the anti-scientific nature of using the Bible as a non-negotiable framework for earth history.

  13. Nuclear field shift in natural environments

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Brennecka, Gregory A.; Nielsen, Sune G.

    2013-03-01

    The nuclear field shift (NFS) is an isotope shift in atomic energy levels caused by a combination of differences in nuclear size and shape and electron densities at the nucleus. The effect of NFS in isotope fractionation was theoretically established by Bigeleisen in 1996 [Bigeleisen J. (1996) J. Am. Chem. Soc. 118:3676-3680] and has been analytically measured in laboratory chemical exchange reactions. More recently, some isotopic variations of heavy elements (Hg, Tl, U) measured in natural systems as well as isotopic anomalies measured for lower-mass elements in meteorites have been attributed to the NFS effect. These isotopic variations open up new and exciting fields of investigations in Earth sciences. In this paper, we review the different natural systems in which NFS has been proposed to be the origin of isotopic variations.

  14. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118822 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  15. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118882 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  16. Exploring spiritual value in earth science concept through learning using chain till unanswered questions

    NASA Astrophysics Data System (ADS)

    Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana

    2017-08-01

    Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.

  17. Managing for resilience: early detection of regime shifts in complex systems

    EPA Science Inventory

    The goal of sustainability is to maintain a condition or regime of the Earth, which supports human existence from generation to generation. Hence, the ability to detect, characterize, and manage regime shifts, particularly catastrophic ones, is critical to maintaining human sust...

  18. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  19. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  20. Fast Eigensolver for Computing 3D Earth's Normal Modes

    NASA Astrophysics Data System (ADS)

    Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.

    2017-12-01

    We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.

  1. Analyses of solar viewing time, beta angle, and doppler shift for solar observations from the space shuttle

    NASA Technical Reports Server (NTRS)

    Brandon, J. P.

    1972-01-01

    Studies of solar physics phenomena are aided by the ability to observe the sun from earth orbit without periodic occultation. Charts are presented for the selection of suitable orbits about the earth at which a spacecraft is continuously illuminated through a period of a few days. Selection of the orbits considers the reduction of Doppler shift and wavefront attenuation due to relative orbital velocity and residual earth atmosphere.

  2. Physiological and behavioral effects of tilt-induced body fluid shifts

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.

    1983-01-01

    This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.

  3. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  4. Stratigraphic and Earth System approaches to defining the Anthropocene

    NASA Astrophysics Data System (ADS)

    Steffen, Will; Leinfelder, Reinhold; Zalasiewicz, Jan; Waters, Colin N.; Williams, Mark; Summerhayes, Colin; Barnosky, Anthony D.; Cearreta, Alejandro; Crutzen, Paul; Edgeworth, Matt; Ellis, Erle C.; Fairchild, Ian J.; Galuszka, Agnieszka; Grinevald, Jacques; Haywood, Alan; Ivar do Sul, Juliana; Jeandel, Catherine; McNeill, J. R.; Odada, Eric; Oreskes, Naomi; Revkin, Andrew; Richter, Daniel deB.; Syvitski, James; Vidas, Davor; Wagreich, Michael; Wing, Scott L.; Wolfe, Alexander P.; Schellnhuber, H. J.

    2016-08-01

    Stratigraphy provides insights into the evolution and dynamics of the Earth System over its long history. With recent developments in Earth System science, changes in Earth System dynamics can now be observed directly and projected into the near future. An integration of the two approaches provides powerful insights into the nature and significance of contemporary changes to Earth. From both perspectives, the Earth has been pushed out of the Holocene Epoch by human activities, with the mid-20th century a strong candidate for the start date of the Anthropocene, the proposed new epoch in Earth history. Here we explore two contrasting scenarios for the future of the Anthropocene, recognizing that the Earth System has already undergone a substantial transition away from the Holocene state. A rapid shift of societies toward the UN Sustainable Development Goals could stabilize the Earth System in a state with more intense interglacial conditions than in the late Quaternary climate regime and with little further biospheric change. In contrast, a continuation of the present Anthropocene trajectory of growing human pressures will likely lead to biotic impoverishment and a much warmer climate with a significant loss of polar ice.

  5. Atmospheric Expression of Seasonality on the Early Earth and Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Olson, S. L.; Schwieterman, E. W.; Reinhard, C. T.; Ridgwell, A.; Lyons, T. W.

    2017-12-01

    Biologically modulated seasonality impacts nearly every chemical constituent of Earth's atmosphere. For example, seasonal shifts in the balance of photosynthesis and respiration manifest as striking oscillation in the atmospheric abundance of CO2 and O2. Similar temporal variability is likely on other inhabited worlds, and seasonality is often regarded as a potential exoplanetary biosignature. Seasonality is a particularly intriguing biosignature because it may allow us to identify life through the abundance of spectrally active gases that are not uniquely biological in origin (e.g., CO2 or CH4). To date, however, the discussion of seasonality as a biosignature has been exclusively qualitative. We lack both quantitative constraints on the likelihood of spectrally detectable seasonality elsewhere and a framework for evaluating potential false positive scenarios (e.g., seasonal CO2 ice sublimation). That is, we do not yet know for which gases, and under which conditions, we could expect to detect seasonality and reliably infer the presence of an active biosphere. The composition of Earth's atmosphere has changed dramatically through time, and consequently, the atmospheric expression of seasonality has necessarily changed throughout Earth history as well. Thus, Earth offers several case studies for examining the potential for observable seasonality on chemically and tectonically diverse exoplanets. We outline an approach for exploring the history of seasonality on Earth via coupled biogeochemical and photochemical models, with particular emphasis on the seasonal cycles of CO2, CH4, and O2/O3. We also discuss the remote detectability of these seasonal signals on directly imaged exoplanets via reflectance and emission spectra. We suggest that seasonality in O2 on the early Earth was biogeochemically significant—and that seasonal cycles in O3, an indirect biological product coupled to biogenic O2, may be a readily detectable fingerprint of life in the absence of

  6. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  7. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  8. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-zS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a⁷⁷ Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (Tc~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe₂Se₂ sample due to local disorder in the Se environment. Our Knight shift ⁷⁷K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressivelymore » suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T₁T, as seen in FeSe.« less

  9. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  10. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanromá, E.; Pallé, E.; López, R.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At thatmore » time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.« less

  11. Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.

    Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.

  12. NMR Characterization of Sulphur Substitution Effects in the KxFe2−ySe2−zSz High-Tc Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic C.; Torchetti, D.A.; Imai, T.

    2012-04-17

    We present a {sup 77}Se NMR study of the effect of S substitution in the high-T{sub c} superconductor K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} in a temperature range up to 250 K. We examine two S concentrations, with z = 0.8 (T{sub c} {approx} 26 K) and z = 1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K{sub x}Fe{sub 2}Se{sub 2} sample due to local disorder in the Se environment. Our Knight shift {sup 77}K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itselfmore » decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T{sub c} in 1/T{sub 1}T, as seen in FeSe.« less

  13. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-xS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a 77Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (T c~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe 2Se 2 sample due to local disorder in the Se environment. Our Knight shift 77K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition,more » S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T 1T, as seen in FeSe.« less

  14. Bashful ballerina: Southward shifted heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    2003-11-01

    It is known since long [Rosenberg and Coleman, 1969] that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  15. Bashful Ballerina: Southward shifted Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  16. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem

  17. Mechanism of Headward Fluid Shift During Exposure To Microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott E.; Watenpaugh, Donald E.; Aratow, Michael; Murthy, Gita; Kawai, Yasuaki

    1994-01-01

    A prominent feature of early cardiovascular adaptation to the microgravity of space flight is a shift of blood and tissue fluid from the lower body to the upper body. Symptoms of this fluid shift include facial edema, nasal congestion, and headache. Normally on Earth, the human body is exposed to hydrostatic (gravitational) blood pressure gradients during upright posture. In this posture, mean arterial pressures at head, heart, and foot levels are approximately 70, 100, and 200 mm Hg, respectively. Theoretically, all hydrostatic pressures within arteries and veins are lost during exposure to microgravity so that mean arterial pressure in all regions of the body is uniform and approximately equal to that at heart level (100 mm Hg). Acute studies of 60 head-down tilt (simulated microgravity on Earth) indicate that facial edema is caused by: 1) elevation of capillary blood pressure from 28 to 34 mm Hg, 2) reduction of blood colloid osmotic pressure 22 to 18 mm Hg, and 3) 50% increase of blood perfusion in tissues of the head. Furthermore, as compared to microvasculature in the feet, microvessels of the head have a low capacity to constrict and diminish local perfusion. Elevation of blood and tissue fluid pressures/flow in the head may also explain the higher headward bone density associated with long-term head-down tilt. These mechanistic studies of head-down tilt, along with a better understanding of the relative stresses involved with upright posture and lower body negative pressure, have facilitated development of physiologic countermeasures to maintain astronaut health during microgravity. Presently no exercise hardware is available to provide a blood pressure gradient from head to feet in space. However, recent studies in our laboratory suggest that treadmill exercise within lower body negative pressure provides equivalent or greater physiologic stress as compared to similar upright exercise on Earth.

  18. Neutron interference in the Earth's gravitational field

    NASA Astrophysics Data System (ADS)

    Galiautdinov, Andrei; Ryder, Lewis H.

    2017-06-01

    This work relates to the famous experiments, performed in 1975 and 1979 by Werner et al., measuring neutron interference and neutron Sagnac effects in the earth's gravitational field. Employing the method of Stodolsky in its weak field approximation, explicit expressions are derived for the two phase shifts, which turn out to be in agreement with the experiments and with the previously obtained expressions derived from semi-classical arguments: these expressions are simply modified by relativistic correction factors.

  19. Body fluid regulation in micro-gravity differs from that on Earth: an overview.

    PubMed

    Drummer, C; Gerzer, R; Baisch, F; Heer, M

    2000-01-01

    Similar to the response to central hypervolemic conditions on Earth, the shift of blood volume from the legs to the upper part of the body in astronauts entering micro-gravity should, in accordance with the Henry-Gauer mechanism, mediate diuresis and natriuresis. However, fluid balance and kidney function experiments during various space missions resulted in the surprising observation that the responses qualitatively differ from those observed during simulations of hypervolemia on Earth. There is some evidence that the attenuated responses of the kidney while entering weightlessness, and also later during space flight, may be caused by augmented fluid distribution to extravascular compartments compared to conditions on Earth. A functional decoupling of the kidney may also contribute to the observation that renal responses during exposure to micro-gravity are consistently weaker than those during simulation experiments before space flight. Deficits in body mass after landing have always been interpreted as an indication of absolute fluid loss early during space missions. However, recent data suggest that body mass changes during space flight are rather the consequences of hypocaloric nutrition and can be overcome by improved nutrition schemes. Finally, sodium-retaining humoral systems are activated during space flight and may contribute to a new steady-state of metabolic balances with a pronounced increase in body sodium compared to respective conditions on Earth. A revision of the classical "micro-gravity fluid shift" scheme is required.

  20. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  1. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  2. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  3. Demographic compensation and tipping points in climate-induced range shifts.

    PubMed

    Doak, Daniel F; Morris, William F

    2010-10-21

    To persist, species are expected to shift their geographical ranges polewards or to higher elevations as the Earth's climate warms. However, although many species' ranges have shifted in historical times, many others have not, or have shifted only at the high-latitude or high-elevation limits, leading to range expansions rather than contractions. Given these idiosyncratic responses to climate warming, and their varied implications for species' vulnerability to climate change, a critical task is to understand why some species have not shifted their ranges, particularly at the equatorial or low-elevation limits, and whether such resilience will last as warming continues. Here we show that compensatory changes in demographic rates are buffering southern populations of two North American tundra plants against the negative effects of a warming climate, slowing their northward range shifts, but that this buffering is unlikely to continue indefinitely. Southern populations of both species showed lower survival and recruitment but higher growth of individual plants, possibly owing to longer, warmer growing seasons. Because of these and other compensatory changes, the population growth rates of southern populations are not at present lower than those of northern ones. However, continued warming may yet prove detrimental, as most demographic rates that improved in moderately warmer years declined in the warmest years, with the potential to drive future population declines. Our results emphasize the need for long-term, range-wide measurement of all population processes to detect demographic compensation and to identify nonlinear responses that may lead to sudden range shifts as climatic tipping points are exceeded.

  4. The World Encompassed. Remarks at a Dinner in the Great Hall in Celebration of the Treasures of the Library of Congress (Washington, DC, March 19, 1981). The Center for the Book Viewpoint Series No. 6.

    ERIC Educational Resources Information Center

    Boorstin, Daniel J.

    The theme for the celebration of the Library of Congress treasures, "The World Encompassed," is suggested by the title of a nephew's account of Sir Francis Drake's circumnavigation of the earth. This account is part of the Sir Francis Drake collection donated by patrons to the library. In April 1581, Drake was knighted by Queen Elizabeth…

  5. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  6. Preparing Earth Data Scientists for 'the sexiest job of the 21st century'

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2014-12-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  7. Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    NASA Technical Reports Server (NTRS)

    Kempler, Steven

    2014-01-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  8. Navigation: bat orientation using Earth's magnetic field.

    PubMed

    Holland, Richard A; Thorup, Kasper; Vonhof, Maarten J; Cochran, William W; Wikelski, Martin

    2006-12-07

    Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.

  9. NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.

    1983-01-01

    The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).

  10. Bias voltage dependence of the electron spin depolarization in quantum wires in the quantum Hall regime detected by the resistively detected NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chida, K.; Yamauchi, Y.; Arakawa, T.

    2013-12-04

    We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.

  11. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  12. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  13. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Brander, Keith; Luczak, Christophe; Ibanez, Frederic

    2008-11-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

  14. Soil warming response: field experiments to Earth system models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.

    2017-12-01

    The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.

  15. Astronaut Jay Apt uses Hasselblad camera to record earth observations

    NASA Image and Video Library

    1994-04-20

    STS059-46-025 (9-20 April 1994) --- On the Space Shuttle Endeavour's aft flight deck astronaut Jerome (Jay) Apt, mission specialist, uses a handheld 70mm Hasselblad camera to record still scenes of Earth. Apt, the commander of Endeavour's Blue Shift, joined five other NASA astronauts for a week and a half in space in support of the Space Radar Laboratory/STS-59 mission.

  16. Atomic Spectroscopy of the Solar Atmosphere to Enable Earth-like Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Milbourne, Timothy; Langellier, Nicholas; Ravi, Aakash; Dolliff, Christian; Phillips, David; Walsworth, Ronald

    2017-04-01

    The radial velocity (RV) method has proved to be one of the most prolific means of exoplanet detection. This technique uses measurements of periodic Doppler shifts of the stellar spectrum to deduce the mass and semi-major axis of orbiting exoplanets. The detection an Earth-like exoplanet orbiting a Sun-like star requires RV sensitivity below 10 cm/s (corresponding to kHz shifts of GHz-wide spectral lines). The installation of a laser-frequency ``astro-comb'' at the High Accuracy Radial velocity Planet Search for the Northern Hemisphere (HARPS-N) spectrograph on La Palma has enabled such observations. Exoplanet measurements is now limited by the noise of the stars themselves: sunspots, convection, and other types of stellar activity produce RV variations on the order of m/s, far above the detection threshold for Earth-like planets. Here, we use the Sun as a test case to better understand RV variations due to stellar activity. By comparing solar spectra taken by a purpose-built Solar Telescope on La Palma with images taken by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), we hope to identify feature in the solar spectrum which are correlated with solar activity. Such correlates will allow us to build more sophisticated models of stellar activity, and will enable more precise measurements of Earth-like exoplanets.

  17. Magnesium and cadmium containing Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd

    NASA Astrophysics Data System (ADS)

    Johnscher, Michael; Stein, Sebastian; Niehaus, Oliver; Benndorf, Christopher; Heletta, Lukas; Kersting, Marcel; Höting, Christoph; Eckert, Hellmut; Pöttgen, Rainer

    2016-02-01

    Twenty-eight new Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd with different rare earth elements were synthesized from the elements in sealed niobium ampoules in a water-cooled sample chamber of an induction furnace. The samples were characterized by powder X-ray diffraction. The cell volumes show the expected lanthanide contraction. The structures of YPd2Cd, GdPd2Cd, GdAu2Cd, Y1.12Ag2Mg0.88 and GdAg2Mg were refined based on single crystal diffractometer data. The magnetic properties were determined for fifteen phase pure samples. LuAu2Mg is a weak Pauli paramagnet with a susceptibility of 1.0(2) × 10-5 emu mol-1 at room temperature. The remaining samples show stable trivalent rare earth ions and most of them order magnetically at low temperatures. The ferromagnet GdAg2Mg shows the highest ordering temperature of TC = 98.3 K. 113Cd and 89Y MAS NMR spectra of YAu2Cd and YPd2Cd confirm the presence of unique crystallographic sites. The resonances are characterized by large Knight shifts, whose magnitude can be correlated with electronegativity trends.

  18. The Earth on the Other Side of Life (Invited)

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Ewing, S. A.; Owen, J. J.

    2010-12-01

    to be related to the feedbacks between soil thickness and soil production rates, and the impact of biology on both reducing surface erosion, and in enhancing the conversion of saprolite to soil. Once plants no longer exist, soil is rapidly stripped as the biological controls are removed. As aridity increases further, soils reappear on the hillslopes due to dust/salt accumulation, but the processes of both soil production and transport shift to slow abiotic mechanisms. Geochemically, N content in soils declines monotonically with rainfall up to the point that plants diappear. At that point, N cycling shifts to entirely abiotic mechanisms, allowing the accumulation of the unusal nitrate deposits that characterize this desert. While the parts of earth without life are unusually dry and/or cold, they offer unique, but also complex, perspectives into the sometimes overwhelming role that life plays on the earth surface. The true challenge to the geosciences is to rapidly acquire this knowledge in order to predict the trajectory of a changing world.

  19. Time Shifted PN Codes for CW Lidar, Radar, and Sonar

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Prasad, Narasimha S. (Inventor); Harrison, Fenton W. (Inventor); Flood, Michael A. (Inventor)

    2013-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  20. When the Earth's Inner Core Shuffles

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.

    2011-12-01

    Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South

  1. A Minimized Technological Approach towards Human Self Sufficiency off Earth

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2007-01-01

    Since the early 1970's it has been known that it is technically feasible to build large habitats in space where many people could live, more or less, independently off Earth. These large habitats would require decades of Apollo level expenditures to build. The objective of this paper is to begin the study of the minimum technological system that wi11 enable the historic shift from the state where all of humanity is dependent on Earth to the state where an independent human community can exist off Earth. It is suggested that such a system is more on the order of a homestead than a city. A minimum technical system is described that could support one human reproductive unit (family) in free space or on a planetary or lunar surface. The system consists of life support, materials extraction, mobility, and power production. Once the technology is developed for the single unit, many could be deployed. They could reproduce themselves at an exponential rate using space resources and energy. One would imagine cooperation of these units to build any combination of towns, cities and nations in space to extend human life beyond Earth.

  2. The Coupling between Earth's Inertial and Rotational Eigenmodes

    NASA Astrophysics Data System (ADS)

    Triana, S. A.; Rekier, J.; Trinh, A.; Laguerre, R.; Zhu, P.; Dehant, V. M. A.

    2017-12-01

    Wave motions in the Earth's fluid core, supported by the restoring action of both buoyancy (within the stably stratified top layer) and the Coriolis force, lead to the existence of global oscillation modes, the so-called gravito-inertial modes. These fluid modes can couple with the rotational modes of the Earth by exerting torques on the mantle and the inner core. Viscous shear stresses at the fluid boundaries, along with pressure and gravitation, contribute to the overall torque balance. Previous research by Rogister & Valette (2009) suggests that indeed rotational and gravito-inertial modes are coupled, thus shifting the frequencies of the Chandler Wobble (CW), the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN). Here we present the first results from a numerical model of the Earth's fluid core and its interaction with the rotational eigenmodes. In this first step we consider a fluid core without a solid inner core and we restrict to ellipticities of the same order as the Ekman number. We formulate the problem as a generalised eigenvalue problem that solves simultaneously the Liouville equation for the rotational modes (the torque balance), and the Navier-Stokes equation for the inertial modes.

  3. Earth observations taken during the STS-103 mission

    NASA Image and Video Library

    1999-12-24

    STS103-710-084 (19-27 December 1999)--- One of the astronauts aboard the Earth-orbiting Space Shuttle Discovery used a handheld 70mm camera to photograph the great sand seas which occupy northern Algeria. They are Grand Erg Oriental (Eastern Sand Sea) and Grand Erg Occidental (Western Sand Sea). Both sand seas occupy depressions that are separated by a north-south rise called Mizab. Ergs are areas of large accumulations of sand that take the form of actively shifting dunes, fossilized dunes, or extensive sand sheets.

  4. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    NASA Astrophysics Data System (ADS)

    Aldén, M.; Johansson, B.; Skriver, H. L.

    1995-02-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green's-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the occupied and unoccupied 4f energy level shifts as the surface segregation energy of a 4fn-1 and 4fn+1 impurity atom, respectively, in a 4fn host metal. The calculations include both initial- and final-state effects and give values that are considerably lower than those measured on polycrystalline samples as well as those found in previous initial-state model calculations. The present theory agrees well with very recent high-resolution, single-crystal film measurements for Gd, Tb, Dy, Ho, Er, Tm, and Lu. We furthermore utilize the unique possibility offered by the lanthanide metals to clarify the roles played by the initial and the different final states of the core-excitation process, permitted by the fact that the so-called initial-state effect is identical upon 4f removal and 4f addition. Surface energy and work function calculations are also reported.

  5. Microbial community and nitrogen cycling shift with snowmelt in high-elevation barren soils of Mount Rainier National Park

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Zabowski, D.

    2015-12-01

    Climate change and nutrient deposition have the potential to accelerate soil formation in high-elevation sediments recently exposed by glacier or snow melt. This process has implications not only for ecosystem formation on Earth but for the formation of Earth-like ecosystems on other planets and icy moons. Research into microbial communities shifting from subnival to mesotrophic conditions has mainly focused on changes on respiration and biomass, and is generally limited to one or two well-studied geographical locations. In particular, more information is needed on microbial shifts in snow-covered volcanic sediments, which may prove the closest analog to the most 'habitable' non-terrestrial environments for Earth microorganisms. We sampled in volcanic soil and sediment along gradients of elevation and snowmelt - dry soil, moist soil next to snowpack, and soil underneath snowpack - at the Muir Snowfields at Mount Rainier National Park, in order to investigate changes in carbon and nitrogen compounds, microbial diversity and gene expression. Initial results show a decrease in available ammonium and increase in microbial biomass carbon in exposed sediment with increasing soil moisture, and a sharp decrease in microbial C:N ratios after snowmelt and drying. Available/labile organic carbon and organic nitrogen decrease strongly with elevation, while microbial biomass carbon and nitrogen and mineral nitrogen compounds show no change with elevation. Though gene expression data is needed for confirmation, we hypothesize that these snowfields receive strong wind-borne deposits of carbon and nitrogen but that chemoautotrophic communities under semi-permanent snowpack do not shift to more mesotrophic communities until after exposed sediment has already begun to desiccate, limiting soil formation.

  6. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  7. Aboard the mid-deck of the Earth-orbiting Space Shuttle Columbia, astronaut Charles J. Brady,

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Aboard the mid-deck of the Earth-orbiting Space Shuttle Columbia, astronaut Charles J. Brady, mission specialist and a licensed amateur radio operator or ham, talks to students on Earth. Some of the crew members devoted some of their off-duty time to continue a long-standing Shuttle tradition of communicating with students and other hams between their shifts of assigned duty. Brady joined four other NASA astronauts and two international payload specialists for almost 17-days of research in support of the Life and Microgravity Spacelab (LMS-1) mission.

  8. A global view of shifting cultivation: Recent, current, and future extent

    PubMed Central

    Mertz, Ole; Frolking, Steve; Egelund Christensen, Andreas; Hurni, Kaspar; Sedano, Fernando; Parsons Chini, Louise; Sahajpal, Ritvik; Hansen, Matthew; Hurtt, George

    2017-01-01

    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing–based land cover and land use classifications, as these are unable to adequately capture such landscapes’ dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation at a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation—the majority in the Americas (41%) and Africa (37%)—this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and

  9. A global view of shifting cultivation: Recent, current, and future extent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinimann, Andreas; Mertz, Ole; Frolking, Steve

    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and

  10. A global view of shifting cultivation: Recent, current, and future extent

    DOE PAGES

    Heinimann, Andreas; Mertz, Ole; Frolking, Steve; ...

    2017-09-08

    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and

  11. Magnetic excitation and local magnetic susceptibility of the excitonic insulator Ta2NiSe5 investigated by 77Se NMR

    NASA Astrophysics Data System (ADS)

    Li, Shang; Kawai, Shunsuke; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-04-01

    77Se NMR measurements were made on polycrystalline and single-crystalline samples to elucidate local magnetic susceptibility and magnetic excitation of Ta2NiSe5 , which is proposed to undergo an exciton condensation accompanied by a structural transition at Tc=328 K . We determine the 77Se Knight shift tensors for the three Se sites and analyze their anisotropy based on the site symmetry. The temperature dependence of the Knight shift is discussed on the basis of spin and orbital susceptibilities calculated for two-chain and two-dimensional three-band models. The large fraction of the Se 4 p orbital polarization due to the mixing between Ni 3 d and Se 4 p orbitals is estimated from the analysis of the transferred hyperfine coupling constant. Also the nuclear spin-lattice relaxation rate 1 /T1 is found not to show a coherent peak just below Tc and to obey the thermally activated temperature dependence with a spin gap energy of 1770 ±40 K . This behavior of 1 /T1 monitors the exciton condensation as proposed by the theoretical study of 1 /T1 based on the three-chain Hubbard model for the excitonic insulator.

  12. Low-temperature breakdown of antiferromagnetic quantum critical behavior in FeSe

    NASA Astrophysics Data System (ADS)

    Grinenko, V.; Sarkar, R.; Materne, P.; Kamusella, S.; Yamamshita, A.; Takano, Y.; Sun, Y.; Tamegai, T.; Efremov, D. V.; Drechsler, S.-L.; Orain, J.-C.; Goko, T.; Scheuermann, R.; Luetkens, H.; Klauss, H.-H.

    2018-05-01

    A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many parent compounds of Fe-based superconductors. However, in the FeSe system with a nematic transition at Ts≈90 K, no evidence for long-range static magnetism is found down to very low temperatures. The lack of magnetism is a challenge for the theoretical description of FeSe. We investigated high-quality single crystals of FeSe using high-field (up to 9.5 T) muon spin rotation (μ SR ) measurements. The μ SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around T*˜10 -20 K, where the Knight shift exhibits a kink. In the temperature range Ts≳T ≳T* , the muon spin depolarization rate shows a quantum critical behavior Λ ∝T-0.4 . The observed critical scaling indicates that FeSe is in the vicinity of an itinerant antiferromagnetic quantum critical point. Below T* the quantum critical behavior breaks down. We argue that this breakdown is caused by a temperature-induced Lifschitz transition.

  13. Shifts in fisheries management: adapting to regime shifts

    PubMed Central

    King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.

    2015-01-01

    For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.

  14. Shifting of the resonance location for planets embedded in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Marzari, F.

    2018-03-01

    Context. In the early evolution of a planetary system, a pair of planets may be captured in a mean motion resonance while still embedded in their nesting circumstellar disk. Aims: The goal is to estimate the direction and amount of shift in the semimajor axis of the resonance location due to the disk gravity as a function of the gas density and mass of the planets. The stability of the resonance lock when the disk dissipates is also tested. Methods: The orbital evolution of a large number of systems is numerically integrated within a three-body problem in which the disk potential is computed as a series of expansion. This is a good approximation, at least over a limited amount of time. Results: Two different resonances are studied: the 2:1 and the 3:2. In both cases the shift is inwards, even if by a different amount, when the planets are massive and carve a gap in the disk. For super-Earths, the shift is instead outwards. Different disk densities, Σ, are considered and the resonance shift depends almost linearly on Σ. The gas dissipation leads to destabilization of a significant number of resonant systems, in particular if it is fast. Conclusions: The presence of a massive circumstellar disk may significantly affect the resonant behavior of a pair of planets by shifting the resonant location and by decreasing the size of the stability region. The disk dissipation may explain some systems found close to a resonance but not locked in it.

  15. Predicting the Earth encounters of (99942) Apophis

    NASA Technical Reports Server (NTRS)

    Giorgini, Jon D.; Benner, Lance A. M.; Ostro, Steven J.; Nolan, Michael C.; Busch, Michael W.

    2007-01-01

    Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses

  16. Dim target trajectory-associated detection in bright earth limb background

    NASA Astrophysics Data System (ADS)

    Chen, Penghui; Xu, Xiaojian; He, Xiaoyu; Jiang, Yuesong

    2015-09-01

    The intensive emission of earth limb in the field of view of sensors contributes much to the observation images. Due to the low signal-to-noise ratio (SNR), it is a challenge to detect small targets in earth limb background, especially for the detection of point-like targets from a single frame. To improve the target detection, track before detection (TBD) based on the frame sequence is performed. In this paper, a new technique is proposed to determine the target associated trajectories, which jointly carries out background removing, maximum value projection (MVP) and Hough transform. The background of the bright earth limb in the observation images is removed according to the profile characteristics. For a moving target, the corresponding pixels in the MVP image are shifting approximately regularly in time sequence. And the target trajectory is determined by Hough transform according to the pixel characteristics of the target and the clutter and noise. Comparing with traditional frame-by-frame methods, determining associated trajectories from MVP reduces the computation load. Numerical simulations are presented to demonstrate the effectiveness of the approach proposed.

  17. The Transition from Earth-Centred Biology to Cosmic Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra; Tokoro, Gensuke; Wainwright, Milton

    A paradigm shift with potentially profound implications has been taking place over the past 3 decades. The convergence of research in diverse disciplines points to life being a cosmic phenomenon. A near-infinite information content of life appears to have evolved on a cosmological scale -- over vast distances, and enormous spans of time. It appears highly unlikely that life could have emerged from chemicals in "some warm little pond" on the Earth; in contrast we maintain that every species of life on the Earth, including Homo sapiens, is in essence the result of an assembly of cosmologically derived viral genes. The ingress of such genes that continues to the present day led to their accommodation within the genomes of evolving lineages, sifted according to the "natural processes of selection", a mechanism first enunciated by Patrick Matthews and later used by Darwin. The evidence for this point of view has now grown to the point where we believe, it will soon need to be accepted by the majority of the scientific community. This is particularly critical, since we suggest that new diseases capable of threatening Man's existence could arrive to Earth from space. Moreover, we need to understand that we must live in harmony with the Earth and its ever-changing biosphere if we are to coexist with it.

  18. A Growing and Expanding Earth is no Longer Questionable

    NASA Astrophysics Data System (ADS)

    Myers, L. S.

    2008-05-01

    The young age of today's oceans is absolute proof that the Earth has been growing and expanding for the past 250 million years. Today, these young oceans now cover approximately 71% of Earth's surface and have added about 40% to its size. That fact, alone, is proof that Kant's nebular hypothesis is false, and that the Earth has been increasing in size and mass for the past 250 million years. Growth and expansion of the Earth can no longer be refuted. Ocean sediments cored from basaltic basement floors by the Deep Sea Drilling Program (DSDP) and its successors confirm that all of today's oceans are relatively young and could not have been present when the planet was first created, as postulated by Kant's nebular hypothesis (1755), modified by Laplace in 1796, which holds that the Earth and other planets were created approximately 4.6 billion years ago with their present sizes and chemical composition. The nebular hypothesis has no evidence to support it and is easily disproved. This discovery has immense consequences for current scientific beliefs, primarily the concepts of plate tectonics and subduction to maintain a static Earth diameter. Plate tectonics philosophy is basically correct, but its mechanism of subduction will prove to be the most avoidable and egregious error in the history of geophysics. A new cosmological concept called Accreation (creation by accretion) is offered to replace Kant's false philosophy of creation of the Earth and Solar System. Accreation, fundamentally, is based on the known daily influx of large tonnages of meteorites, particles and dust from outer space. An age for the Earth is impossible to estimate because a plausible starting point cannot be determined. Scientists of the world must face up to other erroneous hypotheses generated by Kant's false philosophy and recognize that a paradigm shift equal to that wrought by Copernicus is now in order. The benefits to scientific knowledge are inestimable, and science will henceforth be

  19. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination andmore » additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.« less

  20. Two drastically different climate states on an Earth-like terra-planet

    NASA Astrophysics Data System (ADS)

    Kalidindi, Sirisha; Reick, Christian H.; Raddatz, Thomas; Claussen, Martin

    2018-06-01

    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an

  1. Shift Work and Shift Work Sleep Disorder: Clinical and Organizational Perspectives.

    PubMed

    Wickwire, Emerson M; Geiger-Brown, Jeanne; Scharf, Steven M; Drake, Christopher L

    2017-05-01

    Throughout the industrialized world, nearly one in five employees works some form of nontraditional shift. Such shift work is associated with numerous negative health consequences, ranging from cognitive complaints to cancer, as well as diminished quality of life. Furthermore, a substantial percentage of shift workers develop shift work disorder, a circadian rhythm sleep disorder characterized by excessive sleepiness, insomnia, or both as a result of shift work. In addition to adverse health consequences and diminished quality of life at the individual level, shift work disorder incurs significant costs to employers through diminished workplace performance and increased accidents and errors. Nonetheless, shift work will remain a vital component of the modern economy. This article reviews seminal and recent literature regarding shift work, with an eye toward real-world application in clinical and organizational settings. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Michael A'Hearn, Principal Investigator, EPOXI Comet Encounter Mission, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  3. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  4. Shift work and the assessment and management of shift work disorder (SWD).

    PubMed

    Wright, Kenneth P; Bogan, Richard K; Wyatt, James K

    2013-02-01

    Nearly 20% of the labor force worldwide, work shifts that include work hours outside 07:00 h to 18:00 h. Shift work is common in many occupations that directly affect the health and safety of others (e.g., protective services, transportation, healthcare), whereas quality of life, health, and safety during shift work and the commute home can affect workers in any field. Increasing evidence indicates that shift-work schedules negatively influence worker physiology, health, and safety. Shift work disrupts circadian sleep and alerting cycles, resulting in disturbed daytime sleep and excessive sleepiness during the work shift. Moreover, shift workers are at risk for shift work disorder (SWD). This review focuses on shift work and the assessment and management of sleepiness and sleep disruption associated with shift work schedules and SWD. Management strategies include approaches to promote sleep, wakefulness, and adaptation of the circadian clock to the imposed work schedule. Additional studies are needed to further our understanding of the mechanisms underlying the health risks of shift work, understanding which shift workers are at most risk of SWD, to investigate treatment options that address the health and safety burdens associated with shift work and SWD, and to further develop and assess the comparative effectiveness of countermeasures and treatment options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Change from slowly rotating 8-hour shifts to rapidly rotating 8-hour and 12-hour shifts using participative shift roster design.

    PubMed

    Smith, P A; Wright, B M; Mackey, R W; Milsop, H W; Yates, S C

    1998-01-01

    The study examined the impact of change, from slowly rotating continuous 8-hour shifts to more rapidly rotating continuous 8-hour and 12-hour shifts, on the health and quality of life of shift workers. Self-report survey data were collected from 72 shift workers at 3 sewage treatment plants before and several months after roster change. After the change 1 plant first worked a rapidly rotating, 8-hour shift roster and then worked a 12-hour shift roster, and the other 2 plants worked continuous 12-hour shift rosters. After the change the shift workers at each plant reported increased satisfaction with roster design, a decrease in physical and psychological circadian malaise associated with shift work, improved day sleep quality, less tiredness, and improvements in the quality of home, social and work life. A between-plant comparison of the rapidly rotating 8-hour and 12-hour shift rosters showed greater improvements had been obtained with the 12-hour shift roster, and no significant differences in tiredness or sleep quality between the redesigned 8- and 12-hour shift rosters. However, a within-plant matched-pairs comparison at the 1st plant of the rapidly rotating 8-hour shift roster and the 12-hour shift roster showed no significant differences. The results show that the prior level of support for change may best explain the impact of roster redesign on individual well-being. They lend further support to shift worker participation in roster design.

  6. The Population of Near-Earth Asteroids Revisited

    NASA Astrophysics Data System (ADS)

    Harris, Alan William

    2017-10-01

    I have been tracking progress of the surveys discovering Near-Earth Asteroids (NEAs) for more than 20 years, and have reported updates every few years at past meetings. Following my last report at a DPS and the published update two years ago (Harris and D’Abramo 2015, Icarus 257, 302-312), it came to light that these and previous estimates were affected by round-off of H magnitudes by the Minor Planet Center to 0.1 mag. While it is true that individual magnitudes are generally not even that accurate, statistically the round-off shifted the population estimate by ~6%. While this hardly matters in the small size range, for the largest asteroids the shift alters N(H<17.75), assumed equivalent to N(D>1km), from 990 ± 20 (Harris & D’Abramo 2015) to 934 ± 20. Since the number already discovered, 872, is the same for both solutions, the implied completion of the surveys shifts from 88% to 93%. Not only is this correction satisfying with regard to the “Spaceguard Goal” of discovering 90% of NEAs of D > 1 km, but it reduces the estimated number of large NEAs remaining to be discovered by nearly a factor of 2. In this presentation I will explain the correction to the round-off bias and present an updated population estimate and survey progress using discoveries up to July, 2017.

  7. Non-occupational physical activity levels of shift workers compared with non-shift workers

    PubMed Central

    Loef, Bette; Hulsegge, Gerben; Wendel-Vos, G C Wanda; Verschuren, W M Monique; Bakker, Marije F; van der Beek, Allard J; Proper, Karin I

    2017-01-01

    Objectives Lack of physical activity (PA) has been hypothesised as an underlying mechanism in the adverse health effects of shift work. Therefore, our aim was to compare non-occupational PA levels between shift workers and non-shift workers. Furthermore, exposure–response relationships for frequency of night shifts and years of shift work regarding non-occupational PA levels were studied. Methods Data of 5980 non-shift workers and 532 shift workers from the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) were used in these cross-sectional analyses. Time spent (hours/week) in different PA types (walking/cycling/exercise/chores) and intensities (moderate/vigorous) were calculated based on self-reported PA. Furthermore, sports were operationalised as: playing sports (no/yes), individual versus non-individual sports, and non-vigorous-intensity versus vigorous-intensity sports. PA levels were compared between shift workers and non-shift workers using Generalized Estimating Equations and logistic regression. Results Shift workers reported spending more time walking than non-shift workers (B=2.3 (95% CI 1.2 to 3.4)), but shift work was not associated with other PA types and any of the sports activities. Shift workers who worked 1–4 night shifts/month (B=2.4 (95% CI 0.6 to 4.3)) and ≥5 night shifts/month (B=3.7 (95% CI 1.8 to 5.6)) spent more time walking than non-shift workers. No exposure–response relationships were found between years of shift work and PA levels. Conclusions Shift workers spent more time walking than non-shift workers, but we observed no differences in other non-occupational PA levels. To better understand if and how PA plays a role in the negative health consequences of shift work, our findings need to be confirmed in future studies. PMID:27872151

  8. Reduced Tolerance to Night Shift in Chronic Shift Workers: Insight From Fractal Regulation.

    PubMed

    Li, Peng; Morris, Christopher J; Patxot, Melissa; Yugay, Tatiana; Mistretta, Joseph; Purvis, Taylor E; Scheer, Frank A J L; Hu, Kun

    2017-07-01

    Healthy physiology is characterized by fractal regulation (FR) that generates similar structures in the fluctuations of physiological outputs at different time scales. Perturbed FR is associated with aging and age-related pathological conditions. Shift work, involving repeated and chronic exposure to misaligned environmental and behavioral cycles, disrupts circadian coordination. We tested whether night shifts perturb FR in motor activity and whether night shifts affect FR in chronic shift workers and non-shift workers differently. We studied 13 chronic shift workers and 14 non-shift workers as controls using both field and in-laboratory experiments. In the in-laboratory study, simulated night shifts were used to induce a misalignment between the endogenous circadian pacemaker and the sleep-wake cycles (ie, circadian misalignment) while environmental conditions and food intake were controlled. In the field study, we found that FR was robust in controls but broke down in shift workers during night shifts, leading to more random activity fluctuations as observed in patients with dementia. The night shift effect was present even 2 days after ending night shifts. The in-laboratory study confirmed that night shifts perturbed FR in chronic shift workers and showed that FR in controls was more resilience to the circadian misalignment. Moreover, FR during real and simulated night shifts was more perturbed in those who started shift work at older ages. Chronic shift work causes night shift intolerance, which is probably linked to the degraded plasticity of the circadian control system. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Venous compliance and fluid shift measurements on Spacelab IML-1

    NASA Technical Reports Server (NTRS)

    Leiski, D.; Thirsk, R. B.; Charles, J. B.; Bennett, B.

    1992-01-01

    During the first few hours of a human spaceflight mission, a headward fluid shift out of the abdomen, pelvis, and legs initiates a number of adaptive cardiovascular responses, including a loss of intravascular and extravascular fluid volume. On return to earth, these cardiovascular changes may lead to debilitating symptoms of orthostatic intolerance in an unprotected astronaut. To test the hypothesis that an inflight increase in compliance of the leg veins may contribute to this condition, measurements of lower leg fluid shift and bulk venous compliance were collected from crew members during the eight-day First International Microgravity Laboratory shuttle mission. An ultrasonic limb plethysmograph, in conjunction with two compression cuffs encircling the calf and thigh, was used to determine bulk compliance of the underlying veins over a range of negative and positive transmural pressures. The data from inflight experiment sessions were compared to preflight and postflight sessions. The preliminary results indicate that the volume of the lower leg decreased by over 10 percent by the sixth day of flight, but there was no apparent change in venous compliance.

  10. FunShift: a database of function shift analysis on protein subfamilies

    PubMed Central

    Abhiman, Saraswathi; Sonnhammer, Erik L. L.

    2005-01-01

    Members of a protein family normally have a general biochemical function in common, but frequently one or more subgroups have evolved a slightly different function, such as different substrate specificity. It is important to detect such function shifts for a more accurate functional annotation. The FunShift database described here is a compilation of function shift analysis performed between subfamilies in protein families. It consists of two main components: (i) subfamilies derived from protein domain families and (ii) pairwise subfamily comparisons analyzed for function shift. The present release, FunShift 12, was derived from Pfam 12 and consists of 151 934 subfamilies derived from 7300 families. We carried out function shift analysis by two complementary methods on families with up to 500 members. From a total of 179 210 subfamily pairs, 62 384 were predicted to be functionally shifted in 2881 families. Each subfamily pair is provided with a markup of probable functional specificity-determining sites. Tools for searching and exploring the data are provided to make this database a valuable resource for protein function annotation. Knowledge of these functionally important sites will be useful for experimental biologists performing functional mutation studies. FunShift is available at http://FunShift.cgb.ki.se. PMID:15608176

  11. Non-occupational physical activity levels of shift workers compared with non-shift workers.

    PubMed

    Loef, Bette; Hulsegge, Gerben; Wendel-Vos, G C Wanda; Verschuren, W M Monique; Vermeulen, Roel C H; Bakker, Marije F; van der Beek, Allard J; Proper, Karin I

    2017-05-01

    Lack of physical activity (PA) has been hypothesised as an underlying mechanism in the adverse health effects of shift work. Therefore, our aim was to compare non-occupational PA levels between shift workers and non-shift workers. Furthermore, exposure-response relationships for frequency of night shifts and years of shift work regarding non-occupational PA levels were studied. Data of 5980 non-shift workers and 532 shift workers from the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) were used in these cross-sectional analyses. Time spent (hours/week) in different PA types (walking/cycling/exercise/chores) and intensities (moderate/vigorous) were calculated based on self-reported PA. Furthermore, sports were operationalised as: playing sports (no/yes), individual versus non-individual sports, and non-vigorous-intensity versus vigorous-intensity sports. PA levels were compared between shift workers and non-shift workers using Generalized Estimating Equations and logistic regression. Shift workers reported spending more time walking than non-shift workers (B=2.3 (95% CI 1.2 to 3.4)), but shift work was not associated with other PA types and any of the sports activities. Shift workers who worked 1-4 night shifts/month (B=2.4 (95% CI 0.6 to 4.3)) and ≥5 night shifts/month (B=3.7 (95% CI 1.8 to 5.6)) spent more time walking than non-shift workers. No exposure-response relationships were found between years of shift work and PA levels. Shift workers spent more time walking than non-shift workers, but we observed no differences in other non-occupational PA levels. To better understand if and how PA plays a role in the negative health consequences of shift work, our findings need to be confirmed in future studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  13. Blue and red shifted temperature dependence of implicit phonon shifts in graphene

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Jindal, V. K.

    2017-07-01

    We have calculated the implicit shift for various modes of frequency in a pure graphene sheet. Thermal expansion and Grüneisen parameter which are required for implicit shift calculation have already been studied and reported. For this calculation, phonon frequencies are obtained using force constants derived from dynamical matrix calculated using VASP code where the density functional perturbation theory (DFPT) is used in interface with phonopy software. The implicit phonon shift shows an unusual behavior as compared to the bulk materials. The frequency shift is large negative (red shift) for ZA and ZO modes and the value of negative shift increases with increase in temperature. On the other hand, blue shift arises for all other longitudinal and transverse modes with a similar trend of increase with increase in temperature. The q dependence of phonon shifts has also been studied. Such simultaneous red and blue shifts in transverse or out plane modes and surface modes, respectively leads to speculation of surface softening in out of plane direction in preference to surface melting.

  14. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  15. Penguin heat-retention structures evolved in a greenhouse Earth.

    PubMed

    Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan

    2011-06-23

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.

  16. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  17. Contributors to shift work tolerance in South Korean nurses working rotating shift.

    PubMed

    Jung, Hye-Sun; Lee, Bokim

    2015-05-01

    Shift workers have rapidly increased in South Korea; however, there is no published research exploring shift work tolerance among South Korean workers. This study aimed to investigate factors related to shift work tolerance in South Korean nurses. The sample comprised of 660 nurses who worked shifts in a large hospital in South Korea. A structured questionnaire included following comprehensive variables: demographic (age and number of children), individual (morningness and self-esteem), psychosocial (social support and job stress), lifestyle (alcohol consumption, physical activity, and BMI), and working condition factors (number of night shifts and working hours). Shift work tolerance was measured in terms of insomnia, fatigue, and depression. The results of hierarchical regressions indicate that all variables, except for three, number of children, BMI, and working hours, were related to at least one of the symptoms associated with shift work tolerance. Based on these results, we offer some practical implications to help improve shift work tolerance of workers. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. STS-120 Flight Controllers on console during mission

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095788 (3 Nov. 2007) --- Flight directors Norm Knight (left) and Bryan Lunney, inside the shuttle flight control room of JSC's Mission Control Center, monitor the progress of the Nov. 3 spacewalk by two members of Discovery's crew, while the space shuttle is docked with the International Space Station in Earth orbit. Astronaut Scott Parazynski was busy at work on repairing a tear in a solar panel on the orbiting outpost.

  19. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Anita Cochran, Assistant Director, McDonald Observatory at the University of Texas-Austin, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  20. Sleep Loss and Fatigue in Shift Work and Shift Work Disorder

    PubMed Central

    Åkerstedt, Torbjörn; Wright, Kenneth P.

    2010-01-01

    Shift work is highly prevalent in industrialized societies (>20%) but, when it includes night work, it has pronounced negative effects on sleep, subjective and physiological sleepiness, performance, accident risk, as well as on health outcomes such as cardiovascular disease and certain forms of cancer. The reason is the conflict between the day oriented circadian physiology and the requirement for work and sleep at the “wrong” biological time of day. Other factors that negatively impact work shift sleepiness and accident risk include long duration shifts greater than 12 hours and individual vulnerability for phase intolerance that may lead to a diagnosis of shift work disorder; i.e., those shift workers with the greatest sleepiness and performance impairment during the biological night and insomnia during the biological day. Whereas some countermeasures may be used to ameliorate the negative impact of shift work on nighttime sleepiness and daytime insomnia (combined countermeasures may be the best available), there seems at present to be no way to eliminate most of the negative effects of shift work on human physiology and cognition. PMID:20640236

  1. Expert system application for prioritizing preventive actions for shift work: shift expert.

    PubMed

    Esen, Hatice; Hatipoğlu, Tuğçen; Cihan, Ahmet; Fiğlali, Nilgün

    2017-09-19

    Shift patterns, work hours, work arrangements and worker motivations have increasingly become key factors for job performance. The main objective of this article is to design an expert system that identifies the negative effects of shift work and prioritizes mitigation efforts according to their importance in preventing these negative effects. The proposed expert system will be referred to as the shift expert. A thorough literature review is conducted to determine the effects of shift work on workers. Our work indicates that shift work is linked to demographic variables, sleepiness and fatigue, health and well-being, and social and domestic conditions. These parameters constitute the sections of a questionnaire designed to focus on 26 important issues related to shift work. The shift expert is then constructed to provide prevention advice at the individual and organizational levels, and it prioritizes this advice using a fuzzy analytic hierarchy process model, which considers comparison matrices provided by users during the prioritization process. An empirical study of 61 workers working on three rotating shifts is performed. After administering the questionnaires, the collected data are analyzed statistically, and then the shift expert produces individual and organizational recommendations for these workers.

  2. The EarthCARE satellite payload

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Perez-Albinana, Abelardo; Lemanczyk, Jerzy; Heliere, Arnaud; Wehr, Tobias; Eisinger, Michael; Lefebvre, Alain; Nakatsuka, Hirotaka; Tomita, Eiichi

    2014-10-01

    EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission facilitates unique data product synergies, to improve understanding of atmospheric cloud-aerosol interactions and Earth radiative balance, towards enhancing climate and numerical weather prediction models. This paper will describe the payload, consisting of two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a Broad Band Radiometer (BBR). ATLID is a UV lidar providing atmospheric echoes, with a vertical resolution of 100 m, up to 40 km altitude. Using very high spectral resolution filtering the relative contributions of particle (aerosols) and Rayleigh (molecular) back scattering will be resolved, allowing cloud and aerosol optical depth to be deduced. Particle scatter co- and cross-polarisation measurements will provide information about the cloud and aerosol particles' physical characteristics. JAXA's 94.05 GHz Cloud Profiling Radar operates with a pulse width of 3.3 μm and repetition frequency 6100 to 7500 Hz. The 2.5 m aperture radar will retrieve data on clouds and precipitation. Doppler shift measurements in the backscatter signal will furthermore allow inference of the vertical motion of particles to an accuracy of about 1 m/s. MSI's 500 m pixel data will provide cloud and aerosol information and give context to the active instrument measurements for 3-D scene construction. Four solar channels and three thermal infrared channels cover 35 km on one side to 115 km on the other side of the other instrument's observations. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.

  3. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  4. Symbiogenesis, natural selection, and the dynamic Earth.

    PubMed

    Kutschera, U

    2009-08-01

    One century ago, Constantin S. Mereschkowsky introduced the symbiogenesis theory for the origin of chloroplasts from ancient cyanobacteria which was later supplemented by Ivan E. Wallin's proposal that mitochondria evolved from once free-living bacteria. Today, this Mereschkowsky-Wallin principle of symbiogenesis, which is also known as the serial primary endosymbiosis theory, explains the evolutionary origin of eukaryotic cells and hence the emergence of all eukaryotes (protists, fungi, animals and plants). In 1858, the concept of natural selection was described independently by Charles Darwin and Alfred R. Wallace. In the same year, Antonio Snider-Pellegrini proposed the idea of shifting continents, which was later expanded by Alfred Wegener, who published his theory of continental drift eight decades ago. Today, directional selection is accepted as the major cause of adaptive evolution within natural populations of micro- and macro-organisms and the theory of the dynamic Earth (plate tectonics) is well supported. In this article, I combine the processes and principles of symbiogenesis, natural selection and the dynamic Earth and propose an integrative 'synade-model' of macroevolution which takes into account organisms from all five Kingdoms of life.

  5. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  6. Hormonal regulation of fluid and electrolyte metabolism during periods of headward fluid shifts

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.; Severs, W. B.; Thrasher, T.; Ramsay, D. J.

    1991-01-01

    In the broadest sense, this project evaluates how spaceflight induced shifts of blood and interstitial fluids into the thorax affect regulation by the central nervous system (CNS) of fluid-electrolyte hormone secretion. Specifically, it focuses on the role of hormones related to salt/water balance and their potential function in the control of intracranial pressure and cerebrospinal fluid (CSF) composition. Fluid-electrolyte status during spaceflight gradually equilibrates, with a reduction in all body fluid compartments. Related to this is the cardiovascular deconditioning of spaceflight which is manifested upon return to earth as orthostatic intolerance.

  7. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  8. CORRELATED ERRORS IN EARTH POINTING MISSIONS

    NASA Technical Reports Server (NTRS)

    Bilanow, Steve; Patt, Frederick S.

    2005-01-01

    Two different Earth-pointing missions dealing with attitude control and dynamics changes illustrate concerns with correlated error sources and coupled effects that can occur. On the OrbView-2 (OV-2) spacecraft, the assumption of a nearly-inertially-fixed momentum axis was called into question when a residual dipole bias apparently changed magnitude. The possibility that alignment adjustments and/or sensor calibration errors may compensate for actual motions of the spacecraft is discussed, and uncertainties in the dynamics are considered. Particular consideration is given to basic orbit frequency and twice orbit frequency effects and their high correlation over the short science observation data span. On the Tropical Rainfall Measuring Mission (TRMM) spacecraft, the switch to a contingency Kalman filter control mode created changes in the pointing error patterns. Results from independent checks on the TRMM attitude using science instrument data are reported, and bias shifts and error correlations are discussed. Various orbit frequency effects are common with the flight geometry for Earth pointing instruments. In both dual-spin momentum stabilized spacecraft (like OV-2) and three axis stabilized spacecraft with gyros (like TRMM under Kalman filter control), changes in the initial attitude state propagate into orbit frequency variations in attitude and some sensor measurements. At the same time, orbit frequency measurement effects can arise from dynamics assumptions, environment variations, attitude sensor calibrations, or ephemeris errors. Also, constant environment torques for dual spin spacecraft have similar effects to gyro biases on three axis stabilized spacecraft, effectively shifting the one-revolution-per-orbit (1-RPO) body rotation axis. Highly correlated effects can create a risk for estimation errors particularly when a mission switches an operating mode or changes its normal flight environment. Some error effects will not be obvious from attitude sensor

  9. Shifting schedules: the health effects of reorganizing shift work.

    PubMed

    Bambra, Clare L; Whitehead, Margaret M; Sowden, Amanda J; Akers, Joanne; Petticrew, Mark P

    2008-05-01

    Approximately one fifth of workers are engaged in some kind of shift work. The harmful effects of shift work on the health and work-life balance of employees are well known. A range of organizational interventions has been suggested to address these negative effects. This study undertook the systematic review (following Quality Of Reporting Of Meta [QUORUM] analyses guidelines) of experimental and quasi-experimental studies, from any country (in any language) that evaluated the effects on health and work-life balance of organizational-level interventions that redesign shift work schedules. Twenty-seven electronic databases (medical, social science, economic) were searched. Data extraction and quality appraisal were carried out by two independent reviewers. Narrative synthesis was performed. The review was conducted between October 2005 and November 2006. Twenty-six studies were found relating to a variety of organizational interventions. No one type of intervention was found to be consistently harmful to workers. However, three types were found to have beneficial effects on health and work-life balance: (1) switching from slow to fast rotation, (2) changing from backward to forward rotation, and (3) self-scheduling of shifts. Improvements were usually at little or no direct organizational cost. However, there were concerns about the generalizability of the evidence, and no studies reported on impacts on health inequalities. This review reinforces the findings of epidemiologic and laboratory-based research by suggesting that certain organizational-level interventions can improve the health of shift workers, their work-life balance, or both. This evidence could be useful when designing interventions to improve the experience of shift work.

  10. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  11. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  12. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  13. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  14. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  15. Finding Intervals of Abrupt Change in Earth Science Data

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Shekhar, S.; Liess, S.

    2011-12-01

    In earth science data (e.g., climate data), it is often observed that a persistently abrupt change in value occurs in a certain time-period or spatial interval. For example, abrupt climate change is defined as an unusually large shift of precipitation, temperature, etc, that occurs during a relatively short time period. A similar pattern can also be found in geographical space, representing a sharp transition of the environment (e.g., vegetation between different ecological zones). Identifying such intervals of change from earth science datasets is a crucial step for understanding and attributing the underlying phenomenon. However, inconsistencies in these noisy datasets can obstruct the major change trend, and more importantly can complicate the search of the beginning and end points of the interval of change. Also, the large volume of data makes it challenging to process the dataset reasonably fast. In earth science data (e.g., climate data), it is often observed that a persistently abrupt change in value occurs in a certain time-period or spatial interval. For example, abrupt climate change is defined as an unusually large shift of precipitation, temperature, etc, that occurs during a relatively short time period. A similar change pattern can also be found in geographical space, representing a sharp transition of the environment (e.g., vegetation between different ecological zones). Identifying such intervals of change from earth science datasets is a crucial step for understanding and attributing the underlying phenomenon. However, inconsistencies in these noisy datasets can obstruct the major change trend, and more importantly can complicate the search of the beginning and end points of the interval of change. Also, the large volume of data makes it challenging to process the dataset fast. In this work, we analyze earth science data using a novel, automated data mining approach to identify spatial/temporal intervals of persistent, abrupt change. We first

  16. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  17. Phase Relations and Miscibility in Polymer Blends Containing Copolymers.

    DTIC Science & Technology

    1986-04-15

    MacKnight, W. J ., Pure Appl. Chem. 52, 409 (1980). 36. Vukovic , R., Kuresevic, V., Karasz, F. E., and MacKnight, W. J ., Thermochim. Acta 54, 349 (1982). 37... Vukovic , R., Karasz, F. E., and MacKnight, W. J ., Polymer 24, 529 (1983). 38. Vukovic , R., Karasz, F. E., and MacKnight, W. J ., J . Appl. Polymer Sci...28, 219 (1983). 39. Zacharius, S. L., ten Brinke, G., MacKnight, W. J ., and Karasz, F. E., Macromolecules 16, 381 (1983). 40. Vukovic , R., Kuresevic

  18. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  19. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  20. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  1. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  2. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  3. Computational Modeling of Cephalad Fluid Shift for Application to Microgravity-Induced Visual Impairment

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2013-01-01

    An improved understanding of spaceflight-induced ocular pathology, including the loss of visual acuity, globe flattening, optic disk edema and distension of the optic nerve and optic nerve sheath, is of keen interest to space medicine. Cephalad fluid shift causes a profoundly altered distribution of fluid within the compartments of the head and body, and may indirectly generate phenomena that are biomechanically relevant to visual function, such as choroidal engorgement, compromised drainage of blood and cerebrospinal fluid (CSF), and altered translaminar pressure gradient posterior to the eye. The experimental body of evidence with respect to the consequences of fluid shift has not yet been able to provide a definitive picture of the sequence of events. On earth, elevated intracranial pressure (ICP) is associated with idiopathic intracranial hypertension (IIH), which can produce ocular pathologies that look similar to those seen in some astronauts returning from long-duration flight. However, the clinically observable features of the Visual Impairment and Intracranial Pressure (VIIP) syndrome in space and IIH on earth are not entirely consistent. Moreover, there are at present no experimental measurements of ICP in microgravity. By its very nature, physiological measurements in spaceflight are sparse, and the space environment does not lend itself to well-controlled experiments. In the absence of such data, numerical modeling can play a role in the investigation of biomechanical causal pathways that are suspected of involvement in VIIP. In this work, we describe the conceptual framework for modeling the altered compartmental fluid distribution that represents an equilibrium fluid distribution resulting from the loss of hydrostatic pressure gradient.

  4. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  5. Development and evaluation of the McKnight Risk Factor Survey for assessing potential risk and protective factors for disordered eating in preadolescent and adolescent girls.

    PubMed

    Shisslak, C M; Renger, R; Sharpe, T; Crago, M; McKnight, K M; Gray, N; Bryson, S; Estes, L S; Parnaby, O G; Killen, J; Taylor, C B

    1999-03-01

    To describe the development, test-retest reliability, internal consistency, and convergent validity of the McKnight Risk Factor Survey-III (MRFS-III). The MRFS-III was designed to assess a number of potential risk and protective factors for the development of disordered eating in preadolescent and adolescent girls. Several versions of the MRFS were pilot tested before the MRFS-III was administered to a sample of 651 4th through 12th- grade girls to establish its psychometric properties. Most of the test-retest reliability coefficients of individual items on the MRFS-III were r > .40. Alpha coefficients for each risk and protective factor domain on the MRFS-III were also computed. The majority of these coefficients were r > .60. High convergent validity coefficients were obtained for specific items on the MRFS-III and measures of self-esteem (Rosenberg Self-Esteem Scale) and weight concerns (Weight Concerns Scale). The test-retest reliability, internal consistency, and convergent validity of the MRFS-III suggest that it is a useful new instrument to assess potential risk and protective factors for the development of disordered eating in preadolescent and adolescent girls.

  6. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  7. This dynamic earth: the story of plate tectonics

    USGS Publications Warehouse

    Kious, W. Jacquelyne; Tilling, Robert I.

    1996-01-01

    In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.

  8. Work shift duration: a review comparing eight hour and 12 hour shift systems.

    PubMed

    Smith, L; Folkard, S; Tucker, P; Macdonald, I

    1998-04-01

    Shiftwork is now a major feature of working life across a broad range of industries. The features of the shift systems operated can impact on the wellbeing, performance, and sleep of shiftworkers. This paper reviews the current state of knowledge on one major characteristic of shift rotas-namely, shift duration. Evidence comparing the relative effects of eight hour and 12 hour shifts on fatigue and job performance, safety, sleep, and physical and psychological health are considered. At the organisational level, factors such as the mode of system implementation, attitudes towards shift rotas, sickness absence and turnover, overtime, and moonlighting are discussed. Manual and electronic searches of the shiftwork research literature were conducted to obtain information on comparisons between eight hour and 12 hour shifts. The research findings are largely equivocal. The bulk of the evidence suggests few differences between eight and 12 hour shifts in the way they affect people. There may even be advantages to 12 hour shifts in terms of lower stress levels, better physical and psychological wellbeing, improved durations and quality of off duty sleep as well as improvements in family relations. On the negative side, the main concerns are fatigue and safety. It is noted that a 12 hour shift does not equate with being active for only 12 hours. There can be considerable extension of the person's time awake either side of the shift. However, the effects of longer term exposure to extended work days have been relatively uncharted in any systematic way. Longitudinal comparative research into the chronic impact of the compressed working week is needed.

  9. Insomnia in shift work.

    PubMed

    Vallières, Annie; Azaiez, Aïda; Moreau, Vincent; LeBlanc, Mélanie; Morin, Charles M

    2014-12-01

    Shift work disorder involves insomnia and/or excessive sleepiness associated with the work schedule. The present study examined the impact of insomnia on the perceived physical and psychological health of adults working on night and rotating shift schedules compared to day workers. A total of 418 adults (51% women, mean age 41.4 years), including 51 night workers, 158 rotating shift workers, and 209 day workers were selected from an epidemiological study. An algorithm was used to classify each participant of the two groups (working night or rotating shifts) according to the presence or absence of insomnia symptoms. Each of these individuals was paired with a day worker according to gender, age, and income. Participants completed several questionnaires measuring sleep, health, and psychological variables. Night and rotating shift workers with insomnia presented a sleep profile similar to that of day workers with insomnia. Sleep time was more strongly related to insomnia than to shift work per se. Participants with insomnia in the three groups complained of anxiety, depression, and fatigue, and reported consuming equal amounts of sleep-aid medication. Insomnia also contributed to chronic pain and otorhinolaryngology problems, especially among rotating shift workers. Work productivity and absenteeism were more strongly related to insomnia. The present study highlights insomnia as an important component of the sleep difficulties experienced by shift workers. Insomnia may exacerbate certain physical and mental health problems of shift workers, and impair their quality of life. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects of extended work shifts and shift work on patient safety, productivity, and employee health.

    PubMed

    Keller, Simone M

    2009-12-01

    It is estimated 1.3 million health care errors occur each year and of those errors 48,000 to 98,000 result in the deaths of patients (Barger et al., 2006). Errors occur for a variety of reasons, including the effects of extended work hours and shift work. The need for around-the-clock staff coverage has resulted in creative ways to maintain quality patient care, keep health care errors or adverse events to a minimum, and still meet the needs of the organization. One way organizations have attempted to alleviate staff shortages is to create extended work shifts. Instead of the standard 8-hour shift, workers are now working 10, 12, 16, or more hours to provide continuous patient care. Although literature does support these staffing patterns, it cannot be denied that shifts beyond the traditional 8 hours increase staff fatigue, health care errors, and adverse events and outcomes and decrease alertness and productivity. This article includes a review of current literature on shift work, the definition of shift work, error rates and adverse outcomes related to shift work, health effects on shift workers, shift work effects on older workers, recommended optimal shift length, positive and negative effects of shift work on the shift worker, hazards associated with driving after extended shifts, and implications for occupational health nurses. Copyright 2009, SLACK Incorporated.

  11. Noise-induced transitions and shifts in a climate-vegetation feedback model.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-04-01

    Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.

  12. ISS EarthKam: Taking Photos of the Earth from Space

    ERIC Educational Resources Information Center

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  13. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  14. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  15. Work shift duration: a review comparing eight hour and 12 hour shift systems

    PubMed Central

    Smith, L.; Folkard, S.; Tucker, P.; Macdonald, I.

    1998-01-01

    OBJECTIVES: Shiftwork is now a major feature of working life across a broad range of industries. The features of the shift systems operated can impact on the wellbeing, performance, and sleep of shiftworkers. This paper reviews the current state of knowledge on one major characteristic of shift rotas-namely, shift duration. Evidence comparing the relative effects of eight hour and 12 hour shifts on fatigue and job performance, safety, sleep, and physical and psychological health are considered. At the organisational level, factors such as the mode of system implementation, attitudes towards shift rotas, sickness absence and turnover, overtime, and moonlighting are discussed. METHODS: Manual and electronic searches of the shiftwork research literature were conducted to obtain information on comparisons between eight hour and 12 hour shifts. RESULTS: The research findings are largely equivocal. The bulk of the evidence suggests few differences between eight and 12 hour shifts in the way they affect people. There may even be advantages to 12 hour shifts in terms of lower stress levels, better physical and psychological wellbeing, improved durations and quality of off duty sleep as well as improvements in family relations. On the negative side, the main concerns are fatigue and safety. It is noted that a 12 hour shift does not equate with being active for only 12 hours. CONCLUSIONS: There can be considerable extension of the person's time awake either side of the shift. However, the effects of longer term exposure to extended work days have been relatively uncharted in any systematic way. Longitudinal comparative research into the chronic impact of the compressed working week is needed.   PMID:9624275

  16. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  17. Earth's field NMR detection of oil under arctic ice-water suppression

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

  18. Earth's field NMR detection of oil under arctic ice-water suppression.

    PubMed

    Conradi, Mark S; Altobelli, Stephen A; Sowko, Nicholas J; Conradi, Susan H; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T 1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B 1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. [The productivity of female shift workers].

    PubMed

    Vidacek, S; Radosević-Vidacek, B; Kaliterna, L; Prizmić, Z

    1990-12-01

    The productivity of female shift workers, working on a weekly rotating three-shift system, was examined. The afternoon shift was found to be the most productive and the night shift the least productive one. The greatest difference in productivity between shifts was found in the first two days of the week, when the productivity on night shift was significantly lower than that on the other two shifts. From the third day on there were no longer significant differences in productivity between shifts. The most productive and the least productive workers on night shift did not significantly differ in extraversion or in sleep duration after the night shift. Family responsibility was found to be associated with the duration of sleep after the night shift: married women slept significantly shorter after the night shift than unmarried women. However, this difference in sleep duration was not associated with productivity on night shift. Sleep duration after the afternoon shift (8 hours 40 minutes) was on average two hours longer than after the other two shifts. The difference in sleep duration after different shifts, along with circadian variations in alertness, readiness for work and performance efficiency, could be responsible for differences in productivity between shifts.

  20. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  1. [Sleep quality of nurses working in shifts - Hungarian adaptation of the Bergen Shift Work Sleep Questionnaire].

    PubMed

    Fusz, Katalin; Tóth, Ákos; Fullér, Noémi; Müller, Ágnes; Oláh, András

    2015-12-06

    Sleep disorders among shift workers are common problems due to the disturbed circadian rhythm. The Bergen Shift Work Sleep Questionnaire assesses discrete sleep problems related to work shifts (day, evening and night shifts) and rest days. The aim of the study was to develop the Hungarian version of this questionnaire and to compare the sleep quality of nurses in different work schedules. 326 nurses working in shifts filled in the questionnaire. The authors made convergent and discriminant validation of the questionnaire with the Athens Insomnia Scale and the Perceived Stress Questionnaire. The questionnaire based on psychometric characteristics was suitable to assess sleep disorders associated with shift work in a Hungarian sample. The frequency of discrete symptoms significantly (p<0.001) differed with the shifts. Nurses experienced the worst sleep quality and daytime fatigue after the night shift. Nurses working in irregular shift system had worse sleep quality than nurses working in regular and flexible shift system (p<0.001). The sleep disorder of nurses working in shifts should be assessed with the Hungarian version of the Bergen Shift Work Sleep Questionnaire on a nationally representative sample, and the least burdensome shift system could be established.

  2. Age differences in strategy shift: retrieval avoidance or general shift reluctance?

    PubMed

    Frank, David J; Touron, Dayna R; Hertzog, Christopher

    2013-09-01

    Previous studies of metacognitive age differences in skill acquisition strategies have relied exclusively on tasks with a processing shift from an algorithm to retrieval strategy. Older adults' demonstrated reluctance to shift strategies in such tasks could reflect either a specific aversion to a memory retrieval strategy or a general, inertial resistance to strategy change. Haider and Frensch's (1999) alphabet verification task (AVT) affords a non-retrieval-based strategy shift. Participants verify the continuation of alphabet strings such as D E F G [4] L, with the bracketed digit indicating a number of letters to be skipped. When all deviations are restricted to the letter-digit-letter portion, participants can speed their responses by selectively attending to only that part of the stimulus. We adapted the AVT to include conditions that promoted shift to a retrieval strategy, a selective attention strategy, or both strategies. Item-level strategy reports were validated by eye movement data. Older adults shifted more slowly to the retrieval strategy but more quickly to the selective attention strategy than young adults, indicating a retrieval-strategy avoidance. Strategy confidence and perceived strategy difficulty correlated with shift to the two strategies in both age groups. Perceived speed of responses with each strategy specifically correlated with older adults' strategy choices, suggesting that some older adults avoid retrieval because they do not appreciate its efficiency benefits.

  3. Age Differences in Strategy Shift: Retrieval Avoidance or General Shift Reluctance?

    PubMed Central

    Frank, David J.; Touron, Dayna R.; Hertzog, Christopher

    2013-01-01

    Previous studies of metacognitive age differences in skill acquisition strategies have relied exclusively on tasks with a processing shift from an algorithm to retrieval strategy. Older adults’ demonstrated reluctance to shift strategies in such tasks could reflect either a specific aversion to a memory retrieval strategy or a general, inertial resistance to strategy change. Haider and Frensch’s (1999) alphabet verification task (AVT) affords a non-retrieval-based strategy shift. Participants verify the continuation of alphabet strings such as D E F G [4] L, with the bracketed digit indicating a number of letters to be skipped. When all deviations are restricted to the letter-digit-letter portion, participants can speed their responses by selectively attend only to that part of the stimulus. We adapted the AVT to include conditions which promoted shift to a retrieval strategy, a selective attention strategy, or both strategies. Item-level strategy reports were validated by eye movement data. Older adults shifted more slowly to the retrieval strategy but more quickly to the selective attention strategy than young adults, indicating a retrieval-strategy avoidance. Strategy confidence and perceived strategy difficulty correlated with shift to the two strategies in both age groups. Perceived speed of responses with each strategy specifically correlated with older adults’ strategy choices, suggesting that some older adults avoid retrieval because they do not appreciate its efficiency benefits. PMID:23088195

  4. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  5. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  6. Shape Shifting Satellites in Binary Near-Earth Asteroids: Do Meteoroid Impacts Play a Role in BYORP Orbital Evolution?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2012-01-01

    Less than catastrophic meteoroid impacts over 10(exp 5) years may change the shape of small rubble-pile satellites in binary NEAs, lengthening the average BYORP (binary Yarkovsky-Radzievskii-Paddack) rate of orbital evolution. An estimate of shape-shifting meteoroid fluxes give numbers close enough to causing random walks in the semimajor axis of binary systems to warrant further investigation

  7. First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Saito, Riichiro

    2017-11-01

    Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.

  8. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  9. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  10. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be

  11. Ionization cross section, pressure shift and isotope shift measurements of osmium

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  12. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  13. Subduction History and the Evolution of Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Bull, Abigail; Shephard, Grace; Torsvik, Trond

    2016-04-01

    , geometry and morphology of lower mantle structures can be influenced by the movement of subducting slabs, and thus by the motions of tectonic plates at the surface. Alternatively, a long-term stability for both LLSVPs, which would suggest a first-order dissociation from the effects of surface plate motions, is hypothesised by recent studies which propose a geographic correlation between the reconstructed surface eruption sites of kimberlites and Large Igneous Provinces with the margins of the LLSVPs. If the surface volcanism was sourced from the lower mantle, such a link would suggest that the LLSVPs may have remained stationary for at least the age of the volcanic rocks (> 500 Myr) and further that the anomalies were largely insensitive to the formation and subsequent breakup of Pangea, and thus to Earth's plate motion history. Here we discuss the evolution of lower mantle structure, LLSVPs and surface volcanics in terms of subduction dynamics. We integrate high-resolution plate tectonic histories and numerical models of mantle convection and perform a series of 3D spherical calculations with Earth-like boundary conditions to investigate the role that subduction history plays in the development and evolution of lower mantle structures. To test whether such an interaction exists, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. We incorporate global shifts in both longitude and latitude, with the correction applied over timescales of 230-50 Myrs. With this method, the location of subduction at the surface and thus the global flow field can be altered. This in turn affects the time-dependent sinking of lithospheric slabs and may affect their interaction with the lower mantle and the LLSVPs at both their margins and top surfaces. We aim to understand how the subduction history has affected mantle structure on a global scale. We show that shifts to the surface history of subduction, even for extreme and

  14. Hydrogen diffusion and electronic structure in crystalline and amorphous Ti/sub y/CuH/sub x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Rhim, W. K.; Maeland, A. J.; Lynch, J. F.

    1982-01-01

    Hydrogen diffusion behavior and electronic properties of crystalline TiCuHo94, Ti2CuH1.90, and Ti2CuH2.63 and amorphous a-TiCuH1.4 were studied using proton relaxation times, proton Knight shifts, and magnetic susceptibilities. Crystal structure and hydrogen site occupancy have major roles in hydrogen mobility. The density of electron states at E sub F is reduced in amorphous a-TiCuH1.4 compared to the crystalline hydrides.

  15. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  16. Short wavelength ion waves upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Gurnett, D. A.

    1984-01-01

    The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328

  17. Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column

    NASA Astrophysics Data System (ADS)

    Grytsai, Asen; Klekociuk, Andrew; Milinevsky, Gennadi; Evtushevsky, Oleksandr; Stone, Kane

    2017-02-01

    The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September-November) for 1979-2014 is analyzed using ERA-Interim and NCEP-NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry-climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.

  18. Shift work, safety, and aging.

    PubMed

    Folkard, Simon

    2008-04-01

    It has long been recognized that older shift workers may have shorter and more disturbed day sleeps between successive night shifts than their younger colleagues. This has given rise to considerable concern over the safety of aging shift workers because of the increasing age of the work force and increases in retirement age. Because there have been no direct studies of the combined effects of shift work and age on safety, the present paper begins by reviewing the literature relating safety to features of shift systems. It then considers the general effect of age on occupational injury rates before examining existing evidence of the combined effects of shift work and age on performance capabilities. The results of the literature review indicate that when the a priori risk is constant, there is reasonably clear evidence that injury rates are higher at night, and that they increase over successive night shifts more rapidly than over successive day shifts. Further, although occupational injuries are less frequent in older workers, those that do occur tend to be more serious. Finally, there is some suggestive evidence from studies of objectively measured performance capabilities that older workers may be less able to both maintain their performance over the course of a night shift and cope with longer spans of successive night shifts. It is concluded that it seems possible, even though unproven as yet, that older workers may be at greater risk both to injury and accident on the night shift. There is a strong need for future epidemiological studies of the combined effects of shift work and age on injuries and accidents, and that these should attempt to separate the effects of age per se from those of generation.

  19. Phase Curve Analysis of Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2018-01-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus, or a bare-rock surface that may come with a tenuous atmosphere like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase curve photometric data around secondary eclipse has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a previously developed semi-analytical framework to fit a physical model to infrared photometric data of host star 55 Cancri from the Spitzer telescope IRAC 2 band at 4.5 μm. The model uses various parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., the ratio between the radiative timescale and advective timescale of the photosphere), and atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hot spot located on the planet surface. We determine the heat redistribution efficiency to be ≈1.47, which implies that the advective timescale is on the same order as the radiative timescale. This requirement from the phase curve cannot be met by the bare-rock planet scenario, because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to a photosphere pressure of ~1.4 bar. The Spitzer IRAC 2 band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  20. Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation

    PubMed Central

    Vila, Jorge A.; Arnautova, Yelena A.; Martin, Osvaldo A.; Scheraga, Harold A.

    2009-01-01

    A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server. PMID:19805131

  1. Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.

    2017-12-01

    Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.

  2. Cloud Imagers Offer New Details on Earth's Health

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis

  3. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  4. Comparison of eight and 12 hour shifts: impacts on health, wellbeing, and alertness during the shift.

    PubMed

    Tucker, P; Barton, J; Folkard, S

    1996-11-01

    The generally agreed view is that there is no ideal shift system, and that most systems will have both advantages and disadvantages. As such, attention has been placed on trying to identify good and bad features of shift systems, with a view to minimising the possible ill health as a consequence of shiftwork. The present study focuses on the duration of the shift and looks at the implications for individual health, wellbeing, and alertness during the shift of extending the shift from the traditional eight hours to 12. Two groups of chemical workers, one working 12 hour shifts and the other working eight hour shifts, took part. All completed a modified version of the standard shiftwork index (SSI), a set of self reported questionnaires related to health and wellbeing. The two groups did not differ on most outcome measures, although the differences that did exist suggested advantages for the 12 hour shift workers over the eight hour shift workers; with the notable exception of rated alertness at certain times of day. The results are explained in terms of the design of the 12 hour shift system and the specific sequencing of shifts that seem to minimise the potential for the build up of fatigue. Although the current data moderately favour 12 hour shifts, a cautionary note is sounded with regard to the implications of the alertness ratings for performance and safety.

  5. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Phoebe Cohen, Professor of Geosciences, Williams College, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  6. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Christopher House, Professor of Geosciences, Pennsylvania State University, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  7. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Dawn Sumner, Professor of Geology, UC Davis, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  8. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Timothy Lyons, Professor of Biogeochemistry, UC Riverside, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  9. EarthExplorer

    USGS Publications Warehouse

    Houska, Treva

    2012-01-01

    The EarthExplorer trifold provides basic information for on-line access to remotely-sensed data from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The EarthExplorer (http://earthexplorer.usgs.gov/) client/server interface allows users to search and download aerial photography, satellite data, elevation data, land-cover products, and digitized maps. Minimum computer system requirements and customer service contact information also are included in the brochure.

  10. Reply to comment received from J. C. Knight regarding "Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish Ice Sheet" by Barth et al. (2016), Quaternary Science Reviews 141, 85-93

    NASA Astrophysics Data System (ADS)

    Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc

    2016-10-01

    We concluded that our new 10Be chronology records onset of retreat of a cirque glacier within the Alohart basin of southwestern Ireland 24.5 ± 1.4 ka, placing limiting constraints on reconstructions of the Irish Ice Sheet (IIS) and Kerry-Cork Ice Cap (KCIC) during the Last Glacial Maximum (LGM) (Barth et al., 2016). Knight (2016) raises two main arguments against our interpretation: (1) the glacier in the Alohart basin was not a cirque glacier, but instead a southern-sourced ice tongue from the KCIC overtopping the MacGillycuddy's Reeks, and (2) that the boulders we sampled for 10Be exposure dating were derived from supraglacial rockfall rather than transported subglacially, experienced nuclide inheritance, and are thus too old. In the following, we address both of these arguments.

  11. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    PubMed

    Postnova, Svetlana; Robinson, Peter A; Postnov, Dmitry D

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  12. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  13. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Shawn Domagal-Goldman, Research Space Scientist, NASA Goddard Space Flight Center, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  14. Knight Time.

    ERIC Educational Resources Information Center

    Stonyk, Richard

    1998-01-01

    Integrates a lesson on medieval European history with a class art project. Describes how students studied heraldry to design their own coat of arms and produce a relief sculpture shield depicting these arms. Lists materials needed and outlines the process of construction. (DSK)

  15. Geoengineering the Earth's Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Google Tech Talks

    2008-01-08

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probablymore » be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.« less

  16. Geoengineering the Earth's Climate

    ScienceCinema

    Google Tech Talks

    2017-12-09

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  17. Shift Work, Chronotype, and Melatonin Patterns among Female Hospital Employees on Day and Night Shifts.

    PubMed

    Leung, Michael; Tranmer, Joan; Hung, Eleanor; Korsiak, Jill; Day, Andrew G; Aronson, Kristan J

    2016-05-01

    Shift work-related carcinogenesis is hypothesized to be mediated by melatonin; however, few studies have considered the potential effect modification of this underlying pathway by chronotype or specific aspects of shift work such as the number of consecutive nights in a rotation. In this study, we examined melatonin patterns in relation to shift status, stratified by chronotype and number of consecutive night shifts, and cumulative lifetime exposure to shift work. Melatonin patterns of 261 female personnel (147 fixed-day and 114 on rotations, including nights) at Kingston General Hospital were analyzed using cosinor analysis. Urine samples were collected from all voids over a 48-hour specimen collection period for measurement of 6-sulfatoxymelatonin concentrations using the Buhlmann ELISA Kit. Chronotypes were assessed using mid-sleep time (MSF) derived from the Munich Chronotype Questionnaire (MCTQ). Sociodemographic, health, and occupational information were collected by questionnaire. Rotational shift nurses working nights had a lower mesor and an earlier time of peak melatonin production compared to day-only workers. More pronounced differences in mesor and acrophase were seen among later chronotypes, and shift workers working ≥3 consecutive nights. Among nurses, cumulative shift work was associated with a reduction in mesor. These results suggest that evening-types and/or shift workers working ≥3 consecutive nights are more susceptible to adverse light-at-night effects, whereas long-term shift work may also chronically reduce melatonin levels. Cumulative and current exposure to shift work, including nights, affects level and timing of melatonin production, which may be related to carcinogenesis and cancer risk. Cancer Epidemiol Biomarkers Prev; 25(5); 830-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Earth - South America (first frame of Earth Spin Movie)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  19. In-line phase shift tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less

  20. 76 FR 179 - GMPT Warren Transmission, GM Powertrain Division, a Subsidiary of General Motors Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Knight Facilities Management, Warren, MI; Amended Certification Regarding Eligibility To Apply for Worker... Knight Facilities Management were employed on-site at the Warren, Michigan location of the subject firm... Knight Facilities Management working on-site at the Warren, Michigan location of GMPT Warren Transmission...

  1. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  2. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  3. Building a Dashboard of the Planet with Google Earth and Earth Engine

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  4. Regional Changes in Earths Color and Texture as Observed From Space Over a 15-Year Period

    NASA Technical Reports Server (NTRS)

    Zhao, Guangyu; Di Girolamo, Larry; Diner, David J.; Bruegge, Carol J.; Mueller, Kevin J.; Wu, Dong L.

    2016-01-01

    Earth-observing satellites provide global observations of many geophysical variables. As these variables are derived from measured radiances, the underlying radiance data are the most reliable sources of information for change detection. Here, we identify statistically significant trends in the color and spatial texture of the Earth as viewed from multiple directions from the Multi-angle Imaging SpectroRadiometer (MISR), which has been sampling the angular distribution of scattered sunlight since 2000. Globally, our results show that the Earth has been appearing relatively bluer (up to 1.6 % per decade from both nadir and oblique views) and smoother (up to 1.5 % per decade only from oblique views) over the past 15 years. The magnitude of the global blueing trends is comparable to that of uncertainties in radiometric calibration stability. Regional shifts in color and texture, which are significantly larger than global means, are observed, particularly over polar regions, along the boundaries of the subtropical highs, the tropical western Pacific, Southwestern Asia, and Australia. We demonstrate that the large regional trends cannot be explained either by uncertainties in radiometric calibration or variability in total or spectral solar irradiance; hence, they reflect changes internal to the Earths climate system. The 15-year-mean true color composites and texture images of the Earth at both nadir and oblique views are also presented for the first time.

  5. Associations between number of consecutive night shifts and impairment of neurobehavioral performance during a subsequent simulated night shift.

    PubMed

    Magee, Michelle; Sletten, Tracey L; Ferguson, Sally A; Grunstein, Ronald R; Anderson, Clare; Kennaway, David J; Lockley, Steven W; Rajaratnam, Shantha Mw

    2016-05-01

    This study aimed to investigate sleep and circadian phase in the relationships between neurobehavioral performance and the number of consecutive shifts worked. Thirty-four shift workers [20 men, mean age 31.8 (SD 10.9) years] worked 2-7 consecutive night shifts immediately prior to a laboratory-based, simulated night shift. For 7 days prior, participants worked their usual shift sequence, and sleep was assessed with logs and actigraphy. Participants completed a 10-minute auditory psychomotor vigilance task (PVT) at the start (~21:00 hours) and end (~07:00 hours) of the simulated night shift. Mean reaction times (RT), number of lapses and RT distribution was compared between those who worked 2-3 consecutive night shifts versus those who worked 4-7 shifts. Following 4-7 shifts, night shift workers had significantly longer mean RT at the start and end of shift, compared to those who worked 2-3 shifts. The slowest and fastest 10% RT were significantly slower at the start, but not end, of shift among participants who worked 4-7 nights. Those working 4-7 nights also demonstrated a broader RT distribution at the start and end of shift and had significantly slower RT based on cumulative distribution analysis (5 (th), 25 (th), 50 (th), 75 (th)percentiles at the start of shift; 75th percentile at the end of shift). No group differences in sleep parameters were found for 7 days and 24 hours prior to the simulated night shift. A greater number of consecutive night shifts has a negative impact on neurobehavioral performance, likely due to cognitive slowing.

  6. Change from an 8-hour shift to a 12-hour shift, attitudes, sleep, sleepiness and performance.

    PubMed

    Lowden, A; Kecklund, G; Axelsson, J; Akerstedt, T

    1998-01-01

    The present study sought to evaluate the effect of a change from a rotating 3-shift (8-hour) to a 2-shift shift (12 hour) schedule on sleep, sleepiness, performance, perceived health, and well-being. Thirty-two shift workers at a chemical plant (control room operators) responded to a questionnaire a few months before a change was made in their shift schedule and 10 months after the change. Fourteen workers also filled out a diary, carried activity loggers, and carried out reaction-time tests (beginning and end of shift). Fourteen day workers served as a reference group for the questionnaires and 9 were intensively studied during a week with workdays and a free weekend. The questionnaire data showed that the shift change increased satisfaction with workhours, sleep, and time for social activities. Health, perceived accident risk, and reaction-time performance were not negatively affected. Alertness improved and subjective recovery time after night work decreased. The quick changes in the 8-hour schedule greatly increased sleep problems and fatigue. Sleepiness integrated across the entire shift cycle showed that the shift workers were less alert than the day workers, across workdays and days off (although alertness increased with the 12-hour shift). The change from 8-hour to 12-hour shifts was positive in most respects, possibly due to the shorter sequences of the workdays, the longer sequences of consecutive days off, the fewer types of shifts (easier planning), and the elimination of quick changes. The results may differ in groups with a higher work load.

  7. Equatorial anisotropy of the Earth's inner-inner core

    NASA Astrophysics Data System (ADS)

    Song, X.; Wang, T.; Xia, H.

    2015-12-01

    Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.

  8. 5 CFR 532.505 - Night shift differentials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... employee regularly assigned to a night shift who is temporarily assigned to a day shift or to a night shift... regularly assigned to a day shift who is temporarily assigned to a night shift shall be paid a night shift... schedule involving work on both day and night shifts shall be paid a night shift differential only for any...

  9. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  11. Health Effects of Shift Work

    PubMed Central

    LaDou, Joseph

    1982-01-01

    More than 13.5 million American workers, close to 20 percent of the work force, are assigned to evening or night shifts. In some industries such as automobile, petrochemical and textile manufacturing the proportion of shift workers is greater than 50 percent. As the popularity of shift work and other “alternative work schedules” grows, concern is increasing over the disturbance created in the lives of workers and their families by these economically and socially useful innovations. Twenty percent of workers are unable to tolerate shift work. Daily physiologic variations termed circadian rhythms are interactive and require a high degree of phase relationship to produce subjective feelings of wellbeing. Disturbance of these activities, circadian desynchronization, whether from passage over time zones or from shift rotation, results in health effects such as disturbance of the quantity and quality of sleep, disturbance of gastrointestinal and other organ system activities, and aggravation of diseases such as diabetes mellitus, epilepsy and thyrotoxicosis. Worker selection can reduce the number of health problems resulting from shift work. The periodic examination of shift workers is recommended. PMID:6962577

  12. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  13. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  14. Earth horizon modeling and application to static Earth sensors on TRMM spacecraft

    NASA Technical Reports Server (NTRS)

    Keat, J.; Challa, M.; Tracewell, D.; Galal, K.

    1995-01-01

    Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.

  15. Earth Science

    NASA Image and Video Library

    1992-07-18

    Workers at Launch Complex 17 Pad A, Kennedy Space Center (KSC) encapsulate the Geomagnetic Tail (GEOTAIL) spacecraft (upper) and attached payload Assist Module-D upper stage (lower) in the protective payload fairing. GEOTAIL project was designed to study the effects of Earth's magnetic field. The solar wind draws the Earth's magnetic field into a long tail on the night side of the Earth and stores energy in the stretched field lines of the magnetotail. During active periods, the tail couples with the near-Earth magnetosphere, sometimes releasing energy stored in the tail and activating auroras in the polar ionosphere. GEOTAIL measures the flow of energy and its transformation in the magnetotail and will help clarify the mechanisms that control the imput, transport, storage, release, and conversion of mass, momentum, and energy in the magnetotail.

  16. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  17. Performance and sleepiness in nurses working 12-h day shifts or night shifts in a community hospital.

    PubMed

    Wilson, Marian; Permito, Regan; English, Ashley; Albritton, Sandra; Coogle, Carlana; Van Dongen, Hans P A

    2017-10-05

    Hospitals are around-the-clock operations and nurses are required to care for patients night and day. The nursing shortage and desire for a more balanced work-to-home life has popularized 12-h shifts for nurses. The present study investigated sleep/wake cycles and fatigue levels in 22 nurses working 12-h shifts, comparing day versus night shifts. Nurses (11day shift and 11 night shift) were recruited from a suburban acute-care medical center. Participants wore a wrist activity monitor and kept a diary to track their sleep/wake cycles for 2 weeks. They also completed a fatigue test battery, which included the Psychomotor Vigilance Test (PVT) and the Karolinska Sleepiness Scale (KSS), at the beginning, middle and end of 4 duty shifts. Daily sleep duration was 7.1h on average. No overall difference in mean daily sleep duration was found between nurses working day shifts versus night shifts. Objective performance on the PVT remained relatively good and stable at the start, middle, and end of duty shifts in day shift workers, but gradually degraded across duty time in night shift workers. Compared to day shift workers, night shift workers also exhibited more performance variability among measurement days and between participants at each testing time point. The same pattern was observed for subjective sleepiness on the KSS. However, congruence between objective and subjective measures of fatigue was poor. Our findings suggest a need for organizations to evaluate practices and policies to mitigate the inevitable fatigue that occurs during long night shifts, in order to improve patient and healthcare worker safety. Examination of alternative shift lengths or sanctioned workplace napping may be strategies to consider. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 29Si nuclear magnetic resonance study of URu 2Si 2 under pressure

    DOE PAGES

    Shirer, K. R.; Dioguardi, A. P.; Bush, B. T.; ...

    2015-12-01

    Here, we report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu 2Si 2 under pressure in the hidden order and paramagnetic phases. We find evidence for a reduction of the Knight shift with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. Here, we find that the temperature at which this suppression occurs is enhanced with applied pressure.

  19. Proton NMR studies of the electronic structure of ZrH/sub x/

    NASA Technical Reports Server (NTRS)

    Attalla, A.; Bowman, R. C., Jr.; Craft, B. D.; Venturini, E. L.; Rhim, W. K.

    1982-01-01

    The proton spin lattice relaxation times and Knight shifts were measured in f.c.c. (delta-phase) and f.c.t. (epsilon-phase) ZrH/sub x/ for 1.5 or = to x or = to 2.0. Both parameters indicate that N(E/sub F/) is very dependent upon hydrogen content with a maximum occurring at ZrH1 83. This behavior is ascribed to modifications in N(E/sub F/) through a fcc/fct distortion in ZrH/sub x/ associated with a Jahn-Teller effect.

  20. Earth Observation

    NASA Image and Video Library

    2014-06-01

    ISS040-E-006327 (1 June 2014) --- A portion of International Space Station solar array panels and Earth?s horizon are featured in this image photographed by an Expedition 40 crew member on the space station.

  1. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  2. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  3. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts?

    PubMed

    Regente, J; de Zeeuw, J; Bes, F; Nowozin, C; Appelhoff, S; Wahnschaffe, A; Münch, M; Kunz, D

    2017-05-01

    In single night shifts, extending habitual wake episodes leads to sleep deprivation induced decrements of performance during the shift and re-adaptation effects the next day. We investigated whether short-wavelength depleted (=filtered) bright light (FBL) during a simulated night shift would counteract such effects. Twenty-four participants underwent a simulated night shift in dim light (DL) and in FBL. Reaction times, subjective sleepiness and salivary melatonin concentrations were assessed during both nights. Daytime sleep was recorded after both simulated night shifts. During FBL, we found no melatonin suppression compared to DL, but slightly faster reaction times in the second half of the night. Daytime sleep was not statistically different between both lighting conditions (n = 24) and there was no significant phase shift after FBL (n = 11). To conclude, our results showed positive effects from FBL during simulated single night shifts which need to be further tested with larger groups, in more applied studies and compared to standard lighting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  5. Frequency shifts in gravitational resonance spectroscopy

    DOE PAGES

    Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; ...

    2015-02-25

    Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts-which we call the Stern-Gerlach shift, interference shift, and spectator-state shift-appear in conceivable measurement schemes and have general importance. Lastly, these shifts have to be taken into account in precision experiments.

  6. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  7. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  8. Earth - South America First Frame of Earth Spin Movie

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA's Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics. A movie is availalble at http://photojournal.jpl.nasa.gov/catalog/PIA00114

  9. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  10. Night shift work exposure profile and obesity: Baseline results from a Chinese night shift worker cohort.

    PubMed

    Sun, Miaomiao; Feng, Wenting; Wang, Feng; Zhang, Liuzhuo; Wu, Zijun; Li, Zhimin; Zhang, Bo; He, Yonghua; Xie, Shaohua; Li, Mengjie; Fok, Joan P C; Tse, Gary; Wong, Martin C S; Tang, Jin-Ling; Wong, Samuel Y S; Vlaanderen, Jelle; Evans, Greg; Vermeulen, Roel; Tse, Lap Ah

    2018-01-01

    This study aimed to evaluate the associations between types of night shift work and different indices of obesity using the baseline information from a prospective cohort study of night shift workers in China. A total of 3,871 workers from five companies were recruited from the baseline survey. A structured self-administered questionnaire was employed to collect the participants' demographic information, lifetime working history, and lifestyle habits. Participants were grouped into rotating, permanent and irregular night shift work groups. Anthropometric parameters were assessed by healthcare professionals. Multiple logistic regression models were used to evaluate the associations between night shift work and different indices of obesity. Night shift workers had increased risk of overweight and obesity, and odds ratios (ORs) were 1.17 (95% CI, 0.97-1.41) and 1.27 (95% CI, 0.74-2.18), respectively. Abdominal obesity had a significant but marginal association with night shift work (OR = 1.20, 95% CI, 1.01-1.43). A positive gradient between the number of years of night shift work and overweight or abdominal obesity was observed. Permanent night shift work showed the highest odds of being overweight (OR = 3.94, 95% CI, 1.40-11.03) and having increased abdominal obesity (OR = 3.34, 95% CI, 1.19-9.37). Irregular night shift work was also significantly associated with overweight (OR = 1.56, 95% CI, 1.13-2.14), but its association with abdominal obesity was borderline (OR = 1.26, 95% CI, 0.94-1.69). By contrast, the association between rotating night shift work and these parameters was not significant. Permanent and irregular night shift work were more likely to be associated with overweight or abdominal obesity than rotating night shift work. These associations need to be verified in prospective cohort studies.

  11. Night shift work exposure profile and obesity: Baseline results from a Chinese night shift worker cohort

    PubMed Central

    Feng, Wenting; Wang, Feng; Zhang, Liuzhuo; Wu, Zijun; Li, Zhimin; Zhang, Bo; He, Yonghua; Xie, Shaohua; Li, Mengjie; Fok, Joan P. C.; Tse, Gary; Wong, Martin C. S.; Tang, Jin-ling; Wong, Samuel Y. S.; Vlaanderen, Jelle; Evans, Greg; Vermeulen, Roel; Tse, Lap Ah

    2018-01-01

    Aims This study aimed to evaluate the associations between types of night shift work and different indices of obesity using the baseline information from a prospective cohort study of night shift workers in China. Methods A total of 3,871 workers from five companies were recruited from the baseline survey. A structured self-administered questionnaire was employed to collect the participants’ demographic information, lifetime working history, and lifestyle habits. Participants were grouped into rotating, permanent and irregular night shift work groups. Anthropometric parameters were assessed by healthcare professionals. Multiple logistic regression models were used to evaluate the associations between night shift work and different indices of obesity. Results Night shift workers had increased risk of overweight and obesity, and odds ratios (ORs) were 1.17 (95% CI, 0.97–1.41) and 1.27 (95% CI, 0.74–2.18), respectively. Abdominal obesity had a significant but marginal association with night shift work (OR = 1.20, 95% CI, 1.01–1.43). A positive gradient between the number of years of night shift work and overweight or abdominal obesity was observed. Permanent night shift work showed the highest odds of being overweight (OR = 3.94, 95% CI, 1.40–11.03) and having increased abdominal obesity (OR = 3.34, 95% CI, 1.19–9.37). Irregular night shift work was also significantly associated with overweight (OR = 1.56, 95% CI, 1.13–2.14), but its association with abdominal obesity was borderline (OR = 1.26, 95% CI, 0.94–1.69). By contrast, the association between rotating night shift work and these parameters was not significant. Conclusion Permanent and irregular night shift work were more likely to be associated with overweight or abdominal obesity than rotating night shift work. These associations need to be verified in prospective cohort studies. PMID:29763461

  12. Effect of Shift Work on Nocturia.

    PubMed

    Kim, Jin Wook

    2016-01-01

    To identify the circadian sensitive component of nocturia by comparing nocturia in patients who voluntarily choose a disrupted circadian rhythm, that is, shift workers, with those who maintain normal day-night cycles. Between 2011 and 2013, a total of 1741 untreated patients, 1376 nonshift workers and 365 shift workers, were compared for nocturia indices based on frequency volume charts (FVCs). General linear model of 8-hour interval urine production and frequency were compared between FVCs of nonshift workers, FVCs of night-shift workers, and FVCs of day-shift workers. Nocturia frequency was increased in the night-shift workers (2.38 ± 1.44) compared with nonshift workers (2.18 ± 1.04) (P <.01). Whereas nocturnal polyuria index did not increase significantly (0.33 ± 0.19 for night-shift workers, 0.34 ± 0.13 for nonshift workers, P = .24), nocturnal bladder capacity index increased significantly (1.41 ± 1.06 for night-shift workers, 1.26 ± 0.92 for nonshift workers, P <.01). Eight-hour interval indices show that urine production changed with shift (P <.01), whereas voiding frequency remains unchanged despite shift changes (P = .35). Patients in alternating work shifts showed increased nocturia, especially during their night shift. These changes tended to be more associated with decreased nocturnal bladder capacity than increased nocturnal polyuria. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Shift schedule, work-family relationships, marital communication, job satisfaction and health among transport service shift workers.

    PubMed

    Iskra-Golec, Irena; Smith, Lawrence; Wilczek-Rużyczka, Ewa; Siemiginowska, Patrycja; Wątroba, Joanna

    2017-02-21

    Existing research has documented that shiftwork consequences may depend on the shift system parameters. Fast rotating systems (1-3 shifts of the same kind in a row) and day work have been found to be less disruptive biologically and socially than slower rotating systems and afternoon and night work. The aim of this study was to compare day workers and shift workers of different systems in terms of rotation speed and shifts worked with regard to work-family and family-work positive and negative spillover, marital communication style, job satisfaction and health. Employees (N = 168) of the maintenance workshops of transportation service working different shift systems (day shift, weekly rotating 2 and 3‑shift system, and fast rotating 3-shift system) participated in the study. They completed the Work- Family Spillover Questionnaire, Marital Communication Questionnaire, Minnesota Job Satisfaction Questionnaire and the Physical Health Questionnaire (a part of the Standard Shiftwork Index). The workers of quicker rotating 3-shift systems reported significantly higher scores of family-to-work facilitation (F(3, 165) = 4.175, p = 0.007) and a higher level of constructive style of marital communication (Engagement F(3, 165) = 2.761, p = 0.044) than the workers of slower rotating 2-shift systems. There were no differences between the groups of workers with regard to health and job satisfaction. A higher level of work-family facilitation and a more constructive style of marital communication were found among the workers of faster rotating 3-shift system when compared to the workers of a slower rotating 2-shift system (afternoon, night). This may indicate that the fast rotating shift system in contrary to the slower rotating one is more friendly for the work and family domains and for the relationship between them. Int J Occup Med Environ Health 2017;30(1):121-131. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. ERESE: An online forum for research-based earth science inquiry

    NASA Astrophysics Data System (ADS)

    Symons, C. M.; Koppers, A.; Helly, M.; Staudigel, H.; Miller, S. P.

    2007-12-01

    The Enduring Resources for Earth Science Education (ERESE) Project bridges the gap between earth science research and science education by providing a forum for electronic collaboration between practicing scientists and classroom teachers. By combining the resources of Scripps Institution of Oceanography (SIO) and the expertise of educators, ERESE leverages a wide variety of assets to provide state-of-the-art, online digital resources through two National Science Digital Library collections: Earthref.org (http://www.Earthref.org/ERESE) and SIOExplorer (http://SIOExplorer.ucsd.edu). Earthref.org provides a wealth of plate tectonic-related content appropriate for designing and enacting inquiry lessons. The SIOExplorer Digital Library houses marine geophysical data from over 800 research cruises each containing a variety of data types from meteorological, to oceanographic, geophysical and navigational data. Built on successful collaboration between scientists and middle and high school teachers from across the country beginning in 2004, ERESE has expanded into a multifaceted repository for thought-provoking earth science data and images, virtual field trips and inquiry lessons designed by our partner teachers. More than static interfaces, both Earthref.org and SIOExplorer introduce users to current topics in science, seeking to answer outstanding questions about the earth, its processes, formation, and future. To provide a starting point for new users to design and contribute lessons to Earthref.org we have created a basic inquiry lesson plan template that models the process of investigating a real scientific problem. The template is designed on the basis of our five-stage model of inquiry adapted to the National Science Education Standards. As with all inquiry lessons, our model focuses on the shift of power from the teacher at the outset of the lesson to the students upon completion of the lesson.

  15. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  16. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  17. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  18. Real life working shift assignment problem

    NASA Astrophysics Data System (ADS)

    Sze, San-Nah; Kwek, Yeek-Ling; Tiong, Wei-King; Chiew, Kang-Leng

    2017-07-01

    This study concerns about the working shift assignment in an outlet of Supermarket X in Eastern Mall, Kuching. The working shift assignment needs to be solved at least once in every month. Current approval process of working shifts is too troublesome and time-consuming. Furthermore, the management staff cannot have an overview of manpower and working shift schedule. Thus, the aim of this study is to develop working shift assignment simulation and propose a working shift assignment solution. The main objective for this study is to fulfill manpower demand at minimum operation cost. Besides, the day off and meal break policy should be fulfilled accordingly. Demand based heuristic is proposed to assign working shift and the quality of the solution is evaluated by using the real data.

  19. Dynamics and computation in functional shifts

    NASA Astrophysics Data System (ADS)

    Namikawa, Jun; Hashimoto, Takashi

    2004-07-01

    We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.

  20. Shift Verification and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over amore » burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.« less

  1. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Members of the audience look on as Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  2. A Case for an Atmosphere on Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  3. New earth system model for optical performance evaluation of space instruments.

    PubMed

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  4. Astrometric and Photometric Follow-Up of Faint Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Spahr, Timothy

    2004-01-01

    During the last year, the Near-Earth Object (NEO) follow-up program at Mt. Hopkins funded by the Near-Earth Object Observations (NEOO) program continued to improve. The Principal Investigator was again granted all the requested observing time. In addition to the requested time on the 4 8 in. telescope, 2 nights were also granted on the MMT for observations of extremely faint main-belt asteroids and NEOs. It is expected that the MMT can easily reach V = 25 over a 24 X 24 arcminute field of view. Improvements in the last year included more tweaks to the automatic astrometric routine for higher-quality astrometric fits. Use of the new USNO-B1.0 reference catalog has allowed the PI to push the average RMS of reference star solutions below 0.2 in.. Shift-and- stack techniques are used to improve the signal-to-noise ratio of the target objects. The 48 in. telescope at Mt. Hopkins is completely automated, and can be run remotely from either the Principal Investigator's office at SAO, or even his study at home. Most observing runs are now done remotely.

  5. Associations of rotational shift work and night shift status with hypertension: a systematic review and meta-analysis.

    PubMed

    Manohar, Sandhya; Thongprayoon, Charat; Cheungpasitporn, Wisit; Mao, Michael A; Herrmann, Sandra M

    2017-10-01

    The reported risks of hypertension (HTN) in rotating shift and night shift workers are controversial. The objective of this meta-analysis was to assess the association between shift work status and HTN. A literature search was performed using MEDLINE, EMBASE and Cochrane Database from inception through October 2016. Studies that reported odds ratios (OR) comparing the risk of HTN in shift workers were included. A prespecified subgroup analysis by rotating shift and night shift statuses were also performed. Pooled OR and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method. The protocol for this study is registered with International Prospective Register of Systematic Reviews; no. CRD42016051843. Twenty-seven observational studies (nine cohort and 18 cross-sectional studies) with a total of 394 793 individuals were enrolled. The pooled ORs of HTN in shift workers in cohort and cross-sectional studies were 1.31 (95% CI, 1.07-1.60) and 1.10 (95% CI, 1.00-1.20), respectively. When meta-analysis was restricted only to cohort studies in rotating shift, the pooled OR of HTN in rotating shift workers was 1.34 (95% CI, 1.08-1.67). The data regarding night shift and HTN in cohort studies was limited. The pooled OR of HTN in night shift workers in cross-sectional studies was 1.07 (95% CI, 0.85-1.35). Based on the findings of our meta-analysis, shiftwork status may play an important role in HTN, as there is a significant association between rotating shift work and HTN. However, there is no significant association between night shift status and risk of HTN.

  6. "That was a good shift".

    PubMed

    Johnson, Anya; Nguyen, Helena; Parker, Sharon K; Groth, Markus; Coote, Steven; Perry, Lin; Way, Bruce

    2017-06-19

    Purpose The purpose of this paper is to investigate a boundary spanning, interprofessional collaboration between advanced practice nurses (APNs) and junior doctors to support junior doctors' learning and improve patient management during the overtime shift. Design/methodology/approach A mixed methods evaluation of an intervention in an adult tertiary referral hospital, to enhance interprofessional collaboration on overtime shifts. Phase 1 compared tasks and ward rounds on 86 intervention shifts with 106 "regular" shifts, and examined the effect on junior doctor patient management testing a model using regression techniques. Phase 2 explored the experience of the intervention for stakeholders. 91 junior doctors participated (89 percent response rate) on 192 overtime shifts. Junior doctors, APNs and senior medical professionals/administrators participated in interviews. Findings The intervention was associated with an increase in self-initiated ward rounds by junior doctors, partially explained by junior doctors completing fewer tasks skilled nurses could also complete. The intervention significantly reduced doctors' engagement in tasks carried over from day shifts as well as first year (but not more experienced) junior doctors' total tasks. Interviews suggested the initiative reduced junior doctors' work pressure and promoted a safe team climate, situation awareness, skills, confidence, and well-being. Originality/value Junior doctors overtime shifts (5 p.m. to 11 p.m.) are important, both for hospitals to maintain patient care after hours and for junior doctors to learn and develop independent clinical decision making skills. However, junior doctors frequently report finding overtime shifts challenging and stressful. Redesigning overtime shifts to facilitate interprofessional collaboration can improve patient management and junior doctors' learning and well-being.

  7. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  8. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden speaks to students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA sponsored the Earth Day event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. Photo Credit: (NASA/Aubrey Gemignani)

  9. Anthropocene: Shifting Paradigms in Geoscience, Philosophy, History and Geopolitics

    NASA Astrophysics Data System (ADS)

    Maslin, M. A.; Lewis, S. L.

    2015-12-01

    The concept of the Anthropocene has created a profound paradigm shift within the scientific community that we argue will create equally important changes in philosophy, history and politics. There is general scientific agreement that human activity has been a geologically recent, yet profound, influence on the Earth System. The magnitude, variety and longevity of human-induced changes, to the lithosphere, hydrosphere, cryosphere, biosphere and atmosphere suggests that we should refer to the present, not as within the Holocene Epoch (as it is currently formally referred to), but instead as within the Anthropocene Epoch. Discussion is now centred on defining the start of the epoch using the fundamental principles of stratigraphy. These must include (i) a near permanent change to the Earth system that sets it on to a new trajectory and (ii) global changes to the Earth system recorded in a number of stratigraphic deposits worldwide to provide a correlative boundary event or marker called a Global Stratotype Section & Point (GSSP) or 'golden spike'. Using this framework we conclude that just two time-periods are likely adhere to the criteria. These are 1) the irreversible cross-ocean exchange of species alongside the globally synchronous coolest part of the Little Ice Age in the 17th century, marked by the 1610 minima of CO2 (Orbis Spike), and 2) the accelerating atmospheric, oceanic and terrestrial changes in the second half of the 20th century, referred to as the Great Acceleration and conveniently marked by the 1964 peak radionuclide fallout (Bomb Spike). We seek to clear up misconceptions and misunderstandings about geological criteria and relevant evidence that have crept into the literature. We also argue that there are multiple definitions of the Anthropocene and even if a formal definition of the Anthropocene Epoch is agreed by geoscientists, this would in no way invalidate other definitions or uses. It is the utility and wide appeal that makes the Anthropocene

  10. Shift-invariant optical associative memories

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Hong, John

    1987-01-01

    Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.

  11. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  12. Nonlinear softening of unconsolidated granular earth materials

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; Johnson, Paul A.

    2017-09-01

    Unconsolidated granular earth materials exhibit softening behavior due to external perturbations such as seismic waves, namely, the wave speed and elastic modulus decrease upon increasing the strain amplitude above dynamics strains of about 10-6 under near-surface conditions. In this letter, we describe a theoretical model for such behavior. The model is based on the idea that shear transformation zones—clusters of grains that are loose and susceptible to contact changes, particle displacement, and rearrangement—are responsible for plastic deformation and softening of the material. We apply the theory to experiments on simulated fault gouge composed of glass beads and demonstrate that the theory predicts nonlinear resonance shifts, reduction of the P wave modulus, and attenuation, in agreement with experiments. The theory thus offers insights on the nature of nonlinear elastic properties of a granular medium and potentially into phenomena such as triggering on earthquake faults.

  13. Translational Research and Medicine at NASA: From Earth to Space and Back Again

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Cohrs, Randall; Crucian, Brian A,; Levine Benjamin; Otto, Christian; Ploutz-Schneider, Lori; Shackelford, Linda C.

    2014-01-01

    The Space Environment provides many challenges to the human physiology and therefore to extended habitation and exploration. Translational research and medical strategies are meeting these challenges by combining Earth based medical solutions with innovative and developmental engineering approaches. Translational methodologies are current applied to spaceflight related dysregulations in the areas of: (1) cardiovascular fluid shifts, intracranial hypertension and neuro-ocular impairment 2) immune insufficiency and suppression/viral re-expression, 3) bone loss and fragility (osteopenia/osteoporosis) and muscle wasting, and finally 4) radiation sensitivity and advanced ageing. Over 40 years of research into these areas have met with limited success due to lack of tools and basic understanding of central issues that cause physiologic maladaptaion and distrupt homeostatis. I will discuss the effects of living in space (reduced gravity, increased radiation and varying atmospheric conditions [EVA]) during long-duration, exploration-class missions and how translational research has benefited not only space exploration but also Earth based medicine. Modern tools such as telemedicine advances in genomics, proteomics, and metabolomics (Omicssciences) has helped address syndromes, at the systemic level by enlisting a global approach to assessing spaceflight physiology and to develop countermeasures thereby permitting our experience in space to be translated to the Earth's medical community.

  14. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  15. Visual attention shifting in autism spectrum disorders.

    PubMed

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be

  16. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  17. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  18. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  19. America's First Carl Sagan: Ormsby MacKnight Mitchel, Pre-Civil War Astronomer and Lecturer on the Cosmos

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2002-12-01

    In the years before television, videos, radio. movies, or even loudspeakers, Ormsby MacKnight Mitchel (1809-1862) was the best-known popularizer of astronomy and the scientific study of the universe in nineteenth-century America. Each winter he traveled the country by railroad, steamer, and stagecoach, speaking to large paying crowds in principal cities from Boston, New York, and Philadelphia through Cincinnati to New Orleans on the cosmos and our place in it, with special attention to possible inhabitants of planers orbiting other stars. Mitchel had much the same attraction as Sagan did in our time, and awakened many people's interest in astronomy through the human angle, as Carl did. His argument was simple, and according to Frank Triplett goes back thousands of years: other stars are suns, our sun has planets with people on one of them, why should not other stars also have populated planets? But first Mitchel, like Sagan, always explained clearly the discoveries of astronomy that fleshed out this argument with facts. He emphasized the ``clockwork universe", governed by gravity, that Newton, Herschel, and Laplace had investigated and found to be stable. There were many other similarities between these two great popularizers. Mitchel's base was the Cincinnati Observatory, which he had founded, raising the funds for it himself in small contributions from hundreds of ``members", which he publicised as far more democratic than support from European kings and lords. He went abroad to get a telescope, and finally found his ``Great [12-inch] Refractor" in Munich, with help from John Quincy Adams, Astronomer Royal George Biddle Airy, and Paris Observatory Director Fracois Arago, in spite of a rebuff by President John Tyler. These episodes have similarities in Sagan's lobbying NASA for close-up images of Mars. Views of other American professional astronomers on life on other worlds will also be described briefly, from Denison Olmsted, Elias Loomis, Charles A. Young (who

  20. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  1. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    NASA Technical Reports Server (NTRS)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  2. Sleep and satisfaction in 8- and 12-h forward-rotating shift systems: Industrial employees prefer 12-h shifts.

    PubMed

    Karhula, Kati; Härmä, Mikko; Ropponen, Annina; Hakola, Tarja; Sallinen, Mikael; Puttonen, Sampsa

    2016-01-01

    Twelve-hour shift systems have become more popular in industry. Survey data of shift length, shift rotation speed, self-rated sleep, satisfaction and perceived health were investigated for the associations among 599 predominantly male Finnish industrial employees. The studied forward-rotating shift systems were 12-h fast (12fast, DDNN------, n = 268), 8-h fast (8fast, MMEENN----, n = 161) and 8-h slow (8slow, MMMM-EEEE-NNNN, n = 170). Satisfaction with shift system differed between the groups (p < 0.01) after controlling for age, gender, shift work experience and self-rated stress. In the 12fast, 98% of employees were satisfied with their shift system (75% 8fast, 54% 8slow). Negative effects on sleep and alertness were rare (8%) in the 12fast group (53% 8fast, 66% 8 slow, p < 0.01) and self-reported sleep difficulties were less frequent than in the 8fast and 8slow groups (8%, 27%, 41%, respectively, p < 0.01). The self-reported average sleep duration (12fast 7:50, 8fast 7:24, 8slow 7:15, p < 0.01), and shift-specific sleep before and between morning shifts and after first night shift were longer in the 12fast group. Perceived negative effects of the current shift system on general health (12fast 4%, 8fast 30%, 8slow 41%, p < 0.001) and work-life balance (12fast 8%, 8fast 52%, 8slow 63%, p < 0.001) differed strongly between the groups. In conclusion, the perceived effects of shift work were dependent on both shift length and shift rotation speed: employees in the 12-h rapidly forward-rotating shift system were most satisfied, perceived better work-life balance and slept better than the employees in the 8fast or especially the employees in the 8-h slowly rotating systems.

  3. Earth Science

    NASA Image and Video Library

    1976-01-01

    The LAGEOS I (Laser Geodynamics Satellite) was developed and launched by the Marshall Space Flight Center on May 4, 1976 from Vandenberg Air Force Base, California . The two-foot diameter satellite orbited the Earth from pole to pole and measured the movements of the Earth's surface.

  4. Obesity and shift work: chronobiological aspects.

    PubMed

    Antunes, L C; Levandovski, R; Dantas, G; Caumo, W; Hidalgo, M P

    2010-06-01

    The present review has the objective of summarising chronobiological aspects of shift work and obesity. There was a systematic search in PubMed databases, using the following descriptors: shift work; obesity; biological clock. Shift work is extremely frequent in several services and industries, in order to systematise the needs for flexibility of the workforce, necessary to optimise productivity and business competitiveness. In developing countries, this population represents a considerable contingent workforce. Recently, studies showed that overweight and obesity are more prevalent in shift workers than day workers. In addition, the literature shows that shift workers seem to gain weight more often than those workers submitted to a usual work day. In conclusion, there is considerable epidemiological evidence that shift work is associated with increased risk for obesity, diabetes and CVD, perhaps as a result of physiological maladaptation to chronically sleeping and eating at abnormal circadian times. The impact of shift work on metabolism supports a possible pathway to the development of obesity and its co-morbities. The present review demonstrated the adverse cardiometabolic implications of circadian misalignment, as occurs chronically with shift workers.

  5. Raising awareness for research on earth walls, and earth scientific aspects

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Baas, Henk; Groenewoudt, Bert; Peen, Charlotte

    2013-04-01

    A conference to raise awareness In the Netherlands, little research on earth walls has been done. To improve attention for earth walls, a number of organisations, including Geoheritage NL, organized a conference at the RCE, the Cultural Heritage Agency of the Netherlands. The conference* presented a state-of-the-art of research done. The book with the presentations, and extra case studies added, was published in December 2012. The book concludes with a research action list, including earth science research, and can be downloaded freely from the internet. It has English summaries. The earth science aspects Historical earth walls do not only add cultural value to a landscape, but also geodiversity value. Apart from geomorphological aspects, the walls contain information about past land- and climate conditions: - They cover up a former topography, a past landscape. A relevant source of scientific information where lands are levelled, as is the case in many parts of The Netherlands; - The soil formation under the earth wall is a reference soil. The soil formation in the top of the wall gives insight in the rate of soil formation in relationship with the age and parent material of the wall; - The soil profiles of different age have ecological significance. Older walls with a more pronounced soil formation often hold forest flora that has disappeared from the surrounding environment, such as historical bush or tree species, autogenetic DNA material or a specific soil fauna; - The materials in the earth walls tell about the process of wall-building. Paleosols and sedimentary structures in the earth walls, in the gullies and colluvial fans along the walls contain information about past land management and climate. - The eroded appearance of the earth walls is part of their history, and contain information about past management and land conditions, has ecological relevance, for example for insects, and is often visually more interesting. Insight in the rates of erosion are

  6. EarthChem: International Collaboration for Solid Earth Geochemistry in Geoinformatics

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Lehnert, K. A.; Hofmann, A. W.; Sarbas, B.; Carlson, R. W.

    2005-12-01

    The current on-line information systems for igneous rock geochemistry - PetDB, GEOROC, and NAVDAT - convincingly demonstrate the value of rigorous scientific data management of geochemical data for research and education. The next generation of hypothesis formulation and testing can be vastly facilitated by enhancing these electronic resources through integration of available datasets, expansion of data coverage in location, time, and tectonic setting, timely updates with new data, and through intuitive and efficient access and data analysis tools for the broader geosciences community. PetDB, GEOROC, and NAVDAT have therefore formed the EarthChem consortium (www.earthchem.org) as a international collaborative effort to address these needs and serve the larger earth science community by facilitating the compilation, communication, serving, and visualization of geochemical data, and their integration with other geological, geochronological, geophysical, and geodetic information to maximize their scientific application. We report on the status of and future plans for EarthChem activities. EarthChem's development plan includes: (1) expanding the functionality of the web portal to become a `one-stop shop for geochemical data' with search capability across databases, standardized and integrated data output, generally applicable tools for data quality assessment, and data analysis/visualization including plotting methods and an information-rich map interface; and (2) expanding data holdings by generating new datasets as identified and prioritized through community outreach, and facilitating data contributions from the community by offering web-based data submission capability and technical assistance for design, implementation, and population of new databases and their integration with all EarthChem data holdings. Such federated databases and datasets will retain their identity within the EarthChem system. We also plan on working with publishers to ease the assimilation

  7. Individual vulnerability to insomnia, excessive sleepiness and shift work disorder amongst healthcare shift workers. A systematic review.

    PubMed

    Booker, Lauren A; Magee, Michelle; Rajaratnam, Shantha M W; Sletten, Tracey L; Howard, Mark E

    2018-03-27

    Shift workers often experience reduced sleep quality, duration and/or excessive sleepiness due to the imposed conflict between work and their circadian system. About 20-30% of shift workers experience prominent insomnia symptoms and excessive daytime sleepiness consistent with the circadian rhythm sleep disorder known as shift work disorder. Individual factors may influence this vulnerability to shift work disorder or sleep-related impairment associated with shift work. This paper was registered with Prospero and was conducted using recommended standards for systematic reviews and meta-analyses. Published literature that measured sleep-related impairment associated with shift work including reduced sleep quality and duration and increased daytime sleepiness amongst healthcare shift workers and explored characteristics associated with individual variability were reviewed. Fifty-eight studies were included. Older age, morning-type, circadian flexibility, being married or having children, increased caffeine intake, higher scores on neuroticism and lower on hardiness were related to a higher risk of sleep-related impairment in response to shift work, whereas physical activity was a protective factor. The review highlights the diverse range of measurement tools used to evaluate the impact of shift work on sleep. Use of standardised and validated tools would enable cross-study comparisons. Longitudinal studies are required to establish causal relationships between individual factors and the development of shift work disorder. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Phase-shifting coronagraph

    NASA Astrophysics Data System (ADS)

    Hénault, François; Carlotti, Alexis; Vérinaud, Christophe

    2017-09-01

    With the recent commissioning of ground instruments such as SPHERE or GPI and future space observatories like WFIRST-AFTA, coronagraphy should probably become the most efficient tool for identifying and characterizing extrasolar planets in the forthcoming years. Coronagraphic instruments such as Phase mask coronagraphs (PMC) are usually based on a phase mask or plate located at the telescope focal plane, spreading the starlight outside the diameter of a Lyot stop that blocks it. In this communication is investigated the capability of a PMC to act as a phase-shifting wavefront sensor for better control of the achieved star extinction ratio in presence of the coronagraphic mask. We discuss the two main implementations of the phase-shifting process, either introducing phase-shifts in a pupil plane and sensing intensity variations in an image plane, or reciprocally. Conceptual optical designs are described in both cases. Numerical simulations allow for better understanding of the performance and limitations of both options, and optimizing their fundamental parameters. In particular, they demonstrate that the phase-shifting process is a bit more efficient when implemented into an image plane, and is compatible with the most popular phase masks currently employed, i.e. fourquadrants and vortex phase masks.

  9. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study

    PubMed Central

    Bonnell, Emily K.; Huggins, Catherine E.; Huggins, Chris T.; McCaffrey, Tracy A.; Palermo, Claire; Bonham, Maxine P.

    2017-01-01

    Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41) were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19). Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day) did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day) of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted. PMID:28245625

  10. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study.

    PubMed

    Bonnell, Emily K; Huggins, Catherine E; Huggins, Chris T; McCaffrey, Tracy A; Palermo, Claire; Bonham, Maxine P

    2017-02-26

    Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups ( n = 41) were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls ( n = 19). Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day) did not differ between days that included a day or night shift but greater energy density (ED energy , kJ/g/day) of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted.

  11. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  12. Concatenated shift registers generating maximally spaced phase shifts of PN-sequences

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Welch, L. R.

    1977-01-01

    A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.

  13. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  14. Performance on the Brink

    ERIC Educational Resources Information Center

    Cassidy, Michael; Medsker, Karen

    2006-01-01

    Bob Knight, Head Men's Basketball Coach at Texas Tech, has set a new record for the most career wins (880) in college basketball history. As Indiana University graduates (Knight coached at Indiana for 21 years), and occasional college basketball fans, the authors consider what can be learned from Bob Knight, a complex and controversial figure. The…

  15. Successfully Managing Insurgencies and Terrorism Effectively (SMITE)

    DTIC Science & Technology

    2011-03-01

    DISTRIBUTION UNLIMITED. 58 Asymmetric Engagement: The Christian Knights of the KKK, 1985-1998...organization, it has morphed over the years into a loose confederation of independent subgroups. The Christian Knights of the Ku Klux Klan was...minority communities. In 1995 members of the Christian Knights conducted a ‘Military’ Weaken Mission (i.e. they employed lethal

  16. Suburban Myths

    ERIC Educational Resources Information Center

    Knight, Elizabeth C.

    2003-01-01

    Elizabeth C. Knight left the suburbs to major in English at Boston University. Knight currently lives in New York City and works for an afterschool program that deals primarily with inner city youth. Having grown up in an affluent neighborhood, Knight dispels many of the myths centered around growing up in beautiful, safe, wealthy suburbs, saying…

  17. Heat Acclimation and Water-Immersion Deconditioning: Fluid Electrolyte Shifts with Tilting

    NASA Technical Reports Server (NTRS)

    Conertino, V. A.; Shvartz, E.; Haines, R. F.; Bhattacharya, A.; Superinde, S. J.; Keil, L. C.; Greenlean, J. E.

    1977-01-01

    One of the major problems encountered by astronauts exposed to space flight is a reduction of orthostatic tolerance on return to earth. Many studies have been performed in an attempt to define the physiologic mechanism of orthostatic intolerance and to develop some remedial treatment. Exercise training does not appear to enhance orthostatic tolerance . In contrast, heat acclimation (i.e., exercise training in the heat) has been reported to enhance orthostatic tolerance. Since plasma volume increases with both exercise training and heat acclimation, it is not clear what role fluid and electrolytes play in determining tolerance to hydrostatic pressure. The purpose of this study was to compare the effects of exercise training in a cool environment and heat acclimation on resting plasma volume (PV) and the ensuing fluid and electrolyte shifts which occur during head-up tilting before and after water immersion deconditioning.

  18. EarthEd Online: Open Source Online Software to Support Large Courses

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2003-12-01

    The purpose of the EarthEd Online software project is to support a modern instructional pedagogy in a large, college level, earth science course. It is an ongoing development project that has evolved in a large general education oceanography course over the last decade. Primary goals for the oceanography course are to support learners in acquiring a knowledge of science process, an appreciation for the relevance of science to society, and basic content knowledge. In order to support these goals, EarthEd incorporates: a) integrated access to various kinds of real earth data (and links to web-based data browsers), b) online discussions, live chat, with integrated graphics editing, linking, and upload, c) online writing, reviewing, and grading, d) online homework assignments, e) on demand grade calculation, and f) instructor grade entry and progress reports. The software was created using Macromedia Director. It is distributed to students on a CDROM and updates are downloaded and installed automatically. Data browsers for plate tectonics relevant data ("Our Dynamic Planet"), a virtual exploration of the East Pacific Rise, the World Ocean Atlas-98, and a fishing simulation game are integrated with the EarthEd software. The system is modular which allows new capabilities, such as new data browsers, to be added. Student reactions to the software are positive overall. They are especially appreciative of the on demand grade computation capability. The online writing, commenting and grading is particularly effective in managing the large number of papers that get submitted. The TA's grade the papers, but the instructor can provide feedback to them as they grade the papers, and a record is maintained of all comments and rubric item grades. Commenting is made easy by simply "dragging" a selection of pre-defined comments into the student's text. Scoring is supported by an integrated scoring rubric. All assignments, rubrics, etc. are configured in text files that are downloaded

  19. Insensitivity of GNSS to geocenter motion through the network shift approach (Invited)

    NASA Astrophysics Data System (ADS)

    Rebischung, P.; Altamimi, Z.; Springer, T.

    2013-12-01

    As a satellite-based technique, GNSS should be sensitive to motions of the Earth's center of mass (CM) with respect to the Earth's crust. In theory, the weekly solutions of the Analysis Centers of the International GNSS Service (IGS ACs) should indeed have the "instantaneous" CM as their origin, and the net translations between the weekly AC frames and a secular frame such as ITRF2008 should thus approximate the non-linear motion of CM with respect to the Earth's center of figure. However, the comparison of the AC translation time series with each other, with SLR geocenter estimates or with geophysical models reveals that this way of observing geocenter motion with GNSS currently gives unreliable results. We addressed the problem of observing geocenter motion with GNSS through this network shift approach from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, was therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. We show that the inability of current GNSS, as opposed to Satellite Laser Ranging (SLR), to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most IGS ACs, slightly amplify the collinearity of the Z geocenter coordinate, but their role remains secondary.

  20. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  1. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  2. Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind.

    PubMed

    Schramski, John R; Gattie, David K; Brown, James H

    2015-08-04

    Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth's store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth's battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.

  3. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  4. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  5. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.

    PubMed

    Socolar, Jacob B; Epanchin, Peter N; Beissinger, Steven R; Tingley, Morgan W

    2017-12-05

    Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.

  6. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  7. Galileo 1989 VEEGA trajectory design. [Venus-Earth-Earth-Gravity-Assist

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.; Byrnes, Dennis V.; Johannesen, Jennie R.; Nolan, Brian G.

    1989-01-01

    The new baseline for the Galileo Mission is a 1989 Venus-earth-earth gravity-assist (VEEGA) trajectory, which utilizes three gravity-assist planetary flybys in order to reduce launch energy requirements significantly compared to other earth-Jupiter transfer modes. The launch period occurs during October-November 1989. The total flight time is about 6 years, with November 1995 as the most likely choice for arrival at Jupiter. Optimal 1989 VEEGA trajectories have been generated for a wide range of earth launch dates and Jupiter arrival dates. Launch/arrival space contour plots are presented for various trajectory parameters, including propellant margin, which is used to measure mission performance. The accessible region of the launch/arrival space is defined by propellant margin and launch energy constraints; the available launch period is approximately 1.5 months long.

  8. Earth Wisdom.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    1985-01-01

    In our human-centered ignorance and arrogance we are rapidly destroying the earth. We must start helping people understand the big picture of ecological concepts. What these concepts mean for our own lives and how we must begin to change our lifestyles in order to live more harmoniously with the earth. (JHZ)

  9. Earth observation images taken as part of the EarthKAM educational program

    NASA Image and Video Library

    2000-02-13

    S99-E-5267 (13 February 2000) --- City of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico and the Rio Grande River, which separates them. An electronic still camera (ESC), mounted in one of Endeavour's aft flight deck windows, is recording imagery of hundreds of Earth targets for the EarthKAM project. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more. For general EarthKAM information and more images from this flight, go to http://www.earthkam.ucsd.edu/

  10. [Burden and health effects of shift work].

    PubMed

    Heitmann, Jörg

    2010-10-01

    In Germany aprox. 15% of all employees have irregular or flexible working hours. Disturbed sleep and/or hypersomnia are direct consequences of shift work and therefore described as shift work disorder. Beyond this, shift work can also be associated with specific pathological disorders. There are individual differences in tolerance to shift work. Optimization of both shift schedules and sleep to "non-physiological" times of the day are measures to counteract the negative effects of shift work. There is still not enough evidence to recommend drugs for routine use in shift workers. © Georg Thieme Verlag Stuttgart · New York.

  11. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  12. Orbital Drivers of Climate Change on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zent, A. P.

    Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which

  13. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  14. Earth Science

    NASA Image and Video Library

    1994-09-02

    This image depicts a full view of the Earth, taken by the Geostationary Operational Environment Satellite (GOES-8). The red and green charnels represent visible data, while the blue channel represents inverted 11 micron infrared data. The north and south poles were not actually observed by GOES-8. To produce this image, poles were taken from a GOES-7 image. Owned and operated by the National Oceanic and Atmospheric Administration (NOAA), GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. They circle the Earth in a geosynchronous orbit, which means they orbit the equatorial plane of the Earth at a speed matching the Earth's rotation. This allows them to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth, high enough to allow the satellites a full-disc view of the Earth. Because they stay above a fixed spot on the surface, they provide a constant vigil for the atmospheric triggers for severe weather conditions such as tornadoes, flash floods, hail storms, and hurricanes. When these conditions develop, the GOES satellites are able to monitor storm development and track their movements. NASA manages the design and launch of the spacecraft. NASA launched the first GOES for NOAA in 1975 and followed it with another in 1977. Currently, the United States is operating GOES-8, positioned at 75 west longitude and the equator, and GOES-10, which is positioned at 135 west longitude and the equator. (GOES-9, which malfunctioned in 1998, is being stored in orbit as an emergency backup should either GOES-8 or GOES-10 fail. GOES-11 was launched on May 3, 2000 and GOES-12 on July 23, 2001. Both are being stored in orbit as a fully functioning replacement for GOES-8 or GOES-10 on failure.

  15. The impact of shift work on the psychological and physical health of nurses in a general hospital: a comparison between rotating night shifts and day shifts.

    PubMed

    Ferri, Paola; Guadi, Matteo; Marcheselli, Luigi; Balduzzi, Sara; Magnani, Daniela; Di Lorenzo, Rosaria

    2016-01-01

    Shift work is considered necessary to ensure continuity of care in hospitals and residential facilities. In particular, the night shift is one of the most frequent reasons for the disruption of circadian rhythms, causing significant alterations of sleep and biological functions that can affect physical and psychological well-being and negatively impact work performance. The aim of this study was to highlight if shift work with nights, as compared with day work only, is associated with risk factors predisposing nurses to poorer health conditions and lower job satisfaction. This cross-sectional study was conducted from June 1, 2015 to July 31, 2015 in 17 wards of a general hospital and a residential facility of a northern Italian city. This study involved 213 nurses working in rotating night shifts and 65 in day shifts. The instrument used for data collection was the "Standard Shift Work Index," validated in Italian. Data were statistically analyzed. The response rate was 86%. The nurses engaged in rotating night shifts were statistically significantly younger, more frequently single, and had Bachelors and Masters degrees in nursing. They reported the lowest mean score in the items of job satisfaction, quality and quantity of sleep, with more frequent chronic fatigue, psychological, and cardiovascular symptoms in comparison with the day shift workers, in a statistically significant way. Our results suggest that nurses with rotating night schedule need special attention due to the higher risk for both job dissatisfaction and undesirable health effects.

  16. Which way will the circulation shift in a changing climate? Possible nonlinearity of extratropical cloud feedbacks

    NASA Astrophysics Data System (ADS)

    Tandon, Neil F.; Cane, Mark A.

    2017-06-01

    In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than 25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than 25 %. But on shorter timescales, our results give good reason to expect significant

  17. Implementing a night-shift clinical nurse specialist.

    PubMed

    Becker, Dawn Marie

    2013-01-01

    Night-shift nurses receive fewer educational opportunities and less administrative support than do day-shift staff, tend to be newer, with less experience and fewer resources, and experience greater turnover rates, stress, and procedural errors. In an attempt to bridge the gap between day- and night-shift nursing, a night-shift clinical nurse specialist (CNS) position was created in a midsized, community teaching hospital. The goal was to provide an advanced practice presence to improve patient outcomes, communication, education, and cost-effectiveness. The night-shift CNS participated in nursing education and skill certifications, communicated new procedures and information, and created a communication committee specifically for night-shift nurses. Through regular rounding and on-call notification, the CNS was available to every area of the hospital for consultation and clinical assistance and assisted with rapid responses, codes, and traumas. Providing education during night shift reduced overtime costs and increased morale, positively affecting turnover rates. The night-shift CNS position has improved morale and equalized support for night-shift nurses. More research, most notably in specific night-shift metrics, is necessary, and with the implementation of the role in additional facilities, more can be understood about improving patient care and nursing staff satisfaction during night shift.

  18. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden poses for a quick selfie with students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  19. High-speed optical phase-shifting apparatus

    DOEpatents

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  20. Time evolution of the Lamb shift.

    PubMed

    Wang, Da-Wei; Li, Zheng-Hong; Wang, Li-Gang; Zhu, Shi-Yao; Zubairy, M Suhail

    2010-09-01

    The time evolution of the Lamb shift that accompanies the real photon emission is studied for the first time (to our knowledge). The investigation of the explicit time dependence of the Lamb shift becomes possible because the self-energy of the free electron, which is divergent, is subtracted from the Hamiltonian after a unitary transformation. The Lamb shift can then be separated into two parts: one is the time-independent shift due to the virtual photon exchange, and the other is the time-dependent shift due to the real photon emission. The time evolution depends on the nature of the coupling spectrum of the reservoir.

  1. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  2. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  3. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    NASA Astrophysics Data System (ADS)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  4. Source phase shift - A new phenomenon in wave propagation due to anelasticity. [in free oscillations of earth model

    NASA Technical Reports Server (NTRS)

    Buland, R.; Yuen, D. A.; Konstanty, K.; Widmer, R.

    1985-01-01

    The free oscillations of an anelastic earth model due to earthquakes were calculated directly by means of the correspondence principle from wave propagation theory. The formulation made it possible to find the source phase which is not predictable using first order perturbation theory. The predicted source phase was largest for toroidal modes with source components proportional to the radial strain scalar instead of the radial displacement scalar. The source phase increased in relation to the overtone number. In addition, large relative differences were found in the excitation modulus and the phase when the elastic excitation was small. The effect was sufficient to bias estimates of source properties and elastic structure.

  5. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  6. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    USGS Publications Warehouse

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  7. Earth - Moon Conjunction

    NASA Technical Reports Server (NTRS)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  8. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  9. A Quantitative Ecological Risk Assessment of the Toxicological Risks from Exxon Valdez Subsurface Oil Residues to Sea Otters at Northern Knight Island, Prince William Sound, Alaska

    PubMed Central

    Harwell, Mark A.; Gentile, John H.; Johnson, Charles B.; Garshelis, David L.; Parker, Keith R.

    2010-01-01

    A comprehensive, quantitative risk assessment is presented of the toxicological risks from buried Exxon Valdez subsurface oil residues (SSOR) to a subpopulation of sea otters (Enhydra lutris) at Northern Knight Island (NKI) in Prince William Sound, Alaska, as it has been asserted that this subpopulation of sea otters may be experiencing adverse effects from the SSOR. The central questions in this study are: could the risk to NKI sea otters from exposure to polycyclic aromatic hydrocarbons (PAHs) in SSOR, as characterized in 2001–2003, result in individual health effects, and, if so, could that exposure cause subpopulation-level effects? We follow the U.S. Environmental Protection Agency (USEPA) risk paradigm by: (a) identifying potential routes of exposure to PAHs from SSOR; (b) developing a quantitative simulation model of exposures using the best available scientific information; (c) developing scenarios based on calculated probabilities of sea otter exposures to SSOR; (d) simulating exposures for 500,000 modeled sea otters and extracting the 99.9% quantile most highly exposed individuals; and (e) comparing projected exposures to chronic toxicity reference values. Results indicate that, even under conservative assumptions in the model, maximum-exposed sea otters would not receive a dose of PAHs sufficient to cause any health effects; consequently, no plausible toxicological risk exists from SSOR to the sea otter subpopulation at NKI. PMID:20862194

  10. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Astronaut John Mace Grunsfeld takes a quick selfie with astronauts at the International Space Station at the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  11. Shift Work Disorder, Depression, and Anxiety in the Transition to Rotating Shifts: The Role of Sleep Reactivity

    PubMed Central

    Kalmbach, David A; Pillai, Vivek; Cheng, Philip; Arnedt, J Todd; Drake, Christopher L

    2016-01-01

    Objectives To investigate premorbid sleep reactivity as a vulnerability to incident shift work disorder and related changes in depression and anxiety following a transition to a rotating shifts work schedule. Methods This is a longitudinal study with two waves of data collection. The community-based sample included normal sleeping non-shift workers (N=96; 62.5% female; 47.9±13.3 yo) without a lifetime history of insomnia or baseline excessive daytime sleepiness who transitioned to rotating shift work one year later. Participants reported demographic characteristics, trait sleep reactivity on the Ford Insomnia Response to Stress Test, depression symptoms on the Quick Inventory of Depression Symptomatology, and anxiety symptoms on the Beck Anxiety Inventory. Shift work disorder was determined based on significant sleep disturbance and/or excessive sleepiness in the context of working a rotating shifts schedule. Results Analyses revealed that the odds were over five times greater for highly sleep reactive individuals to develop shift work disorder after transitioning to rotating shifts (OR=5.59, p=.04). Nearly 90% of shift work disorder sufferers were accurately identified as high risk at 1-y prior to disease onset. Furthermore, individuals who developed SWD reported greater increases in symptoms of depression and anxiety. Finally, analyses revealed significant indirect effects wherein high sleep reactivity increased risk for SWD, which led to greater severity of anxiety and depression symptoms. Conclusions The FIRST accurately identifies a focused target population in which the premorbid psychobiological processes complicit in SWD onset and progression, as well as shift work-related depression and anxiety changes, can be better investigated, thus improving future preventative efforts. PMID:26611952

  12. Absenteeism of shift and day workers: A study of six types of shift system in 29 organizations

    PubMed Central

    Taylor, P. J.; Pocock, S. J.; Sergean, R.

    1972-01-01

    Taylor, P. J., Pocock, S. J., and Sergean, R. (1972).Brit. J. industr. Med.,29, 208-213. Absenteeism of shift and day workers. Previous evidence on the effects of shift work upon absence behaviour is conflicting, this being due in part to the variety of shift systems in use. A study is described in which absence records over two years were obtained for 965 matched pairs of shift and day workers from 29 organizations. Six types of shift system were involved, providing comprehensive coverage of shift work in the United Kingdom. Matching was achieved for sex, age, workplace, and occupation. Absence records included certified sickness, short sickness, and non-medical absence. The overall results showed that shift workers had less absence of all three types than their colleagues on day work, this difference being most marked in the numbers of men having several episodes. No significant differences were found in the diagnostic pattern of certified absence. Comparisons between day work and each of the six types of shift work did not provide any definite conclusions as to their relative merits as far as absence is concerned. The results from the different organizations were not wholly consistent, but a substantial majority followed the general trend. PMID:5022000

  13. A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater.

    PubMed

    Saqib, Najm Us; Adnan, Rohana; Shah, Irfan

    2016-08-01

    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.

  14. Curiosity Mars Rover First Image of Earth and Earth Moon

    NASA Image and Video Library

    2014-02-06

    The two bodies in this portion of an evening-sky view by NASA Mars rover Curiosity are Earth and Earth moon. The rover Mast Camera Mastcam imaged them in the twilight sky of Curiosity 529th Martian day, or sol Jan. 31, 2014.

  15. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  16. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  17. Earthing: health implications of reconnecting the human body to the Earth's surface electrons.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits-including better sleep and reduced pain-from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  18. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Oschman, James L.; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance. PMID:22291721

  19. Next-generation Digital Earth

    PubMed Central

    Goodchild, Michael F.; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J.; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of “big data” has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public’s access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation. PMID:22723346

  20. People and the Earth

    NASA Astrophysics Data System (ADS)

    Rogers, John James William; Feiss, P. Geoffrey

    1998-03-01

    People and the Earth examines the numerous ways in which this planet enhances and limits our lifestyles. Written with wit and remarkable insight, and illustrated with numerous case histories, it provides a balanced view of the complex environmental issues facing our civilization. The authors look at the geologic restrictions on our ability to withdraw resources--food, water, energy, and minerals--from the earth, the effect human activity has on the earth, and the lingering damage caused by natural disasters. People and the Earth examines the basic components of our interaction with this planet, provides a lucid, scientific discussion of each issue, and speculates on what the future may hold. It provides the fundamental concepts that will enable us to make wise and conscientious choices on how to live our day-to-day lives. People and the Earth is an ideal introductory textbook and will also appeal to anyone concerned with our evolving relationship to the earth.

  1. Next-generation Digital Earth.

    PubMed

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  2. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  3. Methodological aspects of shift-work research.

    PubMed

    Knutsson, Anders

    2004-01-01

    A major issue in shift-work research is to understand the possible ways in which shift work can impact performance and health. Nearly all body functions, from those of the cellular level to those of the entire body, are circadian rhythmic. Disturbances of these rhythms as well as the social consequences of odd work hours are of importance for the health and well-being of shift workers. This article reviews a number of common methodological issues which are of relevance to epidemiological studies in this area of research. It discusses conceptual problems regarding the use of the term "shift work," and it underscores the need to develop models that explain the mechanisms of disease in shift workers.

  4. Edge technique for measurement of laser frequency shifts including the Doppler shift

    NASA Technical Reports Server (NTRS)

    Korb, Larry (Inventor)

    1991-01-01

    A method is disclosed for determining the frequency shift in a laser system by transmitting an outgoing laser beam. An incoming laser beam having a frequency shift is received. A first signal is acquired by transmitting a portion of the incoming laser beam to an energy monitor detector. A second signal is acquired by transmitting a portion of the incoming laser beam through an edge filter to an edge detector, which derives a first normalized signal which is proportional to the transmission of the edge filter at the frequency of the incoming laser beam. A second normalized signal is acquired which is proportional to the transmission of the edge filter at the frequency of the outgoing laser beam. The frequency shift is determined by processing the first and second normalized signals.

  5. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  6. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  7. The Earth & Moon

    NASA Image and Video Library

    1998-06-04

    During its flight, NASA’s Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. http://photojournal.jpl.nasa.gov/catalog/PIA00342

  8. Towards a Preservation Content Standard for Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Lowe, Dawn; Murphy, Kevin

    2017-01-01

    Information from Earth observing missions (remote sensing with airborne and spaceborne instruments, and in situ measurements such as those from field campaigns) is proliferating in the world. Many agencies across the globe are generating important datasets by collecting measurements from instruments on board aircraft and spacecraft, globally and constantly. The data resulting from such measurements are a valuable resource that needs to be preserved for the benefit of future generations. These observations are the primary record of the Earths environment and therefore are the key to understanding how conditions in the future will compare to conditions today. Earth science observational data, derived products and models are used to answer key questions of global significance. In the near-term, as long as the missions data are being used actively for scientific research, it continues to be important to provide easy access to the data and services commensurate with current information technology. For the longer term, when the focus of the research community shifts toward new missions and observations, it is essential to preserve the previous mission data and associated information. This will enable a new user in the future to understand how the data were used for deriving information, knowledge and policy recommendations and to repeat the experiment to ascertain the validity and possible limitations of conclusions reached in the past and to provide confidence in long term trends that depended on data from multiple missions. Organizations that collect, process, and utilize Earth observation data today have a responsibility to ensure that the data and associated content continue to be preserved by them or are gathered and handed off to other organizations for preservation for the benefit of future generations. In order to ensure preservation of complete content necessary for understanding and reusing the data and derived digital products from todays missions, it is

  9. A carbon dioxide radiance model of the earth planet using the conical earth sensor data

    NASA Astrophysics Data System (ADS)

    Deng, Loulou; Mei, Zhiwu; Tu, Zhijun; Yuan, Jun; He, Ting; Wei, Yi

    2013-10-01

    Climate Modeling results show that about 50% of the Earth's outgoing radiation and 75% of the atmospheric outgoing radiation are contained in the far infrared. Generally the earth is considered as a 220~230 K blackbody, and the peak breadth of the Earth's outgoing radiation is around the wavelength of 10 micron. The atmospheric outgoing radiation are contained with five spectral intervals: the water vapor band from 6.33 to 6.85 microns, the ozone band from 8.9 to 10.1microns, the atmospheric window from 10.75 to 11.75 microns, the carbon dioxide band from 14 to 16 microns, and finally the rotational water vapor band from 21 to 125 microns. The properties of the carbon dioxide band is stable than other bands which has been chosen for the work Spectrum of the earth sensors. But the radiation energy of carbon dioxide band is variety and it is a function of latitude, season and weather conditions. Usually the luminance of the Earth's radiation (14 to 16 μm) is from 3 to 7 W/m2Sr. Earth sensor is an important instrument of the Attitude and Orbit Control System (AOCS), and it is sensitive to the curve of the earth's and atmospheric outgoing radiation profile to determine the roll and pitch angles of satellite which are relative to nadir vector. Most earth sensors use profile data gathered form Project Scanner taken in August and December 1966. The earth sensor referred in this paper is the conical scanning earth sensor which is mainly used in the LEO (Low Earth Orbit) satellite. A method to determine the luminance of earth's and atmospheric outgoing radiation (carbon dioxide) using the earth sensor is discussed in this paper. When the conical scanning sensor scan form the space to the earth, a pulse is produced and the pulse breadth is scale with the infrared radiation luminance. Then the infrared radiation luminance can be calculated. A carbon dioxide radiance model of the earth's and atmospheric outgoing radiation is obtained according the luminance data about with

  10. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  11. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  12. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  13. Earth Day 2017

    NASA Image and Video Library

    2017-12-08

    Happy Earth Day! Explore the diverse colors, unique shapes and striking patterns of our very favorite planet, Earth - as only NASA can see it. Credit: NASA/Goddard #nasagoddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Fostering Diversity in the Earth and Space Sciences: The Role of AGU

    NASA Astrophysics Data System (ADS)

    Snow, J. T.; Johnson, R. M.; Hall, F. R.

    2002-12-01

    In May 2002, AGU's Committee on Education and Human Resources (CEHR) approved a new Diversity Plan, developed in collaboration with the CEHR Subcommittee on Diversity. Efforts to develop a diversity plan for AGU were motivated by the recognition that the present Earth and space science community poorly represents the true diversity of our society. Failure to recruit a diverse scientific workforce in an era of rapidly shifting demographics could have severe impact on the health of our profession. The traditional base of Earth and space scientists in the US (white males) has been shrinking during the past two decades, but women, racial and ethnic minorities, and persons with disabilities are not compensating for this loss. The potential ramifications of this situation - for investigators seeking to fill classes and recruit graduate students, for institutions looking to replace faculty and researchers, and for the larger community seeking continued public support of research funding - could be crippling. AGU's new Diversity Plan proposes a long-term strategy for addressing the lack of diversity in the Earth and space sciences with the ultimate vision of reflecting diversity in all of AGU's activities and programs. Four key goals have been identified: 1) Educate and involve the AGU membership in diversity issues; 2) Enhance and foster the participation of Earth and space scientists, educators and students from underrepresented groups in AGU activities; 3) Increase the visibility of the Earth and space sciences and foster awareness of career opportunities in these fields for underrepresented populations; and 4) Promote changes in the academic culture that both remove barriers and disincentives for increasing diversity in the student and faculty populations and reward member faculty wishing to pursue these goals. A detailed implementation plan that utilizes all of AGU's resources is currently under development in CEHR. Supportive participation by AGU members and

  15. Earth - Pacific Ocean

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA’s Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00123

  16. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  17. Early Earth slab stagnation

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.

    2016-12-01

    At present day, the Earth's mantle exhibits a combination of stagnant and penetrating slabs within the transition zone, indicating a intermittent convection mode between layered and whole-mantle convection. Isoviscous thermal convection calculations show that in a hotter Earth, the natural mode of convection was dominated by double-layered convection, which may imply that slabs were more prone to stagnate in the transition zone. Today, slab penetration is to a large extent controlled by trench mobility for a plausible range of lower mantle viscosity and Clapeyron slope of the mantle phase transitions. Trench mobility is, in turn, governed by slab strength and density and upper plate forcing. In this study, we systematically investigate the slab-transition zone internation in the Early Earth, using 2D self-consistent numerical subduction models. Early Earth's higher mantle temperature facilitates decoupling between the plates and the underlying asthenosphere, and may result in slab sinking almost without trench retreat. Such behaviour together with a low resistance of a weak lower mantle may allow slabs to penetrate. The ability of slab to sink into the lower mantle throughout Earth's history may have important implications for Earth's evolution: it would provide efficient mass and heat flux through the transition zone therefore provide an efficient way to cool and mix the Earth's mantle.

  18. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  19. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  20. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    PubMed

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  1. Examining paid sickness absence by shift workers.

    PubMed

    Catano, V M; Bissonnette, A B

    2014-06-01

    Shift workers are at greater risk than day workers with respect to psychological and physical health, yet little research has linked shift work to increased sickness absence. To investigate the relationship between shift work and sickness absence while controlling for organizational and individual characteristics and shift work attributes that have confounded previous research. The study used archive data collected from three national surveys in Canada, each involving over 20000 employees and 6000 private-sector firms in 14 different occupational groups. The employees reported the number of paid sickness absence days in the past 12 months. Data were analysed using both chi-squared statistics and hierarchical regressions. Contrary to previous research, shift workers took less paid sickness absence than day workers. There were no differences in the length of the sickness absence between both groups or in sickness absence taken by female and male workers whether working days or shifts. Only job tenure, the presence of a union in the workplace and working rotating shifts predicted sickness absence in shift workers. The results were consistent across all three samples. In general, shift work does not seem to be linked to increased sickness absence. However, such associations may be true for specific industries. Male and female workers did not differ in the amount of sickness absence taken. Rotating shifts, regardless of industry, predicted sickness absence among shift workers. Consideration should be given to implementing scheduled time off between shift changes. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  3. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  4. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  5. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO· · ·HNO complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Weijun; Gao, Xiaoming

    The blue-shifted and red-shifted H-bonds have been studied in complexes CH3CHO?HNO. At the MP2/6-31G(d), MP2/6-31+G(d,p) MP2/6-311++G(d,p), B3LYP/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO?HNO are calculated by both standard and CP-corrected methods, respectively. Complex A exhibits simultaneously red-shifted C bond H?O and blue-shifted N bond H?O H-bonds. Complex B possesses simultaneously two blue-shifted H-bonds: C bond H?O and N bond H?O. From NBO analysis, it becomes evident that the red-shifted C bond H?O H-bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue-shifted C bond H?O H-bond is a result of conjunct C bond H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue-shifted N bond H?O H-bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N bond H stretching frequency is observed because the rehybridization dominates the hyperconjugation.

  6. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  7. Complete phase diagram of rare-earth nickelates from first-principles

    NASA Astrophysics Data System (ADS)

    Varignon, Julien; Grisolia, Mathieu N.; Íñiguez, Jorge; Barthélémy, Agnès; Bibes, Manuel

    2017-12-01

    The structural, electronic and magnetic properties of AMO3 perovskite oxides, where M is a 3d transition metal, are highly sensitive to the geometry of the bonds between the metal-d and oxygen-p ions (through octahedra rotations and distortions) and to their level of covalence. This is particularly true in rare-earth nickelates RNiO3 that display a metal-insulator transition with complex spin orders tunable by the rare-earth size, and are on the border line between dominantly ionic (lighter elements) and covalent characters (heavier elements). Accordingly, computing their ground state is challenging and a complete theoretical description of their rich phase diagram is still missing. Here, using first-principles simulations, we successfully describe the electronic and magnetic experimental ground state of nickelates. We show that the insulating phase is characterized by a split of the electronic states of the two Ni sites (i.e., resembling low-spin 4+ and high-spin 2+) with a concomitant shift of the oxygen-2p orbitals toward the depleted Ni cations. Therefore, from the point of view of the charge, the two Ni sites appear nearly identical whereas they are in fact distinct. Performing such calculations for several nickelates, we built a theoretical phase diagram that reproduces all their key features, namely a systematic dependence of the metal-insulator transition with the rare-earth size and the crossover between a second to first order transition for R = Pr and Nd. Finally, our results hint at strategies to control the electronic and magnetic phases of perovskite oxides by fine tuning of the level of covalence.

  8. Earth Orientation - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation USNO Logo USNO Navigation Earth Orientation Products GPS -based Products VLBI-based Products EO Information Center Publications about Products Software Info Earth

  9. Earthing Spiritual Literacy: How to Link Spiritual Development and Education to a New Earth Consciousness?

    ERIC Educational Resources Information Center

    King, Ursula

    2010-01-01

    This article discusses the development of spiritual literacy in relation to a new consciousness of the Earth and what Thomas Berry calls "Earth literacy". It draws on the metaphor of "earthing" to argue for a close link between spiritual literacy and Earth literacy, considered of great importance for both personal spiritual…

  10. Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2007-01-01

    A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.

  11. Deblending Microlensing Events Using Astrometric Shifts

    NASA Astrophysics Data System (ADS)

    Goldberg, D. M.; Wozniak, P.; Paczynski, B.

    1997-12-01

    In this poster, we present the prospect that astrometric shifts can be used to identify blended microlensing events in crowded fields. Moreover, by measuring an astrometric shift, one can determine the position of the true lensed star with respect to the local field with very high precision. We first perform several simulations of microlensing searches in crowded fields and find that if we assume a dark lens, and that the lensed star obeys a power law luminosity function, n(L)~ L(-beta ) , over half the simulated events show a measurable astrometric shift. For simulations of 20000 stars on a 256x 256 Nyquist sampled CCD frame, we found that with beta =2, 58% of the events were significantly blended (F_{*}/Ftot <= 0.9), and of those, 73% had a large astrometric shift (>= 0.5 pixels). For beta =3, we found that 85% were significantly blended, and that 85% of those had a significant shift. Since we expect most blended events to show a significant shift, we look in the OGLE I database (Wozniak & Szymanski 1997), and find measurable and systematic shifts in over half the candidate microlensing events, including OGLE # 5, which was considered to be blended from photometric data.

  12. Exploring Spaceship Earth

    ERIC Educational Resources Information Center

    McInnis, Noel F.

    1973-01-01

    Describes various activities to understand the nature of the earth as a spaceship and its impact on human life. A figure depicting a holocoenotic environmental complex is given which can be used to illustrate various interacting forces on earth. (PS)

  13. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  14. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  15. Night shift work and modifiable lifestyle factors.

    PubMed

    Pepłońska, Beata; Burdelak, Weronika; Krysicka, Jolanta; Bukowska, Agnieszka; Marcinkiewicz, Andrzej; Sobala, Wojciech; Klimecka-Muszyńska, Dorota; Rybacki, Marcin

    2014-10-01

    Night shift work has been linked to some chronic diseases. Modification of lifestyle by night work may partially contribute to the development of these diseases, nevertheless, so far epidemiological evidence is limited. The aim of the study was to explore association between night shift work and lifestyle factors using data from a cross-sectional study among blue-collar workers employed in industrial plants in Łódź, Poland. The anonymous questionnaire was self-administered among 605 employees (236 women and 369 men, aged 35 or more) - 434 individuals currently working night shifts. Distribution of the selected lifestyle related factors such as smoking, alcohol drinking, physical activity, body mass index (BMI), number of main meals and the hour of the last meal was compared between current, former, and never night shift workers. Adjusted ORs or predicted means were calculated, as a measure of the associations between night shift work and lifestyle factors, with age, marital status and education included in the models as covariates. Recreational inactivity (defined here as less than one hour per week of recreational physical activity) was associated with current night shift work when compared to never night shift workers (OR = 2.43, 95% CI: 1.13-5.22) among men. Alcohol abstinence and later time of the last meal was associated with night shift work among women. Statistically significant positive relationship between night shift work duration and BMI was observed among men (p = 0.029). This study confirms previous studies reporting lower exercising among night shift workers and tendency to increase body weight. This finding provides important public health implication for the prevention of chronic diseases among night shift workers. Initiatives promoting physical activity addressed in particular to the night shift workers are recommended.

  16. WHITE PAPER: DEMONSTRATION OF EQUIVALENCY OF CANE AND SOFTWOOD BASED CELOTEX FOR 9975 PACKAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varble, J

    2007-11-20

    Cane-based Celotex{trademark} has been used extensively in various DOE packages as a thermal insulator and impact absorber. Cane-based Celotex{trademark} for the 9975 was manufactured by Knight-Celotex Fiberboard at their Marrero Plant in Louisiana. However, Knight-Celotex Fiberboard shut down their Marrero Plant in early 2007 due to impacts from hurricane Katrina and other economic factors. Therefore, cane-based Celotex{trademark} is no longer available for use in the manufacture of new 9975 packages. Knight-Celotex Fiberboard has Celotex{trademark} manufacturing plants in Danville, VA and Sunbury, PA that use softwood and hardwood, respectively, as a raw material in the manufacturing of Celotex{trademark}. The purpose ofmore » this White Paper is to demonstrate that softwood-based Celotex{trademark} from the Knight-Celotex Danville Plant has performance equivalent to cane-based Celotex{trademark} from the Knight-Celotex Marrero Plant for transportation in a 9975 package.« less

  17. Earth-System Scales of Biodiversity Variability in Shallow Continental Margin Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Moffitt, S. E.; White, S. M.; Hill, T. M.; Kennett, J.

    2015-12-01

    High-resolution paleoceanographic sedimentary sequences allow for the description of ecosystem sensitivity to earth-system scales of climate and oceanographic change. Such archives from Santa Barbara Basin, California record the ecological consequences to seafloor ecosystems of climate-forced shifts in the California Current Oxygen Minimum Zone (OMZ). Here we use core MV0508-20JPC dated to 735,000±5,000 years ago (Marine Isotope Stage 18) as a "floating window" of millennial-scale ecological variability. For this investigation, previously published archives of planktonic δ18O (Globigerina bulloides) record stadial and interstadial oscillations in surface ocean temperature. Core MV0508-20JPC is an intermittently laminated archive, strongly influenced by the California Current OMZ, with continuously preserved benthic foraminifera and discontinuously preserved micro-invertebrates, including ophiuroids, echinoderms, ostracods, gastropods, bivalves and scaphopods. Multivariate statistical approaches, such as ordinations and cluster analyses, describe climate-driven changes in both foraminiferal and micro-invertebrate assemblages. Statistical ordinations illustrate that the shallow continental margin seafloor underwent predictable phase-shifts in oxygenation and biodiversity across stadial and interstadial events. A narrow suite of severely hypoxic taxa characterized foraminiferal communities from laminated intervals, including Bolivina tumida, Globobulimina spp., and Nonionella stella. Foraminiferal communities from bioturbated intervals are diverse and >60% similar to each other, and they are associated with echinoderm, ostracod and mollusc fossils. As with climate shifts in the latest Quaternary, there is a sensitive benthic ecosystem response in mid-Pleistocene continental margins to climatically related changes in OMZ strength.

  18. Set Shifting Among Adolescents with Anorexia Nervosa

    PubMed Central

    Fitzpatrick, Kathleen Kara; Darcy, Alison; Colborn, Danielle; Gudorf, Caroline; Lock, James

    2012-01-01

    Objective Set shifting difficulties are documented for adults with anorexia nervosa (AN). However, AN typically onsets in adolescents and it is unclear if set-shifting difficulties are a result of chronic AN or present earlier in its course. This study examined whether adolescents with short duration AN demonstrated set shifting difficulties compared to healthy controls (HC). Method Data on set shifting collected from the Delis-Kaplan Executive Functioning System (DKEFS) and Wisconsin Card Sort Task (WCST) as well as eating psychopathology were collected from 32 adolescent inpatients with AN and compared to those from 22 HCs. Results There were no differences in set-shifting in adolescents with AN compared to HCs on most measures. Conclusion The findings suggest that set-shifting difficulties in AN may be a consequence of AN. Future studies should explore set-shifting difficulties in a larger sample of adolescents with the AN to determine if there is sub-set of adolescents with these difficulties and determine any relationship of set-shifting to the development of a chronic from of AN. PMID:22692985

  19. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  20. Goos-Hanchen shifts in tilted uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohu

    2018-06-01

    The Goos-Hanchen shifts at the surface of the tilted uniaxial crystals have been studied with the help of the stationary phase method. It is found that the permittivity and the optical axis of the uniaxial crystal have outstanding influence on the Goos-Hanchen shift. The numerical results show that the negative Goos-Hanchen shift can occur even when the refractive index of the material is not negative. Besides, the Goos-Hanchen shift can be negative or positive infinite under certain conditions. Our results may provide useful information in manipulating the Goos-Hanchen shift in uniaxial crystals. We believe this method could find practical applications in tunable sensors and switches, which are based on Goos-Hanchen shifts.

  1. Deterrence by Denial: The Efficacy of U.S. Missile Defense in the Persian Gulf as a Deterrent Against the Iranian Regional Missile Threat

    DTIC Science & Technology

    2011-06-10

    me throughout the entire process. Your professionalism and guidance were critical in making this a worthwhile study. Special thanks to my wife Jamie ...intelligence review by Michael Knights entitled ―Deterrence by punishment could offer last resort options for Iran‖ in April 2006. In this report, Knights ...RL32048, Iran: U.S. Concerns and Policy Responses. Washington, DC: Congressional Research Service, 20 August 2010. Knights , Michael. ―Deterrence by

  2. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  3. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  4. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  5. 75 FR 11916 - Chrysler Group LLC, Formerly Known as Chrysler LLC, Conner Avenue Assembly Plant, Including On...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ..., CDI, Syncreon and Caravan Knight Facilities Management LLC; Detriot, MI; Amended Certification... workers from Aerotek, CDI, Syncreon and Caravan Knight Facilities Management LLC, Detroit, Michigan, who...

  6. Exercise, Energy Balance and the Shift Worker

    PubMed Central

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don; Waterhouse, Jim

    2009-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst ‘white collar’ occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep-deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality have not been confirmed in shift workers. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. ‘Normal’ eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomised controlled studies on the efficacy of

  7. The effects of consecutive night shifts and shift length on cognitive performance and sleepiness: a field study.

    PubMed

    Haidarimoghadam, Rashid; Kazemi, Reza; Motamedzadeh, Majid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2017-06-01

    The aim of this study was to evaluate the effects of consecutive night shifts (CNS) and shift length on cognitive performance and sleepiness. This study evaluated the sleepiness and performance of 30 control room operators (CROs) working in 7 nights, 7 days, 7 days off (7N7D7O) and 30 CROs working in 4 nights, 7 days, 3 nights, 7 days off (4N7D3N7O) shift patterns in a petrochemical complex on the last night shift before swinging into the day shift. To assess cognitive performance, the n-back test, continuous performance test and simple reaction time test were employed. To assess sleepiness, the Karolinska sleepiness scale was used. Both schedules indicated that the correct responses and response times of working memory were reduced (p = 0.001), while intentional errors and sleepiness increased during the shift work (p = 0.001). CNS had a significant impact on reaction time and commission errors (p = 0.001). The main duty of CROs at a petrochemical plant is checking hazardous processes which require appropriate alertness and cognitive performance. As a result, planning for appropriate working hours and suitable number of CNS in a rotating shift system is a contribution to improving CRO performance and enhancing safety.

  8. Long range order and two-fluid behavior in heavy electron materials

    DOE PAGES

    Shirer, Kent R.; Shockley, Abigail C.; Dioguardi, Adam P.; ...

    2012-09-24

    The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments hybridizes with the background conduction electrons. Because the transfer of spectral weight between the localized and itinerant electronic degrees of freedom is gradual, the Kondo liquid typically coexists with the local moment component until the material orders at lowmore » temperatures. The two-fluid formula captures this behavior in a broad range of materials in the paramagnetic state. In order to investigate two-fluid behavior and the onset and physical origin of different long range ordered ground states in heavy electron materials, we have extended Knight shift measurements to URu 2Si 2, CeIrIn 5, and CeRhIn 5. In CeRhIn 5 we find that the antiferromagnetic order is preceded by a relocalization of the Kondo liquid, providing independent evidence for a local moment origin of antiferromagnetism. In URu 2Si 2 the hidden order is shown to emerge directly from the Kondo liquid and so is not associated with local moment physics. Lastly, our results imply that the nature of the ground state is strongly coupled with the hybridization in the Kondo lattice in agreement with phase diagram proposed by Yang and Pines.« less

  9. Quasiclassical description of a superconductor with a spin density wave

    NASA Astrophysics Data System (ADS)

    Moor, A.; Volkov, A. F.; Efetov, K. B.

    2011-04-01

    We derive equations for the quasiclassical Green’s functions ǧ within a simple model of a two-band superconductor with a spin density wave (SDW). The elements of the matrix ǧ are the retarded, advanced, and Keldysh functions, each of which is an 8×8 matrix in the Gor’kov-Nambu, the spin, and the band space. In equilibrium, these equations are a generalization of the Eilenberger equation. On the basis of the derived equations, we analyze the Knight shift, the proximity, and the dc Josephson effects in the superconductors under consideration. The Knight shift is shown to depend on the orientation of the external magnetic field with respect to the direction of the vector of the magnetization of the SDW. The proximity effect is analyzed for an interface between a superconductor with the SDW and a normal metal. The function describing both superconducting and magnetic correlations is shown to penetrate the normal metal or a metal with the SDW due to the proximity effect. The dc Josephson current in an SSDW/N/SSDW junction is also calculated as a function of the phase difference φ. It is shown that in our model, the Josephson current does not depend on the mutual orientation of the magnetic moments in the superconductors SSDW and is proportional to sinφ. The dissipationless spin current jsp depends on the angle α between the magnetization vectors in the same way (jsp~sinα) and is not zero above the superconducting transition temperature.

  10. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  11. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  12. Anxiety about starting three-shift work among female workers: findings from the Female Shift Workers' Health Study.

    PubMed

    Kubo, Tatsuhiko; Maruyama, Takashi; Shirane, Kiyoyumi; Otomo, Hajime; Matsumoto, Tetsuro; Oyama, Ichiro

    2008-03-01

    In 1999, the Japanese Law on Equal Employment Opportunity and Conditions was amended and the previous prohibition of the assignment of female workers to night work was abolished. Subsequently, the number of female shift workers has been increasing in Japan, necessitating greater attention to the health care of this population. The aim of the current study is to evaluate the relationship between anxiety expressed about starting three-shift work and background characteristics among female workers who were being assigned to three-shift work for the first time. The subjects were 38 middle-aged female workers (age range: 44 to 59 years) who were working at a chemical plant. The women completed a self-administered questionnaire before starting three-shift work. Levels of anxiety about starting three-shift work were assessed by the question 'Do you feel anxious about starting three-shift work?' The available responses were: 'Very agree', 'Considerably agree', 'Rather agree', 'Slightly agree' and 'Not agree at all', and 63% of the subjects gave one of the first two answers, which were defined as indicating anxiety. We also acquired information regarding lifestyle and occupation for each subject, including the following factors: frequency of breakfast consumption, subjective sleep insufficiency, previous experience of similar work before beginning shift work, previous experience of two-shift work, and responsibility for household duties. In the study, we found a marginally statistically significant trend association between frequent breakfast consumption and anxiety about starting three-shift work (P(trend) = 0.09). Anxiety was also high among subjects with sleep disorders, especially those suffering from subjective sleep insufficiency (P = 0.08). Due to the small study population, these results should be interpreted with caution and confirmed by future studies.

  13. Gravity Shifting Due to Distribution of Momentum in Black Hole and its Relation with Time Flux

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan; Gholibeygian, Mohammad Hossein

    2017-04-01

    There are many local convection systems of heat and mass in black holes. These large scale coupled systems including planets and molten masses which generate momentum in black hole and consequently generate coupled gravitational and electromagnetic waves. Therefore black hole's gravity is shifting due to distribution of masses/momentum in its convection systems. Two massive black holes which merged at a distance of 1.3 billion light years far from the Earth, produced different momentum and energy before, during, and after the event in different locations of the black hole. This energy and momentum produced gravitational waves which radiated away and recorded on September 14, 2015 by two detectors of the Laser Interferometry Gravitational Observatories (LIGO) in USA. On the other hand, the nature of time is wavy-like motion of the matter and nature of space is jerky-like motion of the matter. These two natures of space-time can be matched on wave-particle duality in quantum mechanics. And also magnitude of the time for an atom is momentum of its involved fundamental particles [Gholibeigian, adsabs.harvard.edu/abs/2016APS.APR.D1032G]. ∑ ⃗R(mv, σ,τ ) = (pnucleons + pelectrons) In which ⃗Ris time flux, σ&τare space and time coordinates on the string world sheet and p is momentum. Therefore, gravitational waves which travel from black hole to us including different fluxes of time which accompaniment propagated gravitational waves of momentum. As an observable factor, we can look at the 7 milliseconds difference of recorded at the time of arrival of the signals on September 14, 2015 by detector in Livingston before detector in Hanford. This difference of recorded time of signal GW150914 by LIGO cannot be due to warped space-time, because 3002 kilometers distance between two detectors with respect to the 1.3 billion light years (distance of black hole to detectors) is like zero! So, this 7 milliseconds difference between two time's fluxes can be due to

  14. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  15. Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses

    PubMed Central

    Gebauer, S.; Godolt, M.; Palczynski, K.; Rauer, H.; Stock, J.; von Paris, P.; Lehmann, R.; Selsis, F.

    2013-01-01

    Abstract Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5–M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process

  16. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  17. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  18. Earth on the Horizon

    NASA Image and Video Library

    2004-03-13

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560

  19. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  20. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  1. Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory

    NASA Astrophysics Data System (ADS)

    Xu, Changyi; Sun, Wenke

    2014-12-01

    In this paper, we propose an approach to compute the coseismic Earth's volume change based on a spherical-Earth elastic dislocation theory. We present a general expression of the Earth's volume change for three typical dislocations: the shear, tensile and explosion sources. We conduct a case study for the 2004 Sumatra earthquake (Mw9.3), the 2010 Chile earthquake (Mw8.8), the 2011 Tohoku-Oki earthquake (Mw9.0) and the 2013 Okhotsk Sea earthquake (Mw8.3). The results show that mega-thrust earthquakes make the Earth expand and earthquakes along a normal fault make the Earth contract. We compare the volume changes computed for finite fault models and a point source of the 2011 Tohoku-Oki earthquake (Mw9.0). The big difference of the results indicates that the coseismic changes in the Earth's volume (or the mean radius) are strongly dependent on the earthquakes' focal mechanism, especially the depth and the dip angle. Then we estimate the cumulative volume changes by historical earthquakes (Mw ≥ 7.0) since 1960, and obtain an Earth mean radius expanding rate about 0.011 mm yr-1.

  2. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  4. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  5. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    NASA Astrophysics Data System (ADS)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  6. Unattended Multiplicity Shift Register

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matt; Jones, David C.

    2017-01-16

    The Unattended Multiplicity Shift Register (UMSR) is a specialized pulse counter used primarily to count neutron events originating in neutron detection instruments. While the counter can be used to count any TTL input pulses, its unique ability to record time correlated events and the multiplicity distributions of these events makes it an ideal instrument for counting neutron events in the nuclear fields of material safeguards, waste assay and process monitoring and control. The UMSR combines the Los Alamos National Laboratory (LANL) simple and robust shift register design with a Commercial-Off-The-Shelf (COTS) processor and Ethernet communications. The UMSR is fully compatiblemore » with existing International Atomic Energy Agency (IAEA) neutron data acquisition instruments such as the Advance Multiplicity Shift Register (AMSR) and JSR-15. The UMSR has three input channels: a multiplicity shift register input and two auxiliary inputs. The UMSR provides 0V to 2kV of programmable High Voltage (HV) bias and both a 12V and a 5V detector power supply output. A serial over USB communication line to the UMSR allows the use of existing versions of INCC or MIC software while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less

  7. Doppler interpretation of quasar red shifts.

    PubMed

    Zapolsky, H S

    1966-08-05

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  8. NMR studies of spin dynamics in cuprates

    NASA Astrophysics Data System (ADS)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  9. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2: 207Pb nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Matano, K.; Zheng, Guo-qing

    2018-05-01

    We report the 207Pb nuclear magnetic resonance (NMR) measurements on polycrystalline sample of PbTaSe2 with noncentrosymmetric crystal structure and topological electronic band. The nuclear spin-lattice relaxation rate 1 /T1 shows a suppressed coherence peak below the superconducting transition temperature Tc=4.05 K and decreases as an exponential function of temperature. The penetration depth derived from the NMR spectrum is almost temperature independent below T =0.7 Tc. The Knight shift K decreases below Tc. These results suggest spin-singlet superconductivity with a fully opened gap 2 Δ =3.5 kBTc in PbTaSe2.

  10. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  11. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  12. Earth Science

    NASA Image and Video Library

    1994-03-08

    Workers at the Astrotech processing facility in Titusville prepared for a news media showing of the Geostationary Operational Environmental Satellite-1 (GOES-1). GOES-1 was the first in a new generation of weather satellites deployed above Earth. It was the first 3-axis, body-stabilized meteorological satellite to be used by the National Oceanic Atmospheric Administration (NOAA) and NASA. These features allowed GOES-1 to continuously monitor the Earth, rather than viewing it just five percent of the time as was the case with spin-stabilized meteorological satellites. GOES-1 also has independent imaging and sounding instruments which can operate simultaneously yet independently. As a result, observations provided by each instrument will not be interrupted. The imager produces visual and infrared images of the Earth's surface, oceans, cloud cover and severe storm development, while the prime sounding products include vertical temperature and moisture profiles, and layer mean moisture.

  13. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-05

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.

  14. Earth Observations

    NASA Image and Video Library

    2010-09-09

    ISS024-E-014071 (9 Sept. 2010) --- This striking panoramic view of the southwestern USA and Pacific Ocean is an oblique image photographed by an Expedition 24 crew member looking outwards at an angle from the International Space Station (ISS). While most unmanned orbital satellites view Earth from a nadir perspective?in other words, collecting data with a ?straight down? viewing geometry?crew members onboard the space station can acquire imagery at a wide range of viewing angles using handheld digital cameras. The ISS nadir point (the point on Earth?s surface directly below the spacecraft) was located in northwestern Arizona, approximately 260 kilometers to the east-southeast, when this image was taken. The image includes parts of the States of Arizona, Nevada, Utah, and California together with a small segment of the Baja California, Mexico coastline at center left. Several landmarks and physiographic features are readily visible. The Las Vegas, NV metropolitan area appears as a gray region adjacent to the Spring Mountains and Sheep Range (both covered by white clouds). The Grand Canyon, located on the Colorado Plateau in Arizona, is visible (lower left) to the east of Las Vegas with the blue waters of Lake Mead in between. The image also includes the Mojave Desert, stretching north from the Salton Sea (left) to the Sierra Nevada mountain range. The Sierra Nevada range is roughly 640 kilometers long (north-south) and forms the boundary between the Central Valley of California and the adjacent Basin and Range. The Basin and Range is so called due to the pattern of long linear valleys separated by parallel linear mountain ranges ? this landscape, formed by extension and thinning of Earth?s crust, is particularly visible at right.

  15. Shift Colors

    Science.gov Websites

    Skip to main content Navigate Up This page location is: Navy Personnel Command Reference Library Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Enlisted Support & Services Expand Support & Services Organization Expand Organization Reference

  16. Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Görges, Daniel

    2018-03-01

    The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.

  17. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  18. A Novel Theory For The Origin And Evolution Of Stars And Planets, Including Earth, Which Asks, 'Was The Earth Once A Small Bright Star?'

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-12-01

    category-3 BH(s). We conceive that c-3 BHs form gas and dust clouds, inside galaxies, that are the incubators for new stars and planets. The start and development of the planet earth, initially as an emergent piece from the colliding c-2 BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. We present a new cross section of the earth (as a dead star). Although the dimensions of the inner core, outer core, and the mantle (inner and outer) are about the same as presently known, new insight is given to their formation, evolution and composition. We explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the source of the supply of water on earth. We explain various planetary phenomenon including: how/why the earth is growing/expanding (not based on current plate tectonic theory) causing it to retard its rotation; why the oceans are different sizes (the Pacific is about twice the Atlantic); why the masses at the poles are shifting into the Atlantic Ocean (may provide an alternative explanation for the ice ages); why various types of earthquakes occur (a new source is presented), why volcanoes occur (two types are discussed); and improved prediction methods for earthquakes and volcanic eruptions; the making/forming of the mountains from bending and compression buckling, and shear failures of the outer surfaces of the earth's brittle outer skin of the 1st crust (and also from eruptions) due to reduction in curvature of the crust.

  19. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  20. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  1. Factors controlling the initiation of Snowball Earth events

    NASA Astrophysics Data System (ADS)

    Voigt, A.

    2012-12-01

    During the Neoproterozoic glaciations tropical continents were covered by active glaciers that extended down to sea level. To explain these glaciers, the Snowball Earth hypothesis assumes that oceans were completely sea-ice covered during these glaciation, but there is an ongoing debate whether or not some regions of the tropical oceans remained open. In this talk, I will describe past and ongoing climate modelling activities with the comprehensive coupled climate model ECHAM5/MPI-OM that identify and compare factors that control the initiation of Snowball Earth events. I first show that shifting the continents from their present-day location to their Marinoan (635 My BP) low-latitude location increases the planetary albedo, cools the climate, and thereby allows Snowball Earth initiation at higher levels of total solar irradiance and atmospheric CO2. I then present simulations with successively lowered bare sea-ice albedo, disabled sea-ice dynamics, and switched-off ocean heat transport. These simulations show that both lowering the bare sea-ice albedo and disabling sea-ice dynamics increase the critical sea-ice cover in ECHAM5/MPI-OM, but sea-ice dynamics due to strong equatorward sea-ice transport have a much larger influence on the critical CO2. Disabling sea-ice transport allows a state with sea-ice margin at 10 deg latitude by virtue of the Jormungand mechanism. The accumulation of snow on land, in combination with tropical land temperatures below or close to freezing, suggests that tropical land glaciers could easily form in such a state. However, in contrast to aquaplanet simulations without ocean heat transport, there is no sign of a Jormungand hysteresis in the coupled simulations. Ocean heat transport is not responsible for the lack of a Jormungand hysteresis in the coupled simulations. By relating the above findings to previous studies, I will outline promising future avenues of research on the initiation of Snowball Earth events. In particular, an

  2. Earth before life.

    PubMed

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  3. Interactive computer aided shift scheduling.

    PubMed

    Gaertner, J

    2001-12-01

    This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.

  4. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    DOT National Transportation Integrated Search

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  5. Evaluating the traditional day and night shift in an acute care surgery fellowship: Is the swing shift a better choice?

    PubMed

    Chestovich, Paul J; McNicoll, Christopher F; Ingalls, Nichole K; Kuhls, Deborah A; Fraser, Douglas R; Morrissey, Shawna L; Fildes, John J

    2018-01-01

    Fellowship trainees in acute care surgery require experience in the management of complex and operative trauma cases. Trauma center staffing usually follows standard 12-hour or 24-hour shifts, with resident and fellow trainees following a similar schedule. Although trauma admissions can be generally unpredictable, we analyzed temporal trends of trauma patient arrival times to determine the best time frame to maximize trainee experience during each day. We reviewed 10 years (2007-2016) of trauma registry data for blunt and penetrating trauma activations. Hourly volumetric trends were observed, and three specific events were chosen for detailed analysis: (1) trauma activation with Injury Severity Score (ISS) greater than 15, (2) laparotomy for trauma, and (3) thoracotomy for trauma. A retrospective shift log was created, which included day (7:00 AM to 7:00 PM), night (7:00 PM to 7:00 AM), and swing (noon to midnight) shifts. A swing shift was chosen because it captures the peak volume for all three events. Means and 95% confidence intervals were calculated, and comparisons were made between shifts using the Wilcoxon matched-pairs signed rank test with Bonferroni correction, and p less than 0.05 considered significant. During the 10-year study period, 28,287 patients were treated at our trauma center. This included the evaluation and management of 7,874 patients with ISS greater than 15, performance of 1,766 laparotomies, and 392 thoracotomies for trauma. Swing shift was superior to both day and night shifts for ISS greater than 15 (p < 0.001). Both swing and night shifts were superior to day shift for laparotomies (p < 0.001). Swing shift was superior to both day shift (p < 0.001) and night shift (p = 0.031). Shifts with the highest yield of ISS greater than 15, laparotomies, and thoracotomies include night and swing shifts on Fridays and Saturdays. Projected experience of acute care surgery fellows in managing complex trauma patients increases with the integration

  6. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  7. Laparoscopic skills suffer on the first shift of sequential night shifts: program directors beware and residents prepare.

    PubMed

    Leff, Daniel R; Aggarwal, Rajesh; Rana, Mariam; Nakhjavani, Batool; Purkayastha, Sanjay; Khullar, Vik; Darzi, Ara W

    2008-03-01

    Research evaluating fatigue-induced skills decline has focused on acute sleep deprivation rather than the effects of circadian desynchronization associated with multiple shifts. As a result, the number of consecutive night shifts that residents can safely be on duty without detrimental effects to their technical skills remains unknown. A prospective observational cohort study was conducted to assess the impact of 7 successive night shifts on the technical surgical performance of junior residents. The interventional strategy included training 21 residents from surgery and allied disciplines on a virtual reality surgical simulator, towards the achievement of preset benchmark scores, followed by 294 technical skills assessments conducted over 1764 manpower night shift hours. Primary outcomes comprised serial technical skills assessments on 2 tasks of a virtual reality surgical simulator. Secondary outcomes included assessments of introspective fatigue, duration of sleep, and prospective recordings of activity (number of "calls" received, steps walked, and patients evaluated). Maximal deterioration in performance was observed following the first night shift. Residents took significantly longer to complete the first (P = 0.002) and second tasks (P = 0.005) compared with baseline. They also committed significantly greater numbers of errors (P = 0.025) on the first task assessed. Improved performance was observed across subsequent shifts towards baseline levels. Newly acquired technical surgical skills deteriorate maximally after the first night shift, emphasizing the importance of adequate preparation for night rotas. Performance improvements across successive shifts may be due to ongoing learning or adaptation to chronic fatigue. Further research should focus on assessments of both technical procedural skills and cognitive abilities to determine the rotas that best minimize errors and maximize patient safety.

  8. Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: role of light-dark exposure.

    PubMed

    Stone, Julia E; Sletten, Tracey L; Magee, Michelle; Ganesan, Saranea; Mulhall, Megan D; Collins, Allison; Howard, Mark; Lockley, Steven W; Rajaratnam, Shantha M W

    2018-06-01

    Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night

  9. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    NASA's Earth Dome is seen at Union Station, Monday, April 22, 2013 in Washington. The Earth Dome housed two of NASA's Science Gallery exhibits as part of a NASA-sponsored Earth Day event at Union Station. Photo Credit: (NASA/Carla Cioffi)

  10. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  11. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  12. Night shift work and hormone levels in women.

    PubMed

    Davis, Scott; Mirick, Dana K; Chen, Chu; Stanczyk, Frank Z

    2012-04-01

    Night shift work may disrupt the normal nocturnal rise in melatonin, resulting in increased breast cancer risk, possibly through increased reproductive hormone levels. We investigated whether night shift work is associated with decreased levels of urinary 6-sulfatoxymelatonin, the primary metabolite of melatonin, and increased urinary reproductive hormone levels. Participants were 172 night shift and 151 day shift-working nurses, aged 20-49 years, with regular menstrual cycles. Urine samples were collected throughout work and sleep periods and assayed for 6-sulfatoxymelatonin, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estrone conjugate (E1C). 6-Sulfatoxymelatonin levels were 62% lower and FSH and LH were 62% and 58% higher, respectively, in night shift-working women during daytime sleep than in day shift-working women during nighttime sleep (P ≤ 0.0001). Nighttime sleep on off-nights was associated with 42% lower 6-sulfatoxymelatonin levels among the night shift workers, relative to the day shift workers (P < 0.0001); no significant differences in LH or FSH were observed. 6-Sulfatoxymelatonin levels during night work were approximately 69% lower and FSH and LH were 35% and 38% higher, compared with day shift workers during nighttime sleep. No differences in E1C levels between night and day shift workers were observed. Within night shift workers, 6-sulfatoxymelatonin levels were lower and reproductive hormone levels were higher during daytime sleep and nighttime work, relative to nighttime sleep (P < 0.05). These results indicate that night shift workers have substantially reduced 6-sulfatoxymelatonin levels during night work and daytime sleep and that levels remain low even when a night shift worker sleeps at night. Shift work could be an important risk factor for many other cancers in addition to breast cancer. ©2012 AACR.

  13. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  14. Design principles for shift current photovoltaics

    DOE PAGES

    Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; ...

    2017-01-25

    While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less

  15. Design principles for shift current photovoltaics

    PubMed Central

    Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.

    2017-01-01

    While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W−1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells. PMID:28120823

  16. Design principles for shift current photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando

    While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less

  17. Accelerating 3D Elastic Wave Equations on Knights Landing based Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Sourouri, Mohammed; Birger Raknes, Espen

    2017-04-01

    In advanced imaging methods like reverse-time migration (RTM) and full waveform inversion (FWI) the elastic wave equation (EWE) is numerically solved many times to create the seismic image or the elastic parameter model update. Thus, it is essential to optimize the solution time for solving the EWE as this will have a major impact on the total computational cost in running RTM or FWI. From a computational point of view applications implementing EWEs are associated with two major challenges. The first challenge is the amount of memory-bound computations involved, while the second challenge is the execution of such computations over very large datasets. So far, multi-core processors have not been able to tackle these two challenges, which eventually led to the adoption of accelerators such as Graphics Processing Units (GPUs). Compared to conventional CPUs, GPUs are densely populated with many floating-point units and fast memory, a type of architecture that has proven to map well to many scientific computations. Despite its architectural advantages, full-scale adoption of accelerators has yet to materialize. First, accelerators require a significant programming effort imposed by programming models such as CUDA or OpenCL. Second, accelerators come with a limited amount of memory, which also require explicit data transfers between the CPU and the accelerator over the slow PCI bus. The second generation of the Xeon Phi processor based on the Knights Landing (KNL) architecture, promises the computational capabilities of an accelerator but require the same programming effort as traditional multi-core processors. The high computational performance is realized through many integrated cores (number of cores and tiles and memory varies with the model) organized in tiles that are connected via a 2D mesh based interconnect. In contrary to accelerators, KNL is a self-hosted system, meaning explicit data transfers over the PCI bus are no longer required. However, like most

  18. Association between rotating night shift work and metabolic syndrome in Korean workers: differences between 8-hour and 12-hour rotating shift work.

    PubMed

    Oh, Jae-Il; Yim, Hyeon Woo

    2018-02-07

    This study aimed to analyze the association between the shift work schedule and metabolic syndrome (MetS). This is a retrospective longitudinal study based on the 2015 health checkup data of 2,090 workers evaluated for MetS in 2010 at a general hospital in Korea. The participants were divided according to their shift work schedule into daytime, three-shift (8-h rotation), and two-shift (12-h rotation) workers. The index that indicates the association between the shift work schedule and MetS is the odds ratio (OR) calculated using multivariate logistic regression. The analysis for the entire group of workers indicated that there was positive association between two-shift rotation and MetS (OR=1.58, 95% confidence interval [CI]: 1.09, 2.29). In the analysis of rotating night-shift workers, the years of rotating night shifts, frequency of night-shift work, and sleep disturbance were added to the confounding variables, and two-shift work remained positively associated with MetS (OR=1.72, 95% CI: 1.10, 2.70). The risk of MetS differs based on the shift work schedules they engage in. Hence, structural changes to the shift work schedules are required to prevent MetS in night-shift workers.

  19. Association between rotating night shift work and metabolic syndrome in Korean workers: differences between 8-hour and 12-hour rotating shift work

    PubMed Central

    OH, Jae-Il; YIM, Hyeon Woo

    2017-01-01

    This study aimed to analyze the association between the shift work schedule and metabolic syndrome (MetS). This is a retrospective longitudinal study based on the 2015 health checkup data of 2,090 workers evaluated for MetS in 2010 at a general hospital in Korea. The participants were divided according to their shift work schedule into daytime, three-shift (8-h rotation), and two-shift (12-h rotation) workers. The index that indicates the association between the shift work schedule and MetS is the odds ratio (OR) calculated using multivariate logistic regression. The analysis for the entire group of workers indicated that there was positive association between two-shift rotation and MetS (OR=1.58, 95% confidence interval [CI]: 1.09, 2.29). In the analysis of rotating night-shift workers, the years of rotating night shifts, frequency of night-shift work, and sleep disturbance were added to the confounding variables, and two-shift work remained positively associated with MetS (OR=1.72, 95% CI: 1.10, 2.70). The risk of MetS differs based on the shift work schedules they engage in. Hence, structural changes to the shift work schedules are required to prevent MetS in night-shift workers. PMID:29046489

  20. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.